UNIVERSITA DI P1sA

DIPARTIMENTO DI INFORMATICA
DOTTORATO DI RICERCA IN INFORMATICA

Pu.D. THESIS

Optimizations and Cost Models for
multi-core architectures: an approach
based on parallel paradigms

Daniele Buono

SUPERVISOR

Marco Vanneschi

May 13, 2014

Dipartimento di Informatica, Largo B. Pontecorvo, 3, I-56127 Pisa, Italy
SETTORE SCIENTIFICO DISCIPLINARE INF /01

Abstract

The trend in modern microprocessor architectures is clear: multi-core chips are here
to stay, and researchers expect multiprocessors with 128 to 1024 cores on a chip in
some years. Yet the software community is slowly taking the path towards parallel
programming: while some works target multi-cores, these are usually inherited from
the previous tools for SMP architectures, and rarely exploit specific characteristics
of multi-cores. But most important, current tools have no facilities to guarantee per-
formance or portability among architectures. Our research group was one of the first
to propose the structured parallel programming approach to solve the problem of
performance portability and predictability. This has been successfully demonstrated
years ago for distributed and shared memory multiprocessors, and we strongly be-
lieve that the same should be applied to multi-core architectures.

The main problem with performance portability is that optimizations are ef-
fective only under specific conditions, making them dependent on both the specific
program and the target architecture. For this reason in current parallel program-
ming (in general, but especially with multi-cores) optimizations usually follows a
try-and-decide approach: each one must be implemented and tested on the specific
parallel program to understand its benefits. If we want to make a step forward
and really achieve some form of performance portability, we require some kind of
prediction of the expected performance of a program. The concept of performance
modeling is quite old in the world of parallel programming; yet, in the last years,
this kind of research saw small improvements: cost models to describe multi-cores
are missing, mainly because of the increasing complexity of microarchitectures and
the poor knowledge of specific implementation details of current processors.

In the first part of this thesis we prove that the way of performance modeling
is still feasible, by studying the Tilera TilePro64. The high number of cores on-
chip in this processor (64) required the use of several innovative solutions, such as
a complex interconnection network and the use of multiple memory interfaces per
chip. For these features the Tile Pro64 can be considered an insight of what to expect
in future multi-core processors. The availability of a cycle-accurate simulator and
an extensive documentation allowed us to model the architecture, and in particular
its memory subsystem, at the accuracy level required to compare optimizations.

In the second part, focused on optimizations, we cover one of the most important
issue of multi-core architectures: the memory subsystem. In this area multi-core

i

strongly differs in their structure w.r.t off-chip parallel architectures, both SMP and
NUMA, thus opening new opportunities. In detail, we investigate the problem of
data distribution over the memory controllers in several commercial multi-cores,
and the efficient use of the cache coherency mechanisms offered by the Tile Pro64
processor.

Finally, by using the performance model, we study different implementations,
derived from the previous optimizations, of a simple test-case application. We are
able to predict the best version using only profiled data from a sequential execu-
tion. The accuracy of the model has been verified by experimentally comparing the
implementations on the real architecture, giving results within 1 — 2% of accuracy.

A zia Isa, nonna Franca e zio Gianfranco,
perché mi hanno donato un sogno.

E alla mia famiglia,
perché mi ha aiutato a realizzarlo.

Computer Science is a science of abstraction -
creating the right model for a problem

and dewvising the appropriate mechanizable
techniques to solve it.

Foundations of Computer Science,
A. Aho and J. Ullman

Acknowledgments

Questa ¢ la storia di un sogno. Un sogno iniziato il giorno della mia prima comunione,
quando zia, zio e nonna mi regalarono il mio primo computer. Un sogno che ho
custodito e nutrito per tutti questi anni e che ora, posso dire con enorme gioia, si
sta realizzando.

In un’avventura cosi lunga ho incontrato tantissime persone, ed ¢ grazie a tutte
loro che oggi sono qui, a culminare il sogno di un bambino. Vorrei ringraziarvi tutti,
a partire dai professori che dalle medie in poi mi hanno aiutato in questo percorso:
Malffei, Fabretti, Carosi, Uggeri, Adriani, Sajeva, Tore, Dore, e tutti quelli che mi
sono dimenticato.

Un grazie di cuore al Prof. Marco Vanneschi, supervisore non solo di tesi, ma di
tutto il mio percorso: le tue lezioni di architettura rimarranno per sempre nel mio
cuore, con quel misto di ammirazione... e di paura!

Grazie anche al Prof. Marco Danelutto, per tutto il supporto che mi ha dato in
questi anni, ma soprattutto... per 'articolo mandato ad Amsterdam!

Un ringraziamento speciale va sicuramente a Gabriele, compagno di ufficio e di
articoli, ma soprattutto spalla su cui piangere nei momenti no di questo dottorato
(e ce ne sono stati tanti!). Grazie a Massimo, ai mille caffe (letteralmente) presi
insieme e alle annesse chiaccherate sulla ricerca. Grazie ad Alessio, per gli amici
PasQ), il famoso kernel hacker; nonostante le nostre strade si siano divise, rivederci
¢ sempre un piacere.

Grazie a tutti i componenti, passati e futuri, del gruppo: Silvia, Tixi, Fabio,
Paolo, Daniele, Massimiliano e Carlo. Grazie agli indimenticabili sfidanti: Giacomo,
Andrea e Sabri.

Grazie al mio mitico gruppo del corso di laurea: Bacai, Profe, Sandro, Gabri,
Lotta e Cino. Anche se ormai ognuno di noi ha preso la sua strada, dobbiamo
continuare a vederci ogni tanto per giocare a Risiko e/o Dominion!

Un ringraziamento speciale anche al badge del dipartimento, che mi ha permesso
di entrare agli orari piu impensabili.

Grazie ovviamente alla mia famiglia, che nonostante tutto mi segue e mi supporta
(o meglio, sopporta) ormai da 29 anni. Mamma, babbo, Jessy, Nerone e tutti i nonni:
se sono oggi qui e soprattutto merito vostro!

Grazie anche a Serena, non piu compagna di vita ma sicuramente amica unica e
indimenticabile.

Infine, grazie a tutti quelli che non ho menzionato: vi porto comunque nel cuore.

viil

Contents

I Introduction|
(1 _Introduction|

(1.1 Structured parallel programmingl
(1.2 Parallel patterns and their optimizations|
(1.2.1 Multiple memory interfaces|
L.2.2 Automatic Cache Coherencel
(1.3 Introducing a performance model
(1.4 Towards a parallel programming environment|

[L.5 List of Contributions of the Thesis

2 Background|
[2.1 Chip MultiProcessor architectures|
2.1.1 Processor architecturel

[2.1.3 Memory bandwidth and organization|
[2.1.4 Atomic operations and synchronizations|
2.1.5 Cache coherencel oo
2.1.6 Numberofcores.
[2.2 Parallel programming on Chip MultiProcessors|.
[2.2.1 Programming Languages|
.22 Dibraries oo
[2.2.3 Our vision of parallel programmingl
[2.3 Performance model for multiprocessors|
[2.3.1 Algorithm oriented performance models for multiprocessors|. .
[2.3.2 Hardware-oriented performance cost models|
2.4 Summary|

[3 Structured parallel programming for multi-core|
[3.1 'T'he need tor high level parallel programmingf.
[3.2 Structured parallel programmingl
[3.2.1 Parallel Paradigms|

X CONTENTS
322 Stream Parallelism| 40
3.221 Task-Farm|l, 41

[3.2.2.2 Pipelinego 42

[3.2.3 Data Parallelisml 43
3231 Map|. 44

3232 Reducel 45

[3.2.3.3 Map + Reduce, a notable composition| 45

[3.2.3.4 Data-Parallel with Stencill 46

[3.2.4 Stencil Transformationsl 47

[3.3 Expressing Parallel Paradigms 49
3.3.1 Skeletond 49
[3.3.2 ASSIST: Beyond the classical skeleton approach| 50
[3.3.3 The Virtual Processors approach| 51

[3.4 Parallel patterns and their (many) implementations| 53
[3.5 Mastering the possibilities, one piece at a time| 53
[3.6 Towards a novel parallel programming environment| 54
[3.7 Target architectures|. 56
Il Cost Models| 59
[4 A hardware-dependent model based on QNs| 61
[4.1 A general approach to parallel performance prediction|. 63
[4.1.1 'The case of single-element streams| 71

[4.2 Performance prediction of a parallel module] 72
[4.2.1 An example: cost model for a trivial task-farm implementation| 73
[4.2.2 Sequential code analysis| o000 74
[4.2.3 Latency Model, 75
424 Service Time Modell. 76
[4.2.5 Evaluating the model parameters| 78
[4.2.5.1 Evaluating the sequential time| 79

[4.2.5.2 Modeling communications latencies| 81

[4.2.6 The final model for the task-farm example, 84

[4.3 Performance degradation on shared memory architectures/. 85
[4.3.1 Extensions to the original queueing network| 87
[4.3.1.1 Modeling caches| 87

4.3.1.2 DBusinterconnections 88

[4.3.1.3 Multiple Requests per processor|. 89

[4.3.1.4 Complex interconnection networks| 89

[4.3.1.5 Cache coherency| 90

[4.3.2 Adapting the model to a concrete parallel architecture] 91

4.4 Summary|l 92

CONTENTS xi

[5 A Queueing Network Model for Tilera TILEPro64 | 95

5.3 Processorsl 102
[b.4 Cache Hierarchy and Coherencyl 102
H.4.1 Hash-for-Homel 103
[5.4.2 Single-Home|o 103
0.4.3 No-Homel 103
(.44 Restriction on themodell 104

6.5 Interconnection Networkl o000 104
[5.5.1 Under Load Latency| 111

[5.6 Memory Subsystem| 118
[5.6.1 Memory Read Service Timel 119
[5.6.2 Memory Write Service Timel 132
[5.6.3 Working with Caches| 139

.7 Model Validationl 141
0.7.1 Evaluation of R, for store_linear| 144
5.7.2 Evaluation of R, for storeIinear with a different store rate| . . 147

5.7.3 Considerations on the accuracy ot the model 148

[0.8 Summary| 149
Il Optimizations| 151
6 Exploiting Multiple Memory Controllers| 153
[6.1 Programming multi-cores{. 155
[6.1.1 Memory allocation models| 157
[6.1.1.1 SMP-like memory allocation|. 158

6.1.1.2 NUMA-like memory allocation| 159

6.1.2 Process allocationl 159

[6.2 Evaluation by mean of synthetic benchmarks|. 160
[6.2.1 Experimental results on the target architectures 163
[6.2.2 Concluding Remarks| 173

[6.3 Farm parallelization of the Sobel Operator| 173
[6.3.1 Experimental results on the target architectures 175
[6.3.2 Concluding Remarks| 178

[6.4 Farm parallelization of the Vector Addition|. 179
[6.4.1 Experimental results on the target architectures 179

[6.5 Data-Parallel parallelization of the FF'1| 182
B51 Parallel FET] oo 183
[6.5.2 Experimental results on the target architectures 185
[6.5.3 Concluding Remarks| 193

[6.6 Modeling policies in the architectural model| 193

xii CONTENTS
(6.7 Summaryl 198
[7__Software-based Cache Coherencel 199
(2.1 _The cost of automatic cache coherencel 202
[7.2 Optimizing cache coherence for the farm pattern|. 203
(r.2.1 Automatic cache coherence with hashed home nodel 204

(r.2.2 Automatic cache coherence with fixed home nodef 204

[7.2.3 Disabling automatic cache coherence] 205

[7.3 Experimental Results| 206
[7.4 Optimizing cache coherence for a data-parallel pattern| 210
(.41 Automatic cache coherence with hashed home nodel 211

(r.4.2 Automatic cache coherence with fixed home nodel 211

[7.4.3 Disabling local caches|. 212

[7.4.4 Disabling automatic cache coherencel 212

[7.5 Experimental Results| 213
[7.6 Summary| 217
IV~ Wrapping Up| 219
8 Wrapping up: compiling a parallel module on Tile Pro64| 221
(8.1 Example module and its application|. 221
[8.2 Parallel pattern and its implementations| 223
8.2.1 Parallel Patternsl 0. 224

[8.2.2 Farm Implementations| 224

[8.3 Study of the message passing implementation| 228
8.3.1 Architecture Model Parameters| 231

8.3.2 Predicted Service Times 239

[8.4 Study of the message passing impl. with copy on receivel 243
8.4.1 Architecture Model Parameters| 243

8.4.2 Predicted Service Iimes L. 248

[8.5 Study of the pointer passing implementation| 252
8.0.1 Architecture Model Parameters| 252

8.5.2 Predicted Service Times 255

[8.6 Selection of the best implementation| 257
(8.7 Impact of a multi-chip configuration|. 264
[8.7.1 A multi-chip Tile Pro64 configuration| 264

8.7.2 Network Latencies 265

[8.7.3 Core reservation and placement on the mesh| 266

[8.7.4 Implementations and model parameters|. 267

[8.7.5 Performance study| L. 268

[8.8 Summary| 273

CONTENTS Xiii

[9 Conclusions| 275

[Bibliography| 277

Xiv

CONTENTS

List of Figures

(1.1 Bhandarkar’s queueing network to model the memory contention. . .
(1.2 The “compilation workflow” in our programming environment.|

9
11

BT Thc T Titel Tl I e Pentim T l

[processor, compared with the corresponding single-core dual-processor

[architecturel 18
(2.2 The AMD Opteron 6100 CMP and its 4 processor configuration.|. . . 19
[2.3 Single Cores of Tilera Tile Pro64 and the overall CMP,| 19
(2.4 The IBM PowerEN: a core cluster, single CMP and 4-way configura- |

[tlons). 19
[2.5 A large scale multiprocessor composed of single-core processors: the |

L internal node architecture and its interconnection) 19
2.6 Common interconnection network.. 23
[2.7 Bhandarkar’s queueing network to model the memory contention.| . . 35
[3.1 Graphical representation ot a generic Stream-Parallel Pattern.| 40
[3.2 Graphical representation of a Farm pattern.| 41
[3.3 Graphical representation of a Pipeline Pattern.|. 42
[3.4 Graphical representation ot a generic Data-Parallel Pattern.| 43
[3.5 Graphical representation of a Map Pattern.. 44
[3.6 Graphical representation of a Reduce Pattern.| 45
[3.7 Graphical representation of the Jacobi Pattern, a data-parallel with |

[a static fixed stencillo oo oo 46
[3.8 Partitioning of the Jacobi Pattern that produce different stencils.| 47
[3.9 Transforming the mean filter ma Map.,| 48
[3.10 T'hree-tier structure examples ot a skeleton-based program.| 50
[3.11 Example structure of an ASSIST program.| 51
[3.12 The “compilation workflow” in our programming environment. 56
[4.1 A computation module modeled as a queueing system.| 64
[4.2 'The “compilation work-flow” in our programming environment.| 66
[4.3 An example module graph and its queueing network representation. . 66
(4.4 'The fully parameterized QN-based model.| 67
(4.5 The result of the steady-state analysis of the model|. 68

xvi LIST OF FIGURES
[4.6 Result of the steady-state analysis after the parallelization of module 2.| 71
[4.7 Result of the steady-state analysis atter the parallelization of module 5.| 71
[4.8 The temporal behavior of the farm implementation with a single ele- |

[ment). 75
[4.9 The temporal behavior of the farm implementation with a stream, |

[the workers are limiting the throughput of the system. 76
[4.10 The temporal behavior of the farm implementation with a stream, |

[the emitter is limiting the throughput of the system. 7
[4.11 Stream-oriented pipeline modeling of the implementation.|. 7
[4.12 Bhandarkar’s queueing network to model the memory contention.| . . 86
[4.13 Queueing network model for systems with caches.| 88
[4.14 Queueing network model for multiple-bus interconnections.| 88
[4.15 QN model for systems with multiple requests per processors.| 89
[4.16 Queueing network model for cache coherent systems.| 90
[4.17 Queueing network model for the Symmetry S-81.] 91
[>.1 Two queueing network models represented on EQNSm.|. 98
[>.2 Bhandarkar’s queueing network to model the memory contention.| . . 99
[5.3 TilePro64 architecture: chip architecture (left) and single core (right).| 100
[>.4 Time diagram for the dispatch of a packet in the iMesh network. . . . 105
[>.5 Routing paths on Tilera: destination interfaces for requests to the |

| first memory controller and request-response paths for node (5,3).| . . 106
[5.6 Time diagram ot the dispatch of a memory read request in the Tile Pro64.[107
[5.7 Time diagram of the dispatch of a memory read resp. in the Tile Pro64./108
[>.8 Example architecture model.|. o000 112
[5.9 Graphical representation of the Mesh model on EQNSim.[. 114
[>.10 EQNSim Bus model.|o 115
.11 EQNSim Crossbar model.| 115
[p-12 Graphical comparison of the average IR, for the selected models | . . . 117
[5.13 Graphical comparison of the percent error of the Crossbar model w.r.t |

| the Mesh increasing Len.| - - -« o o o o 0 0 o Lo oo 117
[>.14 Detailed breakdown ot 7},.,, using a single benchmark core.| 121
[5.15 Detailed breakdown ot 7},.,, using 64 benchmark cores| 121
[5.16 Average 1,,.,, varying the number of cores generating memory requests.|122
[p-17 Average Tinem varying the number of cores and 7,.|. 123
[5.18 Detailed breakdown of Tep using 64 cores with T, = 40clocks]. . . . 123

F10

Measured T),.,, varying L, and the smoothed value for the model] . . 126

[5.20 Queueing network model with a Ioad dependent memory queue and |
[independent network queues per core.|. L. 127
[0.21 Comparison between architecture and model values of [7,. Times in |
[clock cycles.| 130
[5.22 Average T)" ~varying the number of cores generating memory requests.[133
[5.23 Detailed breakdown ot 7),.,, using a single benchmark core.| 135

LIST OF FIGURES xvii

5.24 Detailed breakdown of 1,,.,, using 4 benchmark cores.| 135
5.25 Average T = varying the number of cores generating memory re- |
quests and the 7,,.|.o 135
[5.26 Processor-cache subsystem in our queueing network model.| 140
[5.27 Architectural model of the Tile Pro64 processor: conceptual represen- |
tation and EQNSim implementation.| 142
[6.28 Comparison between architecture and model values of [, for the |
store_linear benchmark. Times in clock cycles| 145

[6.29 Comparison between architecture and model values of [, for the

store_linear benchmark with 7, = 37,5, = 0.5. Times in clock

cycles.|o 147
[6.1 Generic architecture of a multi-chip machine.. 155
[6.2 Different memory allocation policies.| 159
[6.3 Different process allocation policies.| 160
[6.4 Average execution times per iteration, 1Load-1Add per iter| 165
[6.5 Hypothetical Speed-up of a tarm parallelization, 1Load-1Add per iter.| 165
[6.6 Average execution times per iteration, 10Load-1Add per iter.|. 170
(6.7 Hypothetical Speed-up of a farm parallelization, 10Load-1Add per iter.[170
[6.8 Sobel Operator.| 174
[6.9 Example of the gradient estimation obtained by the Sobel operator. . 174
[6.10 Average filtering time per image, 512 x 512 pixels.|. 176
[6.11 Speed-up of the farm parallelization, 512 x 512 pixels per image.| . . . 176
[6.12 Speedup with different image sizes on the TilePro64.| 178

[6.13 Average execution times per addition, 1024000 elements per vector.| . 180
[6.14 Speed-up of the farm parallelization, 1024000 elements per vector.| . . 180

[6.15 Data dependencies in FFT| 183
[6.16 Data dependencies and blocks in a statically partitioned parallel FF'T'.[184
[6.17 Average calculation time per element - FF'T' on 1048576 points.| . . . 188
[6.18 Speed-up of the data-parallel FF'T" - 1048576 points.|. 188
[6.19 Average calculation time per element - FF'T on 16777216 points.|. . . 191
[6.20 Speed-up of the data-parallel FF'T" - 16777216 points.| 191
[6.21 Graphical comparison of real and estimated Memory R,, single int.| . 195

[6.22 Graphical comparison of real and estimated Memory R,, multiple int.| 196

7.1 Comparison between cache coherence methods for the matrix multi-

plication, 64 x 64 elements.| 0. 208
(7.2 Comparison between cache coherence methods for the matrix multi- |
plication, 128 x 128 elements.| 210
[7.3 Comparison between cache coherence methods for the FF'T', 1048576 |
points. e e 214

(8.1 Example application graph, with particular focus on the Sobel module.222

XViii

LIST OF FIGURES

8.2 Part of the TilePro64 architecture available for the module) 223
[8.3 Sobel Operator.| oo 223
(8.4 Emitter-Worker-Collector scheme tor the farm pattern.| 225
[8.5 Allocation pattern for the processes in the message passing impl.|. . . 233

[3.6

Comparison between architecture and model values ot T for the mes-

sage passing implementation of the Sobel Module. Times in clock cycles.241

[8.7 Comparison between architecture and model values of T's for the copy |
| on receive message passing imp. of the Sobel Module. Times in clock |
[cycles| . . . 250

[8.8 Allocation pattern tor the processes in the pointer passing impl| . . . 253

(8.9 Comparison between architecture and model values of T's for pointer |

passing implementation of the Sobel Module. Times in clock cycles.| . 257

[8.10

Comparison between measured values of the speedup ot the module.| . 260

Bl

Comparison between measured and model values of the speedup of

the Sobel parallel module.| . .

261

R.12

The multi-chip Tile Pro64 configuration we imagined for this evaluation.265

RE]

The path for a memory request on the multi-chip Tile Pro64 config.| . 266

R.14

Process allocation in the multi-chip message passing implementation.| 267

B.15

Process allocation in the multi-chip pointer passing implementation.| . 267

R.16

Comparison between estimated values of the speedup of the module

in a multi-chip configuration.|

List of Tables

[4.1 Performance events used on Intel processors.| 82
[4.2 Performance events used on the AMD processor.. 82
[4.3 Performance events used on the 'Tilera processor.| 82
[4.4 Modeling of fixed and variable time starting from evaluated parameters.| 82
[4.5 Modeling of fixed and variable time on an example architecture.| . . . 85
[>.1 Distance table (d, and d,) used to evaluate L. 109
(5.2 Simulated and Estimated L,.;. Times are in clock cycles.| 110
[>.3 Parameters of the three models compared.| 114
[5.4 Simulation Results with L,,.,, =8 clocks.|. 116
[0.5 Average 1, and memory queue length varying 7;, and the number |

of cores. Timesincycles.|. 123
[0.6 Correlation between L, and Trem.| . - - . . o o o o oo oo 124
5.7 Measured values ot T,,.,, and the smoothed value used for the load- |

dependent queue, for different queue sizes.| 125
[6.8 Comparison between architecture and model values of L, and 1;,cp, |

with 7, = 3015 clocks. Times in cycles|. 128
[6.9 Comparison between architecture and model values of L, and 1;,cp, |

with 7, = 1015 clocks. Times incycles|. 128
[5.10 Comparison between architecture and model values of L, and 1;,cp, |

with 7, = 40 clocks. Times in clock cycles] 129
[6.11 Comparison between architecture and model values of 17,. Times in |

clock eycles.|o 131
[5.12 Measured values of T used for the load-dependent queue, for dif- |

ferent queue Sizes.|. 137
[5.13 Measured values of 7%, used for the load-dependent queue, for dif- |

ferent queue Sizes.|. L. 138
[5.14 Summary ot the model parameters that depend on architecture.| . . . 143
[5.15 Summary of the model parameters that depend on the program.| . . . 143
[6.16 Comparison between architecture and model values of [, for the |

store_linear benchmark. Times in clock cycles| 146
[>.17 Difference in parameters between the two store_linear runs.| 148
[6.18 R, values for the store_linear benchmark with S, =0.5]. 148

XX

LIST OF TABLES

6.1

Local and Remote latencies of large, on-node and on-chip NUMA|131] |

| o2, 0] T 156

[6.2 Performance of a parallel program executed using only local memory |
[or local and remote memory, on three different NUMA architectures.| 157
[6.3 Synthetic Benchmark results on SandyBridge, 1Load-1Add.| 166
[6.4 Synthetic Benchmark results on AMD), 1Load-1Add.| 167
[6.5 Synthetic Benchmark results on Nehalem, 1Load-1Add.| 168
[6.6 Synthetic Benchmark results on Tilera, 1Load-1Add. 168
[6.7 Synthetic Benchmark results on SandyBridge, 10Load-1Add.| 171
[6.8 Synthetic Benchmark results on AMD), 10Load-1Add.] 171
(6.9 Synthetic Benchmark results on Nehalem, 10Load-1Add.| 172
[6.10 Synthetic Benchmark results on Tilera, 10Load-1Add.| 172

[6.11 Sobel image filtering times for 512 x 512 images. Times in clock cycles.[177

[6.12 Vector addition times for 1024000 elements vector. Times in clock |

| cycles| . . . 181
[6.13 Calculation time per element - FF'I" on 1048576 points. Times in cycles.[189
[6.14 Calculation time per element - FFT on 16777216 points. Times in cycles)]. 192
[6.15 Synthetic Benchmark results on Tilera, 1Load-1Add.| 195
[6.16 Comparison of real and estimated Memory [7,. Times in cycles| . . . 197
[7.1 Memory read latencies for core 0, depending on the cache line state, |

| for two x86 processors. Times in clock cycles.| 202
[7.2 Memory read latencies for core 0, on the Tile Pro64 architecture, with |

| or without cache coherence. Times in clock cycles.|. 203
[7.3 Comparison between cache coherence methods for the matrix multi- |

| plication, 64 x 64 elements. Completion Times in milliseconds.| 207
[7.4 Comparison between cache coherence methods for the matrix multi- |

| plication, 128 x 128 elements. Completion Times in milliseconds.|. . . 209
[7.5 Comparison between cache coherence methods for the FE'T', 1048576 |

| points. NUMA-like allocation policy. Completion Times in clock cycles.215
[7.6 Comparison between cache coherence methods for the FF'T', 1048576 |

| points. SMP-like allocation policy. Completion Times in clock cycles.| 216
(8.1 Data from the execution of the sequential Sobel operator.|. 229
[8.2 Summary of the parameters required to use the Tile Pro64 model.| . . 232
(8.3 Model parameters tor the Message Passing Implementation, per par- |

| allelism degree.|o 238
[8.4 R, values obtained by solving the Queueing Network model parame- |

[terized for the message passing implementation. Times in clock cycles.[239
(8.0 Model values of Ts_g, Ts_w, and Tg for the message passing imp., |

w.r.t the execution. Times in clock cycles.| 240

LIST OF TABLES xx1

[8.6 Comparison between architecture and final model values ot T'g for the |

message passing implementation of the Sobel Module. Times in clock |

cycles.| 242
[8.7 Model parameters for the Copy on Receive Message Passing Imple- |
mentation, per parallelism degree|. 247

[8.8 R, values obtained by solving the Queueing Network model param-

eterized for the copy on receive message passing implementation.

Times in clock cycles|.o 248
(3.9 Model values of Ts_g, Ts_w, and 1g for the copy on recv. mp imp., |
w.r.t the execution. Times in clock cycles.| 249

[8.10 Comparison between architecture and final model values of Ts for the |

message passing implementation of the Sobel Module. Times in clock |

cycles. . . .o 251

[8.11 R, values obtained by solving the Queueing Network model parame- |

terized for the pointer passing implementation. Times in clock cycles] 255

[8.12 Model values of Ts_y, and Ts for the pointer passing imp., w.r.t the |

execution. T'imes in clock cycles.| 256

[8.13 Comparison of the various implementation service times, according

to the model. Ty for the best choice and improvement w.r.t the 2"¢.

Times in clock cycles. PTR: Pointer Passing, MSG: Message Passing, |

COR: Copy on Receive.| 259

[8.14 Comparison of the predicted service time function w.r.t the measured |

one, highlighting the implementation chosen in both cases. Times in |

clock cycles. PTR: Pointer Passing, COR: Copy on Receive.| 262

[8.15 Comparison the service time function using the real best implemen- |

tation w.r.t the best according to the model. Times in clock cycles. |

P'TR: Pointer Passing, COR: Copy on Receive.|. 263

[8.16 R, values obtained by solving the multi-chip Queueing Network model

parameterized for the pointer passing implementation. Times in clock

cycles.| 269

[8.17 IR, values obtained by solving the multi-chip Queueing Network model

parameterized for the copy on receive message passing implementa-

tion. Times in clock cycles.|.o 270

[8.18 Comparison of the implementations, according to the multi-chip model. |

1T for the best choice and improvement w.r.t the Pointer Passing im- |

plementation. Times in clock cycles. PTR: Pointer Passing, COR: |

Copy on Receive.| 272

xxii LIST OF TABLES

Part 1

Introduction

Chapter 1

Introduction

The trend in modern microprocessor architectures is clear: multi-core chips are here
to stay. Current processors are composed of 4 to 12 cores on the same chip, and this
number is continuously increasing every year, up to the point that the term many-
cores have been introduced, to indicate the large amount of core per chip of some
solutions. At the same time these processors usually implements simultaneous multi
threading (SMT[166]), allowing the execution of up to 4 threads on the same core,
and server configurations provides multiple processors on the same board, giving
even more cores on a single machine. Some notable examples of current highly
parallel multi-core platforms are the Tilera TilePro64 [26] (64 cores), the future
IBM PowerEN[83] (16 4-way SMT cores each processor for a maximum of 64 cores
and 256 thread in 4-chip configurations), the AMD Opteron[62] with 48 cores in
a single machines, the IBM Power7[103] servers, supporting up to 32 8-core 4-way
SMT processors per machine, for a total of 1024 threads or the Intel Xeon Phi, an
accelerator composed of 60 4-way SMT cores[98]. Current research works for future
architectures expect Chip MultiProcessors with 128]148] to 1024[110] cores on a chip
in some years.

In spite of this, the software community is slowly taking the path towards parallel
programming. And many scientists believe it is taking the wrong path[15].

A wide range of parallel programming tools target multi-cores; yet these are
usually inherited from the previous tools for SMP architectures, and rarely exploit
specific characteristics of multi-cores.

But most important, current tools have no facilities to guarantee performance or
portability among architectures. Unfortunately this have deep implications in the
development of a parallel program, because you cannot have even a rough idea of
the performance of your program until it is run on a specific platform, thus making
different parallelizations of a program incomparable in a formal or generalizable way,
but only by execution times.

Our research group proposed the structured parallel programming approach for
distributed and shared memory multiprocessor architectures some years ago[172],
to solve the performance portability and predictability problem, as well to speed up

4 CHAPTER 1. INTRODUCTION

parallel program development; we strongly believe that the same approach can (and
must) be applied to multi-core architectures.

Multi-cores can be considered shared memory multiprocessors integrated in a
single chip: indeed they are also called Chip MultiProcessor (CMP) in academic
and research world. General results in parallel programming for multiprocessors
are therefore valid for CMPs; at the same time, however, there are some important
features that are not available in multiprocessor and must be further investigated.

Just like in multiprocessors, many architectural choices are possible when build-
ing CMPs: the number and complexity of cores, the interconnection network among
cores and towards the outer memory, cache hierarchies and cache coherence proto-
cols. However, given the limited chip size, engineers have to find a trade-off between
the features of each component, limiting the wide range of possibilities usually avail-
able in common multiprocessors.

At the same time the integration on a single chip allows processing cores to
share resources: nowadays cores usually share a cache level[62, 3] (typically L2
or L3) to offer faster communications and to better exploit caches, but in some
cases even functional units (for example the floating point unit of the UltraSPARC-
T1[107] and the newest AMD Opteron processors[51]) are shared among cores for
power consumption and chip complexity reasons. Moreover the idea of fetching
instructions from different control flows emerged in the last decade, to better use
the processor functional units, hide load/store latencies and overcome the limits
of instruction-level parallelism: today SMT is available in almost every high-end
processor, including CMPs[103], 107].

1.1 Structured parallel programming

All these degrees of freedom make each multi-core different, forcing the programmer
to write specific low-level code to reach good (and only hopefully the best achiev-
able) performance. In fact, since its introduction, parallel programming was strictly
related to HPC environments, in which programmers were usually willing to write
parallel code by mean of low level libraries that, giving a complete control over
the parallel application, allowed them to manually optimize the code and exploit
at best the architecture. However, this programming methodology exposed its first
problems with the emergence of cluster and grid computing, when the parallel archi-
tectures become dynamic and heterogeneous, therefore limiting the possibilities of
ad-hoc optimizations. With multi-cores, the massive introduction of parallel archi-
tectures in every device, and thus in every computing sector, critically exposed the
lack of proper tools to easily implement a parallel application: the industry cannot
afford the cost of re-writing (or even re-tuning) an application for every available
computing architecture.

1.1. STRUCTURED PARALLEL PROGRAMMING)

As common in computer science, we believe that the answer is to abstract the
problem, and work at a higher level. Consistently with this approach, the idea of
automatic parallelization has been investigated in the past. However, despite the
increasing effort (especially of the scientific environment), automatic parallelizers
are still ineffective in fully exploiting parallel architectures, rarely providing good
speedups even on 4 and 8-cores [52,[82]. This could have been considered sufficient at
the introduction of multi-cores when we had 1 to 4 processors per chip; after almost
a decade of chip multiprocessors, however, the current number of cores require a
more scalable approach.

To the current state of the art, in short, a rewrite of the program is needed to
exploit parallelism. In this case, a proper mix of ease of use and performance is
still the main concern of researchers. It is widely acknowledged by the scientific
literature [69, 17T, 152] that performance portability is achievable only by using
a high-level approach to parallel programming: exactly as in sequential programs,
where portability is guaranteed by sequential high-level languages, we need to define
parallel constructs that allow a proper compiler to produce efficient code for any
architecture.

In other terms, by using a high-level parallel programming model, we should be
able to describe our parallel application and be sure that it will perform reasonably
well on the wide choice of parallel architectures available today.

At this time, some works for parallel programming on multi-cores exist; however
these are usually shared memory multiprocessor programming tools that flatten the
differences among cores on the same and on different chips. These tools are usually
given as complete programming languages or libraries:

e Programming languages: some examples are Chapel[53|, Berkeley Unified
Parallel C[T1), Cilk[100], OmpSs[76], OpenCL[I55] or OpenMP[60]; they are
entirely new programming languages or extensions for existing sequential lan-
guages.

e Libraries: Intel Threading Building Blocks[142)], Skandium[I14], Forward-
Flow, FastFlow[12], Intel Array Building Blocks, SkelCL[154] and many oth-
ers.

In general, all these tools express some characteristics of high-level parallel pro-
gramming, i.e. help the programmer by easing the burden of writing parallel applica-
tions. For example, OpenMP uses a shared-memory programming model, but allow
the programmer to extend sequential code by mean of annotations, without explicitly
writing the parallel threads. However, the programmer must know basic concepts of
the resulting parallelization to ensure program correctness. Furthermore, in many
cases a detailed knowledge of the parallel implementation and proper annotations
or code reorganizations are required to ensure good parallel performance[I09].

6 CHAPTER 1. INTRODUCTION

The same concept apply, more or less, to all the discussed languages and libraries:
they help the programmer in many ways, especially hiding details typical of low-level
parallel programming, but they do not allow that kind of performance portability
described before.

Among the set, FastFlow, Skandium and SkelCL are probably the higher level
tools currently available, as they represent the class of Structured Parallel Program-
ming models.

We consider structured parallel programming the most interesting class of high-
level parallel models. It started with the concept of algorithmic skeletons by Cole
[61] and has been successfully applied basically in any possible parallel environment,
starting from clusters[67] and shared memory machines[I14], to grid[7], cloud and
pervasive environments[32].

The main idea behind structured parallel programming is to let the programmer
define an application by means of parallel patterns (also called paradigms). A parallel
pattern describe, in a general way, the structure of the interactions of a parametric
set of entities. With parallel paradigms, the programmer just select the proper
pattern and describe the sequential code to be inserted in the entities of the pattern.
The rest of the code is produced by the programming environment.

1.2 Parallel patterns and their optimizations

A parallel paradigm describes the abstract parallel entities and the structure of
the interactions. However, the structure given by the paradigm is very general,
so that there are many ways of coding it on a parallel machine. We usually find a
simple implementation that strictly resemble the definition of the parallel paradigm,
but there are many different versions that may perform better than the baseline,
depending both on the algorithm and on the deployment architecture. For example,
even on simple paradigms such as the task farm, we can find different approaches,
such as hierarchic scheduling, master/worker or emitter/worker/collector schemes,
load balancing techniques, different cooperation mechanisms and much more [28,
143].

On top of this, we can find some “Pattern-Independent Optimizations”, i.e. opti-
mizations that are applicable to parallel programs in general. Of course, applicability
does not always result in performance improvements: some pattern will probably
benefit more than others of the single optimizations. In general, however, a pattern-
independent optimization:

a) is independent, as it does not need a specific pattern to be applied,;

b) deeply affect the implementation, so that it may significantly drive the
pattern implementation towards specific forms, and therefore

1.2. PARALLEL PATTERNS AND THEIR OPTIMIZATIONS 7

c¢) affect minor pattern-specific optimizations, that could both be not be fea-
sible or ineffective.

We therefore consider these the starting point towards efficient pattern imple-
mentations.

Keeping in mind the long-term research objective of our group, with this thesis
we will address two of this kind of optimizations specific of multi-core architec-
tures. In particular, we will focus on techniques to exploit the memory hierarchy
of these processors, which is sensibly different w.r.t. other kind of multiprocessor
architectures.

1.2.1 Multiple memory interfaces

The increase of the number of core inside the chip is exacerbating the memory
wall[I6] problem. To solve this, apart from sensibly increasing the amount of on-
chip caches, an increasing number of architectures is encapsulating multiple memory
interfaces on-chip. Many chip manufacturer also allows the composition of a limited
number (2-4) of chip per computer, further increasing the total number of memory
controllers. This way of increasing the total amount of memory bandwidth, however,
is starting to pose problems to the programming model: indeed these architectures
are not UMA (Uniform Memory Architecture) anymore, but are neither as those
NUMA (Non-Uniform Memory Architecture) architectures studied in the past years.
Current research[39, [70] is attacking this problem from the operating-system point
of view (i.e. how to better allocate virtual memory pages among the many memory
controllers), therefore not with a parallel programming vision of the problem.

With this thesis we will study how a parallel paradigm should be implemented to
exploit at best the multiple memory controllers, starting with the solution already
studied in the past for SMP and NUMA architectures, that will be adapted and
extended to better fit this kind of multiprocessors.

1.2.2 Automatic Cache Coherence

It is today acknowledged that shared-memory parallel architectures should provide
some cache coherence facility to ensure parallel correctness.

In general shared memory programming models an automatic cache coherence
protocol is proven to offer the best performance[I38]. There are, however, several
works that highlight how cache coherence may be ensured at a software-level to
obtain performance improvements[I]. This has generally been a slippery ground,
because current architectures do not usually allow disabling automatic cache coher-
ence, so basically any claim has been proved by mean of architecture simulations.
The emergence of many-core architectures somewhat changed the scenario: handling
cache coherence among a large set of processors is indeed an expensive operations,

8 CHAPTER 1. INTRODUCTION

so that some architectures, such as the Tilera TilePro64, allow to control and dis-
able the automatic cache coherence facilities. This opens new and exciting research
aspects, especially when mixed with the Structured Parallel Programming, where
software cache-coherence should be efficiently implemented at the support level with
absolute transparency with respect to the application programmer. We will ap-
proach this problem by examples, showing how, in particular cases, the knowledge
given by the parallel pattern is sufficient to guarantee correctness with incoherent
memory areas, and may also provide better performances w.r.t. the corresponding
program run with automatic cache coherence.

1.3 Introducing a performance model

The main problem of having multiple implementations is that there does not usually
exist the “best” that outperforms the others; in general, it is the combination of the
architecture, the parallel pattern and the program that determines the best imple-
mentation: for example, specific communication and synchronization mechanisms
may benefit more than others of the underlying cache coherence mechanisms and/or
interconnection network; this advantage can be important or negligible for a specific
application, depending on the parallel pattern and/or the coarse/fine grain of the
program.

Furthermore, we should consider that, in general, a parallel application is com-
posed of several patterns that coexist on the same architecture and cooperate to com-
pute the final result. In such environment, a careful resource allocation is required
to obtain the best performance for the overall program, which may not directly
imply the best performance for each pattern. In this scenario a performance model
that correctly estimate the performance of each pattern is required to optimize the
whole application.

Performance prediction of a program, although widely studied, is still an open
problem in the research community. Cost models in the world of parallel pro-
gramming are usually proposed to asymptotically study algorithms, like PRAMI[80],
BSP[169] and Multi-BSP[I70] models. A first step towards a more “detailed” model
is LogP[63], and its successive enhancements. However all these models are kept
as simple as possible to let programmers easily compare algorithms. We are not
interested in this kind of models. We are looking for a more realistic model that
takes into account every important property of the parallel architecture and of the
parallel program. The model does not have to be simple, because it will not be used
by the programmers, but by the parallel programming framework. Unfortunately,
as of today, there does not exist a way to precisely estimate the completion time of
a general program on current architectures, mainly because of their complexity and
dynamicity.

The idea of specific performance models for parallel pattern is not really new,
as it was introduced in P3L[I8] to select the so-called “implementation templates”.

1.4. TOWARDS A PARALLEL PROGRAMMING ENVIRONMENT 9

¥ ° .
A

° .

° .

Figure 1.1: Bhandarkar’s queueing network to model the memory contention.

These, however, modeled the performance of the implementations by taking the se-
quential code as a “black box”, with specific, immutable, characteristics. We extend
the original concepts by introducing an architecture model, that allow us to predict
the performance degradation that occur when multiple processes are executed on the
same multi-core chip. It is widely known that the major source of degradation is the
sharing of the memory subsystem. One of the first to analyze this form of degrada-
tion has been Bhandarkar[30], that modeled the processor-memory subsystem with
the queueing network in Figure|l.1, where each processor generate a memory request
and then stop its execution waiting for the response. We will start from this simple
yet effective model, and adapt it for a current multi-core architecture: the Tilera
Tile Pro64.

By using the obtained model, parameterized for specific programs, we will be able
to estimate the average response time of the memory controller, an indispensable
value to accurately predict the performance of the parallel program on a shared
memory architecture. Although useful per se, to predict the response time for a
generic parallel program, this model will become the cornerstone in our approach,
to study and compare the different implementations of each pattern and the pattern-
independent optimizations.

1.4 Towards a parallel programming environment

Our research group history in structured parallel programming is quite long, starting
with the P3L skeleton language in 1992, and culminating with ASSIST in the last
years. We never, however, really focused our efforts in multi-core and shared memory
architectures in general. Our experiments with FastFlow[9] demonstrated the need,
and the possibility, of multi-core-specific optimizations in a skeleton-based library. A
skeleton library, however, does not allow us to fully exploit the benefits of structured
parallel programming, because it does not (entirely) allows code restructuring and
transformations. With this thesis we address the problem from a different point of

10 CHAPTER 1. INTRODUCTION

view, laying the foundations for a complex environment capable of automatic code
rewriting and optimizations for this class of architectures.

The long-term project of our research group is ASSISTANT, the extension and
adaptation of ASSIST for the current world of parallel computing, composed of
multi-cores, pervasive grids and clouds. Many of the principles introduced in ASSIST
are inherited and extended, in order to provide a significant leap forward in the world
of multi-core-oriented parallel programming.

Respecting the basic ASSIST principles, a parallel program will be described as a
generic graph of stream-connected parallel modules. Each module will be constituted
by a parallel pattern, and the programmer will be able to write the algorithm code
by mean of the most used sequential languages (C, C++, Matlab, Java, and so on).

As already mentioned, programming models based on libraries are considered
unsuitable for achieving the desired level of programmability and performance porta-
bility: our environment will need an intelligent source-to-source parallel compiler,
able to analyze the module-based description to determine the possible parallel im-
plementations, evaluate them for the target machine and, finally, produce the source
code of a low-level parallel program.

Our past experience in parallel programming also pointed that there are many
cases in which performance portability is not completely achievable at compile-time:
the cost model may be not detailed enough to accurately fit the <application, im-
plementation, architecture> tuple, or some model parameters may be unpredictable
(because of both the architecture and the algorithm) so that a mere compiler-time
performance portability becomes ineffective. To handle all these important cases, it
is also mandatory to support adaptivity, by means of efficient run-time reconfigura-
tions, in addition to static optimizations[32].

The resulting “compilation workflow” is depicted in Figure [1.2l Of course, the
meaning of compilation now is stretched to the whole execution because of the run-
time-based reconfigurations. We can easily notice how important is the Cost Model,
that affects basically every step of the work-flow, making it a first-class citizen in our
approach. In short, starting from the specification, we first use the cost model to
statically derive a good parallelization of each module, selecting it from the possible
implementations and optimizations of the pattern given by the programmer. Then,
at run-time, we will continuously monitor the program, and re-apply the cost model
to find, if possible, even better solutions.

1.5 List of Contributions of the Thesis

The road towards ASSISTANT is still long; with this thesis we start targeting multi-
core architectures, showing the feasibility of the cost model approach, by defining
the architectural model for a specific many-core architecture (the Tilera Tile Pro64),
and applying it on well known parallel pattern implementations to evaluate specific
memory-related optimizations introduced in the thesis.

1.5. LIST OF CONTRIBUTIONS OF THE THESIS 11

Application specification: source computation
expressed as a graph or workflow

(Bottleneck Detection)

according to one or more
parallel paradigms — Selection

Parallelization of bottlenecks
of a paraIIeI solution

Encoding, possmly reusing
existing sequentlal codes

parallel ob]ect code

Eyc?ge:—:;: Mapping, Ioadmg and
restructunng deployment

v
(Monltorlng H Execution

CParametrlc and restructurable

A A .

Figure 1.2: The “compilation workflow” in our programming environment.

The fundamental contributions are the following:

e An extensive study on how to effectively exploit the multiple memory interfaces
available on current chip multiprocessors, that exhibit different characteristics
w.r.t old-style UMA and NUMA architectures and thus may require a different
approach. The results shows that, in general, an approach similar to NUMA
architectures, in which we favor the use of a local environment for each process,
allocated to the nearest memory controller, tends to perform slightly better
than the others.

e An introductory study to software-managed cache coherence for parallel pat-
tern implementations and its beneficial effects on the performance of the ap-
plications on the Tile Pro64 architecture.

e A queueing network model for the Tile Pro64 architecture, to accurately eval-
uate the performance effects of the sharing of the memory system on the
memory response time. The accuracy of the model has been tested by using a
cycle-accurate simulator of the architecture and benchmarks executed on the
real platform, resulting in errors always below the threshold of 20% and, on
average, of ~ 10%.

The generality of this model, that allow the definition of different behaviors
for each processor of the system, makes it feasible to model basically any par-
allel program to be run on the architecture, and extract an average memory

12 CHAPTER 1. INTRODUCTION

response time.

In scenario of the structured parallel programming, the model can be auto-
matically parameterized to evaluate different pattern implementation and of
course, the optimization techniques emerged in the previously listed studies.

e A demonstration of the use of the performance model, to study different im-
plementations of a parallel module on the Tile Pro64, modeling their service
time to select, depending on the parallelism degree, the best implementation
available. The estimations on the service times were compared with the real
implementation, resulting in an approximation within the ~ 2.5% of error,
resulting in the selection of the best solution in most cases.

A notable byproduct of the thesis was the EQINSim simulator, that consist in a
simulation environment that allow us to simulate elements of queueing theory (i.e.
queues) and mix them with more complex, user defined modules. The environment
has been extensively used during the development of the architectural performance
model of the Tile Pro64 to test the behavior of partial queueing network models inside
complex environments. The simulator has thus been used throughout the rest of
the thesis to solve the architectural model. Moreover, it has been actively used in
our group for other researches; in particular, in [127, 126] 128] for the simulation of
the behavior of a parallel adaptive program using different reconfiguration policies.

1.6 Outline of the Thesis

The thesis is conceptually organized in four separate parts:

Part [I Introduction in which we introduce the reader to the world of structured
parallel programming and to the need of performance models, putting the basis to
understand the following parts. In particular, we have:

e Chapter [2| that review the current state of parallel programming for multi-
cores. We describe the features of current architectures and the evolution
trend that is likely to be followed. Then, a brief overview of the current tools
for programming these processors is given, trying to highlight the problems
of the current generation of parallel environments. Finally, we introduce the
most common models used to evaluate the performance of parallel programs.

e Chapter (3| motivates the use of high level parallel programming to achieve the
level of portability required to minimize the efforts of developing parallel pro-
grams. We introduce the conceptual framework of ASSIST and its pervasive
evolution ASSISTANT, that represents the long-term project of our research
groups, and for which this thesis represent a small, yet very important tile. At
the end of the chapter we also introduce the target architectures that will be
used throughout the thesis to study and verify our ideas.

1.6. OUTLINE OF THE THESIS 13

Part [T} Cost Models which is probably the most innovative part of the thesis,
as we introduce the general approach of ASSISTANT to performance models. In
particular:

e Chapter |4 describe the methodology we will use to estimate the performance
of a parallel program, that is divided into: a) the use of an architectural
model to predict the performance degradations related to the shared mem-
ory subsystem of multi-cores; b) the use of pattern-specific models to predict
the performance of each parallel pattern implementation and ¢) the use of a
generic methodology to evaluate the performance of the graph of modules that
compose the parallel application.

e Chapter |5 develop the model for a specific commercial architecture: the
Tilera TilePro64, that constitute an interesting example of a chip multipro-
cessor, given its 64 cores and the use of innovative solutions for the inter-
connection network, the cache coherence mechanisms and the use of multiple
independent memory interfaces on chip.

Part [[TI} Optimizations where we analyze some optimization ideas especially
targeted to multi-core architectures. In this part we try to maintain generality by
not focusing on a specific architecture.

e Chapter [6] deeply analyze the problem of having multiple memory interfaces
on the same parallel machine. While this may seem an old problem, it is
important to notice that in this area chip multiprocessor differs from both
SMP and NUMA architecture, and how to exploit them at best has not yet
approached systematically by the research world.

e Chapter [7| introduce to the problem of automatically handling cache coher-
ence on a large multiprocessor, and to the fact that, in some cases, the use of
a software-defined cache coherence mechanism may improve the performance
of the parallel application. We prove the idea by showing some preliminary
tests on the Tile Pro64 architecture, in which we are able to disable automatic
cache coherence.

Part [Vl Wrapping Up conclude the thesis, by joining the results of Parts [[|
and |[II] into the evaluation of several implementation choice for a module.

e Chapter |8 introduce a parallel module and evaluate, using the models of
Part [T, three different implementations of a farm pattern on the Tile Pro64
architecture. The implementations extensively use, among the others, the
optimizations of Part [[TIl The results are validated with the execution of these
on the real TilePro64.

e Chapter [9| present the conclusions of the thesis and the possible path towards
an integration of these results in ASSISTANT.

14 CHAPTER 1. INTRODUCTION

1.7 Current publications by the author

The following represents the publications that I worked on during my Ph.D. research:

e C. Bertolli, D. Buono, G. Mencagli, and M. Vanneschi. Expressing adaptivity
and context-awareness in the assistant programming model. In Proceedings
of the Third International ICST Conference on Autonomic Computing and
Communication Systems, 2009

e C. Bertolli, D. Buono, S. Lametti, G. Mencagli, M. Meneghin, A. Pascucci,
and M. Vanneschi. A programming model for high-performance adaptive ap-
plications on pervasive mobile grids. In Proceeding of the 21st IASTED In-

ternational Conference on Parallel and Distributed Computing and Systems,
2009

e C. Bertolli, D. Buono, G. Mencagli, M. Mordacchini, F. M. Nardini, M. Torquati,
and M. Vanneschi. Resource discovery support for time-critical adaptive ap-
plications. In The 6th International Wireless Communications and Mobile
Computing Conference. Workshop on Emergency Management: Communica-
tion and Computing Platforms, 2010

e C. Bertolli, D. Buono, G. Mencagli, and M. Vanneschi. An approach to mo-
bile grid platforms for the development and support of complex ubiquitous
applications. In Handbook of Research on Mobility and Computing: Evolving
Technologies and Ubiquitous Impacts, 2011

e D. Buono, M. Danelutto, and S. Lametti. Map, reduce and mapreduce, the
skeleton way. Procedia Computer Science, 1(1):2095 — 2103, 2010

e D. Buono, M. Danelutto, S. Lametti, and M. Torquati. Parallel patterns for
general purpose many-core. In Proceeding of the 21st Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, 2013

e D. Buono, T. D. Matteis, G. Mencagli, and M. Vanneschi. Optimizing message-
passing on multicore architectures using hardware multi-threading. In Paral-
lel, Distributed and Network-Based Processing (PDP), 2014 22nd Euromicro
International Conference on, pages 262-270, Feb 2014

e D. Buono, M. Danelutto, T. De Matteis, G. Mencagli, and M. Torquati. A
lightweight run-time support for fast dense linear algebra on multi-core. In
Proceedings of the 12th IASTED International Conference on Parallel Dis-
tributed Computing and Networks, 2014

e D. Buono, G. Mencagli, A. Pascucci, and M. Vanneschi. Performance analysis
and structured parallelisation of the spacetime adaptive processing computa-
tional kernel on multi-core architectures. International Journal of Parallel,
Emergent and Distributed Systems, 0(0):1-39, 0

1.7. CURRENT PUBLICATIONS BY THE AUTHOR 15

e D. Buono and G. Mencagli. Run-time Mechanisms for Fine-Grained Par-
allelism on Network Processors: the TILEPro64 Experience. In High Perfor-
mance Computing and Simulation (HPCS), 2014 International Conference on,
2014. To Appear

e D. Buono, T. De Matteis, and G. Mencagli. A high-throughput and low-
latency parallelization of window-based stream joins on multicores. In Par-
allel and Distributed Processing with Applications (ISPA), 2014 IEEE 12th
International Symposium on, 2014. To Appear

16

CHAPTER 1.

INTRODUCTION

Chapter 2

Background: hardware and
software for parallel programming

In this chapter we describe the current state of the art concerning Chip Multipro-
cessors, both from a hardware and a software perspective.

We briefly classify and analyze the most common parallel programming tools
available today, including interesting research work that hopefully gives an idea of
ongoing research and future tools. We consider parallel programming in general,
not only targeted to multi-cores, to give a summary of the overall current state of
parallel programming.

Given the target of our thesis, we also introduce the most common parallel
performance models, and the hardware-oriented models that inspired the work of
this thesis.

Indeed, for the hardware perspective, we are not particularly interested in the
current state, because of its fast evolution, but in some way we want to “forecast”
how Chip Multiprocessors will be in the next years, to provide the basis for support
and cost models that will be suitable for the next years. We therefore do not focus
on a particular architecture, but present common choices for the various aspects of
a CMP, and use current and future architectures as examples.

2.1 Chip MultiProcessor architectures

Chip Multiprocessors inherit their ideas from Shared Memory Multiprocessors. In
fact, the first commercial multi-cores were just multiple multiprocessor-aware CPUs
inside a single chip, connected with the same mechanisms used on multiprocessor
configurations of that CPU, as with the Intel Pentium D processor in Figure [2.1]
Current CMPs are still the direct evolution of low-end SMP architectures of
the late 90. These architectures were composed of 2 to 8 processors, and there-
fore used simple solutions that required small changes to uniprocessor CPUs: the
system bus become shared among the processors, requiring only the presence of

18 CHAPTER 2. BACKGROUND

() () (PJ|(P
Chip cmp Chlp

Chip Cl hlp
Dual-Core Dual-Proc.

Pentium D Xeon

Figure 2.1: The first commercial Intel multi-core architecture: the Pentium D pro-
cessor, compared with the corresponding single-core dual-processor architecture.

atomic operations and a snoopy-based cache coherence protocol to make these CPUs
multiprocessor-aware.

Things evolved quickly, and engineers faced again the same problems found in
large scale shared multiprocessors architectures: as the number of cores increase, the
interconnection infrastructure become more complex; snoopy-based cache coherence
protocols are not suitable, memory bandwidth is more important and so on.

In this section we will analyze the common choices for the important aspects of
a multiprocessor (and therefore also of a chip multiprocessor), both for the current
state and for a very likely future; throughout the section we present some architec-
tures, incrementally as the choices are described, ending with a complete description
of some current and future CMPs. In the multitude of processors, we chose three ar-
chitectures from different domains, to give an overall idea of the evolution in various
environments.

e AMD Opteron 6100[62]: this processor represent low and middle-end server
domains. Each processor is composed of 12 cores, and can be used in 4 proces-
sor configurations. This is not a pure CMP, because it is made by two 6-core
chips connected together as multiprocessor. There is therefore a mixture of
CMP and MP inside the processor. It is represented in Figure [2.2]

e Tilera TilePro64[162]: specifically made for multimedia and network pro-
cessing, this CMP is made of 64 general purpose cores, but cannot be used in
multiprocessor configurations. It is represented in Figure [2.3]

e IBM PowerEN|83]: targeted mainly at network processing, it is a CMP made
of 16 general purpose cores and some hardware accelerators; this architecture
will be available in the following years in up to 4 processor configurations. It
is represented in Figure [2.4}

These architectures are also compared with a large scale multiprocessor system: the
SGI Altix 3000[184] (Figure[2.5), a NUMA built with Intel Itanium 2[124] processors,
to give an idea of the differences between CMPs and MPs.

2.1. CHIP MULTTPROCESSOR ARCHITECTURES 19
f 3
)PP)P)) = S
T T T T T T <
() 22 22)| 5 5| | AN
1 1 1 1 1 1
([3 : Directory } = (P P
I | 2
=
[Kl\'/[emm:y) H}l/perlTralnsp?rt]) G0 g P P
| | 11T 1 Chip| Single Processor Four Processor
Figure 2.2: The AMD Opteron 6100 CMP and its 4 processor configuration.
A
(")
L2
E Sw EFE
Tile | Chip
Figure 2.3: Single Cores of Tilera TilePro64 and the overall CMP.
P{P{P{Ppieiete) [le[ele| P[Pl Hardware ||| Socmmmm — EEEms=)
22l 2|l L2 ‘ ‘ Accelators {‘: = = J
@@@@ [| | | | |] = o ilr- ==
PowerBUS Crociis (el)
L2
Gy (0) [(Newed)

Core Cluster

Single Processor

Four Processor

Figure 2.4: The IBM PowerEN: a core cluster, single CMP and 4-way configurations.

Node 0

Node 1

I
i

o

MMM MMM
f SHUB SH f

H B
S Netivork SHUB;

Network,

Network
Board

Figure 2.5: A large scale multiprocessor composed of single-core processors: the

internal node architect

ure and its interconnection.

20 CHAPTER 2. BACKGROUND

Special-Purpose Accelerators

The last years saw the strong emergence of accelerators explicitly developed to in-
crease the performance of specific classes of applications. In fact, the accelerator
concept has been always used in computer architectures to interface the general
purpose CPU with specific interfaces (such as network devices, audio/video inter-
faces, and so on); however, up to some years ago these devices were devoted to the
acceleration of a single, well specified, task. With the emergence of GPUs, these
accelerators became more and more “programmable”, up to the point that they are
currently programmed like general purpose CPUs. Given the availability of a high
number of (specialized) computing units, they are sometimes considered a specific
class of many-core architectures. After the emergence of GPUs, other classes of ac-
celerators (e.g. Digital Signal Processors - DSP or Field Programmable Gate Arrays
- FPGA) adopted the very same programming approach, unifying the programming
methodology for accelerators with the OpenCL parallel language.

Nevertheless, these are not general purpose parallel architectures, and as such
they do not allow the indiscriminate porting of any application (at least with remark-
able performance results), and they do not allow general interaction pattern among
control flows (usually threads), so only specific parallel patterns can be instantiated.
For these reasons we will not consider, in this thesis, this kind of special-purpose
parallel architectures.

Characterization of a Shared Memory Multiprocessor Archi-
tecture

Shared Memory multiprocessors are parallel computers composed of a (possibly)
large number of processors, usually identical, that share the main memory, i.e. each
processor is able to address every part of the main memory. The most important
characteristics of these architectures are:

e Processor architecture, that affects the performance of the sequential code;
e Interconnection network, among shared memory and processors;

e Memory bandwidth and organization, that affect the latency of load and
store operations;

e Atomic operations and synchronizations, necessary to handle simultane-
ous accesses to the same memory address among processors;

e Cache coherence, required to keep private caches updated;

e Number of processors that, in the case of CMP is usually a constant value,
while in MP represent the maximum number supported.

2.1. CHIP MULTIPROCESSOR ARCHITECTURES 21

2.1.1 Processor architecture

Core complexity All the processors are 64-bit, pipelined and superscalar. Tile Pro64
and PowerEN have very simple cores with in-order execution, 2 (PowerEN) or 3
(TilePro64) execution units and no floating point units. Opteron and Itanium are
much more complex, with floating point and SIMD units; Opteron is an out-of-order
processor, three-way superscalar with 6 execution units. Itanium is surely the most
advanced of the group, with its 11 execution units; it is, however, an in-order pro-
cessor because of its VLIW instruction set that allow exploiting ILP without the
high space and power consumption required by supporting out of order execution.

The different complexity is probably related to the domain of each processor: in
general purpose server domains processors have to maintain good performance on
sequential code and therefore inherit the complexity of high performance uniproces-
sor; when this is not necessary, simpler cores allow more cores per chip and lower
power consumption. For this reasons we think that both kind of processors will
remain in the future.

Caches A very important aspect of every processor is its cache hierarchy. All
the processors have separated L1 for data and instruction; Itanium have separated
L2 data and instruction caches, while in the others they are unified. Opteron and
Itanium provides also an L3 cache. Cache sizes are different for each processor, with
Opteron and Itanium having larger caches. Here CMP architectures start to diverge
from classic uniprocessors: Opteron and PowerEN share a cache level among cores.
For the PowerEN, the shared level is L2, while for Opteron is L3. In PowerEN
the cache is not shared among all cores, but in small groups: there are 4 groups
of 4 cores that share the L2 cache. This can be justified by the higher number of
processors: sharing a L2 cache among 16 processors would make the cache slower,
and therefore strongly limit the performance of the CMP. The Opteron, having only
6 cores and an L3, can share it among all the cores without performance problems.

Here again, we can highlight a trend for future architectures: as the number
of cores increase, caches will not be shared among all the cores of the CMP, but
eventually on small groups of cores (up to one as in the Tile Pro64).

Instruction Level Parallelism Another important aspect is how ILP (Instruc-
tion Level Parallelism) is extracted. Of the 4 presented processors, each one use a
different mix of techniques to exploit its superscalar architecture.

The Tilera TilePro64 core is the simplest one, because it just uses a VLIW
instruction set to let ILP being extracted by compilers. The PowerEN cores are
RISC-based and in-order: they have no way to extract ILP from the code, and
therefore use hardware multithreading, obtaining multiple independent instructions
from different threads. The implemented multithreading is a 4-way SMT where
instructions are fetched from each of the 4 threads at every clock cycle. Itanium
is a VLIW processor like the Tile Pro64, but far more complex, and latest versions

22 CHAPTER 2. BACKGROUND

implements a 2-way hardware multithreading that is, however, different from SMT
because at each clock cycle instruction are executed only from the selected thread.
Opteron cores implement out-of-order execution; the technique seems enough for
the architecture, and therefore no hardware multithreading is implemented.

For a future trend, hardware multithreading (in the form of SMT) is having
more and more success. In fact, except Opteron, all the others high end processors
(SPARC, Power, Xeon) are using it, together with out-of-order execution.

2.1.2 Interconnection network

One of the most important part of a multiprocessor computer is the interconnection
network that connects the processors and the shared memory. Processors exchange
data each other, and the way (and the speed) this communication happens is mostly
defined by the interconnection network.

The first two important interconnection networks are the crossbar and the bus.
The first (Figure [2.6(a)|) is an all-to-all connection, that therefore keeps the latency
fixed, while the second (Figure [2.6(b)|) represent a single link to which each node
is connected. Here the latency is proportional to the link length (and therefore
the number of nodes). Fat Tree (Figure [2.6(e)) is the most used interconnection
network for large scale multiprocessor. The SGI Altix in Figure [2.5(uses two Fat
Tree. This interconnection is basically a Tree that increase link bandwidth from the
leafs to the root. This minimizes conflicts in the networks and gives a very high
bisection bandwidth, maintaining a low degree for the nodes and increasing latency
with a logarithmic scale. However, this is an interconnection for a group of N peers,
i.e. NUMA architectures. To connect processors to a globally shared memory (i.e.
UMA-SMP architectures) an interconnection that maintain these properties is the
butterfly (Figure[2.6(f)) (that can be also used as a Fat Tree to allow inter-processor
communications). Another common interconnection is the k-ary n-cube, especially
in the form of rings (n = 1, Figure [2.6(c)|), meshes (n=2, Figure [2.6(d)|) and cubes
(n=3). In these networks every node is both a computing and a routing node.
Crossbar is obviously one of the most efficient networks, keeping latency constant
and minimizing conflicts; however it can be applied to a limited number of nodes
because of the number of links (n?). Bus and rings are efficient and simple for a
low number of nodes, as their latency is proportional to the number of nodes. The
other interconnections become interesting when the number of nodes grows.

For the studied processors, the Tile Pro64, having many cores, uses a mesh that
allow a good scalability and is easy to implement on chip. Inside the chip, the
AMD Opteron have a crossbar among L2 caches and L3, while memory is directly
connected to the shared L3; in multiprocessor configurations a partial crossbar (some
links are missing) is used among processors. The PowerEN is in some way the most
complex infrastructure: groups of 4 cores are connected to the shared L2 cache using
a crossbar, and these groups are connected each other and to the memory using an
enhanced bus. Multiple processors are then connected using a crossbar.

2.1. CHIP MULTIPROCESSOR ARCHITECTURES 23

) Crossbar (b) Bus

[

o \V/e o=
IR

C vAl

S ZANGTOZ
L]

) Mesh) Fat Tree (f) Butterfly

Figure 2.6: Common interconnection network.

It should be therefore clear that CMPs currently have a hierarchy of intercon-
nection networks. While this trend could continue, we strongly believe that, as the
number of core will increase, low latency interconnections like mesh, fat tree and
butterfly will be also implemented on-chip[I4§], following the example of Tile Pro64
processor; in this case hierarchical interconnection will be probably removed.

2.1.3 Memory bandwidth and organization

One of the challenges with CMPs is keeping a good memory bandwidth and low la-
tency. In common multiprocessors, each processor have its own interface to memory.
Keeping this rule in CMPs is impossible because of pin-count problems: memory
interfaces are (and will remain) proportional to the number of chips, and therefore
considerably less than the number of processors. Opteron uses a single memory in-
terface, shared among the 6 cores, PowerEN have two interfaces and the Tile Pro64
four. This can create memory bandwidth problems, as this must be divided among
cores. Caches can help in keeping memory requests low, but are not always suf-
ficient. If the CMP have a low number of cores or a single memory interface, we
usually have an UMA architecture. This is the case of the Opteron (a single inter-
face directly connect to the shared L3) and of the PowerEN (multiple interfaces but
connected using a bus). With complex interconnections and multiple interfaces the
architectures usually become NUMA, for example with the Tile Pro64, where the
interconnection is a mesh and the memory controllers are placed at the borders of
the chip.

Opteron and PowerEN, however, can be composed in Multi-chip architectures;

24 CHAPTER 2. BACKGROUND

in this case we will have a hierarchical organization: SMP inside the chip, NUMA
outside.

2.1.4 Atomic operations and synchronizations

Having a shared memory, synchronizations among processes (and processors) can be
implemented accessing memory with atomic operations. However in CMPs synchro-
nization using memory accesses could be costly, considering how “near” the cores
are and how far the memory is. An inter-core synchronization (for example using
the shared caches) could be much faster and allow finer grain parallelism. Moreover,
with hardware multithreading, a way to synchronize threads running on the same
core could offer even better results.

Many work in literature emerged in this area[7T], 89, 167, [180], however in current
CMPs the common way to synchronize is usually via atomic memory operations.
PowerEN introduce a sort of “hardware” passive wait that stop executing a thread
until a specified memory location is written by other threads. This can be considered
a first step towards optimized synchronization mechanisms for CMPs. Tile Pro64
allows the program to directly use the mesh to exchange data (without accessing
memory); this feature, while not technically a synchronization mechanism, can be
used to implement fast inter-core synchronizations.

2.1.5 Cache coherence

An important problem in shared memory multiprocessors is keeping caches updated;
this is usually solved implementing some automatic coherence mechanism that keeps
caches updated. However this mechanism have a cost, which increase with the
number of cores.

Caches maintain some additional bits for every cached block, which allows them
to decide which operation perform in case of read/write. This state, however, must
be updated when any processor perform operations on the same memory location;
cache coherence mechanisms are usually divided in snoopy-based and directory-based,
based on how caches are notified[64]. Snoopy-based cache coherence concept is very
simple: memory access operations are notified to each processor (core) in the system.
This way caches have no problems in updating the state of their blocks. However
this requires broadcasting every access operation to anyone; it is convenient only
with a limited number of cores, and is almost cost-free with bus interconnections
(operations are always seen by all the nodes connected to the bus). For interconnec-
tions that are more complex a directory-based mechanism is usually chosen. The
idea is to store somewhere information about which cache contain a block. This way,
memory operations can be sent only to the set of caches that are actually interested.
This approach minimizes traffic in the interconnection networks, however keeping
and accessing the directory have a cost in term of space (the directory must reside
in a fast memory) and increased memory access latencies.

2.2. PARALLEL PROGRAMMING ON CHIP MULTIPROCESSORS 25

Of the architectures studied, the Altix uses a directory-based cache coherence
protocol; Opteron cache coherence is snoopy-based inside the chip (between L2 and
L3) and directory-based among different chips. Here a configurable portion of L3
cache is used to implement the directory (Figure . In the PowerEN architecture
the enhanced Bus provide cache coherence, supposedly via a snoopy-based mecha-
nism, while the Tile Pro64 cache coherence is directory-based.

There are, however, some classes of computation that does not necessarily re-
quire an automatic cache coherence protocol, and permit efficient software-based
cache coherence[l]. For these computations it is advisable to turn off automatic
mechanisms and leave the work to the programmer; unfortunately this is usually
not possible with current architectures. The PowerEN seems to allow the definition
of non cache coherent memory pages; however, given the snoopy-based nature of
cache coherence, the improvements should be low. TilePro64 allow defining cache-
coherent domains, i.e. the set of memory locations that need automatic cache co-
herence. This way we could be able to remove any kind of cache coherence traffic
and overhead.

2.1.6 Number of cores

Probably the most important property of a CMP; it is however strongly influenced by
all the others presented before. Chip size is fixed, and a balance of all the components
is important. This is why we still do not have an SGI Altix 3000 on chip: chip space
is simply not enough to permit this configuration. The lower complexity of PowerEN
and Tile Pro64 cores, for example, allows a larger number of cores inside a single chip
(64 against 6 of Opteron). This imply a trend towards CMP with many simple cores,
and it seems clear that in the future there will be two “families” of CMPs: complex
cores with a relatively low parallelism, and simpler cores with higher parallelism.
Complexity is probably the reason because Fat Tree and butterfly interconnections
are still missing: meshes are simpler, take less space and for the current number
of cores give performance similar to the other interconnections. However, in some
years, a single chip will surely allow hundreds of complex cores, and then even more
complex interconnection will have to be used.

2.2 Parallel programming on Chip MultiProces-
sors

CMPs can be programmed using all the tools previously available for shared memory
multiprocessors. Considering that many of these are also given in “multiprocessor”
configurations, with this solution we can expect good performance, aligned with
that obtainable with comparable SMP multiprocessors. However, the specific fea-
tures of CMPs (i.e. shared caches, hierarchical interconnections and fine-grained
synchronizations) will not be exploited using these tools. For this reason a lot of

26 CHAPTER 2. BACKGROUND

new parallel programming environments emerged; however, while specifically tar-
geted at CMPs, many of these are very similar to already existing tools, and still
fail to exploit specific features of multi-cores.

High level parallel programming is, in some forms, well known today, and even
many of the tools we will describe here feature some “high level” concept. How-
ever, this is usually introduced with a “software-engineering” purpose, to speed up
writing of parallel code. All the concepts related to performance portability and
predictability, typical of structured parallel programming[I8), 19} [139] [172] are com-
pletely missing. If a programmer want have an efficient code for a specific CMP, he
have to write the program using low-level languages, and write code strongly related
to the specific platform. In the same way, detailed performance predictions are not
achievable, even with low-level programming, because detailed cost models of the
architectures are still unavailable.

In short, a High Level Parallel Programming targeted at CMP is still missing,
and programmers are thus forced to write “low-level” parallel code, strictly related
to a specific CMP architecture, to exploit these features.

Parallel programming tools are usually divided in two large classes: programming
languages and libraries. In the following sections we present the most important
tools available for shared memory multiprocessing and those specific to CMPs.

2.2.1 Programming Languages

Parallel programming languages are usually extensions to well known sequential lan-
guages like C, Java or Fortran, that add specific constructs to define and coordinate
multiple execution flows. However, some of them are completely new programming
languages designed to write parallel programs.

In all of the presented, with the exception of Erlang and Go, cooperation among
execution flows (threads, processes, etc.) is expressed using shared memory, and
the mapping of flows on processing resources is done by the run time support of the
language. While these languages performs well on SMP architectures, NUMA and
distributed memory are difficultly exploited this way. For this reason some of them
introduce the concept of a “Partitioned Global Address Space”: the shared address
space is logically partitioned, and for each flow a concept of “affinity” to a partition
is given. With PGAS an execution flow conceptually have a fast local memory and
a remote, slower memory, allowing good performance on NUMA and, with some
limitations, on distributed memory architectures.

Most of these languages are to be considered “low level parallel programming
languages”, because programmers define all the execution flows and the cooperation
among them. However, with respect to classical shared memory/message passing
libraries, they are at a slightly higher level, because the programmer is somehow
helped in defining the parallel program. The only notable exception is probably
SMPSs, which is definitely at a higher level, but not sufficiently abstract to allow
performance portability.

2.2. PARALLEL PROGRAMMING ON CHIP MULTIPROCESSORS 27

OpenMP[66] is one of the most common parallel programming language, and
considered by many the de-facto standard for shared memory parallel programming.
It is defined by a group of hardware and software vendors, including AMD, Cray,
HP, IBM, Intel, Microsoft and many others.

Indeed it is not a complete programming language, but an extension that can
be supported by C, C++ and Fortran compilers. It defines an “accelerator-style”
programming, where the main program is run sequentially and, in specific points,
code is accelerated running in parallel.

The support to the most used sequential languages, the possibility to incremen-
tally parallelize code and the fact that many compilers implement it, makes this
“language” one of the most portable among platforms and architectures. However
this “code portability” comes at the price of unpredictable performances: each com-
piler can implement the language in different way, potentially giving very different
performance result even for the same parallel architecture.

Given its shared memory environment, OpenMP is specifically targeted to shared
memory multiprocessors; some implementations support also distributed systems,
but with very poor results. With CMP architectures OpenMP perform as good as
in SMP architectures, but does not exploit any specific feature of CMPs.

Java [135] is a sequential programming language originally developed by Sun
(now Oracle); it provides multithreading and RPC support, that can be used to
write parallel applications for both shared memory and distributed memory archi-
tectures. However, while being an high level sequential language, parallel support is
given in a very low-level fashion, even lower than OpenMP; moreover its sequential
performance are usually lower than languages like C or Fortran and is therefore
rarely used in high performance parallel programming.

Cilk [85] is conceptually similar to OpenMP; it is defined as an extension of
the C language with annotations to express thread spawning and synchronizations.
Thread scheduling is completely handled by the run time support of the language.

An interesting feature of this language is that, removing annotations, the re-
sulting program must be a correct C program that sequentially execute the same
computation of the parallel program.

The language itself is quite limited in expressiveness, but allows nested paral-
lelizations. Produced applications can be executed only on shared memory archi-
tectures. Cilk is also one of the few academic parallel programming tools supported
by the commercial industry: Intel is currently selling a specific version, called Cilk
Plus, that specifically support its processors. Yet, to our knowledge, there is no spe-
cific support for CMPs in the run time, which is able to run on any shared memory
architecture.

28 CHAPTER 2. BACKGROUND

Berkeley Unified Parallel C [77] differs from the previous languages because
uses a Partitioned Global Address Space. This feature allow it to be ported to the
most important distributed memory architectures. Aside from that, the program-
ming model is still a low-level shared memory environment, where execution flows
synchronize with barriers and locks. Some collective operations are given by the
language; for these operations the run-time support select the best among a set of
defined implementations; the language offer, therefore, a (limited) approach to per-
formance portability. Another interesting point of UPC is that its run time support
is being optimized for CMPs[40), [134].

Erlang [177] is a message-passing parallel programming language originally de-
veloped by Ericsson. It is therefore very different respecting to the previous ones. In
Erlang the set of execution flows operate in a local environment, and cooperate by
using send and receive primitives. It is therefore mainly targeted at distributed sys-
tems, but recently shared memory implementations has been produced with results
aligned to common shared memory programming languages, and very interesting
results even on systems with a large number of cores such as the TilePro64 [190].
Giving a message-passing environment, this is still a low-level parallel programming
language, exactly like the previously presented.

Go Programming Language [149, [86] is a recently introduced object-oriented
language that exhibits a C-like syntax and greatly focuses on concurrency. Paral-
lelism is automatically achieved by using “goroutines”, functions specifically marked
to be executed concurrently. Goroutines can exchange data by using asynchronous
channels; thus, go highly resemble a low-level message-passing parallel language.

SMP Superscalar[141] and OmpSs[76] are interesting parallel programming
environments based on compile time annotations (similar to OpenMP). OmpSs rep-
resent a sort of umbrella to capture the same concept in different architectures
(SMPSs for multi-cores, GPUSs[17] for graphic processing units, ClusterSs[I58] for
clusters), with a uniform programming model.

Parallelism in SMPSs is obtained following a different approach, in which the
programmer writes a program composed of tasks and dependencies among tasks.
At execution, a data-flow graph of tasks is created according to their dependencies,
and a run-time support is used to dynamically schedule independent tasks onto a
parallel architecture. This approach is interesting because the programmer is only
required to define tasks (i.e. functions) and dependencies among tasks; parallelism
is automatically achieved by the run-time support. The same approach have been
exploited in the past even by skeleton libraries (in particular Muskel[8]) and, during
this thesis, by our research group on FastFlow[41] . Problems of this approach are
mainly the selection of task sizes (in terms of computation time): theoretically, the
smaller the tasks are, the higher the parallelism is; however small tasks requires

2.2. PARALLEL PROGRAMMING ON CHIP MULTIPROCESSORS 29

a larger dependency graph, and a higher impact of run-time overhead, that neg-
atively affects the overall performance. The correct sizing usually depend on the
target architecture, a factor that greatly influence the performance portability of
this approach.

OpenCL [105, 155] targets specific architectures, and as such represent a con-
ceptually different approach w.r.t the other languages. Initially defined to sup-
port GPUs, it now targets a wide range of accelerators, such as GPUs, FPGAs[65],
DSPs[I15] and classic multi-core architectures. Parallelism in OpenCL is a first
citizen, as it is required to exploit these accelerators; however, the parallel model
is quite different, as it does not allow indiscriminate cooperation among parallel
entities. The main idea is that each parallel entity (called kernel) is run on the
accelerator independently, while the host processor is in charge of distributing data
to the accelerator. Of course this parallelism model (that strongly resemble a data-
parallel map paradigm) is driven by the architecture of the original target accelera-
tors (GPUs). In the following years the language has been extended to fully exploit
new GPU characteristics that adds flexibility to the model, such as device partition-
ing, built-in kernels, atomic data and nested parallelism. The language represent,
in fact an extension to C/C++; still, we do not consider this an high level parallel
language, mainly for the absence of real parallel patterns and the need to explicitly
decide which part of the code should be run, and how, on the group of accelerators
available.

2.2.2 Libraries

With respect to programming languages, libraries are more heterogeneous, ranging
from low level to high level parallel programming. However parallel libraries are
somewhat limited with respect to programming languages, because static analysis
and code optimization cannot be made inside a library. At the same time writing a
library is very fast, compared to the work needed to create an optimizing compiler
for parallel code.

There are many different libraries, but many of them share the same properties.
Here we briefly present a selection that capture the various programming levels
offered, to give an idea of the extended possibilities given by libraries, and at the
same time, their limitations.

Posix Threads [50] is one of the most famous low level parallel programming
library for shared memory environments. Can be found in almost every operating
system, giving access to OS level threads and synchronization mechanisms. To
our knowledge, there are no distributed memory implementations of this library.
Moreover the library does not distinguish between CMP and MP.

30 CHAPTER 2. BACKGROUND

Message Passing Interface [153] is the counterpart of the previous library,
which allow processes with local environment to exchange data via send and receive
primitives. Mainly targeted at distributed architectures, offer specific implementa-
tions for almost any high-performance interconnection network. At the same time,
shared memory implementations are provided, that allows the use of MPI even on
NUMA and SMP multiprocessors.

Intel Threading/Array Building Blocks [142] are two libraries provided freely
by Intel to be used with their multiprocessors. They both define a set of parallel
patterns to speed up parallel programming. Threading Building Blocks is mainly
a stream-parallel library, while Array Building Blocks is targeted at data-parallel
programming. However the given patterns are not very powerful, and it seems that
there are no specific optimizations for CMP architectures.

FastFlow [12] is one of the first product specifically targeted at CMPs. It is a
library created by our research group to exploit fast communications among cores
of a CMP architecture. The library works at two different levels: it provides an
efficient lock-free and wait-free communication channel that can be used directly by
the programmer and, on top of this, a generic master-worker skeleton that allows
the definition of stream parallel and data-flow computations. At the beginning of
this thesis, FastFlow was not a complete high level parallel programming library,
because it did not offer a wide set of patterns (just pipeline and farm). In the
following years, with the introduction of the map data-parallel pattern and of a
generic data-flow scheduler[41], and even the support for distributed systems[5],
the library has become more complete. However, no cost models are used, and
performance tuning is still a concern of the programmer.

Skandium [114] is a Java library to write shared memory parallel programs. It
is a skeleton-based high level library, which provides a wide and almost complete
set of nestable task and data parallel skeletons. While the author specifically target
the library for multi-core architectures, the library is based on pure Java threads,
making no distinction between MP and CMP; moreover the use of a Java language
can partially limit its performance.

SkelCL [154] is a skeleton library targeting OpenCL. It allow the declaration of
skeleton-based applications hiding all the low-level details of OpenCL. The set of
skeletons is limited to data-parallel patterns: map, zip, reduce and scan, but it is
unclear whether skeleton nesting is allowed. All the problems related to cost model
are still present, and the library is limited (for our ideas) because of the target
language and architectures.

2.2. PARALLEL PROGRAMMING ON CHIP MULTIPROCESSORS 31

2.2.3 Our vision of parallel programming

After this brief introduction to parallel programming, we end the section describing
our vision on parallel programming environments, which will be extended in the
next chapters. This idea finds its roots on the ASSIST[I72] programming language
developed by our research group some years ago. In our idea, low level libraries
are very important, as they give complete control of the parallel application. This
surely makes programming hard, but it is the only way to fully exploit a parallel
architecture. They can be seen like the assembler language for sequential program-
ming. Their existence is necessary to write good application; however, exactly like
assembler, low level parallel libraries should not be used directly by programmers,
but by means of compilers. In the opposite way, high level parallel programming li-
braries are somewhat less useful: while they offer a way to express parallel patterns,
they usually cannot add platform-specific optimizations, analyze the user code or
choose among a set of different implementations for the specific pattern.

We strongly advocate the need of a parallel compiler that, in addition to allow
programmers to write high level parallel applications, analyze the parallel program
to insert specific optimization (exactly like sequential compilers do), select the most
effective implementation and provide platform-specific optimization. Many of them
will be made using a cost model, to allow the compiler to compare different solu-
tions. To our knowledge, no current parallel programming environments follow this
methodology. However, among the plethora of research-oriented programming lan-
guages, we can find interesting approaches that somehow resemble our concepts. We
analyze one of the most interesting, PetaBricks, to highlight the differences between
the two programming environments.

PetaBricks: a (conceptually) similar approach

PetaBricks[14] is a novel programming language currently developed at MIT. The
driving idea behind PetaBricks is that the best algorithm to perform a task may
depend on the target architecture. In current languages the algorithmic choice is
assigned to the programmer, as compiler optimizations are only in charge (at most)
of optimizing the selected code (algorithm) for the specified architecture. Of course,
a program may contain several algorithms to achieve a single task, but the selec-
tion of the proper algorithm is still a duty of the programmer. Some interesting
approaches to auto-tuning libraries (i.e. software libraries that automatically select
the best algorithm for the target architecture at compile-time) have been presented
in the past: notable examples are the ATLAS[I8I] library for linear algebra and
FFTWI[84] to compute Fast Fourier transforms. Yet in these cases all the code re-
quired to select the best algorithm (by using specific benchmarks on representative
input) was produced by the programmer of the library. PetaBricks tries to autom-
atize the effort, with a language that allow the definition of multiple algorithms to
perform a task, and an optimizing compiler able to select the best configuration for

32 CHAPTER 2. BACKGROUND

the target architecture. PetaBricks is also defined as an “implicitly parallel pro-
gramming language”, as the algorithms are defined in such way that parallelism can
be extracted automatically by the compiler. From this point of view the generated
parallel code follow the same approach of SMP Superscalar: the code is composed
of tasks, and a dependency graph among tasks is computed at compile-time; tasks
are then executed, in parallel, by a dynamic scheduler that assign independent tasks
to different cores.

The approach of PetaBricks is indeed towards performance portability, and con-
firms that current tools are not sufficient to achieve this level of portability. Never-
theless, several differences emerge w.r.t our ideas. PetaBricks works at the algorith-
mic level, while our approach is more oriented at exploiting different parallel version
of the same algorithm, therefore targeting different (but partially overlapping) con-
cepts.

The key difference, however, reside in how optimizations (and therefore the selec-
tion of the best choice) are achieved in the two approaches. PetaBricks rely in an au-
totuning system based on a specialized evolutionary algorithm called INCREA[I3].
The “genome” consist in the search space of the possible algorithms (and algorithm
combinations); INCREA evaluate fitness by running candidate programs on repre-
sentative inputs. Our approach in optimization is completely different, as we use
cost models to evaluate each solution; therefore we do not need to run the (parallel)
program on sample inputs, but to search, in the space of possible parallelizations,
the one that minimizes the cost model. We believe that our approach is also more
feasible to exploit adaptivity on dynamically changing environments, where the cost
model can be used to drive reconfiguration by estimating the final result at run-time
without the need of specific, possibly heavyweight, benchmarks. Models allow us
to predict the behavior and let us use well known approaches such as the optimal
control theory, introduced in a previous work of our research group[129].

2.3 Performance model for multiprocessors

Given the focus of the thesis, we also briefly present the most important models
currently used to predict the performance of a parallel application, and explain why
they are not suitable for our work. Then, we introduce the reader to hardware-
oriented performance models and their use in the past years.

2.3.1 Algorithm oriented performance models for multipro-
cessors

The most common parallel performance models are built for parallel algorithm de-
signers, which are not interested in particular architectures, but looks for algorithms
that perform well in general. The models are therefore based on an asymptotic pre-
diction of the performance, exactly as the complexity order is analyzed in sequential

2.3. PERFORMANCE MODEL FOR MULTIPROCESSORS 33

algorithms.

The idea of allowing a simple and machine-independent study of the algorithm
is indeed in contrast with our idea of a detailed and machine-dependent prediction.
These models are not much useful for us and are presented just for the sake of
completeness.

PRAM

The Parallel Random Access Machine[80] models a shared memory abstract machine
with a possibly infinite number of processors. The parallel computation is described
as a sequence of Read - Compute - Write executed by each processor. These se-
quences are synchronously executed by each processor, which can read and write
any location of the shared memory. Memory accesses and synchronizations among
processors are considered cost-free, and the time complexity is given by the number
of sequences executed by the longest running processor. This model obviously rep-
resent a very abstract parallel machine, and can be useful only for asymptotic study
of algorithms

BSP and Multi-BSP

The Bulk Synchronous Parallel[169] (BSP) is another abstract parallel machine. It is
similar to PRAM, except for the fact that consider synchronization and communica-
tion costs. In BSP each processor is assumed to have a local memory, and cooperate
with the other processors exchanging data. A computation is defined as a sequence
of “superstep”; in each superstep a processor makes a local computation, send re-
quired data to other processors and then wait the end of the superstep of other
processors. The cost of each superstep is defined as mazt_, (w;) + max?_;(h;g) + 1,
with w; is the cost of the local computation, h; the number of messages sent, g
the cost of sending a message and [the cost of the barrier. The complexity of the
entire computation is simply given by the sum the supersteps. Just adding these
few parameters made the model much more detailed and realistic. However, using
synchronous superstep greatly simplify the model, and differ from multiprocessor ar-
chitectures where processors are independent and can synchronize each other with
point-to-point synchronizations.

With the emergence of multi-core architectures the author of BSP proposed an
extension, called Multi-BSP[I70], that address the existence of a memory hierarchy,
and thus different levels of sharing among processors. Multi-BSP is a multi-level
model, in which each level is composed of supersteps, retaining the initial ideas
of BSP. According to the author itself, the model is still proposed to evaluate the
complexity of parallel algorithms, and not to precisely estimate the performances of
the algorithm on specific architectures[170]:

The goal here is to identify a bridging model on which the community
can agree, one which would influence the design of both software and

34 CHAPTER 2. BACKGROUND

hardware. It will always be possible to have performance models that
reflect a particular architecture in greater detail than does any bridging
model, but such models are not among our goals here.

LogP

LogP[63] is one of the last algorithm oriented performance models developed. Rec-
ognizing how far were previous models from real parallel machines, the authors tried
to describe an abstract machine that, while being easy to model, could be similar to
real hardware. Massively parallel machines are generally distributed memory multi-
processors; LogP model that kind of parallel architectures by defining the number of
processors(p), the communication bandwidth(g), the communication delay(L), and
the communication overhead (o). While considering the properties that roughly de-
fine a parallel machine, the model abstract from the internal hardware of the nodes
and from the details of the interconnection network (routing, topology, etc.). Pro-
grams are then defined as asynchronously cooperating processes that can exchange
data with a well defined cost. It is a sort of extension of BSP, where programs do
not follow synchronous steps and the cost of exchanging data is more detailed. It is
still, however, a rough model that can be useful to write good parallel algorithms,
but cannot be used to compare architectures or different implementations of the
same program.

2.3.2 Hardware-oriented performance cost models

The idea of specific performance models for parallel patterns was introduced a few
years after the introduction of skeletons, and already exploited in P3L[I8] to select
the so-called “implementation templates”. These, however, modeled the perfor-
mance of the parallel pattern with an approach similar to that of LogP, taking the
sequential code as a “black box”, with specific, immutable, characteristics. While
this is usually true for distributed architectures, where each program is executed in a
different machine that is loosely coupled with the others, in multi-core architectures
the situation is really different, as we observe several kind of interactions and shared
resources that may affect the performance of the sequential code, and thus affect
the final result in term of performances.

We therefore extend the original concepts presented in P3L[139] and employed
in SkiE[19], ASSIST[172] and initial versions of ASSISTANT[32], by introducing an
architecture model, that allow us to predict the performance degradation that occur
when multiple processes are executed on the same multi-core chip. It is widely known
that the major source of degradation is the sharing of the memory subsystem. One of
the first to analyze this form of degradation has been Bhandarkar[36], that modeled
the processor-memory subsystem with the queueing network in Figure where
each processor generate a memory request and then stop its execution waiting for
the response.

2.4. SUMMARY 35

¥ ° .
A

° .

° .

Figure 2.7: Bhandarkar’s queueing network to model the memory contention.

From his seminal work many extensions were produced, mainly in the 80, to
model the emerging parallel architectures of that days[3], 07, 122] 164]. The focus
of these works was, however, usually different from our perspective: most of them
are more interested in mathematically sound approximations, without caring of the
possible applications of the model, or in analyzing the asymptotic behavior of an
hypothetical architecture, by selecting the parameters of the system in a realistic,
but not program-driven, way [3], 176] [188].

However, there were a small amount of work that proposed, as we are doing, to
use these models in the performance evaluation of a parallel program [2]. Still, to
our knowledge, none of these addresses the problem specifically for multi-cores.

2.4 Summary

In this chapter we introduced the reader to the world of chip multiprocessors, and in
particular to their hardware features and the programming models currently used.
Given the level of details of certain works, it was not really feasible to introduce and
describe all of them here. We therefore decided, for the sake of readability, to keep
this chapter at an introductory level, and further describe the important works in
the following chapter, when the reader will have the tools to understand them.

We presented the current state-of-the-art in CMPs and the most feasible future
trend, in which the amount of processors per chip will increase to a point that
programming these chips will become even more difficult.

We highlighted the most important problem in software development, which is
the absence of complete environments especially targeted at multi-core, able to fully
exploit these architectures without a manual intervention of the programmer.

Finally, to control the complexity of these and future chips, we advocate the
need of a different approach to performance modeling, which should be used not
only to evaluate the asymptotic performance characteristics of an algorithm, but
also to compare, at a very fine level, the performance of different implementations.

36

CHAPTER 2. BACKGROUND

Chapter 3

Structured parallel programming
to solve the multi-core problem

In this chapter we present our methodology to solve the problems of parallel pro-
gramming on multi-cores.

We introduce the general concepts of a structured programming model and mo-
tivate the need for such kind of programming. Then, we describe our model, that
finds its roots on the ASSIST programming language developed by our research
group some years ago, and compare it with respect to other classic structured pro-
gramming models. We will not provide, however, a precise definition of the language,
as this is beyond the scope of this thesis: the purpose of this chapter is to under-
stand the level of abstraction provided by the model. Abstraction is, indeed, the
strength of our approach, that let us automatically and transparently create and
transform parallel code without user interactions. In the last part of the chapter we
will introduce the workflow of our parallel compiler, highlighting the open research
points that will be partially addressed in this thesis.

3.1 The need for high level parallel programming

Since its introduction, parallel programming was strictly related to HPC environ-
ments, in which programmers were usually willing to write parallel code by mean
of low level libraries that, giving a complete control over the parallel application,
allowed them to manually optimize the code and exploit at best the parallel architec-
ture. This programming methodology exposed its first problems with the emergence
of cluster and grid computing, when the parallel architectures become dynamic and
heterogeneous, therefore limiting the possibilities of ad-hoc optimizations. The re-
cent massive introduction of parallel architectures in every computing device, and
thus in every computing sector, critically exposed the lack of proper tools to easily
implement a parallel application: the industry cannot afford the cost of re-writing
(or even re-tuning) an application for every available computing architecture.

38 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

For this reason a lot of parallel programming tool were introduced in the last
decade, both by the academic and by the industrial world. Despite the increasing
effort (especially of the scientific environment), automatic parallelizers (i.e. com-
pilers that automatically extract parallelism from a sequential program) are still
ineffective in fully exploiting parallel architectures, rarely providing good speedups
even on 4 and 8 cores [52], [82]. To the current state of the art, in short, a proper
rewrite of the program is needed to exploit parallelism. In this case, a proper mix
of ease of use and performance is still the main concern of researchers. It is widely
acknowledged that one of the mayor problems to be addressed by a parallel model
is portability. Indeed, portability for parallel programs exhibit a twofold nature:

1. code portability that is, as for sequential programs, the ability to compile
and execute the same code on different architectures;

2. performance portability that represent the ability to efficiently exploit the
underlying parallel architecture.

Performance portability is indeed very important: a parallel program that does not
exploit the architecture must be rewritten, thus nullifying most of the benefits of code
portability. It is widely acknowledged by the scientific literature [69, 171], 152] that
performance portability is achievable only by using a high-level approach to parallel
programming: exactly as in sequential program, were portability is guaranteed by
sequential high-level languages, we need to define parallel constructs that allow a
proper compiler to produce efficient code for any architecture.

In other terms, by using a high-level parallel model, we are able to describe our
parallel application and be sure that it will perform reasonably well on the wide
choice of parallel architectures available today.

In the previous chapter we described a wide set of programming models; beside
from the common low-level libraries (i.e. Posix Threads and MPI), all the current
tools express some characteristics of high-level parallel programming, i.e. help the
programmer by easing the burden of writing parallel applications. For example,
OpenMP uses a shared-memory programming model, but allow the programmer
to extend sequential code by mean of annotations, without explicitly writing the
parallel threads. The programmer must, however, know basic concept of the re-
sulting parallelization to ensure program correctness. OpenMP also allows specific
architecture-driven optimizations, i.e. the same annotated code can be “compiled”
in different programs depending on the target parallel architecture. However these
optimizations are usually quite simple; furthermore, in many cases a detailed knowl-
edge of the parallel implementation and proper annotations or code reorganizations
are required to ensure good parallel performance.

The same concept apply, more or less, to all the languages and libraries: they
help the programmer in many ways, especially hiding details typical of low-level
parallel programming, but they do not allow that kind of performance portability
described before.

3.2. STRUCTURED PARALLEL PROGRAMMING 39

3.2 Structured parallel programming

Structured parallel programming is probably the most interesting class of high-level
parallel models. It started with the concept of algorithmic skeletons defined by Cole
[61] and has been successfully applied basically in any possibile parallel environment,
starting from clusters[67] and shared memory machines[I114], to grid[7], cloud and
pervasive environments[32].

Two of the most important point of structured parallel programming are the
ability to automatically create different parallel implementations starting from the
high-level description, and the parametric nature of the produced code, that is able
to run with different parallelism degrees. These points are the basic building blocks
to ensure performance portability on the various architectures. Structured parallel
programming also allows composability: a parallel code can be mixed with others,
such that an application can be described as a collection of parallel kernels, instead
of a single, big, large parallel code. Composability also allow reuse: the same kernel
can be reused inside different programs with no modifications.

Our research group history in structured parallel programming is quite long,
starting with the P3L skeleton language in 1992, and culminating with ASSIST in
the last years. These projects incubated many interesting developments for parallel
programming: we implemented, among the others, parallel code restructuring[4, 6],
to better exploit the composition of parallel kernels; efficient fault tolerance [35],
and dynamic reconfigurations up to self-adaptive programs[127, [125], i.e. programs
that are able to exploit performance portability dynamically, at run-time, to better
fit dynamic environments such as grids or clouds. Finally, we also extended the con-
cept of High Performance Computing to Grid computing[7] and lately to Pervasive
Grids[32].

We never, however, really focused our efforts in multi-core and shared memory
architectures in general. Our experiments with FastFlow[d] demonstrated the need,
and the possibility, of multicore-specific optimizations.

3.2.1 Parallel Paradigms

A parallel paradigm (also called parallel pattern) is the core concept of structured
parallel programming;; it is, in short, a well-known pattern of interaction of a parallel
code. We can identify a small number of paradigms that can be deeply studied for
the target architectures, to provide an efficient implementation. One of key concept
of paradigms is that a single pattern can be used to describe just a small part of a
complex application; their strength lies in the fact that multiple paradigms can be
easily mixed together to describe complex applications.

This is the basic idea behind structured parallel programming: expressing the
parallel code as a composition of widely-studied “building blocks”. This allows some
sort of separation of concerns: the application programmer is in charge of defining
its applications, while a parallel programmer defines the parallel implementation of

40 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

Xk+ 2 Xk+ 1 Xk Ym Ym—l Ym»2

tA tA tD tD

Figure 3.1: Graphical representation of a generic Stream-Parallel Pattern.

each building block (and eventually some notable compositions) on the supported
architectures. The latter is done per-pattern, and not per-applications, thus incred-
ibly relieving the amount of work for both the programmers.

Parallel paradigms can be divided in two conceptually different classes depending
on the way parallelism is exploited inside the pattern: Stream-parallel paradigms and
Data-parallel paradigms

3.2.2 Stream Parallelism

This class contains those patterns that exploit the presence of a stream. A stream
is a (virtually infinite) sequence of input elements to be processed; parallelism is
simply obtained by processing multiple elements concurrently. An important char-
acteristic of streams is that the elements arrive with a certain time distribution (i.e.
the sequence is not entirely available at the beginning of the computation, but is
produced during the computation). This represents an important limiting factor of
the parallelizations: whenever we run the parallel code, we cannot compute elements
at a higher rate than the one they arrive. In other words, although the stream is
virtually infinite, we have a limitation in the performance (and the possible number
of processors used) of the resulting parallelization.

It is important to note that stream parallelism does not speed-up the computa-
tion of a single element, but the computation of the stream. In terms of performance
evaluation this means that a stream-parallel pattern does improve the throughput
(i.e. the amount of elements computed per time unit) but not the latency (i.e.
the time needed to execute the computation on each element). When latency is
important from a performance point of view, this kind of parallelism is ineffective.

The concept of a generic Stream-Parallel pattern is depicted in Figure|3.1}, where
we define the average arrival time as t4, and the average departure time as tp. In
the optimal case, tp = t4, meaning that our stream-parallel pattern is able to fully
support the incoming throughput with no performance degradation.

The existence of a large sequence of input elements is a necessary precondition in
order to apply these parallelization techniques: no performance enhancements can
be obtained if we consider a single or a limited set of input elements, because of the

3.2. STRUCTURED PARALLEL PROGRAMMING 41

limited possibility of computing them concurrently.

The need of a stream can appear as a strong limitation of this class of paradigms;
still, there exists a lot of computing environments that works with streams, such as
video processing (where there exist streams of frames), network filtering (streams of
packets), signal processing (streams of signal samples) and so on.

The two most representative parallel paradigms are the so-called task-farm and
pipeline. While the basic idea is the same (computing more input elements at the
same time), they strongly differ on the way parallelism is obtained.

3.2.2.1 Task-Farm

The Task-Farm parallel pattern is probably the simplest, yet most used, paradigm,
as it represent the functional replication of the sequential code as a whole.
The idea is pretty simple: let say our code behave as a function:

y = F(z)

we replicate the code of F' on n different processors (usually called workers); then,
when an input element is received, it is forwarded to one of them, by using some
selection policy to guarantee that all the workers will take some element, as depicted
in Figure |3.2]

It is simple, because it usually do not require a rewrite of the sequential code (that
is just encapsulated in a farm pattern) and allow for virtually infinite parallelism
(i.e. we can use as much processors as we want, respecting the input stream arrival
time). The main limitation is that, to guarantee correctness, the code have to
behave like a pure function: F(x;) cannot depend on F(z;_1),..., F(z1). To let
this paradigm perform as expected we would also need to balance load among the
function replications (i.e. ensure that all the processors will take approximately
the same amount of work); furthermore at the end of the computation a correct
element ordering is generally required, to guarantee that the resulting computation

Task-Farm

Xk+2 Xk+1 Xk

Figure 3.2: Graphical representation of a Farm pattern.

42 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

is equivalent to the sequential. These operations are usually executed by support
entities that act as an interface between the farm and the outside world. When
present, they are called Emitter and Collector.

3.2.2.2 Pipeline

In contrast to the previous paradigm, the pipeline does not represent a functional
replication but a functional partitioning: the sequential code is divided in multiple
pieces executed concurrently.

The application of the pipeline paradigm requires some knowledge of the form of
the sequential computation, that is the sequential computation must be expressed
(or rewritten) as the composition of n functions:

F(z) = Fy(Fpy1 (... Fy(Fi(2))...)

In this case, a pipeline parallelization consist in a set of (at most) n entities,
each executing one (or more) of the n functions. An entity (usually called “pipeline
stage”) will receive each input element and will compute its function on it. The
output of each entity is sent to the next one, respecting the function ordering (i.e
the output of F} is sent to F3), so that the output of the last stage (i.e. F,)
correspond to F'(z), as depicted in Figure

One of the most important benefits w.r.t the farm paradigm is that code of the
Pipeline do not have to be stateless, i.e. F; do not need to be a pure function and
may depend on the previous computations (but only of Fj, not of other stages).
This comes, however, at a cost: the programmer need to describe its sequential
code as a composition of functions, and the number of functions limit the maximum
parallelism of the application (i.e. if the resulting parallel pattern is a 3-stages
pipeline, it will exploit at most three processors).

Pipeline

“een

Vs R o
Xier 2 X1 Xy [. 4- Wi Y1 Y
ta ta | @4/ ‘ to to
~~~~~ ~ P 7’
_ Y,

Figure 3.3: Graphical representation of a Pipeline Pattern.



3.2. STRUCTURED PARALLEL PROGRAMMING 43

3.2.3 Data Parallelism

In contrast with the previous, this class of paradigms extract parallelism inside a sin-
gle computation, by partitioning the data structures and, by reflection, partitioning
the computation. The most common partitioning approach is defined by applying
the owner computes rule to determine, once the data structure is partitioned, which
entity should perform the computation on each piece of data.

Consider, as an example, an application defined on a matrix, as in Figure (3.4
The matrix is partitioned, let us say in blocks, and each block is assigned to one of
the n different processors (usually called workers). Following the owner computes
rule, each worker is in charge of calculating its partition. Obviously, depending
on the algorithm, this will require data from other partitions (in the example, the
points inside function parameters), and therefore workers: we define these as data
dependencies, and one of the most important duties of a pattern implementation is
indeed handling data exchange among the workers, when needed.

Usually the number of partitions is not fixed a-priori: if more processors are
available, the pattern can exploit a finer partitioning (smaller blocks in the exam-
ple) to increase the number of partitions. This approach, however, is not always
applicable: first of all, there normally exists a minimum partitioning, determined by
the items that compose the data structures (single matrix elements in the example);
moreover, the smaller is the partition, the smaller is the calculation time per worker,
so that this approach is profitable (in terms of performance) only up to a point.

More formally, a data parallel computation is characterized by partitioning of
data structures and function replication. It may happen, however, that while some
data structures are partitioned, others are instead replicated among the workers to
allow better performances (we will see some examples later).

Theoretically any algorithm can be parallelized by following a data-parallel ap-
proach; however, in practice, many data-parallel programs may suffer of bad perfor-
mance scalability because of a high number of data dependencies or a low amount
of inherent parallelism. Nevertheless, this class of patterns is very powerful.

If we follow the original algorithmic skeleton definition, dependencies among

P_&@\ = F(Py(X),...
= F(P,(X),...

Figure 3.4: Graphical representation of a generic Data-Parallel Pattern.



44 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

workers determine the parallel pattern, so that any data dependency scheme will
produce a new pattern. Fortunately, many algorithms (even from different comput-
ing sector) produce the same dependency scheme, so that we are able to define a
small number of patterns that actually cover most of the algorithms.

It is important to notice that data-parallel paradigms may also works with
streams, but differently from stream-parallel paradigms, they compute one element
at a time. From a performance evaluation point of view, a data-parallel pattern
improves the calculation time of a single execution; in the presence of a stream, this
parallelization allows better latency and, by reflection, better bandwidth.

For the sake of completeness, we present the two most used patterns, Map and
Reduce, and the general class of Data Parallel with Stencil, that basically contains
all the other algorithms.

3.2.3.1 Map

This is the simplest case of a data-parallel program, in which the resulting workers
remains independent (i.e. there are no data dependencies):

y1 = F(21),y2 = F(22), ...y = F(xn)

Where y; and x; represents the “minimum partition” of the data structure, and
therefore the maximum amount of parallelism; Figure graphically represent this
pattern.

The applicability of this pattern usually depend on the algorithms; sometimes
different partitioning of the data, or replication of some structures permit the use
of this paradigm even in algorithms that, from a first analysis, do not resemble the
pattern.

There are also notable examples that naturally fit this paradigm, such as many
vector operations (scalar-vector multiplication, vector sum, etc), matrix multiplica-
tion (in which the result matrix is partitioned, the input matrices replicated), the
Mandelbrot Set calculation, and many others.

Map
n\f N\ Y
P, ~P.(Y) = FR,X)—1 G
_LJ\ L 5P, (Y) = F(P,(X))———
P OB = FeyX) 5 — [

Figure 3.5: Graphical representation of a Map Pattern.



3.2. STRUCTURED PARALLEL PROGRAMMING 45

3.2.3.2 Reduce

A Reduce pattern is applicable every time we have a computation of the form:

Yy=01D02D ... Dy

where the result is a single value obtained by applying a function () to all the
elements of the input data structure. To ensure correctness & also have to satisfy
the associative property.

This can be easily parallelizable (Figure by partitioning the data structure
in n workers (parametric but limited by k), each one performing a “local” reduce
on their partition, followed by a “global” reduce of the results of each worker. The
global reduce can be executed in several ways (even in parallel) by one (or more) of
the workers.

Notable examples that naturally fit this paradigm are many vector- or matrix-
based operations such as the maximum and minimum of a vector, the dot product
and many others.

3.2.3.3 Map + Reduce, a notable composition

Many algorithms can be defined as a composition of two steps, in which at first
a function is applied to all the elements, and then the results are merged by us-
ing some reduction function. This is one of the most important examples of that
composability allowed by parallel patterns: we can straightforwardly represent this
class of algorithms as the composition of a Map and a Reduce pattern. This origi-
nated the famous Google MapReduce[72] programming environment (and its open-
source implementation HadoopED, that saw an enormous success in the last years.
Map+Reduce is an interesting example also from the performance point of view be-
cause, although being a composition of two patterns, there exists optimizations, and
thus efficient implementations, that threat it as a whole (and not as two distinct pat-

! Available at http://hadoop.apache.org/

Reduce
X A
P_&{_’ (*Yl = F(P,(X))
| Ly, = F(P,(X)
e Y = F(YLY,,...Y) |
BT QX Ya = FPu(X) )

Figure 3.6: Graphical representation of a Reduce Pattern.


http://hadoop.apache.org/

46 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

Data-Parallel with Stencil
(Jacobi Pattern)

X ( P,(Y) = F(P;(X),P,(X),Py(X)) ) Y
P, | P, | . &I
Py O

.
P(Y) = F(Pxm(X),Py1(X),Py(X), Pyt 1(X), Pyym(X)) 44—
;& M 1 X +1 +M __>.

PV = FRuPuXPyX) ) Py

_?_ +
B

Figure 3.7: Graphical representation of the Jacobi Pattern, a data-parallel with a
static fixed stencil.

terns): this is another aspect that a structured parallel programming environment
should be able to exploit.

3.2.3.4 Data-Parallel with Stencil

This is not really a pattern, but a class of patterns, that contains all those that
require data exchange among workers. The name derives from the data dependency
shape that is called “stencil”; each stencil represent a different paradigm, some
widely adopted, others limited to single algorithms.

A Stencil (i.e. the data dependency shape) can be

e Static fixed, if the shape is defined at compile-time and remain the same
throughout the computation.

e Static variable, if the shape is defined at compile-time but changes dur-
ing the computation (this is a common phenomenon in some iteration-based
algorithms such as FFT).

e Dynamic, if the shape is defined at run-time, depending on data structure
values.

Of the three, a dynamic stencil cannot be captured by a parallel paradigm,
because the dependencies are not known until execution. The others are instead very
common in skeleton-based environments: P3L, for example, included “geometric”
(static fixed) and “tree” (static variable).

A notable example of a “static fixed stencil” is the Jacobi algorithm (depicted
in Figure 3.7 used for solving partial differential equations, where the shape is
represented by the neighbor of each point. The Fast Fourier Transform, on the other
hand, is probably the most common example of “static variable stencil”, because
the shape changes at each iteration of the algorithm, but following a well-known
mathematical rule.



3.2. STRUCTURED PARALLEL PROGRAMMING 47

3.2.4 Stencil Transformations

An important yet still quite underestimated point in structured parallel program-
ming is the possibility of transforming stencil. In fact the high-level stencil, i.e. the
stencil originated by the “minimum partitioning”, can sensibly differ with the sten-
cil obtained after the partitioning in workers. In particular, there are two mayor
operations that allows us to change the stencil (i.e. the shape of data dependencies).

Worker partitioning

An important aspect is that, starting with the “minimum partitioning”, we usually
have to increase partition sizes to fit the exact number of workers; this can change
the stencil, even significantly. For the sake of simplicity we analyze this on the
the Jacobi Algorithm introduced in the previous section. We previously described
the 4-points stencil among each point and depicted a block-based partitioning that
maintains the same stencil. However, in Figure[3.8/we show what happen if the point
partitioning is done per-row or per-column: the resulting stencil (among partitions)
is a 2-points stencil, thus reducing the number of dependencies. In general, this
method can effectively produce a completely different stencil by means of a different
worker partitioning, for many algorithms.

Data Replication

In many algorithms we can efficiently transform the application, completely re-
moving the stencil to obtain a Map data-parallel, at the cost of a (usually small)
replication of data. The basic idea is that data dependencies defined only on read-
only or input data can be replicated at the beginning of the computation to make
the workers independent. Notable examples are represented by most image filtering
algorithms that, with a proper replication, can be described with the map pattern.
Let us take, as example, the Mean Filter, a smoothing technique [I82]. The ba-
sic idea of the algorithm is to smoothen an image by replacing the value of each

o o | [ O O | |
Xij+1 |:|—> | | | |
Xit1,j1  Xi+lj Xi+lj+1 |:| D l I

Element Stencil Block Stencil Column Stencil Row Stencil

Figure 3.8: Partitioning of the Jacobi Pattern that produce different stencils.



48 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

pixel with the average of the group of points near the pixel itself. For example, the
smoothing of pixel x; ; with a 3x3 group size is obtained by

Tim1,j-1 + Ti—1j + Ti—1jt1 + Tij—1 + Tij + Tijja1 + Tivr,j—1 + Tigr,j + Tipr,j41

9

yi,j =

If we consider the standard partitioning rule we mentioned earlier, we would
have that each point on the border of a partition will depend on data from other
partitions, implicating some kind of dependencies. In practice, however, we can
solve this problem with replication if we define partitions that partially overlap each
other. In the particular example we can notice that by enlarging the partition of 1
pixel in width and in height, without changing the pixel assigned by following the
owner-compute-rule, each worker will have all the data needed to compute, making
the algorithm a perfect match for the map paradigm. As depicted in Figure [3.9] we
basically solve the data dependency problem by selectively replicating parts of the
data structure.

The same concept can also be applied partially (i.e. when only some of the data
structure are read-only), resulting in stencil transformations that, however, do not
always produce a Map pattern.

Stencil Transformations and structured parallel programming

Stencil transformations can prove very effective in increasing the performance of a
parallel application, and as such they should be considered first citizen of structured
parallel programming. Nevertheless, stencil transformations represents a quite new
research field, basically because, given multiple transformations, it is still unknown
how to precisely measure their performance to select the best.

Also, the definition of correct stencil transformation is not so trivial; here a
first notable work is represented by Meneghin’s Ph.D. thesis [129], that formally
characterized a wide set of stencils, and introduced several transformations, mainly

m{=ju oQoD

HiEg N

Bu)n 000

Element Stencil Block Stencil Map

Figure 3.9: Transforming the mean filter in a Map.



3.3. EXPRESSING PARALLEL PARADIGMS 49

to minimize data dependencies. However, the goal of a performance-driven stencil
transformation is still an interesting research topic.

3.3 Expressing Parallel Paradigms

Up to this point, we defined the basic concept of structured parallel programming
and introduced the most important pattern that characterize this approach. We did
not focus, however, on how patterns are expressed. This is a sensible problem of
this class of environment, because we should limit as much as possible the work of
the application programmer, and be able to guarantee a set of patterns that allows
a decent parallelization of most algorithms. Indeed, one of the most criticized point
of structured parallel programming has always been the limited amount of patterns
that were not able to capture many applications [61]. We introduce the first, and still
considered state-of-the-art, approach based on the concept of algorithmic skeleton;
then we present the approach, introduced by the ASSIST programming environment,
which should overcome the main limitations of the skeleton-based approach.

3.3.1 Skeletons

The algorithmic skeletons defined by Cole[61] represent the first approach to struc-
tured parallel programming. He proposed 4 skeletons (Fized Degree Divide € Con-
quer, Iterative Combination, Cluster and Task Queue - indeed a quite small, and
particular, set of skeletons) obtained both by the isolation of particular algorithmic
techniques, and by an analysis of patterns that could perform well on the initial
target machine (a Transputer). From his idea, however, many researchers focused
on finding general yet effective patterns that could be promoted to skeleton. Among
the others, P3L provided pipeline, task farm, map and reduce, plus geometric, loop
and tree as data-parallel with stencils [I8]; SKELib[68] offered only stream-based
skeletons (farm and pipe), while Lithium [10] supported pipe, map, farm and reduce.
Once stabilized, the set of used skeleton basically remained the same over the years:
Skandium[I13], one of the newest skeleton framework, implement seq, pipe, farm,
for, while, map, défc, fork, not introducing new patterns with respect to the first
works.

All these systems employ the very same concepts introduced by Cole: the user
just write a skeletal specification, such that a program is basically a composition of
skeletons. The majority of environments defines three kinds of skeletons: data paral-
lel, task parallel and sequential skeletons. Sequential skeletons encapsulate functions
written in a sequential language and are not considered for parallel execution. The
others provide typical task and data parallel patterns. For obvious performance rea-
sons, data parallel skeletons can only encapsulate sequential skeletons: indeed there
are no performance reasons to put a stream-parallel skeleton inside the calculation
of a single element, because of the missing of a stream. Applications written in this



50 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

Program Program

Task Parallel Layer

DP Skel DP Skel

Y [P Skel | Data Parallel Layer

| DP Skel | DP Skel | [ DP Skel |

Y y \
[ Seq F ][ Seq F ] [ Seq F ] Sequential Layer [ Seq F ] [ Seq F ]

TP Skel

Figure 3.10: Three-tier structure examples of a skeleton-based program.

way respect the three-tier structure sketched out in Figure |3.10

The initial specification provided by the programmer may then be subjected to
a cost-driven transformation process with the aim of improving the performance of
the parallel program. Such transformation is done by means of semantic-preserving
rewriting rules. A rich set of rewriting rules [I1], 88, 87] and cost models [11], 151, 189
for various skeletons have been developed in the past.

3.3.2 ASSIST: Beyond the classical skeleton approach

Despite several advantages of skeletons, a strong evolution of structured parallel
programming beyond such models is needed, at least for the following reasons:

a) in addition to the capability of expressing some typical parallel schemes, we
need a larger degree of flexibility in expressing parallel and distributed program
structures: we cannot afford to produce a skeleton for any data-parallel pattern,
nor force the programmer to write applications respecting the 3-4 well studied
patterns;

b) although very interesting, pattern composability is still limited: the three-tier
structure of skeleton-based environments becomes a limitation when describing
large, complex applications;

c) we recognize that parallel patterns cannot efficiently capture every parallel appli-
cation: dynamic stencils, for example, cannot be modeled by a skeleton; we need
to allow some kind of cooperation with different parallel environments so that
skeleton-based patterns can cooperate with pre-existing, or manually optimized,
parallel code.

Actually even Cole recognized this lack of expressiveness [61]:



3.3. EXPRESSING PARALLEL PARADIGMS 51

_____ o e
—

Figure 3.11: Example structure of an ASSIST program.

Many parallel applications are not obviously expressible as instances
of skeletons, whether existing or imagined. Some have phases which
require the use of less structured interaction primitives. Some have con-
ceptually layered parallelism, in which skeletal behavior at one layer
controls the invocation of operations involving such ad-hoc parallelism
within. It is clearly unrealistic to assume that skeletons can provide all
the parallelism we need. We must construct our systems to allow the
integration of skeletal and ad-hoc parallelism in a well defined way.

An interesting and effective approach to overcome the limitations of skeleton en-
vironments has been introduced by our research group with ASSIST [172] (A Soft-
ware development System based upon Integrated Skeleton Technology). In ASSIST
the common three-layered structure is replaced by a plain, graph-based structure:
an application is described by a generic graph of modules connected by streams.
This alone allows some basic stream-parallel paradigm such as pipelining, but at
the same time permit very complex behaviors and loops among the modules that
compose the application. Parallelism is also available inside the nodes, because each
module represents a parallel pattern. An example of an ASSIST program is depicted
in Figure|3.11

ASSIST employ a novel approach to data-parallel by describing the parallel ap-
plication (and its stencil) at the minimum partitioning level. This approach (called
“Virtual Processor”) generalize the class of data-parallel and allow the programmer
to describe with a single formalism a generic data-parallel with a static stencil.

Lastly, a module is not forced to be implemented as a parallel pattern: the pro-
grammer may provide its specific, hand-made implementation of a parallel module.
This effectively solves the cases in which a parallel paradigm cannot be applied.

3.3.3 The Virtual Processors approach

By following this approach we are able to provide a “generic” skeleton that can
efficiently describe any kind of data-parallel program. The main idea is to describe



52 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

topology array [i:N][j:N] VP;

attribute long S[N][N] scatter S[+i][*j] onto VP[i][j];
attribute long L replicated;

Listing 3.1: Replicating and partitiong data structure in ASSIST.

virtual_processors {
calc( in guardl out out_matrix){
VP i=1..N,j=1..N {
for (h=0;h<N; h++){
F(in L, S[i][h],S[h][i] out S[i][j]);
}
}
}
}

Listing 3.2: Virtual Processor definition in ASSIST.

the application by using a set of “Virtual Processors” (VP), i.e. virtual entities that,
like processors, owns a partition of the data structure, execute the calculation on it
and exchange data with others.

The idea behind VPs is indeed quite simple: the programmer define the sten-
cil at the minimum partitioning level by using this abstraction, while the parallel
environment is in charge of analyzing it to determine if it represents one of the
basic, well studied paradigm, or a new, “unknown” stencil. In any case, a proper
worker partitioning must be established, so that the Virtual Processors becomes
Real Processors, perhaps with a different stencil, and perform the computation.

A small ASSIST example is depicted in listings [3.1] and [3.2] The data structure
is composed of a matrix of NxN elements and a single integer. The matrix is par-
titioned, so that each VP “own” a single element, and is in charge of computing it
by following the owner compute rule. We can notice that the number of VP is well
defined, and matches the elements of S. The second listing defines the “computa-
tion”: each VP executes a function (F, that in ASSIST can be written in C, C++
or Fortran) that takes as input parameters the replicated value plus two elements
that belong to different processors. Of course, the output value is only the element
that belong to the VP, to respect the owner compute rule.

This way of describing data-parallels is indeed very powerful, because it explicitly
define the stencil at the element level. From this, an intelligent compiler can apply
all the stencil transformation described before, and optimize the stencil with respect
to the execution environment.

As a side note we signal that, unfortunately, this optimization step was not avail-
able in ASSIST: the compiler grouped VPs in trivial ways, without any performance-
driven optimization




3.4. PARALLEL PATTERNS AND THEIR (MANY) IMPLEMENTATIONS 53

3.4 Parallel patterns and their (many) implemen-
tations

A parallel paradigm describes the parallel entities and the structure of the interac-
tions. However, the structure given by the paradigm is very general, so that there are
many ways of coding it on a parallel machine. Although we can usually find a simple
implementation that strictly resemble the definition of the parallel paradigm, there
are many different versions that may perform better than the baseline, depending
both on the algorithm and on the deployment architecture.

Let us take, as an example, the task farm paradigm. Even in this simple case
(where each parallel entity is independent), there are many possible versions for
its parallel implementation. The most common is the master/worker scheme [2§],
where a parallel entity (i.e. a process) called master is in charge of receiving tasks
from the input stream, demanding work to a pool of workers and collecting results
for the output stream. There are many cases, however, in which all this is too much
for a single entity, which becomes the bottleneck of the entire application; we can
therefore “split” the master in multiple entities. Depending on this splitting we
obtain an emitter-worker-collector scheme [143], where we divide the dispatching
of input data and the collection of results, or hierarchical masters [28] or even a
mix of these two approaches. We can also be in the opposite case, in which the
master is partially idle because faster than the workers; here we can let the master
do some work on tasks in its idle time [143]. On top of this, we should also consider
a dispatching technique that will limit as much as possible idle times in workers:
on equally sized tasks a round-robin technique is usually good, but there are many
cases in which tasks are unbalanced: because of the application, of the heterogeneous
architecture, or others. Here comes an entire research area on task scheduling, with
weighted scheduling, on-demand scheduling, task stealing and so on.

If this is the case of a simple pattern (in which cooperation is done only be-
tween each worker and the supporting entities), it becomes clear that in the case of
more complex interactions, like with data-parallel programs, the number of possible
choices, and optimization possibilities, further increase, making the selection of the
proper implementation a considerably hard task, even for an automatic tool.

3.5 Mastering the possibilities, one piece at a time

We started this chapter with a strong, important point: the need for a program-
ming environment that allow performance portability. In the previous sections we
understood that Structured Parallel Programming can be a solution for the problem:

e we have a small, pre-determined, set of stream-parallel patterns;



54 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

e we have an entire family of data-parallel patterns, and a powerful model (the
“Virtual Processor” approach) to describe them;

e we have a set of stencil transformation, that allows us to transform the data-
parallel code;

e we have a large number of implementation choices for each paradigm, which
can fit one hardware architecture better than another.

What we still do not have, instead, are performance studies of structured parallel
programming on multi-core that could:

e give us some insight on which of the many choices offer good performances on
multi-core architectures;

e tell us if multi-core are just to be treated as shared-memory architectures, or
if there can be specific multicore-related optimization on parallel patterns;

e help us in finding ways to efficiently exploit specific hardware facilities that
are emerging in the last multi- and many-core, such as multithreading, explicit
message passing among processors, etc.

Finally, but, most important, we need some way to compare the possible choices at
compile-time, so that the compiler can choose a good implementation (preferably
the best) according to the previous points.

With this thesis we start filling this gap, mainly by means of specific performance
tests of explicit multicore-related optimizations and the definition of the architec-
tural performance model for a specific multi-core architecture that, tied together
with generic pattern-based cost models, will allow us to evaluate different imple-
mentations and determine, for each specific program, which solution will offer better
performances.

All these studies will be driven by keeping in mind our long-term research objec-
tive: an innovative programming environment based on structured parallelism, able
to truly provide parallel portability.

3.6 Towards a novel parallel programming envi-
ronment

The long-term project of our research group is ASSISTANT, the extension and
adaptation of ASSIST for the current world of parallel computing, composed of
multi-cores, pervasive grids and clouds. Many of the principles introduced in ASSIST
are inherited and extended, in order to provide a significant leap forward in the world
of multicore-oriented parallel programming.



3.6. TOWARDS A NOVEL PARALLEL PROGRAMMING ENVIRONMENT 55

Respecting the basic ASSIST principles, a parallel program will be described as a
generic graph of stream-connected parallel modules. Each module will be constituted
by one of the previously mentioned parallel patterns, or by a VP-based description
in the case of a data-parallel. As in ASSIST, the programmer will be able to write
the algorithm code by mean of the most used sequential language (C, C++, Matlab,
Java, and so on).

Programming models based on libraries are considered unsuitable for achiev-
ing the desired level of programmability and performance portability: our environ-
ment will need an intelligent source-to-source parallel compiler, able to analyze the
module-based description to determine the possible parallel implementations, eval-
uate them for the target machine and, finally, produce the source code of a low-level
parallel program.

Our experience in parallel programming also pointed that there are many cases
in which performance portability is not completely achievable at compile-time: the
cost model may be not detailed enough to accurately fit the <application, imple-
mentation, architecture> tuple, or some model parameters may be unpredictable
(because of both the architecture and the algorithm) so that a mere compiler-based
performance portability becomes ineffective. To handle all these important cases, it
is also mandatory to support adaptivity, by means of efficient run-time reconfigura-
tions, in addition to static optimizations[32].

In addition, to better allow performance portability and adaptivity, we believe
it is necessary to allow the programmer to ezplicity define different patterns for
each module. This way, if multiple parallel patterns (with different performance
characteristics) are known by the programmer, we further increase the possibilities
of our compiler. This approach, whichd has been introduced in our works with
pervasive grids[32], remains coherent with the programming model: we are adding to
the set of compiler-defined transformations (that represent different implementations
of a module) others, not automatically derivable, transformations. The compiler will
then use its cost model to select (and optimize) the best among the whole set of
implementations.

The resulting “compilation workflow” is depicted in Figure [3.12] Of course, the
meaning of compilation now is stretched to the whole execution because of the run-
time-based reconfigurations. We can easily notice how important is the Cost Model,
which affects basically every step of the workflow, making it a first-class citizen in
our approach.

In the first phase, we use the cost model to determine which modules of the ap-
plication graph negatively affects the global performance: of course it may happen
that, of the many parallel modules, some are so fast that does not truly require a
parallel implementation; moreover, considering the finite set of resources, a proper
balancing of parallelism is required among the various modules, to obtain the max-
imum performance.

In the second step the compiler determine, for each parallelized module, the best
parallel paradigm and its implementation, considering both the user-provided and



56 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

Application specification: source computation
expressed as a graph or workflow

N
( Bottleneck Detection )

according to one or more
parallel paradigms — Selection

Parallelization of bottlenecks
ofa paraIIeI solution

Encoding, possmly reusing
existing sequentlal codes

parallel object code

gry;gigqrf Mapping, Ioadlng and
restructurmg deployment

v
( Monltorlng H Execution

CParametrlc and restructurable

~ N N NS

Figure 3.12: The “compilation workflow” in our programming environment.

the automatically derived transformations. At the end of this step the bottleneck
detection is run again, considering the expected implementation of each module and
their specific cost model. If new bottlenecks are found, these two steps are executed
iteratively to further refine the parallel implementation.

The compiler then generates the low-level parallel source code, to be compiled
using a generic C/C++ compiler (such as gee or icc). The resulting application,
however, is also enriched with monitoring tools and other possible parallel imple-
mentations, so that, by continuously monitoring and applying the cost model, the
program self-adapt to better match the running environment and guarantee the best
possible performance.

3.7 Target architectures

Given the high amount of tests and experimentation in this thesis, we will briefly
introduce (and comment) once and for all, the multi-core architectures that will be
used in our tests.

Although there are many different multi-cores today, and probably there will be
much more in the future, we were able to select a representative group of architec-
tures from the ones discussed in Chapter [2| Given the almost exclusive presence of
x86-based processors in general purpose multi-core architectures, we selected three
architectures, differing on the processor implementation, the memory hierarchy and



3.7. TARGET ARCHITECTURES o7

the number of cores. We also used multi-chip servers, to reach interesting num-
bers of cores. Finally, as an “insight” of future multi-core architectures, we selected
one of the larger (in term of cores) multi-core available: the Tilera TilePro64. To
summarize, the platforms are the following:

e two Intel Xeon® E5-2650, Sandy-Bridge based architectures, composed of 8
cores, 20 MB of shared cache and a memory controller per chip, running at
2.00GHz;

e four Intel Xeon® E7-4820, Westmere-EX based architectures, composed of 8
cores, 18MB of shared cache and a memory controller per chip, running at
2.00GHz;

e two AMD Opteron” 6176, for a total of 4 Magny-Cours based chips, composed
of 6 cores, 6MB of shared cache and a memory controller per chip, running at

2.3GHz;

e a single Tilera TILEPro64", composed of 64 cores, no shared cache but 4
memory controllers, running at 866MHz.

We can notice that all the three x86 architectures basically employ the same
conceptual characteristics (i.e. multiple chips connected by point-to-point links,
chips with a small number of cores, a memory controller and a large shared cache),
and differs only for technical implementations; despite that, we will see very different
results in the aspects treated in this thesis. The many-core architecture, instead, is
notably different from the others, pointing up the fact that the previous conceptual
organization may not be really feasible with a large number of cores.

The Tile Pro64 chip is very interesting from many points, because employs a large
number of specific features, like explicit on-chip message passing, controllable cache
coherence, multiple memory interfaces, and an on-chip Ethernet interface. Finally,
the programming environment is complete and exhaustive: almost every detail of
the architecture is extensively described in the documentation, and a clock-accurate
simulator is provided.

For these many reasons we elected the TilePro64 as the reference architecture
for this thesis: many results are generalized on the other architectures, but the de-
tailed performance model was explicitly parameterized for this chip, and extensively
verified by using both the real architecture and the clock-accurate simulator.



58 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE



Part 11
Cost Models






Chapter 4

A hardware-dependent model
based on Queueing Networks

Given the considerable different characteristics of each multiprocessor, the emer-
gence of parallel architectures emphasized the need of some way to evaluate a pro-
gram without having to implement and tune it. The study of formal approaches to
the process of analyzing the performance of computer systems has always been of
great interest in computer science, and quickly become very important in parallel
computing. It is very interesting to note that performance evaluation is effectively
used in many aspects of computer science, starting from hardware development, up
to software design.

Performance evaluation has been (and still is) widely applied in hardware design-
ing [3], 36}, TOT), 116, 130} 133]: given the complexity of the projects, it is difficult to
evaluate the impact of a change, and very expensive to test the changes by means of
prototypes. For this reasons engineers commonly use performance evaluation tools
to drive the design of processors and parallel machines, in order to better balance
the performance/cost ratio, and to produce architectures with specific performance
requirements.

Nevertheless, performance evaluation is also quite used in software development
[2, 23, [108], in all those cases in which programs need to satisfy specific constraints
(not only performance-based but, for example, memory- or power-based), such as
real-time system, or in general to predict specific aspect of the to-be-developed
software.

Performance evaluation is usually achieved by using three different techniques:
measurement, simulation and analytical modeling. All these techniques play
equally important roles in performance studies, because each one has its own ad-
vantages and disadvantages, that basically consist in a proper mix of precision and
cost. We cannot really say that one technique is always better than another, as
it usually depends on what we are evaluating. When a single technique cannot be
effectively applied, a mix of the three is used to effectively evaluate the performance
of the system.



62 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

Our final goal is to predict the performance of a specific parallel implementation
of a program. It is important to note that the performance models presented in
Chapter [2| were defined with a different objective, which is to evaluate the asymp-
totic characteristics of a parallel program, independently of the running architecture.
It is no coincidence that these models evaluate algorithms on abstract, simplistic,
architectures. However, in our case, the general characteristics are already known
because of the use of parallel patterns. Given our need to evaluate implementations
that may differs for very small details, we also need detailed performance models,
to find the best one.

We stressed in the previous chapters that the performance of an implementation
strictly depend on both software and hardware characteristics. We know that per-
formance evaluation is successfully applied to predict the performance of those two
systems separately. In this thesis we merge the two approaches, in order to evaluate
the couple <program,architecture> and therefore ending with a prediction of the
parallel implementation we are analyzing.

An interesting point of this approach is that, given the generality of the perfor-
mance modeling techniques, it is easy to describe the whole system (comprised of
hardware and software models) by:

a) using a single methodology,
b) verifying our modeling intuitions with previous works, and
¢) combining already available models of small parts of the system.

Because of these points our work has been enormously facilitated, so that we will
be able, at the end of the thesis, to provide some interesting modeling results and
prove its precision w.r.t real programs running on a real architecture.

The architecture-dependent nature of our models poses a huge problem with
respect to our need of a generally applicable performance prediction method. In
other words, we want to provide a general model suitable for the generic class of
parallel patterns running on a class parallel architectures, but at the same time we
recognize that the model need to take into account of the single characteristics of the
specific architecture. This may seems, and in a certain way is, a contradiction: the
model should be general, to be able to represent any architecture, but also detailed,
to precisely predict the performance. This is probably not really achievable by using
a single model.

In this chapter, we will present a general approach, a methodology to derive a
model to match the details of a specific architecture and of the parallel pattern.
The approach will then be used in the following chapters, targeting both specific
architectures and specific parallel pattern implementations.

The ideas presented in this chapter have been studied and developed in our re-
search groups for many years, having their roots in the P3L skeleton language and
its implementation templates; however, many of the concepts presented were yet to



4.1. A GENERAL APPROACH TO PARALLEL PERFORMANCE PREDICTION 63

be published and during this thesis were further refined. The most comprehensive
work that address the methodology is the Italian textbook [I73], where it is applied
to an abstract multiprocessor architecture, thus simplifying the model and its pa-
rameters to a level understandable by students. For these reasons this chapter does
not consist in a novel contribution of the thesis but, because of the limited visibility
of the approach, we decided to present it in a specific chapter.

4.1 A general approach to parallel performance
prediction

In our programming environment, a parallel program is defined as a graph of co-
operating (parallel) modules. This means that the programmer have two ways to
express parallelism:

e Intra-module parallelism: each module is described by a parallel pattern,
and therefore able to exploit stream-parallel or data-parallel parallelism, de-
pending on the chosen implementation;

e Inter-module parallelism: modules are composed in computation graphs
with a general structure, where interactions are possible by means of streams,
effectively adding a second layer of stream-parallel parallelism.

The methodology that we are introducing is aimed to completely model the perfor-
mance at any level, analyzing both the internal behavior of a single module, and the
performance of the entire computation graph, by providing a performance modeling
approach expressed in terms of fundamental results in the area of Queueing Theory
and Queueing Networks. In this way we will be able to formalize important issues
related to:

e how to evaluate the performance of a graph computation starting from the
knowledge of the performance of each module;

e how to evaluate the effective performance of a module based on the ideal
performance behavior of all the modules of the computation graph;

e how to detect bottlenecks in a computation graph, that is modules that seri-
ously limit the performance of the entire application.

This methodology is not new, and has been deeply described in [125], so we will
just introduce the concept, needed to intuitively understand the ideas and how the
model work; the interested reader can refer to [125] for more specific details.

The basic idea consists in modeling the performance of a module M (either
sequential or internally parallel) by abstracting its behavior as a queueing system,
as shown in Figure This scheme is a logical one, not necessarily corresponding



64 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

= M

queue
Ts

Figure 4.1: A computation module modeled as a queueing system.

to the real implementation. However, it is aimed at capturing the essential elements
of the problem at hand. The behavior of a queueing system is characterized by
expressing five different parameters:

1. the service discipline: if not explicitly defined the FIFO policy is assumed;

2. the queue size, that is the number of buffer positions available for storing the
incoming requests to the module;

3. the probability distribution of a random variable inter-arrival time t, (i.e. the
time interval between two consecutive arrivals of requests), with average value
T4 and (optionally) variance o 4;

4. the probability distribution of a random variable (ideal) service time ts, which
represents the ideal time needed to serve a customer, i.e. the time passed
between the beginning of the executions on two consecutive stream elements.
We denote with T and og the average value and (optionally) the variance of
this random variable;

5. the probability distribution of a random variable inter-departure time t4 (with
average value Tp and optionally variance op), which indicates the time be-
tween two successive result departures from the module.

Each computation module can be abstracted as a queueing system and the com-
putation graph can be described as a network of queues [111], where the departures
of some nodes form the arrivals of others. From the network topology viewpoint
queueing networks can be categorized into two broad classes namely open queue-
ing networks and closed queueing networks. In an open queueing network
a possibly infinite number of requests are generated by source nodes, go through
several nodes or even revisit a particular node more than once and finally leave the
system. On the other hand, in a closed queueing network requests neither arrive at
nor depart from the system, but a fixed number of requests continuously circulate
through the nodes of the network.

In our case, the graph of modules depict an open queueing network, given the
presence of infinite streams. For the sake of simplicity our approach will be limited
to acyclic computation graphs, where each task follows a certain path, passing
through each modules at most once.



4.1. A GENERAL APPROACH TO PARALLEL PERFORMANCE PREDICTION 65

With this simplification, we are able to analyze the performance of this kind of
graphs in a completely independent way w.r.t the internal behavior of each com-
putation module, i.e. it may implement any parallel pattern. The only parameter
required is the average value of the ideal service time of each module. The behavior
of intra-module parallelism can be treated independently, and will be analyzed in
Section [4.21

The evaluation methodology - derived from common queueing theory - consist
in two interrelated phases:

e Transient analysis consists in a study of the network behavior in the initial
transient phase of the execution. For transient phase we intend the initial
situation in which the performance behavior of each node can significantly
change in relatively short time periods due to the starting conditions of the
network (e.g. due to the size of the queues);

e Steady-state analysis provides results for evaluating the effective perfor-
mance (i.e. the mean inter-departure times) of each node in the network after
the transient phase, when the performance behavior of each module is com-
pletely stabilized and it is no longer influenced by the initial conditions.

Being interested to the performance behavior of a stream-based application, we
consider the transient analysis irrelevant, because of the length of the streams, that
render this phase very small w.r.t the global computation, and focus on the steady-
state analysis.

The steady state analysis is typical in queueing networks and can be obtained
by exploiting several methods, such as using product form, mean value analysis or
simulations. The result of a steady state analysis are a set of performance indexes
for each queue of the system, including the throughput of a queue, that represent
the inverse of what we defined as “interdeparture time”.

In particular, referring to the compiler workflow already depicted in Chapter
(in Figure [4.2)), we first have to transform the application graph in a queueing
network, to be able to perform the steady-state analysis. Each module is naturally
described by a queue, but we need to evaluate some parameters, in particular:

1. The inter-arrival times for each external input stream (i.e. the streams used
by the program to receive data);

2. The routing probabilities, when a module has multiple output stream;
3. The service time of each module.

The resulting transformation is exemplified in Figure 4.3

Theoretically we would also need to know the probability distribution of inter-
arrival and service times, to fully represent the system as a queueing network. How-
ever, [125] present a simple methodology that only require the mean values of these



66 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

Application specification: source computation
expressed as a graph or workflow

N
( Bottleneck Detection )

according to one or more
parallel paradigms — Selection

Parallelization of bottlenecks
ofa paraIIeI solution

Encoding, pOSSIbly reusing
existing sequentlal codes

Parametric and restructurable
parallel object code

g!;gar?rf Mapping, Ioadlng and
restructurmg deployment

v
( Monltorlng H Execution

~ N N NS

Figure 4.2: The “compilation work-flow” in our programming environment.

_____ D D &) - L, 1 . : n
R

i)

Figure 4.3: An example module graph and its queueing network representation.

parameters, enormously simplifying our model. The interested reader can refer to
[125] for a complete description of this methods and its applicability limits. In
general we can use of any classic method of queueing theory (using exponential
probability distributions) when the previous approach is not feasible.

Of the three parameters, the first two must be expressed by the programmer, as
they depend either on external factors (i.e. the inter-arrival times) or on properties
unknown by the programming environment, so that the compiler has no mean to
estimate them. On the contrary, the third represents the ideal performance of each
module: it depends on the parallel implementation chosen by the compiler, so spe-
cific performance models will be used to derive those values. For the moment, we
assume these are automatically obtained in some ways. Later in the chapter, and
through the whole thesis, we will deal with this problem.



4.1. A GENERAL APPROACH TO PARALLEL PERFORMANCE PREDICTION 67

Back to the compiler workflow depicted in Figure 4.2 we can notice the iterative
approach of steps 2 and 3, that are executed until we find the best solution. To start
this iterative approach, we need a simple, pre-defined configuration of the parallel
program. We consider each module implemented by a sequential version, so that
we use a processor per module. With this configuration we can start evaluating the
parallel program (step 1), by:

a) fixing the source stream mean inter-arrival time and the routing probabilities by
using the programmer-given values;

b) evaluating the ideal sequential service time of each module (that is the mean
execution time of a task of a sequential implementation);

¢) computing the steady-state result of the queueing network.

This way we are able to find the bottleneck of the application, i.e. the module
M that, in this configuration, slows down the entire application. We are able to do
this by using an interesting property of the steady-state analysis[125]:

Proposition 4.1. (Steady-state behavior of a node). At steady-state the effective
interarrival time of each node s equal to its inter-departure time. If that inter-arrival
time also coincides with the ideal service time of the node, the node is a bottleneck,
otherwise the node is not a bottleneck.

An example of the end of steps b) and ¢) is depicted in Figures and ,
respectively. We can easily notice that the only node in which Ty = Ty = Tp is
node 2: the corresponding module is the bottleneck of our example application.

It is also important to note that, for a given configuration, a single bottleneck
exists, i.e. all the other modules will slow down to respect its computation time.
However, once the bottleneck is removed, a new bottleneck may emerge, so the
iterative approach is required to reach the optimum parallel configuration for the
graph.

Model Parameters

Ts=150s Ts=550s
TA=508
11 ~ Mo~ e=ass

TS=805 TS=5()S

Figure 4.4: The fully parameterized QN-based model.



68 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

Steady State Analysis

TA= 1 SOS TA=6003
Ts=150s Ts=550s
»=150s p=600s T,=60s
TS=48S
TD=605

Tx=100s Tp,=66.6s
TS=808 TS=508
T,=100s T,=66.6s

Figure 4.5: The result of the steady-state analysis of the model.

From this point we diverge from the approach presented in [125], because that
work uses an approximate performance model for the modules, considering the ideal
scalability, in which using a parallelism degree of n offer a service time n times better
than the sequential one:

with this approximation, it is always possible to remove a bottleneck (assuming the
correct amount of nodes is available). For this reason the approach in [125] removes
the bottlenecks during the steady state analysis.

In our case, given the use of a detailed performance model for each possible
module implementation, the estimation of Té") is more complex: in general the
scalability of a module does not coincide with the previous one and, at some point,
may stop.

We also consider that in common applications we do not have an infinite number
of nodes, and that it is also usually important to reduce, as much as possible, the
number of used nodes for power consumption reasons.

For this reason we propose a different approach, still based on the one in [125], in
which we try to remove one bottleneck at a time. We can select the most limiting
module of the application, and ¢ry to remove the bottleneck. If the bottleneck is
removed, we can re-analyze the graph, ending with:

1. no more bottlenecks in the graph: the input throughput is sustained, so our
application does not need further refinements, or

2. a new bottleneck in the graph: removing the first bottleneck exposed a new
module that was limiting (to a lesser extent) the performance of the applica-
tion; we can now remove this bottleneck, re-evaluate the graph once more and
continue this iterative approach as long as we have no more bottlenecks.



4.1. A GENERAL APPROACH TO PARALLEL PERFORMANCE PREDICTION 69

However, considering the module performance model, we also may end with not
removing a bottleneck. In this case, no further steps are required, as even by paral-
lelizing the other modules we will not improve the performance of the whole graph.

The notable advantage of this approach w.r.t [125] is that we are able to min-
imize the overall parallelism degree (i.e. the number of nodes used by the whole
application) by parallelizing one module at a time. With the previous approach, we
may parallelize modules that would have become bottlenecks after some iteration of
our approach. However, it may be not possible to remove one of the bigger bottle-
necks, thus ending in parallelizing modules that does not hurt the performance of
the application.

Removing a bottleneck

Once a bottleneck is found, the module will be parallelized, as in step 3 of the
compilation workflow, by following this approach:

1. Determine the required service time: first of all, we need to calculate
which average service time of the selected module will remove the bottleneck.
For this we need the ideal inter-arrival time of M, i.e. the inter-arrival time of
the system where M is not slowing down the other modules. This time can be
obtained by setting the service time of M to 0 and re-apply the steady state
analysis. Given its new inter-arrival time T}, M is not a bottleneck if

Ts < T} (4.1)
For example, in the model of Fig. example, we have Ty < 137.5s.

2. Determine the required parallelism degree and the correct imple-
mentation: given the unknown properties of the service time function Téx) of
this module, in theory we should try each possible parallelism degree to find (if
exists) a solution that removes the bottleneck. Moreover, we are interested in
a solution that minimizes the number of nodes for power consumption reasons.
The estimation of each point of Tgx) is not feasible, so we need to cut down
the space of possibilities. For this we adopt a reasonable heuristic that allow
us to limit the number of evaluations of Tsx). We start by considering that, in
practically all the cases, a module does not superscale, so that we can find a
lower limit to Tém) by using the function

(1)
T > Ty
i

If this hold, we can estimate the minimum number of nodes required to achieve
the required service time:



70

CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

Therefore, this represent the starting point to evaluate Téx) for our module.
In fact, having the (obvious) requirement of selecting an integer value of n,

the starting point will be
Ty
n=|—-=
TX

We also apply a higher limitation to n by using the maximum allowed number

of nodes.
T
T Nmax
I

If we are lucky, our module scale well and the first possible value of n already
represent the correct parallelism degree required to remove the bottleneck; if
it is not, we know that we will need to find an higher value of n that removes
the bottleneck in that interval.

n e

Given that Téx) is a generic function, any point of the interval is a is possible

candidate to remove the bottleneck. However, in most cases 7. éx) is, or can
be approximated with, a monotonic function. We therefore apply a second
heuristic, assuming that the Téz) function is monotonically decreasing, i.e.
it cannot increase by rising the number of nodes. If this hold, we can apply
some optimized search function in the selected interval, for example a bisection
method, to effectively reduce the amount of analyzed points of T' éx) to find the
best value n that, however, may not remove the bottleneck.

After these steps we removed (or limited in those cases in which a complete

removal was not possible) the bottleneck; now we need to re-evaluate the steady-
state analysis of the graph: indeed removing the bottleneck drastically change the
performance of the graph, resulting in three possible cases:

data-parallel approach that will achieve T52

1. A new bottleneck is found, so that there exist a new module K such that

T4 = Ts: we proceed parallelizing K; or

. The bottleneck has not been removed: in this case we can stop our

evaluation, as there is no way of further increasing the performance of the
graph; or

. All the bottlenecks were removed, so that all the modules satisfy the

condition Ty > Tg: the performance evaluation step is done.

For our example, let’s assume that we are able to implement the module with a

() — 855 and a farm approach with TéQ) =

80s. Now, they all introduce a slight overhead (a perfect scalability will produce

Téz) = 150/2 = 75s), and the data parallel is even a bit slower; however they both
remove the bottleneck because of the integer approximation of n, so we choose the



4.1. A GENERAL APPROACH TO PARALLEL PERFORMANCE PREDICTION 71

Steady State Analysis

Ta=137.5s TA=550s
Ts=85s Ts=550s
p=137.55  1,—55s Tp=550s Tp=55s

TS=4OS TS=488
Tp=555 /p=01 T,=55s
i< ikt —

T,=91.65 To=61.1s

TS=805 TS=SOS

Tp=91.6s Tp=61.1s

Figure 4.6: Result of the steady-state analysis after the parallelization of module 2.

Steady State Analysis
Ta=125s TA=550s
Ts=85s Ts=550s
D=1255 TA=508 TD=5508 TA=SOS
TS=4OS _I[[@ TS=485

Tf=505 =01 Tp=50s

p=0.9
TA=83.3S TA=5555
Ts=80s Ts=50s
TD=83.3S TD=5558

Figure 4.7: Result of the steady-state analysis after the parallelization of module 5.

data-parallel approach for the possible benefits w.r.t latency. We effectively removed
the bottleneck, but a steady-state analysis of the new model (Figure shows that
a new bottleneck exists: module 5 is now slowing the application. However, after
this second iteration, all bottlenecks are removed as shown in Figure [.7]

It is worth noting that in a general iterative process, a module M may be an-
alyzed more than once, depending on the complexity of interaction of the graph;
nevertheless, the process will definitely end at a certain point where we will either:

e reach a steady-state solution with no bottlenecks, or

e reach a steady-state solution with unsolvable bottlenecks.

4.1.1 The case of single-element streams

The presented analysis works very well in the case of stream-connected modules.
However, in our programming environment, we also want to allow the programmer



72 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

to work on pure data-parallel parallelizations, i.e. parallel programs that works in
the presence of a single, possibly large, data structure. From a modeling point of
view, this is possible by:

a) expressing data parallel parallelizations of a module, and

b) connecting multiple data-parallel modules with single-element streams in the case
of complex parallelizations.

Nevertheless, the stream-based analysis does not hold anymore, as we are indeed
interested in different metrics, i.e. minimize the time the single element spend in
the whole system.

We propose a latency-based performance evaluation, in which the user provide a
special value for source streams: Ty = oo. This basically represent the fact that no
further elements will be received from the source stream. Recognizing this particular
value, the compiler will perform a different performance analysis.

Given the absence of an input frequency, we do not have an intrinsic limit on
the performance of our application: we can lower the latency as much as possible,
considering only the limitation on the maximum parallelism degree, given by the
amount of nodes.

In addition, we do not have to partition the amount of nodes on the different
modules, as each one will work in different times (because we do not have multiple
elements).

The problem is thus limited in finding, for each module, the best configuration,
given the maximum amount of nodes. This represent, of course, a much simpler
problem w.r.t the previous one.

4.2 Performance prediction of a parallel module

In the previous section we discussed the performance prediction of a parallel appli-
cation, assuming we were able to predict the performance of each module.

In this section we discuss the general methodology to evaluate the modules, and
provide a simple example to clarify its application. Because of the deep implications
of the implementation in the performance model of a module, at this point we are
unable to provide the model of each possible pattern, so we can only present the
underlying methodology. In the following chapters, however, when optimizations
are presented, will discuss the possible ways to model these features and, in the
last chapter of the thesis, we will show the application of this methodology to a
real-world example.

The basis of our methodology can be considered, in some way, inherited from
BSP or LogP, in which we identify and measure, for each processor:

a) a sequential code that is run independently from the others;



4.2. PERFORMANCE PREDICTION OF A PARALLEL MODULE 73

b) synchronization points, in which the processor waits for others to complete
their tasks;

¢) communication points, in which the processor sends and receives data to or
from the others.

However, with respect to the previously presented models, we aim to a precise
evaluation, based on the program and the architecture, of both the service time and
the latency of the module.

The main idea that allows us to tackle the complexity of the model is that we
are able to separate the behavior of the algorithm and that of the parallel pattern.

The sequential code is, indeed, strictly dependent on the application, given by
the user, and does not depend in any way on the parallel implementation of the
pattern, so it can be estimated from the code inserted in the patterns.

The other two points (synchronizations and communications) are not influenced
by the sequential code, as they are defined by the pattern and its implementation;
moreover, because of its “pattern-based” nature, each implementation will have well
defined communication and synchronization points, allowing us to study these two
points on a per-pattern implementation basis.

This way we are able to restrict the scope, and therefore enormously simplifying
the development of a performance model, w.r.t. an undisciplined parallel program-
ming environment, in which communications and synchronization are defined by the
application programmer in a generic way.

4.2.1 An example: cost model for a trivial task-farm imple-
mentation

Here we introduce a simple implementation of a task-farm, that will be used in
the rest of the chapter to exemplify the methodology used to define a model for
a pattern implementation. We selected the farm as a starting point because of
its simplicity; nevertheless, it still represents a significant example to understand
the underlying methodology. The discussed implementation is the classic, skeleton-
based implementation of P?L [140, [143], initially defined for distributed memory
architectures, with no particular optimizations w.r.t multi-core architectures. The
pattern uses the Emitter — Workers — Collector scheme, exploiting two cores to
implement the supporting entities. The pseudo-code of the three classes of processes
is reported in Listings and [4.3]

Regardless the existence of a hardware shared memory, this implementation uses
explicit communications, implemented with a simple message-passing library. The
pseudo-code is pretty straightforward: the emitter follows a round-robin scheduling
policy, starting from the first worker (i = 0). The collector follows a similar pattern,
receiving data from the workers (again, in a round-robin fashion) and forwarding
them to the output stream. For the sake of simplicity, this example do not intro-
duce the termination code, needed to identify the end of the stream and to close



74

while (true){
for(i:0..n—-1){
message temp;
receive (temp, input_stream);
send (temp, worker[i]);

}

CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

while (true){
for (i:0..n—-1){
message temp;
receive (temp, worker[i]);
send (temp, output_stream):;

}
}

}

of the

Pseudocode

Listing 4.2:
collector.

Listing 4.1: Pseudocode of the emitter.

while (true) {
message temp;
receive (temp, emitter);

// Computation

send (temp, collector);

}

Listing 4.3: Pseudocode of the generic worker 1.

the application. Communications are asynchronous and blocking, following a
semantic similar to that of ECSP[20] and, w.r.t MPI, analogous to the MPI_Send
and MPI_Recv, but with an important difference: asynchrony is guaranteed for
a fixed number k£ of messages, so that the send operation do not need to wait for
the corresponding receive, regardless of the length of the message.

Despite the lack of many information about the actual implementation of the
pattern, we can already start building a performance model for our task-farm. In
particular, we already know the sequential code of each process of the application
and the flow of tasks through the entities of the computation.

4.2.2 Sequential code analysis

We identify three classes of processes, each one executing a different code; we can
start by assigning an average time length to each step of the code. In particular, for
each task

e The emitter E:

1. receive the task from the input stream (Tr_,ee);

2. send the task to the selected worker (Tg_sena)-
e The worker W:

1. receive the task from the emitter (Tw_ e );



4.2. PERFORMANCE PREDICTION OF A PARALLEL MODULE 75

2. compute the task (Tyw_cac);
3. send the computed task to the collector (Tyw _senda)-

e The collector C:

1. receive the computed task from a worker (T _recy);

2. send the computed task to the output stream (T _sena)-

Assume, for now, that we are able to measure a mean value for all these pa-
rameters, and that all the receive and send times do not account for blocking (i.e.
when we execute a receive, the data to be received has been already sent, and when
we execute a send, we are able to send the data). In this condition, we have that
T sena and Ty, contain only the time needed to exchange the message (i.e. ac-
cess to the shared structure that represent the communication channel, modify it
and write/read the message). Tw_cae, On the other hand, represent the time to
execute the computation on a single element.

4.2.3 Latency Model

By using the information obtained by the previous analysis we can easily evaluate
the latency of the parallel pattern. In particular, we can see in Fig. the tem-
poral behavior of our pattern in the presence of a single stream element (a perfect
candidate for studying the latency). In practice, not only each process executes its
part sequentially, but the whole computation is executed sequentially, so that we pay
the whole computation time Ty _.q. plus all the communications. From the figure

Do [Joos  ERREERRR

0 3 6 9 12 15 18 21 24 27 30 33 36 39 Time

Te.recy Te-send Tw-recy Tu-calc Tw-send Tc-recv Tc-send

Figure 4.8: The temporal behavior of the farm implementation with a single element.



76 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

we can easily produce a formula to predict the latency of this implementation, that
consist in the sum of the latency of each entity of the parallel pattern:

Lrary = Lp+ Lw + Lc (4.2)
Lrarvy = Te—recv + Tp—send +

+ Tw_reeo + Tw—cate + Tw—send +

+ To—recw + To—send (4.3)

From this we can already understand the problems of a stream-parallel pattern in
the presence of a single element: despite the number of processes and cores allocated,
the application is not parallel.

4.2.4 Service Time Model

Of course, with a stream things are different, as exemplified in Fig. and [£.10]
The two cases differ on the ability of the emitter to sustain the computation. In
particular, in Fig. we can easily see that each worker can start the next task as
soon as it finishes the first. The Emitter, on the other hand, after a transition phase,
stop after each send, to wait the completion of the previous receive from the worker.
This is because the channel implement an asynchrony level of 1: it allows only one
message in the buffer. This example was selected to keep the drawing small, but
the behavior remain the same with different k: by using a higher asynchrony we
just increase the length of the transition phase, but the steady-state behavior of the
pattern will remain the same. Fig. shows the opposite, i.e. a case where the

Do (o ERERRER e

0 3 6 9 12 15 18 21 24 27 30 33 36 39 Time

Figure 4.9: The temporal behavior of the farm implementation with a stream, the
workers are limiting the throughput of the system.



4.2. PERFORMANCE PREDICTION OF A PARALLEL MODULE 7

D Receive D Send g Compute

0 3 6 9 12 15 18 21 24 27 30 33 36 39 Time

E | |

v WE| BE| BE| BE

Figure 4.10: The temporal behavior of the farm implementation with a stream, the
emitter is limiting the throughput of the system.

Workers are limited by the throughput of the Emitter, that is unable to sustain the
number of worker. This characteristic have an enormous impact on the service time
of the pattern.

In the general case, given the flow of tasks, we can model this implementation
as a three-stage pipeline (Fig. |4.11)): a task, after being served by the Emitter, will
step through one of the Workers, and then to the Collector. The service time of
a pipeline is well known, and will not be studied here. The interested reader can
refer to [I39, [140] for a detailed analysis. The result is given in Eqn. [£.4} it is
simply the maximum of the service time of each stage. For the sake of simplicity
and completeness we also report the throughput (also referred with Bandwidth, B),
i.e. the amount of task processed per unit of time, in Eqn. [4.5]

Stage 1 Stage 2 Stage 3

| Emitter '|< J| Worker; '| E{Collectorl

Figure 4.11: Stream-oriented pipeline modeling of the implementation.




78 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

Ts_papy =max{Ts_pg, Ts_w,Ts_c} (4.4)
1
BFARM = —————— —min {BE; Bw, Bc} (45)
Ts_rarm

Now, given the fact that the Emitter and the Collector are sequential entities,
they compute a task every L(g ), so we have that their service time match the
latency:

1 1
BE = =
TS—E TE—recv + TE—send (4 6)
1 1 '
B =

TS—C TC—recv + TC—send

Things are quite different for the workers, because we have a set of n workers (2 in
the previous examples) that works concurrently. Each one has its throughput (that
can be derived as with the emitter and collector by considering the reciprocal of the
latency); the cumulative throughput can be easily obtained by summing the through-
put of each worker. Given the fact that the workers are all equals, their throughput
is simply calculated by multiplying the single throughput by n (Eqn. . The
service time is therefore the single service time divided by n (Eqn. .

1 1 n
+ ...+

By = =
Ts—w, Tw—reco + Tw—catc + Tw—send

Ts_w,

(4.7)

1 o TW—?"CC’U + TW—calc + TW—send

B - (4.8)

Ts_w =

4.2.5 Evaluating the model parameters

We reached a set of equations to model the service time and the latency of our
task-farm pattern implementation. Still, we have a set of parameters that need
to be estimated, using data collected from the deployment architecture and from
the algorithm. Nevertheless, we confined the algorithm code to a single parameter,
Tw_caie, While the others are just communication latencies that do not depend on
the programmer code.

In general, to evaluate these parameters we can use any of the three main tech-
niques of performance evaluation. Given the analytical modeling of latency and
service time, we would prefer the same formalism here. However, where not possible,
we can also choose to estimate the parameters by means of measurements, given
the presence of both the architecture and the parallel program code (created by our
compiler).



4.2. PERFORMANCE PREDICTION OF A PARALLEL MODULE 79

Shared resources in parallel architecture

By evaluating the parameters, we want to take into account the fact that multiple
processes are executed concurrently on the parallel machine. This means that an
isolated study of the behavior of each process will probably produce different results
w.r.t the concurrent execution because of interference between processes. Neverthe-
less, an isolated study is much simpler, both from a modeling and from an evaluation
point of view, than a global study.

For this reason we selected a mixed approach: starting from the isolated study,
we count the possible interference, so that we are able to derive the global behavior
with sufficient precision. The main source of interference is the presence of shared
resources: each processor (and therefore process) compete for its access and, of
course, this is not captured by an isolated study where the whole system is reserved
for a single process. Current multi-core architectures provide a wide set of shared
resources, such as:

a) cores, because of multithreaded implementations (such as SMT[L6§] or its com-
mercial name Hyper Threading);

b) caches, because of (multiple) cache levels shared among groups of cores (espe-
cially the LLC usually shared among all the cores);

¢) memory, to allow sharing of data between processes in the parallel architecture.

Of course, although possible, an interference model able to capture all the shared
resources becomes very complex; for the moment, in this thesis, we consider only
the most important source of interference, present by definition in all multi-core
architectures: the shared memory. To address and evaluate the time overhead
related to this kind of interference, we will define our parameters as the sum of:

1. afixed time, evaluated on all those operations that do not rely on the memory
(i.e. register-register operations, load/store that generates a cache hit, etc.),
and therefore not influenced by the shared resources.

2. a variable time, evaluated as the number of memory operations that, by
definition, are affected by the interference.

4.2.5.1 Evaluating the sequential time

The evaluation of T, _ .. is the only part that requires the knowledge of the applica-
tion code. Because of isolation, we only need to estimate the execution time of the
sequential source code in the target architecture. This is surely an easier problem
w.r.t. evaluating the performance of a parallel application. Several works aimed to
solve this problem exists in literature, so that we can safely consider this a solved,
or at least solvable, problem that do not require further studies in this thesis.



80 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

For example, we find of extreme interest the approach in [I121] that exploit a mix
of static and dynamic analysis to predict the performance of a sequential program
independently of the running architecture. In particular, the methodology deeply
analyze the binary code created for a specific architecture, by means of static analy-
sis, to derive the execution paths of the application. The code is then instrumented
to gather run-time information for those paths marked as interesting by the static
analysis. The frequency of each execution path and the memory access pattern is
then extrapolated by means of specific models, to predict the program behavior in
a parametric way w.r.t data structure sizes, for an abstract execution architecture.

Finally, by instantiating the execution architecture (i.e. the amount and type of
execution units of the processor, the sizes of cache levels, etc.) and the problem size,
the methodology allow us to derive the miss frequency for the various cache levels
and the execution time of the application. To validate the methodology, the authors
modeled the behavior of some applications from the NAS[2I] benchmark toolkit
using a Sun UltraSPARC-II system, and successively predicted the performance of
an Alpha R12000 CPU, obtaining results usually within a 10% relative error. By
following this approach we are able to gather all the information required to estimate
our 1o, cale-

Nevertheless other, simpler approaches exists in literature [94], [96], 136} [187]. For
the sake of simplicity, in our thesis propose use a very simple methodology based on
the actual execution of the sequential program on our target machine. In particular,
we use the following execution time model:

T—cate = CPU _execution_clock_cycles

+ Memory_stall_clock_cycles

= CPU _execution_clock_cycles (4.9)
n—1

+ Z L;_misses x time(L;_miss) (4.10)
i=1

+ L, -misses x time(Memory_Latency) (4.11)

That essentially separate the CPU time and the memory hierarchy latencies.
Despite its simplicity, this is actually used in many performance evaluation works
(such as [94]) and is believed to model the behavior of a program with sufficient
precision. In our case we split the time in memory accesses and cache hits, assuming
an entirely private cache hierarchy, so that the only shared point in the architecture,
and therefore the part that affect the variable time of the model, is the memory level.

We have that the first two addends of the formula and compose the
fixed time of our T),_.q., while the third represents the variable time, that
will depends on the amount of total requests sent to the shared resource (i.e. the
memory):

Tw—caie = Fized Time + L, _misses x time(Predicted_Memory_Latency) (4.12)



4.2. PERFORMANCE PREDICTION OF A PARALLEL MODULE 81

By fixing the problem size and the execution architecture, our approach does not
need specific instrumentation to gather these values from the source code, but can
only rely on the measurement of some hardware counters during the execution.

Current processor, unfortunately, do not count the exact parameter Fixzed Time
we need for our approximation. In particular, we are usually able to measure the
total execution time and the so-called load/write stall time, i.e. the time a processor
wait for data from the whole cache hierarchy + [4.11), but not the load/write
stalls that results in memory accesses . We can, however, measure the number
of cache miss for each cache level, and evaluate the sequential memory latency by
using specific benchmarks.

For example, for the processors used in this thesis, we can use the performance
events in Tables and to gather the needed values, and then derive the
two parameters as in Table [4.4]

It is important to notice that in Table [£.4] we use two different values for the
memory latency:

i) Measured_Memory _Latency, that is the memory latency in a sequential
program that issue only one memory request at a time, measured by means of
a benchmark previously executed on the target architecture;

ii) Predicted_Memory_Latency, that is the memory latency in a parallel pro-
gram, with multiple cores issuing memory requests concurrently, predicted by
means of specific architecture-based models that will be introduced in the rest
of the chapter.

4.2.5.2 Modeling communications latencies

For the communication latencies we can derive a similar model, by analyzing the
implementation of the communication primitives send and receive. For this ex-
ample, we will study the implementation in Listings and that represent a
channel implemented by using a FIFO queue. For the sake of readability we also
list the structure of the queue (Listing , that contains a circular buffer used to
store elements, a mutex and two condition variables to handle critical section and
blocking in cases of full/empty channel. We highlight some important points of the
implementation:

e The semantics of mutexes and condition variables follows the posiz specifica-
tion: for example when we perform a cond_wait we atomically enter in the
condition variable waiting queue and release the mutex; when the process is
woken up, it automatically reacquire the mutex, so that at the end of the exe-
cution of cond_wait we already are the only entity working within the critical
section.



82 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

e To increase non-determinism, the waiting on the channel is not implemented
with a FIFO behavior: when the send put a message, for example, it does wake
all the waiting receivers. Then, all the receivers will try to acquire the mutex

Parameter Event(s)
To—oate | CPU_CLK_UNHALTED
L, _misses LLC_MISSES

Table 4.1: Performance events used on
Intel processors.

Parameter Event(s)
Tor—cate | CPU_CLK_UNHALTED
L, _misses | L3_CACHE_MISSES

Table 4.2: Performance events used on
the AMD processor.

Parameter Event(s)
Tw—calc ONE
. LOCAL_DRD_MISS + REMOTE_DRD_MISS +
L,,_misses
+ LOCAL_WR_MISS 4 REMOTE_WR_MISS

Table 4.3: Performance events used on the Tilera processor.

Parameter

Model

Fixed Time, | Ty—caic —

(L,-misses x Measured_Memory_Latency)

Variable_Time,,

L, misses x Predicted_Memory_Latency

Table 4.4: Modeling of fixed and variable time starting from evaluated parameters.

send (message msg, channel ch){
lock (ch.mutex) ;
while (ch.elem ch.size){
// Wait for a free space
cond_wait (ch. full ,ch.mutex) ;

¥
if (ch.elem = 0){
// Wake up all the waiting
recetvers
cond_broadcast (ch.empty) ;

}

// Send the message
ch.tail = (ch.tail+1)

% ch.size;
ch.len[ch.tail] = msg.len;
memcpy (ch. buffer [ch. tail],

msg. value ,msg. len ) ;
ch.elem++;
unlock (ch.mutex) ;

Listing 4.4: Implementation of send.

receive (message msg, channel ch){

lock (ch.mutex) ;
while (ch.elem 0){

// Wait for an element

cond_wait (ch. full ,ch.mutex);
}
if (ch.elem = ch.size){

// Wake up all the waiting

senders

cond_broadcast (ch.empty) ;
}
// Receive a message
msg.len = ch.len[ch.head];
msg. value = malloc (msg.len);
memcpy (msg . value ,

ch.buffer [ch.head] ,msg.len);
ch.elem——;
ch.head = (ch.head+1)
% ch.size;

unlock (ch.mutex) ;

Listing 4.5: Implementation of receive.



4.2. PERFORMANCE PREDICTION OF A PARALLEL MODULE 83

typedef struct channel {
mutex_t mutex;
cond_t empty;
cond_t full;

int size;
int head;
int tail;
int elements;
void xxbuffer;
int x len;

} channel_t;

Listing 4.6: Fields of the structure channel.

again and, of course, only one of them will be able to consume the inserted
message; the other will find the channel empty and return in a waiting state.

e Messages are considered a simple array of bytes; more complex structures will
need a serialization/deserialization phase that will be performed (in our farm
example) inside the worker - and therefore included in T, g

e Messages can be of variable size, so we also need to store the length of each
message. The buffers inside the queue can be sized by using an upper limita-
tion to message sizes. For the same reasons inside the receive each message
structure is allocated by using the exact size of the received message.

Now that we have an implementation, we easily model T} g and T, _,ee, by
following our modeling approach:

Ty sena = Fized Times + Variable_Timeg (4.13)
T._reey = Fized_Time, + Variable_Time, (4.14)

As previously explained, for our model we need to measure the time needed to
perform a send or a receive in a block-free execution, i.e. when the communication
does not block because of a full or empty channel, respectively. Therefore, we
basically have a limited number of simple operations on the data structure that
represent the channel plus a copy of the message to/from the channel. This code
consist mainly in load/store, so we have a negligible computational time with an
high number of memory transfer. We can therefore model T, _.,q and T} _,ce,, With
reasonable precision, with a Fized Timey. s, = 0. For the variable part, we need
to know how much data we transfer, i.e. the length of the messages that, however,
is not always fixed because of the possible variable message length. We have two
options here:



84 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

a) Worst Case analysis: we consider the upper limitation on the size of the
messages (also required to correctly size the buffers of the channel);

b) Average Case analysis: we consider the average length of messages;

As we are more interested in the average performance of the program, we usually
prefer the second option.

Given the size of the messages, we have that a good approximation for our
parameter is:

M _Si
Ty senda = 0+ LnezsliiZSZZ x Predicted_Memory_Latency (4.15)

Message_Size
L, _Block_Size

T*—recv =0+

x Predicted_Memory_Latency (4.16)

In this case the cost of send and receive is the same, as both execute a copy of
the message. There are, however, more interesting (and complex) implementations
that can limit the number of total copies to one; in this case we will have a different
cost (i.e. a Ti_geng like and a Ty_ ey, = 0). For this example we deliberately
used a straightforward implementation for the sake of simplicity.

4.2.6 The final model for the task-farm example

We briefly summarize here the result of the steps from section to [4.2.5 a
model for estimating the latency and the service time of the studied task-farm
implementation.

The resulting model is composed of measured values (i.e. Fized Time, and
L, -misses) obtained through the execution of isolated sequential parts of the appli-
cation, values modeled by manually analyzing the pattern-related code (i.e. %)
and a further parameter, Predicted_Memory_Latency, to model the interference
generated by the use of a shared memory. The latter is an important point of our
modeling, that allows us to predict the performance of the system by using small,
isolated measurements, and then introduce a corrective factor that will take into
account the presence of shared resources that affects the overall performance of the
parallel application. The estimation of this corrective factor requires a detailed
model of the target architecture, that will be discussed in Section [4.3

In Table we summarize the estimation of the fixed and variable parts of
Tow—cale, starting with the measured events on an target architecture (we used the
event names of the Intel architecture for conciseness), while in Equations [1.17}/4.24]
the service time and latency of each entity and of the whole parallel pattern are
presented.



4.3. PERFORMANCE DEGRADATION ON SHARED MEMORY ARCHITECTURES 85

Parameter Event / Model
To—eate CPU_CLK_UNHALTED
L, _misses LLC_MISSES
Fized Timey | Tw—cae — (Ln-misses x Measured_Memory_Latency)
Variable_ Time, L, _misses x Predicted_Memory_Latency

Table 4.5: Modeling of fixed and variable time on an example architecture.

Message_Size

* L, _Block_Size
Message_Size

* L, _Block_Size
Ly = Fized Time,,

Ly =2

x Predicted_Memory_Latency (4.17)
