
Università di Pisa

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

Ph.D. Thesis

Optimizations and Cost Models for
multi-core architectures: an approach

based on parallel paradigms

Daniele Buono

Supervisor

Marco Vanneschi

May 13, 2014

Dipartimento di Informatica, Largo B. Pontecorvo, 3, I-56127 Pisa, Italy
SETTORE SCIENTIFICO DISCIPLINARE INF/01

Abstract

The trend in modern microprocessor architectures is clear: multi-core chips are here
to stay, and researchers expect multiprocessors with 128 to 1024 cores on a chip in
some years. Yet the software community is slowly taking the path towards parallel
programming: while some works target multi-cores, these are usually inherited from
the previous tools for SMP architectures, and rarely exploit specific characteristics
of multi-cores. But most important, current tools have no facilities to guarantee per-
formance or portability among architectures. Our research group was one of the first
to propose the structured parallel programming approach to solve the problem of
performance portability and predictability. This has been successfully demonstrated
years ago for distributed and shared memory multiprocessors, and we strongly be-
lieve that the same should be applied to multi-core architectures.

The main problem with performance portability is that optimizations are ef-
fective only under specific conditions, making them dependent on both the specific
program and the target architecture. For this reason in current parallel program-
ming (in general, but especially with multi-cores) optimizations usually follows a
try-and-decide approach: each one must be implemented and tested on the specific
parallel program to understand its benefits. If we want to make a step forward
and really achieve some form of performance portability, we require some kind of
prediction of the expected performance of a program. The concept of performance
modeling is quite old in the world of parallel programming; yet, in the last years,
this kind of research saw small improvements: cost models to describe multi-cores
are missing, mainly because of the increasing complexity of microarchitectures and
the poor knowledge of specific implementation details of current processors.

In the first part of this thesis we prove that the way of performance modeling
is still feasible, by studying the Tilera TilePro64. The high number of cores on-
chip in this processor (64) required the use of several innovative solutions, such as
a complex interconnection network and the use of multiple memory interfaces per
chip. For these features the TilePro64 can be considered an insight of what to expect
in future multi-core processors. The availability of a cycle-accurate simulator and
an extensive documentation allowed us to model the architecture, and in particular
its memory subsystem, at the accuracy level required to compare optimizations.

In the second part, focused on optimizations, we cover one of the most important
issue of multi-core architectures: the memory subsystem. In this area multi-core

ii

strongly differs in their structure w.r.t off-chip parallel architectures, both SMP and
NUMA, thus opening new opportunities. In detail, we investigate the problem of
data distribution over the memory controllers in several commercial multi-cores,
and the efficient use of the cache coherency mechanisms offered by the TilePro64
processor.

Finally, by using the performance model, we study different implementations,
derived from the previous optimizations, of a simple test-case application. We are
able to predict the best version using only profiled data from a sequential execu-
tion. The accuracy of the model has been verified by experimentally comparing the
implementations on the real architecture, giving results within 1− 2% of accuracy.

A zia Isa, nonna Franca e zio Gianfranco,
perché mi hanno donato un sogno.

E alla mia famiglia,
perché mi ha aiutato a realizzarlo.

Computer Science is a science of abstraction -
creating the right model for a problem
and devising the appropriate mechanizable
techniques to solve it.

Foundations of Computer Science,
A. Aho and J. Ullman

Acknowledgments

Questa è la storia di un sogno. Un sogno iniziato il giorno della mia prima comunione,
quando zia, zio e nonna mi regalarono il mio primo computer. Un sogno che ho
custodito e nutrito per tutti questi anni e che ora, posso dire con enorme gioia, si
sta realizzando.

In un’avventura cos̀ı lunga ho incontrato tantissime persone, ed è grazie a tutte
loro che oggi sono qui, a culminare il sogno di un bambino. Vorrei ringraziarvi tutti,
a partire dai professori che dalle medie in poi mi hanno aiutato in questo percorso:
Maffei, Fabretti, Carosi, Uggeri, Adriani, Sajeva, Tore, Dore, e tutti quelli che mi
sono dimenticato.

Un grazie di cuore al Prof. Marco Vanneschi, supervisore non solo di tesi, ma di
tutto il mio percorso: le tue lezioni di architettura rimarranno per sempre nel mio
cuore, con quel misto di ammirazione... e di paura!

Grazie anche al Prof. Marco Danelutto, per tutto il supporto che mi ha dato in
questi anni, ma soprattutto... per l’articolo mandato ad Amsterdam!

Un ringraziamento speciale va sicuramente a Gabriele, compagno di ufficio e di
articoli, ma soprattutto spalla su cui piangere nei momenti no di questo dottorato
(e ce ne sono stati tanti!). Grazie a Massimo, ai mille caffè (letteralmente) presi
insieme e alle annesse chiaccherate sulla ricerca. Grazie ad Alessio, per gli amici
PasQ, il famoso kernel hacker; nonostante le nostre strade si siano divise, rivederci
è sempre un piacere.

Grazie a tutti i componenti, passati e futuri, del gruppo: Silvia, Tixi, Fabio,
Paolo, Daniele, Massimiliano e Carlo. Grazie agli indimenticabili sfidanti: Giacomo,
Andrea e Sabri.

Grazie al mio mitico gruppo del corso di laurea: Bacai, Profe, Sandro, Gabri,
Lotta e Cino. Anche se ormai ognuno di noi ha preso la sua strada, dobbiamo
continuare a vederci ogni tanto per giocare a Risiko e/o Dominion!

Un ringraziamento speciale anche al badge del dipartimento, che mi ha permesso
di entrare agli orari più impensabili.

Grazie ovviamente alla mia famiglia, che nonostante tutto mi segue e mi supporta
(o meglio, sopporta) ormai da 29 anni. Mamma, babbo, Jessy, Nerone e tutti i nonni:
se sono oggi qui è soprattutto merito vostro!

Grazie anche a Serena, non più compagna di vita ma sicuramente amica unica e
indimenticabile.

Infine, grazie a tutti quelli che non ho menzionato: vi porto comunque nel cuore.

viii

Contents

I Introduction 1

1 Introduction 3
1.1 Structured parallel programming . 4
1.2 Parallel patterns and their optimizations 6

1.2.1 Multiple memory interfaces 7
1.2.2 Automatic Cache Coherence 7

1.3 Introducing a performance model . 8
1.4 Towards a parallel programming environment 9
1.5 List of Contributions of the Thesis 10
1.6 Outline of the Thesis . 12
1.7 Current publications by the author 14

2 Background 17
2.1 Chip MultiProcessor architectures . 17

2.1.1 Processor architecture . 21
2.1.2 Interconnection network . 22
2.1.3 Memory bandwidth and organization 23
2.1.4 Atomic operations and synchronizations 24
2.1.5 Cache coherence . 24
2.1.6 Number of cores . 25

2.2 Parallel programming on Chip MultiProcessors 25
2.2.1 Programming Languages . 26
2.2.2 Libraries . 29
2.2.3 Our vision of parallel programming 31

2.3 Performance model for multiprocessors 32
2.3.1 Algorithm oriented performance models for multiprocessors . . 32
2.3.2 Hardware-oriented performance cost models 34

2.4 Summary . 35

3 Structured parallel programming for multi-core 37
3.1 The need for high level parallel programming 37
3.2 Structured parallel programming . 39

3.2.1 Parallel Paradigms . 39

x CONTENTS

3.2.2 Stream Parallelism . 40
3.2.2.1 Task-Farm . 41
3.2.2.2 Pipeline . 42

3.2.3 Data Parallelism . 43
3.2.3.1 Map . 44
3.2.3.2 Reduce . 45
3.2.3.3 Map + Reduce, a notable composition 45
3.2.3.4 Data-Parallel with Stencil 46

3.2.4 Stencil Transformations . 47
3.3 Expressing Parallel Paradigms . 49

3.3.1 Skeletons . 49
3.3.2 ASSIST: Beyond the classical skeleton approach 50
3.3.3 The Virtual Processors approach 51

3.4 Parallel patterns and their (many) implementations 53
3.5 Mastering the possibilities, one piece at a time 53
3.6 Towards a novel parallel programming environment 54
3.7 Target architectures . 56

II Cost Models 59

4 A hardware-dependent model based on QNs 61
4.1 A general approach to parallel performance prediction 63

4.1.1 The case of single-element streams 71
4.2 Performance prediction of a parallel module 72

4.2.1 An example: cost model for a trivial task-farm implementation 73
4.2.2 Sequential code analysis . 74
4.2.3 Latency Model . 75
4.2.4 Service Time Model . 76
4.2.5 Evaluating the model parameters 78

4.2.5.1 Evaluating the sequential time 79
4.2.5.2 Modeling communications latencies 81

4.2.6 The final model for the task-farm example 84
4.3 Performance degradation on shared memory architectures 85

4.3.1 Extensions to the original queueing network 87
4.3.1.1 Modeling caches . 87
4.3.1.2 Bus interconnections 88
4.3.1.3 Multiple Requests per processor 89
4.3.1.4 Complex interconnection networks 89
4.3.1.5 Cache coherency . 90

4.3.2 Adapting the model to a concrete parallel architecture 91
4.4 Summary . 92

CONTENTS xi

5 A Queueing Network Model for Tilera TILEPro64™ 95
5.1 EQNSim: a testing environment for queueing network models 96
5.2 Architecture overview of Tilera TILEPro64™ 98
5.3 Processors . 102
5.4 Cache Hierarchy and Coherency . 102

5.4.1 Hash-for-Home . 103
5.4.2 Single-Home . 103
5.4.3 No-Home . 103
5.4.4 Restriction on the model . 104

5.5 Interconnection Network . 104
5.5.1 Under Load Latency . 111

5.6 Memory Subsystem . 118
5.6.1 Memory Read Service Time 119
5.6.2 Memory Write Service Time 132
5.6.3 Working with Caches . 139

5.7 Model Validation . 141
5.7.1 Evaluation of Rq for store linear 144
5.7.2 Evaluation of Rq for store linear with a different store rate . . 147
5.7.3 Considerations on the accuracy of the model 148

5.8 Summary . 149

III Optimizations 151

6 Exploiting Multiple Memory Controllers 153
6.1 Programming multi-cores . 155

6.1.1 Memory allocation models . 157
6.1.1.1 SMP-like memory allocation 158
6.1.1.2 NUMA-like memory allocation 159

6.1.2 Process allocation . 159
6.2 Evaluation by mean of synthetic benchmarks 160

6.2.1 Experimental results on the target architectures 163
6.2.2 Concluding Remarks . 173

6.3 Farm parallelization of the Sobel Operator 173
6.3.1 Experimental results on the target architectures 175
6.3.2 Concluding Remarks . 178

6.4 Farm parallelization of the Vector Addition 179
6.4.1 Experimental results on the target architectures 179

6.5 Data-Parallel parallelization of the FFT 182
6.5.1 Parallel FFT . 183
6.5.2 Experimental results on the target architectures 185
6.5.3 Concluding Remarks . 193

6.6 Modeling policies in the architectural model 193

xii CONTENTS

6.7 Summary . 198

7 Software-based Cache Coherence 199

7.1 The cost of automatic cache coherence 202

7.2 Optimizing cache coherence for the farm pattern 203

7.2.1 Automatic cache coherence with hashed home node 204

7.2.2 Automatic cache coherence with fixed home node 204

7.2.3 Disabling automatic cache coherence 205

7.3 Experimental Results . 206

7.4 Optimizing cache coherence for a data-parallel pattern 210

7.4.1 Automatic cache coherence with hashed home node 211

7.4.2 Automatic cache coherence with fixed home node 211

7.4.3 Disabling local caches . 212

7.4.4 Disabling automatic cache coherence 212

7.5 Experimental Results . 213

7.6 Summary . 217

IV Wrapping Up 219

8 Wrapping up: compiling a parallel module on TilePro64 221

8.1 Example module and its application 221

8.2 Parallel pattern and its implementations 223

8.2.1 Parallel Patterns . 224

8.2.2 Farm Implementations . 224

8.3 Study of the message passing implementation 228

8.3.1 Architecture Model Parameters 231

8.3.2 Predicted Service Times . 239

8.4 Study of the message passing impl. with copy on receive 243

8.4.1 Architecture Model Parameters 243

8.4.2 Predicted Service Times . 248

8.5 Study of the pointer passing implementation 252

8.5.1 Architecture Model Parameters 252

8.5.2 Predicted Service Times . 255

8.6 Selection of the best implementation 257

8.7 Impact of a multi-chip configuration 264

8.7.1 A multi-chip TilePro64 configuration 264

8.7.2 Network Latencies . 265

8.7.3 Core reservation and placement on the mesh 266

8.7.4 Implementations and model parameters 267

8.7.5 Performance study . 268

8.8 Summary . 273

CONTENTS xiii

9 Conclusions 275

Bibliography 277

xiv CONTENTS

List of Figures

1.1 Bhandarkar’s queueing network to model the memory contention. . . 9
1.2 The “compilation workflow” in our programming environment. 11

2.1 The first commercial Intel multi-core architecture: the Pentium D
processor, compared with the corresponding single-core dual-processor
architecture. 18

2.2 The AMD Opteron 6100 CMP and its 4 processor configuration. . . . 19
2.3 Single Cores of Tilera TilePro64 and the overall CMP. 19
2.4 The IBM PowerEN: a core cluster, single CMP and 4-way configura-

tions. 19
2.5 A large scale multiprocessor composed of single-core processors: the

internal node architecture and its interconnection. 19
2.6 Common interconnection network. 23
2.7 Bhandarkar’s queueing network to model the memory contention. . . 35

3.1 Graphical representation of a generic Stream-Parallel Pattern. 40
3.2 Graphical representation of a Farm pattern. 41
3.3 Graphical representation of a Pipeline Pattern. 42
3.4 Graphical representation of a generic Data-Parallel Pattern. 43
3.5 Graphical representation of a Map Pattern. 44
3.6 Graphical representation of a Reduce Pattern. 45
3.7 Graphical representation of the Jacobi Pattern, a data-parallel with

a static fixed stencil. 46
3.8 Partitioning of the Jacobi Pattern that produce different stencils. . . 47
3.9 Transforming the mean filter in a Map. 48
3.10 Three-tier structure examples of a skeleton-based program. 50
3.11 Example structure of an ASSIST program. 51
3.12 The “compilation workflow” in our programming environment. 56

4.1 A computation module modeled as a queueing system. 64
4.2 The “compilation work-flow” in our programming environment. . . . 66
4.3 An example module graph and its queueing network representation. . 66
4.4 The fully parameterized QN-based model. 67
4.5 The result of the steady-state analysis of the model. 68

xvi LIST OF FIGURES

4.6 Result of the steady-state analysis after the parallelization of module 2. 71
4.7 Result of the steady-state analysis after the parallelization of module 5. 71
4.8 The temporal behavior of the farm implementation with a single ele-

ment. 75
4.9 The temporal behavior of the farm implementation with a stream,

the workers are limiting the throughput of the system. 76
4.10 The temporal behavior of the farm implementation with a stream,

the emitter is limiting the throughput of the system. 77
4.11 Stream-oriented pipeline modeling of the implementation. 77
4.12 Bhandarkar’s queueing network to model the memory contention. . . 86
4.13 Queueing network model for systems with caches. 88
4.14 Queueing network model for multiple-bus interconnections. 88
4.15 QN model for systems with multiple requests per processors. 89
4.16 Queueing network model for cache coherent systems. 90
4.17 Queueing network model for the Symmetry S-81. 91

5.1 Two queueing network models represented on EQNSim. 98
5.2 Bhandarkar’s queueing network to model the memory contention. . . 99
5.3 TilePro64 architecture: chip architecture (left) and single core (right). 100
5.4 Time diagram for the dispatch of a packet in the iMesh network. . . . 105
5.5 Routing paths on Tilera: destination interfaces for requests to the

first memory controller and request-response paths for node 〈5, 3〉. . . 106
5.6 Time diagram of the dispatch of a memory read request in the TilePro64.107
5.7 Time diagram of the dispatch of a memory read resp. in the TilePro64.108
5.8 Example architecture model. 112
5.9 Graphical representation of the Mesh model on EQNSim. 114
5.10 EQNSim Bus model. 115
5.11 EQNSim Crossbar model. 115
5.12 Graphical comparison of the average Rq for the selected models. . . . 117
5.13 Graphical comparison of the percent error of the Crossbar model w.r.t

the Mesh increasing Lmem. 117
5.14 Detailed breakdown of Tmem using a single benchmark core. 121
5.15 Detailed breakdown of Tmem using 64 benchmark cores. 121
5.16 Average Tmem varying the number of cores generating memory requests.122
5.17 Average Tmem varying the number of cores and Tp. 123
5.18 Detailed breakdown of Tmem using 64 cores with Tp = 40clocks. 123
5.19 Measured Tmem varying Lq and the smoothed value for the model. . . 126
5.20 Queueing network model with a load dependent memory queue and

independent network queues per core. 127
5.21 Comparison between architecture and model values of Rq. Times in

clock cycles. 130
5.22 Average TWmem varying the number of cores generating memory requests.133
5.23 Detailed breakdown of Tmem using a single benchmark core. 135

LIST OF FIGURES xvii

5.24 Detailed breakdown of Tmem using 4 benchmark cores. 135
5.25 Average TWmem varying the number of cores generating memory re-

quests and the Tp. 135
5.26 Processor-cache subsystem in our queueing network model. 140
5.27 Architectural model of the TilePro64 processor: conceptual represen-

tation and EQNSim implementation. 142
5.28 Comparison between architecture and model values of Rq for the

store linear benchmark. Times in clock cycles. 145
5.29 Comparison between architecture and model values of Rq for the

store linear benchmark with Tp = 37, Sp = 0.5. Times in clock
cycles. 147

6.1 Generic architecture of a multi-chip machine. 155
6.2 Different memory allocation policies. 159
6.3 Different process allocation policies. 160
6.4 Average execution times per iteration, 1Load-1Add per iter. 165
6.5 Hypothetical Speed-up of a farm parallelization, 1Load-1Add per iter. 165
6.6 Average execution times per iteration, 10Load-1Add per iter. 170
6.7 Hypothetical Speed-up of a farm parallelization, 10Load-1Add per iter.170
6.8 Sobel Operator. 174
6.9 Example of the gradient estimation obtained by the Sobel operator. . 174
6.10 Average filtering time per image, 512× 512 pixels. 176
6.11 Speed-up of the farm parallelization, 512× 512 pixels per image. . . . 176
6.12 Speedup with different image sizes on the TilePro64. 178
6.13 Average execution times per addition, 1024000 elements per vector. . 180
6.14 Speed-up of the farm parallelization, 1024000 elements per vector. . . 180
6.15 Data dependencies in FFT. 183
6.16 Data dependencies and blocks in a statically partitioned parallel FFT. 184
6.17 Average calculation time per element - FFT on 1048576 points. . . . 188
6.18 Speed-up of the data-parallel FFT - 1048576 points. 188
6.19 Average calculation time per element - FFT on 16777216 points. . . . 191
6.20 Speed-up of the data-parallel FFT - 16777216 points. 191
6.21 Graphical comparison of real and estimated Memory Rq, single int. . 195
6.22 Graphical comparison of real and estimated Memory Rq, multiple int. 196

7.1 Comparison between cache coherence methods for the matrix multi-
plication, 64× 64 elements. 208

7.2 Comparison between cache coherence methods for the matrix multi-
plication, 128× 128 elements. 210

7.3 Comparison between cache coherence methods for the FFT, 1048576
points. 214

8.1 Example application graph, with particular focus on the Sobel module.222

xviii LIST OF FIGURES

8.2 Part of the TilePro64 architecture available for the module. 223
8.3 Sobel Operator. 223
8.4 Emitter-Worker-Collector scheme for the farm pattern. 225
8.5 Allocation pattern for the processes in the message passing impl. . . . 233
8.6 Comparison between architecture and model values of TS for the mes-

sage passing implementation of the Sobel Module. Times in clock cycles.241
8.7 Comparison between architecture and model values of TS for the copy

on receive message passing imp. of the Sobel Module. Times in clock
cycles. 250

8.8 Allocation pattern for the processes in the pointer passing impl. . . . 253
8.9 Comparison between architecture and model values of TS for pointer

passing implementation of the Sobel Module. Times in clock cycles. . 257
8.10 Comparison between measured values of the speedup of the module. . 260
8.11 Comparison between measured and model values of the speedup of

the Sobel parallel module. 261
8.12 The multi-chip TilePro64 configuration we imagined for this evaluation.265
8.13 The path for a memory request on the multi-chip TilePro64 config. . 266
8.14 Process allocation in the multi-chip message passing implementation. 267
8.15 Process allocation in the multi-chip pointer passing implementation. . 267
8.16 Comparison between estimated values of the speedup of the module

in a multi-chip configuration. 271

List of Tables

4.1 Performance events used on Intel processors. 82

4.2 Performance events used on the AMD processor. 82

4.3 Performance events used on the Tilera processor. 82

4.4 Modeling of fixed and variable time starting from evaluated parameters. 82

4.5 Modeling of fixed and variable time on an example architecture. . . . 85

5.1 Distance table (dy and dx) used to evaluate Lnet. 109

5.2 Simulated and Estimated Lnet. Times are in clock cycles. 110

5.3 Parameters of the three models compared. 114

5.4 Simulation Results with Lmem = 8 clocks. 116

5.5 Average Tmem and memory queue length varying Tp and the number
of cores. Times in cycles. 123

5.6 Correlation between Lq and Tmem. 124

5.7 Measured values of Tmem and the smoothed value used for the load-
dependent queue, for different queue sizes. 125

5.8 Comparison between architecture and model values of Lq and Tmem
with Tp = 3015 clocks. Times in cycles. 128

5.9 Comparison between architecture and model values of Lq and Tmem
with Tp = 1015 clocks. Times in cycles. 128

5.10 Comparison between architecture and model values of Lq and Tmem
with Tp = 40 clocks. Times in clock cycles. 129

5.11 Comparison between architecture and model values of Rq. Times in
clock cycles. 131

5.12 Measured values of TRmem used for the load-dependent queue, for dif-
ferent queue sizes. 137

5.13 Measured values of TWmem used for the load-dependent queue, for dif-
ferent queue sizes. 138

5.14 Summary of the model parameters that depend on architecture. . . . 143

5.15 Summary of the model parameters that depend on the program. . . . 143

5.16 Comparison between architecture and model values of Rq for the
store linear benchmark. Times in clock cycles. 146

5.17 Difference in parameters between the two store linear runs. 148

5.18 Rq values for the store linear benchmark with Sp = 0.5. 148

xx LIST OF TABLES

6.1 Local and Remote latencies of large, on-node and on-chip NUMA[131,
132, 150]. 156

6.2 Performance of a parallel program executed using only local memory
or local and remote memory, on three different NUMA architectures. 157

6.3 Synthetic Benchmark results on SandyBridge, 1Load-1Add. 166

6.4 Synthetic Benchmark results on AMD, 1Load-1Add. 167

6.5 Synthetic Benchmark results on Nehalem, 1Load-1Add. 168

6.6 Synthetic Benchmark results on Tilera, 1Load-1Add. 168

6.7 Synthetic Benchmark results on SandyBridge, 10Load-1Add. 171

6.8 Synthetic Benchmark results on AMD, 10Load-1Add. 171

6.9 Synthetic Benchmark results on Nehalem, 10Load-1Add. 172

6.10 Synthetic Benchmark results on Tilera, 10Load-1Add. 172

6.11 Sobel image filtering times for 512× 512 images. Times in clock cycles.177

6.12 Vector addition times for 1024000 elements vector. Times in clock
cycles. 181

6.13 Calculation time per element - FFT on 1048576 points. Times in cycles.189

6.14 Calculation time per element - FFT on 16777216 points. Times in cycles. . 192

6.15 Synthetic Benchmark results on Tilera, 1Load-1Add. 195

6.16 Comparison of real and estimated Memory Rq. Times in cycles. . . . 197

7.1 Memory read latencies for core 0, depending on the cache line state,
for two x86 processors. Times in clock cycles. 202

7.2 Memory read latencies for core 0, on the TilePro64 architecture, with
or without cache coherence. Times in clock cycles. 203

7.3 Comparison between cache coherence methods for the matrix multi-
plication, 64× 64 elements. Completion Times in milliseconds. 207

7.4 Comparison between cache coherence methods for the matrix multi-
plication, 128× 128 elements. Completion Times in milliseconds. . . . 209

7.5 Comparison between cache coherence methods for the FFT, 1048576
points. NUMA-like allocation policy. Completion Times in clock cycles.215

7.6 Comparison between cache coherence methods for the FFT, 1048576
points. SMP-like allocation policy. Completion Times in clock cycles. 216

8.1 Data from the execution of the sequential Sobel operator. 229

8.2 Summary of the parameters required to use the TilePro64 model. . . 232

8.3 Model parameters for the Message Passing Implementation, per par-
allelism degree. 238

8.4 Rq values obtained by solving the Queueing Network model parame-
terized for the message passing implementation. Times in clock cycles.239

8.5 Model values of TS−E, TS−Wi
and TS for the message passing imp.,

w.r.t the execution. Times in clock cycles. 240

LIST OF TABLES xxi

8.6 Comparison between architecture and final model values of TS for the
message passing implementation of the Sobel Module. Times in clock
cycles. 242

8.7 Model parameters for the Copy on Receive Message Passing Imple-
mentation, per parallelism degree. 247

8.8 Rq values obtained by solving the Queueing Network model param-
eterized for the copy on receive message passing implementation.
Times in clock cycles. 248

8.9 Model values of TS−E, TS−Wi
and TS for the copy on recv. mp imp.,

w.r.t the execution. Times in clock cycles. 249
8.10 Comparison between architecture and final model values of TS for the

message passing implementation of the Sobel Module. Times in clock
cycles. 251

8.11 Rq values obtained by solving the Queueing Network model parame-
terized for the pointer passing implementation. Times in clock cycles. 255

8.12 Model values of TS−Wi
and TS for the pointer passing imp., w.r.t the

execution. Times in clock cycles. 256
8.13 Comparison of the various implementation service times, according

to the model. TS for the best choice and improvement w.r.t the 2nd.
Times in clock cycles. PTR: Pointer Passing, MSG: Message Passing,
COR: Copy on Receive. 259

8.14 Comparison of the predicted service time function w.r.t the measured
one, highlighting the implementation chosen in both cases. Times in
clock cycles. PTR: Pointer Passing, COR: Copy on Receive. 262

8.15 Comparison the service time function using the real best implemen-
tation w.r.t the best according to the model. Times in clock cycles.
PTR: Pointer Passing, COR: Copy on Receive. 263

8.16 Rq values obtained by solving the multi-chip Queueing Network model
parameterized for the pointer passing implementation. Times in clock
cycles. 269

8.17 Rq values obtained by solving the multi-chip Queueing Network model
parameterized for the copy on receive message passing implementa-
tion. Times in clock cycles. 270

8.18 Comparison of the implementations, according to the multi-chip model.
TS for the best choice and improvement w.r.t the Pointer Passing im-
plementation. Times in clock cycles. PTR: Pointer Passing, COR:
Copy on Receive. 272

xxii LIST OF TABLES

Part I

Introduction

Chapter 1

Introduction

The trend in modern microprocessor architectures is clear: multi-core chips are here
to stay. Current processors are composed of 4 to 12 cores on the same chip, and this
number is continuously increasing every year, up to the point that the term many-
cores have been introduced, to indicate the large amount of core per chip of some
solutions. At the same time these processors usually implements simultaneous multi
threading (SMT[166]), allowing the execution of up to 4 threads on the same core,
and server configurations provides multiple processors on the same board, giving
even more cores on a single machine. Some notable examples of current highly
parallel multi-core platforms are the Tilera TilePro64 [26] (64 cores), the future
IBM PowerEN[83] (16 4-way SMT cores each processor for a maximum of 64 cores
and 256 thread in 4-chip configurations), the AMD Opteron[62] with 48 cores in
a single machines, the IBM Power7[103] servers, supporting up to 32 8-core 4-way
SMT processors per machine, for a total of 1024 threads or the Intel Xeon Phi, an
accelerator composed of 60 4-way SMT cores[98]. Current research works for future
architectures expect Chip MultiProcessors with 128[148] to 1024[110] cores on a chip
in some years.

In spite of this, the software community is slowly taking the path towards parallel
programming. And many scientists believe it is taking the wrong path[15].

A wide range of parallel programming tools target multi-cores; yet these are
usually inherited from the previous tools for SMP architectures, and rarely exploit
specific characteristics of multi-cores.

But most important, current tools have no facilities to guarantee performance or
portability among architectures. Unfortunately this have deep implications in the
development of a parallel program, because you cannot have even a rough idea of
the performance of your program until it is run on a specific platform, thus making
different parallelizations of a program incomparable in a formal or generalizable way,
but only by execution times.

Our research group proposed the structured parallel programming approach for
distributed and shared memory multiprocessor architectures some years ago[172],
to solve the performance portability and predictability problem, as well to speed up

4 CHAPTER 1. INTRODUCTION

parallel program development; we strongly believe that the same approach can (and
must) be applied to multi-core architectures.

Multi-cores can be considered shared memory multiprocessors integrated in a
single chip: indeed they are also called Chip MultiProcessor (CMP) in academic
and research world. General results in parallel programming for multiprocessors
are therefore valid for CMPs; at the same time, however, there are some important
features that are not available in multiprocessor and must be further investigated.

Just like in multiprocessors, many architectural choices are possible when build-
ing CMPs: the number and complexity of cores, the interconnection network among
cores and towards the outer memory, cache hierarchies and cache coherence proto-
cols. However, given the limited chip size, engineers have to find a trade-off between
the features of each component, limiting the wide range of possibilities usually avail-
able in common multiprocessors.

At the same time the integration on a single chip allows processing cores to
share resources: nowadays cores usually share a cache level[62, 83] (typically L2
or L3) to offer faster communications and to better exploit caches, but in some
cases even functional units (for example the floating point unit of the UltraSPARC-
T1[107] and the newest AMD Opteron processors[51]) are shared among cores for
power consumption and chip complexity reasons. Moreover the idea of fetching
instructions from different control flows emerged in the last decade, to better use
the processor functional units, hide load/store latencies and overcome the limits
of instruction-level parallelism: today SMT is available in almost every high-end
processor, including CMPs[103, 107].

1.1 Structured parallel programming

All these degrees of freedom make each multi-core different, forcing the programmer
to write specific low-level code to reach good (and only hopefully the best achiev-
able) performance. In fact, since its introduction, parallel programming was strictly
related to HPC environments, in which programmers were usually willing to write
parallel code by mean of low level libraries that, giving a complete control over
the parallel application, allowed them to manually optimize the code and exploit
at best the architecture. However, this programming methodology exposed its first
problems with the emergence of cluster and grid computing, when the parallel archi-
tectures become dynamic and heterogeneous, therefore limiting the possibilities of
ad-hoc optimizations. With multi-cores, the massive introduction of parallel archi-
tectures in every device, and thus in every computing sector, critically exposed the
lack of proper tools to easily implement a parallel application: the industry cannot
afford the cost of re-writing (or even re-tuning) an application for every available
computing architecture.

1.1. STRUCTURED PARALLEL PROGRAMMING 5

As common in computer science, we believe that the answer is to abstract the
problem, and work at a higher level. Consistently with this approach, the idea of
automatic parallelization has been investigated in the past. However, despite the
increasing effort (especially of the scientific environment), automatic parallelizers
are still ineffective in fully exploiting parallel architectures, rarely providing good
speedups even on 4 and 8-cores [52, 82]. This could have been considered sufficient at
the introduction of multi-cores when we had 1 to 4 processors per chip; after almost
a decade of chip multiprocessors, however, the current number of cores require a
more scalable approach.

To the current state of the art, in short, a rewrite of the program is needed to
exploit parallelism. In this case, a proper mix of ease of use and performance is
still the main concern of researchers. It is widely acknowledged by the scientific
literature [69, 171, 152] that performance portability is achievable only by using
a high-level approach to parallel programming: exactly as in sequential programs,
where portability is guaranteed by sequential high-level languages, we need to define
parallel constructs that allow a proper compiler to produce efficient code for any
architecture.

In other terms, by using a high-level parallel programming model, we should be
able to describe our parallel application and be sure that it will perform reasonably
well on the wide choice of parallel architectures available today.

At this time, some works for parallel programming on multi-cores exist; however
these are usually shared memory multiprocessor programming tools that flatten the
differences among cores on the same and on different chips. These tools are usually
given as complete programming languages or libraries:

• Programming languages: some examples are Chapel [53], Berkeley Unified
Parallel C [77], Cilk [100], OmpSs[76], OpenCL[155] or OpenMP [66]; they are
entirely new programming languages or extensions for existing sequential lan-
guages.

• Libraries: Intel Threading Building Blocks [142], Skandium[114], Forward-
Flow, FastFlow [12], Intel Array Building Blocks, SkelCL[154] and many oth-
ers.

In general, all these tools express some characteristics of high-level parallel pro-
gramming, i.e. help the programmer by easing the burden of writing parallel applica-
tions. For example, OpenMP uses a shared-memory programming model, but allow
the programmer to extend sequential code by mean of annotations, without explicitly
writing the parallel threads. However, the programmer must know basic concepts of
the resulting parallelization to ensure program correctness. Furthermore, in many
cases a detailed knowledge of the parallel implementation and proper annotations
or code reorganizations are required to ensure good parallel performance[109].

6 CHAPTER 1. INTRODUCTION

The same concept apply, more or less, to all the discussed languages and libraries:
they help the programmer in many ways, especially hiding details typical of low-level
parallel programming, but they do not allow that kind of performance portability
described before.

Among the set, FastFlow, Skandium and SkelCL are probably the higher level
tools currently available, as they represent the class of Structured Parallel Program-
ming models.

We consider structured parallel programming the most interesting class of high-
level parallel models. It started with the concept of algorithmic skeletons by Cole
[61] and has been successfully applied basically in any possible parallel environment,
starting from clusters[67] and shared memory machines[114], to grid[7], cloud and
pervasive environments[32].

The main idea behind structured parallel programming is to let the programmer
define an application by means of parallel patterns (also called paradigms). A parallel
pattern describe, in a general way, the structure of the interactions of a parametric
set of entities. With parallel paradigms, the programmer just select the proper
pattern and describe the sequential code to be inserted in the entities of the pattern.
The rest of the code is produced by the programming environment.

1.2 Parallel patterns and their optimizations

A parallel paradigm describes the abstract parallel entities and the structure of
the interactions. However, the structure given by the paradigm is very general,
so that there are many ways of coding it on a parallel machine. We usually find a
simple implementation that strictly resemble the definition of the parallel paradigm,
but there are many different versions that may perform better than the baseline,
depending both on the algorithm and on the deployment architecture. For example,
even on simple paradigms such as the task farm, we can find different approaches,
such as hierarchic scheduling, master/worker or emitter/worker/collector schemes,
load balancing techniques, different cooperation mechanisms and much more [28,
143].

On top of this, we can find some “Pattern-Independent Optimizations”, i.e. opti-
mizations that are applicable to parallel programs in general. Of course, applicability
does not always result in performance improvements: some pattern will probably
benefit more than others of the single optimizations. In general, however, a pattern-
independent optimization:

a) is independent, as it does not need a specific pattern to be applied;

b) deeply affect the implementation, so that it may significantly drive the
pattern implementation towards specific forms, and therefore

1.2. PARALLEL PATTERNS AND THEIR OPTIMIZATIONS 7

c) affect minor pattern-specific optimizations, that could both be not be fea-
sible or ineffective.

We therefore consider these the starting point towards efficient pattern imple-
mentations.

Keeping in mind the long-term research objective of our group, with this thesis
we will address two of this kind of optimizations specific of multi-core architec-
tures. In particular, we will focus on techniques to exploit the memory hierarchy
of these processors, which is sensibly different w.r.t. other kind of multiprocessor
architectures.

1.2.1 Multiple memory interfaces

The increase of the number of core inside the chip is exacerbating the memory
wall[16] problem. To solve this, apart from sensibly increasing the amount of on-
chip caches, an increasing number of architectures is encapsulating multiple memory
interfaces on-chip. Many chip manufacturer also allows the composition of a limited
number (2-4) of chip per computer, further increasing the total number of memory
controllers. This way of increasing the total amount of memory bandwidth, however,
is starting to pose problems to the programming model: indeed these architectures
are not UMA (Uniform Memory Architecture) anymore, but are neither as those
NUMA (Non-Uniform Memory Architecture) architectures studied in the past years.
Current research[39, 70] is attacking this problem from the operating-system point
of view (i.e. how to better allocate virtual memory pages among the many memory
controllers), therefore not with a parallel programming vision of the problem.

With this thesis we will study how a parallel paradigm should be implemented to
exploit at best the multiple memory controllers, starting with the solution already
studied in the past for SMP and NUMA architectures, that will be adapted and
extended to better fit this kind of multiprocessors.

1.2.2 Automatic Cache Coherence

It is today acknowledged that shared-memory parallel architectures should provide
some cache coherence facility to ensure parallel correctness.

In general shared memory programming models an automatic cache coherence
protocol is proven to offer the best performance[138]. There are, however, several
works that highlight how cache coherence may be ensured at a software-level to
obtain performance improvements[1]. This has generally been a slippery ground,
because current architectures do not usually allow disabling automatic cache coher-
ence, so basically any claim has been proved by mean of architecture simulations.
The emergence of many-core architectures somewhat changed the scenario: handling
cache coherence among a large set of processors is indeed an expensive operations,

8 CHAPTER 1. INTRODUCTION

so that some architectures, such as the Tilera TilePro64, allow to control and dis-
able the automatic cache coherence facilities. This opens new and exciting research
aspects, especially when mixed with the Structured Parallel Programming, where
software cache-coherence should be efficiently implemented at the support level with
absolute transparency with respect to the application programmer. We will ap-
proach this problem by examples, showing how, in particular cases, the knowledge
given by the parallel pattern is sufficient to guarantee correctness with incoherent
memory areas, and may also provide better performances w.r.t. the corresponding
program run with automatic cache coherence.

1.3 Introducing a performance model

The main problem of having multiple implementations is that there does not usually
exist the “best” that outperforms the others; in general, it is the combination of the
architecture, the parallel pattern and the program that determines the best imple-
mentation: for example, specific communication and synchronization mechanisms
may benefit more than others of the underlying cache coherence mechanisms and/or
interconnection network; this advantage can be important or negligible for a specific
application, depending on the parallel pattern and/or the coarse/fine grain of the
program.

Furthermore, we should consider that, in general, a parallel application is com-
posed of several patterns that coexist on the same architecture and cooperate to com-
pute the final result. In such environment, a careful resource allocation is required
to obtain the best performance for the overall program, which may not directly
imply the best performance for each pattern. In this scenario a performance model
that correctly estimate the performance of each pattern is required to optimize the
whole application.

Performance prediction of a program, although widely studied, is still an open
problem in the research community. Cost models in the world of parallel pro-
gramming are usually proposed to asymptotically study algorithms, like PRAM[80],
BSP[169] and Multi-BSP[170] models. A first step towards a more “detailed” model
is LogP[63], and its successive enhancements. However all these models are kept
as simple as possible to let programmers easily compare algorithms. We are not
interested in this kind of models. We are looking for a more realistic model that
takes into account every important property of the parallel architecture and of the
parallel program. The model does not have to be simple, because it will not be used
by the programmers, but by the parallel programming framework. Unfortunately,
as of today, there does not exist a way to precisely estimate the completion time of
a general program on current architectures, mainly because of their complexity and
dynamicity.

The idea of specific performance models for parallel pattern is not really new,
as it was introduced in P 3L[18] to select the so-called “implementation templates”.

1.4. TOWARDS A PARALLEL PROGRAMMING ENVIRONMENT 9

P1

P2

Pn

M2

M1

Mk

Figure 1.1: Bhandarkar’s queueing network to model the memory contention.

These, however, modeled the performance of the implementations by taking the se-
quential code as a “black box”, with specific, immutable, characteristics. We extend
the original concepts by introducing an architecture model, that allow us to predict
the performance degradation that occur when multiple processes are executed on the
same multi-core chip. It is widely known that the major source of degradation is the
sharing of the memory subsystem. One of the first to analyze this form of degrada-
tion has been Bhandarkar[36], that modeled the processor-memory subsystem with
the queueing network in Figure 1.1, where each processor generate a memory request
and then stop its execution waiting for the response. We will start from this simple
yet effective model, and adapt it for a current multi-core architecture: the Tilera
TilePro64.

By using the obtained model, parameterized for specific programs, we will be able
to estimate the average response time of the memory controller, an indispensable
value to accurately predict the performance of the parallel program on a shared
memory architecture. Although useful per se, to predict the response time for a
generic parallel program, this model will become the cornerstone in our approach,
to study and compare the different implementations of each pattern and the pattern-
independent optimizations.

1.4 Towards a parallel programming environment

Our research group history in structured parallel programming is quite long, starting
with the P 3L skeleton language in 1992, and culminating with ASSIST in the last
years. We never, however, really focused our efforts in multi-core and shared memory
architectures in general. Our experiments with FastFlow[9] demonstrated the need,
and the possibility, of multi-core-specific optimizations in a skeleton-based library. A
skeleton library, however, does not allow us to fully exploit the benefits of structured
parallel programming, because it does not (entirely) allows code restructuring and
transformations. With this thesis we address the problem from a different point of

10 CHAPTER 1. INTRODUCTION

view, laying the foundations for a complex environment capable of automatic code
rewriting and optimizations for this class of architectures.

The long-term project of our research group is ASSISTANT, the extension and
adaptation of ASSIST for the current world of parallel computing, composed of
multi-cores, pervasive grids and clouds. Many of the principles introduced in ASSIST
are inherited and extended, in order to provide a significant leap forward in the world
of multi-core-oriented parallel programming.

Respecting the basic ASSIST principles, a parallel program will be described as a
generic graph of stream-connected parallel modules. Each module will be constituted
by a parallel pattern, and the programmer will be able to write the algorithm code
by mean of the most used sequential languages (C, C++, Matlab, Java, and so on).

As already mentioned, programming models based on libraries are considered
unsuitable for achieving the desired level of programmability and performance porta-
bility: our environment will need an intelligent source-to-source parallel compiler,
able to analyze the module-based description to determine the possible parallel im-
plementations, evaluate them for the target machine and, finally, produce the source
code of a low-level parallel program.

Our past experience in parallel programming also pointed that there are many
cases in which performance portability is not completely achievable at compile-time:
the cost model may be not detailed enough to accurately fit the <application, im-
plementation, architecture> tuple, or some model parameters may be unpredictable
(because of both the architecture and the algorithm) so that a mere compiler-time
performance portability becomes ineffective. To handle all these important cases, it
is also mandatory to support adaptivity, by means of efficient run-time reconfigura-
tions, in addition to static optimizations[32].

The resulting “compilation workflow” is depicted in Figure 1.2. Of course, the
meaning of compilation now is stretched to the whole execution because of the run-
time-based reconfigurations. We can easily notice how important is the Cost Model,
that affects basically every step of the work-flow, making it a first-class citizen in our
approach. In short, starting from the specification, we first use the cost model to
statically derive a good parallelization of each module, selecting it from the possible
implementations and optimizations of the pattern given by the programmer. Then,
at run-time, we will continuously monitor the program, and re-apply the cost model
to find, if possible, even better solutions.

1.5 List of Contributions of the Thesis

The road towards ASSISTANT is still long; with this thesis we start targeting multi-
core architectures, showing the feasibility of the cost model approach, by defining
the architectural model for a specific many-core architecture (the Tilera TilePro64),
and applying it on well known parallel pattern implementations to evaluate specific
memory-related optimizations introduced in the thesis.

1.5. LIST OF CONTRIBUTIONS OF THE THESIS 11

Application specification: source computation
expressed as a graph or workflow

Bottleneck Detection

Parallelization of bottlenecks
according to one or more

parallel paradigms – Selection
of a parallel solution

Encoding, possibly reusing
existing sequential codes

Parametric and restructurable
parallel object code

Mapping, loading and
deployment

ExecutionMonitoring

Dynamic
program

restructuring

Cost
Model

Figure 1.2: The “compilation workflow” in our programming environment.

The fundamental contributions are the following:

• An extensive study on how to effectively exploit the multiple memory interfaces
available on current chip multiprocessors, that exhibit different characteristics
w.r.t old-style UMA and NUMA architectures and thus may require a different
approach. The results shows that, in general, an approach similar to NUMA
architectures, in which we favor the use of a local environment for each process,
allocated to the nearest memory controller, tends to perform slightly better
than the others.

• An introductory study to software-managed cache coherence for parallel pat-
tern implementations and its beneficial effects on the performance of the ap-
plications on the TilePro64 architecture.

• A queueing network model for the TilePro64 architecture, to accurately eval-
uate the performance effects of the sharing of the memory system on the
memory response time. The accuracy of the model has been tested by using a
cycle-accurate simulator of the architecture and benchmarks executed on the
real platform, resulting in errors always below the threshold of 20% and, on
average, of ∼ 10%.
The generality of this model, that allow the definition of different behaviors
for each processor of the system, makes it feasible to model basically any par-
allel program to be run on the architecture, and extract an average memory

12 CHAPTER 1. INTRODUCTION

response time.
In scenario of the structured parallel programming, the model can be auto-
matically parameterized to evaluate different pattern implementation and of
course, the optimization techniques emerged in the previously listed studies.

• A demonstration of the use of the performance model, to study different im-
plementations of a parallel module on the TilePro64, modeling their service
time to select, depending on the parallelism degree, the best implementation
available. The estimations on the service times were compared with the real
implementation, resulting in an approximation within the ∼ 2.5% of error,
resulting in the selection of the best solution in most cases.

A notable byproduct of the thesis was the EQNSim simulator, that consist in a
simulation environment that allow us to simulate elements of queueing theory (i.e.
queues) and mix them with more complex, user defined modules. The environment
has been extensively used during the development of the architectural performance
model of the TilePro64 to test the behavior of partial queueing network models inside
complex environments. The simulator has thus been used throughout the rest of
the thesis to solve the architectural model. Moreover, it has been actively used in
our group for other researches; in particular, in [127, 126, 128] for the simulation of
the behavior of a parallel adaptive program using different reconfiguration policies.

1.6 Outline of the Thesis

The thesis is conceptually organized in four separate parts:

Part I: Introduction in which we introduce the reader to the world of structured
parallel programming and to the need of performance models, putting the basis to
understand the following parts. In particular, we have:

• Chapter 2 that review the current state of parallel programming for multi-
cores. We describe the features of current architectures and the evolution
trend that is likely to be followed. Then, a brief overview of the current tools
for programming these processors is given, trying to highlight the problems
of the current generation of parallel environments. Finally, we introduce the
most common models used to evaluate the performance of parallel programs.

• Chapter 3 motivates the use of high level parallel programming to achieve the
level of portability required to minimize the efforts of developing parallel pro-
grams. We introduce the conceptual framework of ASSIST and its pervasive
evolution ASSISTANT, that represents the long-term project of our research
groups, and for which this thesis represent a small, yet very important tile. At
the end of the chapter we also introduce the target architectures that will be
used throughout the thesis to study and verify our ideas.

1.6. OUTLINE OF THE THESIS 13

Part II: Cost Models which is probably the most innovative part of the thesis,
as we introduce the general approach of ASSISTANT to performance models. In
particular:

• Chapter 4 describe the methodology we will use to estimate the performance
of a parallel program, that is divided into: a) the use of an architectural
model to predict the performance degradations related to the shared mem-
ory subsystem of multi-cores; b) the use of pattern-specific models to predict
the performance of each parallel pattern implementation and c) the use of a
generic methodology to evaluate the performance of the graph of modules that
compose the parallel application.

• Chapter 5 develop the model for a specific commercial architecture: the
Tilera TilePro64, that constitute an interesting example of a chip multipro-
cessor, given its 64 cores and the use of innovative solutions for the inter-
connection network, the cache coherence mechanisms and the use of multiple
independent memory interfaces on chip.

Part III: Optimizations where we analyze some optimization ideas especially
targeted to multi-core architectures. In this part we try to maintain generality by
not focusing on a specific architecture.

• Chapter 6 deeply analyze the problem of having multiple memory interfaces
on the same parallel machine. While this may seem an old problem, it is
important to notice that in this area chip multiprocessor differs from both
SMP and NUMA architecture, and how to exploit them at best has not yet
approached systematically by the research world.

• Chapter 7 introduce to the problem of automatically handling cache coher-
ence on a large multiprocessor, and to the fact that, in some cases, the use of
a software-defined cache coherence mechanism may improve the performance
of the parallel application. We prove the idea by showing some preliminary
tests on the TilePro64 architecture, in which we are able to disable automatic
cache coherence.

Part IV: Wrapping Up conclude the thesis, by joining the results of Parts II
and III into the evaluation of several implementation choice for a module.

• Chapter 8 introduce a parallel module and evaluate, using the models of
Part II, three different implementations of a farm pattern on the TilePro64
architecture. The implementations extensively use, among the others, the
optimizations of Part III. The results are validated with the execution of these
on the real TilePro64.

• Chapter 9 present the conclusions of the thesis and the possible path towards
an integration of these results in ASSISTANT.

14 CHAPTER 1. INTRODUCTION

1.7 Current publications by the author

The following represents the publications that I worked on during my Ph.D. research:

• C. Bertolli, D. Buono, G. Mencagli, and M. Vanneschi. Expressing adaptivity
and context-awareness in the assistant programming model. In Proceedings
of the Third International ICST Conference on Autonomic Computing and
Communication Systems, 2009

• C. Bertolli, D. Buono, S. Lametti, G. Mencagli, M. Meneghin, A. Pascucci,
and M. Vanneschi. A programming model for high-performance adaptive ap-
plications on pervasive mobile grids. In Proceeding of the 21st IASTED In-
ternational Conference on Parallel and Distributed Computing and Systems,
2009

• C. Bertolli, D. Buono, G. Mencagli, M. Mordacchini, F. M. Nardini, M. Torquati,
and M. Vanneschi. Resource discovery support for time-critical adaptive ap-
plications. In The 6th International Wireless Communications and Mobile
Computing Conference. Workshop on Emergency Management: Communica-
tion and Computing Platforms, 2010

• C. Bertolli, D. Buono, G. Mencagli, and M. Vanneschi. An approach to mo-
bile grid platforms for the development and support of complex ubiquitous
applications. In Handbook of Research on Mobility and Computing: Evolving
Technologies and Ubiquitous Impacts, 2011

• D. Buono, M. Danelutto, and S. Lametti. Map, reduce and mapreduce, the
skeleton way. Procedia Computer Science, 1(1):2095 – 2103, 2010

• D. Buono, M. Danelutto, S. Lametti, and M. Torquati. Parallel patterns for
general purpose many-core. In Proceeding of the 21st Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, 2013

• D. Buono, T. D. Matteis, G. Mencagli, and M. Vanneschi. Optimizing message-
passing on multicore architectures using hardware multi-threading. In Paral-
lel, Distributed and Network-Based Processing (PDP), 2014 22nd Euromicro
International Conference on, pages 262–270, Feb 2014

• D. Buono, M. Danelutto, T. De Matteis, G. Mencagli, and M. Torquati. A
lightweight run-time support for fast dense linear algebra on multi-core. In
Proceedings of the 12th IASTED International Conference on Parallel Dis-
tributed Computing and Networks, 2014

• D. Buono, G. Mencagli, A. Pascucci, and M. Vanneschi. Performance analysis
and structured parallelisation of the spacetime adaptive processing computa-
tional kernel on multi-core architectures. International Journal of Parallel,
Emergent and Distributed Systems, 0(0):1–39, 0

1.7. CURRENT PUBLICATIONS BY THE AUTHOR 15

• D. Buono and G. Mencagli. Run-time Mechanisms for Fine-Grained Par-
allelism on Network Processors: the TILEPro64 Experience. In High Perfor-
mance Computing and Simulation (HPCS), 2014 International Conference on,
2014. To Appear

• D. Buono, T. De Matteis, and G. Mencagli. A high-throughput and low-
latency parallelization of window-based stream joins on multicores. In Par-
allel and Distributed Processing with Applications (ISPA), 2014 IEEE 12th
International Symposium on, 2014. To Appear

16 CHAPTER 1. INTRODUCTION

Chapter 2

Background: hardware and
software for parallel programming

In this chapter we describe the current state of the art concerning Chip Multipro-
cessors, both from a hardware and a software perspective.

We briefly classify and analyze the most common parallel programming tools
available today, including interesting research work that hopefully gives an idea of
ongoing research and future tools. We consider parallel programming in general,
not only targeted to multi-cores, to give a summary of the overall current state of
parallel programming.

Given the target of our thesis, we also introduce the most common parallel
performance models, and the hardware-oriented models that inspired the work of
this thesis.

Indeed, for the hardware perspective, we are not particularly interested in the
current state, because of its fast evolution, but in some way we want to “forecast”
how Chip Multiprocessors will be in the next years, to provide the basis for support
and cost models that will be suitable for the next years. We therefore do not focus
on a particular architecture, but present common choices for the various aspects of
a CMP, and use current and future architectures as examples.

2.1 Chip MultiProcessor architectures

Chip Multiprocessors inherit their ideas from Shared Memory Multiprocessors. In
fact, the first commercial multi-cores were just multiple multiprocessor-aware CPUs
inside a single chip, connected with the same mechanisms used on multiprocessor
configurations of that CPU, as with the Intel Pentium D processor in Figure 2.1.

Current CMPs are still the direct evolution of low-end SMP architectures of
the late ’90. These architectures were composed of 2 to 8 processors, and there-
fore used simple solutions that required small changes to uniprocessor CPUs: the
system bus become shared among the processors, requiring only the presence of

18 CHAPTER 2. BACKGROUND

P

C

P

C

M

Chip

Chip

Dual-Core
Pentium D

P

C

P

C

M

Chip

Chip Chip

Dual-Proc.
Xeon

Figure 2.1: The first commercial Intel multi-core architecture: the Pentium D pro-
cessor, compared with the corresponding single-core dual-processor architecture.

atomic operations and a snoopy-based cache coherence protocol to make these CPUs
multiprocessor-aware.

Things evolved quickly, and engineers faced again the same problems found in
large scale shared multiprocessors architectures: as the number of cores increase, the
interconnection infrastructure become more complex; snoopy-based cache coherence
protocols are not suitable, memory bandwidth is more important and so on.

In this section we will analyze the common choices for the important aspects of
a multiprocessor (and therefore also of a chip multiprocessor), both for the current
state and for a very likely future; throughout the section we present some architec-
tures, incrementally as the choices are described, ending with a complete description
of some current and future CMPs. In the multitude of processors, we chose three ar-
chitectures from different domains, to give an overall idea of the evolution in various
environments.

• AMD Opteron 6100[62]: this processor represent low and middle-end server
domains. Each processor is composed of 12 cores, and can be used in 4 proces-
sor configurations. This is not a pure CMP, because it is made by two 6-core
chips connected together as multiprocessor. There is therefore a mixture of
CMP and MP inside the processor. It is represented in Figure 2.2.

• Tilera TilePro64[162]: specifically made for multimedia and network pro-
cessing, this CMP is made of 64 general purpose cores, but cannot be used in
multiprocessor configurations. It is represented in Figure 2.3.

• IBM PowerEN[83]: targeted mainly at network processing, it is a CMP made
of 16 general purpose cores and some hardware accelerators; this architecture
will be available in the following years in up to 4 processor configurations. It
is represented in Figure 2.4.

These architectures are also compared with a large scale multiprocessor system: the
SGI Altix 3000[184] (Figure 2.5), a NUMA built with Intel Itanium 2[124] processors,
to give an idea of the differences between CMPs and MPs.

2.1. CHIP MULTIPROCESSOR ARCHITECTURES 19

P

P

P

P

P

P

Chip Single Processor Four Processor

L3 Directory

P

L2

P

L2

P

L2

P

L2

P

L2

P

L2

HyperTransport

H
yper T

ransportMemory

M
em

ory

P

P

Figure 2.2: The AMD Opteron 6100 CMP and its 4 processor configuration.

Tile

Sw

P

L2

Chip

Mem

Mem

Mem

Mem

N
etw

ork

I/O

Figure 2.3: Single Cores of Tilera TilePro64 and the overall CMP.

Single Processor Four ProcessorCore Cluster

P P P P

L2

PPPP

L2

PPPP

L2
Mem

PPPP

L2

PPPP

L2
Mem

Hardware
Accelators

NetworkI/O

PowerBUS

External PBUS

Figure 2.4: The IBM PowerEN: a core cluster, single CMP and 4-way configurations.

Board Machine

M1 M2 M3 M4

P

P

Node 0 Node 1

SHUB

M1 M2 M3

SHUB
P

M4

P
Network

Network Network

Figure 2.5: A large scale multiprocessor composed of single-core processors: the
internal node architecture and its interconnection.

20 CHAPTER 2. BACKGROUND

Special-Purpose Accelerators

The last years saw the strong emergence of accelerators explicitly developed to in-
crease the performance of specific classes of applications. In fact, the accelerator
concept has been always used in computer architectures to interface the general
purpose CPU with specific interfaces (such as network devices, audio/video inter-
faces, and so on); however, up to some years ago these devices were devoted to the
acceleration of a single, well specified, task. With the emergence of GPUs, these
accelerators became more and more “programmable”, up to the point that they are
currently programmed like general purpose CPUs. Given the availability of a high
number of (specialized) computing units, they are sometimes considered a specific
class of many-core architectures. After the emergence of GPUs, other classes of ac-
celerators (e.g. Digital Signal Processors - DSP or Field Programmable Gate Arrays
- FPGA) adopted the very same programming approach, unifying the programming
methodology for accelerators with the OpenCL parallel language.

Nevertheless, these are not general purpose parallel architectures, and as such
they do not allow the indiscriminate porting of any application (at least with remark-
able performance results), and they do not allow general interaction pattern among
control flows (usually threads), so only specific parallel patterns can be instantiated.
For these reasons we will not consider, in this thesis, this kind of special-purpose
parallel architectures.

Characterization of a Shared Memory Multiprocessor Archi-
tecture

Shared Memory multiprocessors are parallel computers composed of a (possibly)
large number of processors, usually identical, that share the main memory, i.e. each
processor is able to address every part of the main memory. The most important
characteristics of these architectures are:

• Processor architecture, that affects the performance of the sequential code;

• Interconnection network, among shared memory and processors;

• Memory bandwidth and organization, that affect the latency of load and
store operations;

• Atomic operations and synchronizations, necessary to handle simultane-
ous accesses to the same memory address among processors;

• Cache coherence, required to keep private caches updated;

• Number of processors that, in the case of CMP is usually a constant value,
while in MP represent the maximum number supported.

2.1. CHIP MULTIPROCESSOR ARCHITECTURES 21

2.1.1 Processor architecture

Core complexity All the processors are 64-bit, pipelined and superscalar. TilePro64
and PowerEN have very simple cores with in-order execution, 2 (PowerEN) or 3
(TilePro64) execution units and no floating point units. Opteron and Itanium are
much more complex, with floating point and SIMD units; Opteron is an out-of-order
processor, three-way superscalar with 6 execution units. Itanium is surely the most
advanced of the group, with its 11 execution units; it is, however, an in-order pro-
cessor because of its VLIW instruction set that allow exploiting ILP without the
high space and power consumption required by supporting out of order execution.

The different complexity is probably related to the domain of each processor: in
general purpose server domains processors have to maintain good performance on
sequential code and therefore inherit the complexity of high performance uniproces-
sor; when this is not necessary, simpler cores allow more cores per chip and lower
power consumption. For this reasons we think that both kind of processors will
remain in the future.

Caches A very important aspect of every processor is its cache hierarchy. All
the processors have separated L1 for data and instruction; Itanium have separated
L2 data and instruction caches, while in the others they are unified. Opteron and
Itanium provides also an L3 cache. Cache sizes are different for each processor, with
Opteron and Itanium having larger caches. Here CMP architectures start to diverge
from classic uniprocessors: Opteron and PowerEN share a cache level among cores.
For the PowerEN, the shared level is L2, while for Opteron is L3. In PowerEN
the cache is not shared among all cores, but in small groups: there are 4 groups
of 4 cores that share the L2 cache. This can be justified by the higher number of
processors: sharing a L2 cache among 16 processors would make the cache slower,
and therefore strongly limit the performance of the CMP. The Opteron, having only
6 cores and an L3, can share it among all the cores without performance problems.

Here again, we can highlight a trend for future architectures: as the number
of cores increase, caches will not be shared among all the cores of the CMP, but
eventually on small groups of cores (up to one as in the TilePro64).

Instruction Level Parallelism Another important aspect is how ILP (Instruc-
tion Level Parallelism) is extracted. Of the 4 presented processors, each one use a
different mix of techniques to exploit its superscalar architecture.

The Tilera TilePro64 core is the simplest one, because it just uses a VLIW
instruction set to let ILP being extracted by compilers. The PowerEN cores are
RISC-based and in-order: they have no way to extract ILP from the code, and
therefore use hardware multithreading, obtaining multiple independent instructions
from different threads. The implemented multithreading is a 4-way SMT where
instructions are fetched from each of the 4 threads at every clock cycle. Itanium
is a VLIW processor like the TilePro64, but far more complex, and latest versions

22 CHAPTER 2. BACKGROUND

implements a 2-way hardware multithreading that is, however, different from SMT
because at each clock cycle instruction are executed only from the selected thread.
Opteron cores implement out-of-order execution; the technique seems enough for
the architecture, and therefore no hardware multithreading is implemented.

For a future trend, hardware multithreading (in the form of SMT) is having
more and more success. In fact, except Opteron, all the others high end processors
(SPARC, Power, Xeon) are using it, together with out-of-order execution.

2.1.2 Interconnection network

One of the most important part of a multiprocessor computer is the interconnection
network that connects the processors and the shared memory. Processors exchange
data each other, and the way (and the speed) this communication happens is mostly
defined by the interconnection network.

The first two important interconnection networks are the crossbar and the bus.
The first (Figure 2.6(a)) is an all-to-all connection, that therefore keeps the latency
fixed, while the second (Figure 2.6(b)) represent a single link to which each node
is connected. Here the latency is proportional to the link length (and therefore
the number of nodes). Fat Tree (Figure 2.6(e)) is the most used interconnection
network for large scale multiprocessor. The SGI Altix in Figure 2.5 uses two Fat
Tree. This interconnection is basically a Tree that increase link bandwidth from the
leafs to the root. This minimizes conflicts in the networks and gives a very high
bisection bandwidth, maintaining a low degree for the nodes and increasing latency
with a logarithmic scale. However, this is an interconnection for a group of N peers,
i.e. NUMA architectures. To connect processors to a globally shared memory (i.e.
UMA-SMP architectures) an interconnection that maintain these properties is the
butterfly (Figure 2.6(f)) (that can be also used as a Fat Tree to allow inter-processor
communications). Another common interconnection is the k-ary n-cube, especially
in the form of rings (n = 1, Figure 2.6(c)), meshes (n=2, Figure 2.6(d)) and cubes
(n=3). In these networks every node is both a computing and a routing node.
Crossbar is obviously one of the most efficient networks, keeping latency constant
and minimizing conflicts; however it can be applied to a limited number of nodes
because of the number of links (n2). Bus and rings are efficient and simple for a
low number of nodes, as their latency is proportional to the number of nodes. The
other interconnections become interesting when the number of nodes grows.

For the studied processors, the TilePro64, having many cores, uses a mesh that
allow a good scalability and is easy to implement on chip. Inside the chip, the
AMD Opteron have a crossbar among L2 caches and L3, while memory is directly
connected to the shared L3; in multiprocessor configurations a partial crossbar (some
links are missing) is used among processors. The PowerEN is in some way the most
complex infrastructure: groups of 4 cores are connected to the shared L2 cache using
a crossbar, and these groups are connected each other and to the memory using an
enhanced bus. Multiple processors are then connected using a crossbar.

2.1. CHIP MULTIPROCESSOR ARCHITECTURES 23

(a) Crossbar (b) Bus (c) Ring

(d) Mesh (e) Fat Tree (f) Butterfly

Figure 2.6: Common interconnection network.

It should be therefore clear that CMPs currently have a hierarchy of intercon-
nection networks. While this trend could continue, we strongly believe that, as the
number of core will increase, low latency interconnections like mesh, fat tree and
butterfly will be also implemented on-chip[148], following the example of TilePro64
processor; in this case hierarchical interconnection will be probably removed.

2.1.3 Memory bandwidth and organization

One of the challenges with CMPs is keeping a good memory bandwidth and low la-
tency. In common multiprocessors, each processor have its own interface to memory.
Keeping this rule in CMPs is impossible because of pin-count problems: memory
interfaces are (and will remain) proportional to the number of chips, and therefore
considerably less than the number of processors. Opteron uses a single memory in-
terface, shared among the 6 cores, PowerEN have two interfaces and the TilePro64
four. This can create memory bandwidth problems, as this must be divided among
cores. Caches can help in keeping memory requests low, but are not always suf-
ficient. If the CMP have a low number of cores or a single memory interface, we
usually have an UMA architecture. This is the case of the Opteron (a single inter-
face directly connect to the shared L3) and of the PowerEN (multiple interfaces but
connected using a bus). With complex interconnections and multiple interfaces the
architectures usually become NUMA, for example with the TilePro64, where the
interconnection is a mesh and the memory controllers are placed at the borders of
the chip.

Opteron and PowerEN, however, can be composed in Multi-chip architectures;

24 CHAPTER 2. BACKGROUND

in this case we will have a hierarchical organization: SMP inside the chip, NUMA
outside.

2.1.4 Atomic operations and synchronizations

Having a shared memory, synchronizations among processes (and processors) can be
implemented accessing memory with atomic operations. However in CMPs synchro-
nization using memory accesses could be costly, considering how “near” the cores
are and how far the memory is. An inter-core synchronization (for example using
the shared caches) could be much faster and allow finer grain parallelism. Moreover,
with hardware multithreading, a way to synchronize threads running on the same
core could offer even better results.

Many work in literature emerged in this area[71, 89, 167, 180], however in current
CMPs the common way to synchronize is usually via atomic memory operations.
PowerEN introduce a sort of “hardware” passive wait that stop executing a thread
until a specified memory location is written by other threads. This can be considered
a first step towards optimized synchronization mechanisms for CMPs. TilePro64
allows the program to directly use the mesh to exchange data (without accessing
memory); this feature, while not technically a synchronization mechanism, can be
used to implement fast inter-core synchronizations.

2.1.5 Cache coherence

An important problem in shared memory multiprocessors is keeping caches updated;
this is usually solved implementing some automatic coherence mechanism that keeps
caches updated. However this mechanism have a cost, which increase with the
number of cores.

Caches maintain some additional bits for every cached block, which allows them
to decide which operation perform in case of read/write. This state, however, must
be updated when any processor perform operations on the same memory location;
cache coherence mechanisms are usually divided in snoopy-based and directory-based,
based on how caches are notified[64]. Snoopy-based cache coherence concept is very
simple: memory access operations are notified to each processor (core) in the system.
This way caches have no problems in updating the state of their blocks. However
this requires broadcasting every access operation to anyone; it is convenient only
with a limited number of cores, and is almost cost-free with bus interconnections
(operations are always seen by all the nodes connected to the bus). For interconnec-
tions that are more complex a directory-based mechanism is usually chosen. The
idea is to store somewhere information about which cache contain a block. This way,
memory operations can be sent only to the set of caches that are actually interested.
This approach minimizes traffic in the interconnection networks, however keeping
and accessing the directory have a cost in term of space (the directory must reside
in a fast memory) and increased memory access latencies.

2.2. PARALLEL PROGRAMMING ON CHIP MULTIPROCESSORS 25

Of the architectures studied, the Altix uses a directory-based cache coherence
protocol; Opteron cache coherence is snoopy-based inside the chip (between L2 and
L3) and directory-based among different chips. Here a configurable portion of L3
cache is used to implement the directory (Figure 2.2). In the PowerEN architecture
the enhanced Bus provide cache coherence, supposedly via a snoopy-based mecha-
nism, while the TilePro64 cache coherence is directory-based.

There are, however, some classes of computation that does not necessarily re-
quire an automatic cache coherence protocol, and permit efficient software-based
cache coherence[1]. For these computations it is advisable to turn off automatic
mechanisms and leave the work to the programmer; unfortunately this is usually
not possible with current architectures. The PowerEN seems to allow the definition
of non cache coherent memory pages; however, given the snoopy-based nature of
cache coherence, the improvements should be low. TilePro64 allow defining cache-
coherent domains, i.e. the set of memory locations that need automatic cache co-
herence. This way we could be able to remove any kind of cache coherence traffic
and overhead.

2.1.6 Number of cores

Probably the most important property of a CMP, it is however strongly influenced by
all the others presented before. Chip size is fixed, and a balance of all the components
is important. This is why we still do not have an SGI Altix 3000 on chip: chip space
is simply not enough to permit this configuration. The lower complexity of PowerEN
and TilePro64 cores, for example, allows a larger number of cores inside a single chip
(64 against 6 of Opteron). This imply a trend towards CMP with many simple cores,
and it seems clear that in the future there will be two “families” of CMPs: complex
cores with a relatively low parallelism, and simpler cores with higher parallelism.
Complexity is probably the reason because Fat Tree and butterfly interconnections
are still missing: meshes are simpler, take less space and for the current number
of cores give performance similar to the other interconnections. However, in some
years, a single chip will surely allow hundreds of complex cores, and then even more
complex interconnection will have to be used.

2.2 Parallel programming on Chip MultiProces-

sors

CMPs can be programmed using all the tools previously available for shared memory
multiprocessors. Considering that many of these are also given in “multiprocessor”
configurations, with this solution we can expect good performance, aligned with
that obtainable with comparable SMP multiprocessors. However, the specific fea-
tures of CMPs (i.e. shared caches, hierarchical interconnections and fine-grained
synchronizations) will not be exploited using these tools. For this reason a lot of

26 CHAPTER 2. BACKGROUND

new parallel programming environments emerged; however, while specifically tar-
geted at CMPs, many of these are very similar to already existing tools, and still
fail to exploit specific features of multi-cores.

High level parallel programming is, in some forms, well known today, and even
many of the tools we will describe here feature some “high level” concept. How-
ever, this is usually introduced with a “software-engineering” purpose, to speed up
writing of parallel code. All the concepts related to performance portability and
predictability, typical of structured parallel programming[18, 19, 139, 172] are com-
pletely missing. If a programmer want have an efficient code for a specific CMP, he
have to write the program using low-level languages, and write code strongly related
to the specific platform. In the same way, detailed performance predictions are not
achievable, even with low-level programming, because detailed cost models of the
architectures are still unavailable.

In short, a High Level Parallel Programming targeted at CMP is still missing,
and programmers are thus forced to write “low-level” parallel code, strictly related
to a specific CMP architecture, to exploit these features.

Parallel programming tools are usually divided in two large classes: programming
languages and libraries. In the following sections we present the most important
tools available for shared memory multiprocessing and those specific to CMPs.

2.2.1 Programming Languages

Parallel programming languages are usually extensions to well known sequential lan-
guages like C, Java or Fortran, that add specific constructs to define and coordinate
multiple execution flows. However, some of them are completely new programming
languages designed to write parallel programs.

In all of the presented, with the exception of Erlang and Go, cooperation among
execution flows (threads, processes, etc.) is expressed using shared memory, and
the mapping of flows on processing resources is done by the run time support of the
language. While these languages performs well on SMP architectures, NUMA and
distributed memory are difficultly exploited this way. For this reason some of them
introduce the concept of a “Partitioned Global Address Space”: the shared address
space is logically partitioned, and for each flow a concept of “affinity” to a partition
is given. With PGAS an execution flow conceptually have a fast local memory and
a remote, slower memory, allowing good performance on NUMA and, with some
limitations, on distributed memory architectures.

Most of these languages are to be considered “low level parallel programming
languages”, because programmers define all the execution flows and the cooperation
among them. However, with respect to classical shared memory/message passing
libraries, they are at a slightly higher level, because the programmer is somehow
helped in defining the parallel program. The only notable exception is probably
SMPSs, which is definitely at a higher level, but not sufficiently abstract to allow
performance portability.

2.2. PARALLEL PROGRAMMING ON CHIP MULTIPROCESSORS 27

OpenMP[66] is one of the most common parallel programming language, and
considered by many the de-facto standard for shared memory parallel programming.
It is defined by a group of hardware and software vendors, including AMD, Cray,
HP, IBM, Intel, Microsoft and many others.

Indeed it is not a complete programming language, but an extension that can
be supported by C, C++ and Fortran compilers. It defines an “accelerator-style”
programming, where the main program is run sequentially and, in specific points,
code is accelerated running in parallel.

The support to the most used sequential languages, the possibility to incremen-
tally parallelize code and the fact that many compilers implement it, makes this
“language” one of the most portable among platforms and architectures. However
this “code portability” comes at the price of unpredictable performances: each com-
piler can implement the language in different way, potentially giving very different
performance result even for the same parallel architecture.

Given its shared memory environment, OpenMP is specifically targeted to shared
memory multiprocessors; some implementations support also distributed systems,
but with very poor results. With CMP architectures OpenMP perform as good as
in SMP architectures, but does not exploit any specific feature of CMPs.

Java [135] is a sequential programming language originally developed by Sun
(now Oracle); it provides multithreading and RPC support, that can be used to
write parallel applications for both shared memory and distributed memory archi-
tectures. However, while being an high level sequential language, parallel support is
given in a very low-level fashion, even lower than OpenMP; moreover its sequential
performance are usually lower than languages like C or Fortran and is therefore
rarely used in high performance parallel programming.

Cilk [85] is conceptually similar to OpenMP; it is defined as an extension of
the C language with annotations to express thread spawning and synchronizations.
Thread scheduling is completely handled by the run time support of the language.

An interesting feature of this language is that, removing annotations, the re-
sulting program must be a correct C program that sequentially execute the same
computation of the parallel program.

The language itself is quite limited in expressiveness, but allows nested paral-
lelizations. Produced applications can be executed only on shared memory archi-
tectures. Cilk is also one of the few academic parallel programming tools supported
by the commercial industry: Intel is currently selling a specific version, called Cilk
Plus, that specifically support its processors. Yet, to our knowledge, there is no spe-
cific support for CMPs in the run time, which is able to run on any shared memory
architecture.

28 CHAPTER 2. BACKGROUND

Berkeley Unified Parallel C [77] differs from the previous languages because
uses a Partitioned Global Address Space. This feature allow it to be ported to the
most important distributed memory architectures. Aside from that, the program-
ming model is still a low-level shared memory environment, where execution flows
synchronize with barriers and locks. Some collective operations are given by the
language; for these operations the run-time support select the best among a set of
defined implementations; the language offer, therefore, a (limited) approach to per-
formance portability. Another interesting point of UPC is that its run time support
is being optimized for CMPs[40, 134].

Erlang [177] is a message-passing parallel programming language originally de-
veloped by Ericsson. It is therefore very different respecting to the previous ones. In
Erlang the set of execution flows operate in a local environment, and cooperate by
using send and receive primitives. It is therefore mainly targeted at distributed sys-
tems, but recently shared memory implementations has been produced with results
aligned to common shared memory programming languages, and very interesting
results even on systems with a large number of cores such as the TilePro64 [190].
Giving a message-passing environment, this is still a low-level parallel programming
language, exactly like the previously presented.

Go Programming Language [149, 86] is a recently introduced object-oriented
language that exhibits a C-like syntax and greatly focuses on concurrency. Paral-
lelism is automatically achieved by using “goroutines”, functions specifically marked
to be executed concurrently. Goroutines can exchange data by using asynchronous
channels; thus, go highly resemble a low-level message-passing parallel language.

SMP Superscalar[141] and OmpSs[76] are interesting parallel programming
environments based on compile time annotations (similar to OpenMP). OmpSs rep-
resent a sort of umbrella to capture the same concept in different architectures
(SMPSs for multi-cores, GPUSs[17] for graphic processing units, ClusterSs[158] for
clusters), with a uniform programming model.

Parallelism in SMPSs is obtained following a different approach, in which the
programmer writes a program composed of tasks and dependencies among tasks.
At execution, a data-flow graph of tasks is created according to their dependencies,
and a run-time support is used to dynamically schedule independent tasks onto a
parallel architecture. This approach is interesting because the programmer is only
required to define tasks (i.e. functions) and dependencies among tasks; parallelism
is automatically achieved by the run-time support. The same approach have been
exploited in the past even by skeleton libraries (in particular Muskel[8]) and, during
this thesis, by our research group on FastFlow[41] . Problems of this approach are
mainly the selection of task sizes (in terms of computation time): theoretically, the
smaller the tasks are, the higher the parallelism is; however small tasks requires

2.2. PARALLEL PROGRAMMING ON CHIP MULTIPROCESSORS 29

a larger dependency graph, and a higher impact of run-time overhead, that neg-
atively affects the overall performance. The correct sizing usually depend on the
target architecture, a factor that greatly influence the performance portability of
this approach.

OpenCL [105, 155] targets specific architectures, and as such represent a con-
ceptually different approach w.r.t the other languages. Initially defined to sup-
port GPUs, it now targets a wide range of accelerators, such as GPUs, FPGAs[65],
DSPs[115] and classic multi-core architectures. Parallelism in OpenCL is a first
citizen, as it is required to exploit these accelerators; however, the parallel model
is quite different, as it does not allow indiscriminate cooperation among parallel
entities. The main idea is that each parallel entity (called kernel) is run on the
accelerator independently, while the host processor is in charge of distributing data
to the accelerator. Of course this parallelism model (that strongly resemble a data-
parallel map paradigm) is driven by the architecture of the original target accelera-
tors (GPUs). In the following years the language has been extended to fully exploit
new GPU characteristics that adds flexibility to the model, such as device partition-
ing, built-in kernels, atomic data and nested parallelism. The language represent,
in fact an extension to C/C++; still, we do not consider this an high level parallel
language, mainly for the absence of real parallel patterns and the need to explicitly
decide which part of the code should be run, and how, on the group of accelerators
available.

2.2.2 Libraries

With respect to programming languages, libraries are more heterogeneous, ranging
from low level to high level parallel programming. However parallel libraries are
somewhat limited with respect to programming languages, because static analysis
and code optimization cannot be made inside a library. At the same time writing a
library is very fast, compared to the work needed to create an optimizing compiler
for parallel code.

There are many different libraries, but many of them share the same properties.
Here we briefly present a selection that capture the various programming levels
offered, to give an idea of the extended possibilities given by libraries, and at the
same time, their limitations.

Posix Threads [50] is one of the most famous low level parallel programming
library for shared memory environments. Can be found in almost every operating
system, giving access to OS level threads and synchronization mechanisms. To
our knowledge, there are no distributed memory implementations of this library.
Moreover the library does not distinguish between CMP and MP.

30 CHAPTER 2. BACKGROUND

Message Passing Interface [153] is the counterpart of the previous library,
which allow processes with local environment to exchange data via send and receive
primitives. Mainly targeted at distributed architectures, offer specific implementa-
tions for almost any high-performance interconnection network. At the same time,
shared memory implementations are provided, that allows the use of MPI even on
NUMA and SMP multiprocessors.

Intel Threading/Array Building Blocks [142] are two libraries provided freely
by Intel to be used with their multiprocessors. They both define a set of parallel
patterns to speed up parallel programming. Threading Building Blocks is mainly
a stream-parallel library, while Array Building Blocks is targeted at data-parallel
programming. However the given patterns are not very powerful, and it seems that
there are no specific optimizations for CMP architectures.

FastFlow [12] is one of the first product specifically targeted at CMPs. It is a
library created by our research group to exploit fast communications among cores
of a CMP architecture. The library works at two different levels: it provides an
efficient lock-free and wait-free communication channel that can be used directly by
the programmer and, on top of this, a generic master-worker skeleton that allows
the definition of stream parallel and data-flow computations. At the beginning of
this thesis, FastFlow was not a complete high level parallel programming library,
because it did not offer a wide set of patterns (just pipeline and farm). In the
following years, with the introduction of the map data-parallel pattern and of a
generic data-flow scheduler[41], and even the support for distributed systems[5],
the library has become more complete. However, no cost models are used, and
performance tuning is still a concern of the programmer.

Skandium [114] is a Java library to write shared memory parallel programs. It
is a skeleton-based high level library, which provides a wide and almost complete
set of nestable task and data parallel skeletons. While the author specifically target
the library for multi-core architectures, the library is based on pure Java threads,
making no distinction between MP and CMP; moreover the use of a Java language
can partially limit its performance.

SkelCL [154] is a skeleton library targeting OpenCL. It allow the declaration of
skeleton-based applications hiding all the low-level details of OpenCL. The set of
skeletons is limited to data-parallel patterns: map, zip, reduce and scan, but it is
unclear whether skeleton nesting is allowed. All the problems related to cost model
are still present, and the library is limited (for our ideas) because of the target
language and architectures.

2.2. PARALLEL PROGRAMMING ON CHIP MULTIPROCESSORS 31

2.2.3 Our vision of parallel programming

After this brief introduction to parallel programming, we end the section describing
our vision on parallel programming environments, which will be extended in the
next chapters. This idea finds its roots on the ASSIST[172] programming language
developed by our research group some years ago. In our idea, low level libraries
are very important, as they give complete control of the parallel application. This
surely makes programming hard, but it is the only way to fully exploit a parallel
architecture. They can be seen like the assembler language for sequential program-
ming. Their existence is necessary to write good application; however, exactly like
assembler, low level parallel libraries should not be used directly by programmers,
but by means of compilers. In the opposite way, high level parallel programming li-
braries are somewhat less useful: while they offer a way to express parallel patterns,
they usually cannot add platform-specific optimizations, analyze the user code or
choose among a set of different implementations for the specific pattern.

We strongly advocate the need of a parallel compiler that, in addition to allow
programmers to write high level parallel applications, analyze the parallel program
to insert specific optimization (exactly like sequential compilers do), select the most
effective implementation and provide platform-specific optimization. Many of them
will be made using a cost model, to allow the compiler to compare different solu-
tions. To our knowledge, no current parallel programming environments follow this
methodology. However, among the plethora of research-oriented programming lan-
guages, we can find interesting approaches that somehow resemble our concepts. We
analyze one of the most interesting, PetaBricks, to highlight the differences between
the two programming environments.

PetaBricks: a (conceptually) similar approach

PetaBricks[14] is a novel programming language currently developed at MIT. The
driving idea behind PetaBricks is that the best algorithm to perform a task may
depend on the target architecture. In current languages the algorithmic choice is
assigned to the programmer, as compiler optimizations are only in charge (at most)
of optimizing the selected code (algorithm) for the specified architecture. Of course,
a program may contain several algorithms to achieve a single task, but the selec-
tion of the proper algorithm is still a duty of the programmer. Some interesting
approaches to auto-tuning libraries (i.e. software libraries that automatically select
the best algorithm for the target architecture at compile-time) have been presented
in the past: notable examples are the ATLAS[181] library for linear algebra and
FFTW[84] to compute Fast Fourier transforms. Yet in these cases all the code re-
quired to select the best algorithm (by using specific benchmarks on representative
input) was produced by the programmer of the library. PetaBricks tries to autom-
atize the effort, with a language that allow the definition of multiple algorithms to
perform a task, and an optimizing compiler able to select the best configuration for

32 CHAPTER 2. BACKGROUND

the target architecture. PetaBricks is also defined as an “implicitly parallel pro-
gramming language”, as the algorithms are defined in such way that parallelism can
be extracted automatically by the compiler. From this point of view the generated
parallel code follow the same approach of SMP Superscalar: the code is composed
of tasks, and a dependency graph among tasks is computed at compile-time; tasks
are then executed, in parallel, by a dynamic scheduler that assign independent tasks
to different cores.

The approach of PetaBricks is indeed towards performance portability, and con-
firms that current tools are not sufficient to achieve this level of portability. Never-
theless, several differences emerge w.r.t our ideas. PetaBricks works at the algorith-
mic level, while our approach is more oriented at exploiting different parallel version
of the same algorithm, therefore targeting different (but partially overlapping) con-
cepts.

The key difference, however, reside in how optimizations (and therefore the selec-
tion of the best choice) are achieved in the two approaches. PetaBricks rely in an au-
totuning system based on a specialized evolutionary algorithm called INCREA[13].
The “genome” consist in the search space of the possible algorithms (and algorithm
combinations); INCREA evaluate fitness by running candidate programs on repre-
sentative inputs. Our approach in optimization is completely different, as we use
cost models to evaluate each solution; therefore we do not need to run the (parallel)
program on sample inputs, but to search, in the space of possible parallelizations,
the one that minimizes the cost model. We believe that our approach is also more
feasible to exploit adaptivity on dynamically changing environments, where the cost
model can be used to drive reconfiguration by estimating the final result at run-time
without the need of specific, possibly heavyweight, benchmarks. Models allow us
to predict the behavior and let us use well known approaches such as the optimal
control theory, introduced in a previous work of our research group[129].

2.3 Performance model for multiprocessors

Given the focus of the thesis, we also briefly present the most important models
currently used to predict the performance of a parallel application, and explain why
they are not suitable for our work. Then, we introduce the reader to hardware-
oriented performance models and their use in the past years.

2.3.1 Algorithm oriented performance models for multipro-
cessors

The most common parallel performance models are built for parallel algorithm de-
signers, which are not interested in particular architectures, but looks for algorithms
that perform well in general. The models are therefore based on an asymptotic pre-
diction of the performance, exactly as the complexity order is analyzed in sequential

2.3. PERFORMANCE MODEL FOR MULTIPROCESSORS 33

algorithms.
The idea of allowing a simple and machine-independent study of the algorithm

is indeed in contrast with our idea of a detailed and machine-dependent prediction.
These models are not much useful for us and are presented just for the sake of
completeness.

PRAM

The Parallel Random Access Machine[80] models a shared memory abstract machine
with a possibly infinite number of processors. The parallel computation is described
as a sequence of Read - Compute - Write executed by each processor. These se-
quences are synchronously executed by each processor, which can read and write
any location of the shared memory. Memory accesses and synchronizations among
processors are considered cost-free, and the time complexity is given by the number
of sequences executed by the longest running processor. This model obviously rep-
resent a very abstract parallel machine, and can be useful only for asymptotic study
of algorithms

BSP and Multi-BSP

The Bulk Synchronous Parallel[169] (BSP) is another abstract parallel machine. It is
similar to PRAM, except for the fact that consider synchronization and communica-
tion costs. In BSP each processor is assumed to have a local memory, and cooperate
with the other processors exchanging data. A computation is defined as a sequence
of “superstep”; in each superstep a processor makes a local computation, send re-
quired data to other processors and then wait the end of the superstep of other
processors. The cost of each superstep is defined as maxpi=1(wi) + maxpi=1(hig) + l,
with wi is the cost of the local computation, hi the number of messages sent, g
the cost of sending a message and l the cost of the barrier. The complexity of the
entire computation is simply given by the sum the supersteps. Just adding these
few parameters made the model much more detailed and realistic. However, using
synchronous superstep greatly simplify the model, and differ from multiprocessor ar-
chitectures where processors are independent and can synchronize each other with
point-to-point synchronizations.

With the emergence of multi-core architectures the author of BSP proposed an
extension, called Multi-BSP[170], that address the existence of a memory hierarchy,
and thus different levels of sharing among processors. Multi-BSP is a multi-level
model, in which each level is composed of supersteps, retaining the initial ideas
of BSP. According to the author itself, the model is still proposed to evaluate the
complexity of parallel algorithms, and not to precisely estimate the performances of
the algorithm on specific architectures[170]:

The goal here is to identify a bridging model on which the community
can agree, one which would influence the design of both software and

34 CHAPTER 2. BACKGROUND

hardware. It will always be possible to have performance models that
reflect a particular architecture in greater detail than does any bridging
model, but such models are not among our goals here.

LogP

LogP[63] is one of the last algorithm oriented performance models developed. Rec-
ognizing how far were previous models from real parallel machines, the authors tried
to describe an abstract machine that, while being easy to model, could be similar to
real hardware. Massively parallel machines are generally distributed memory multi-
processors; LogP model that kind of parallel architectures by defining the number of
processors(p), the communication bandwidth(g), the communication delay(L), and
the communication overhead(o). While considering the properties that roughly de-
fine a parallel machine, the model abstract from the internal hardware of the nodes
and from the details of the interconnection network (routing, topology, etc.). Pro-
grams are then defined as asynchronously cooperating processes that can exchange
data with a well defined cost. It is a sort of extension of BSP, where programs do
not follow synchronous steps and the cost of exchanging data is more detailed. It is
still, however, a rough model that can be useful to write good parallel algorithms,
but cannot be used to compare architectures or different implementations of the
same program.

2.3.2 Hardware-oriented performance cost models

The idea of specific performance models for parallel patterns was introduced a few
years after the introduction of skeletons, and already exploited in P 3L[18] to select
the so-called “implementation templates”. These, however, modeled the perfor-
mance of the parallel pattern with an approach similar to that of LogP, taking the
sequential code as a “black box”, with specific, immutable, characteristics. While
this is usually true for distributed architectures, where each program is executed in a
different machine that is loosely coupled with the others, in multi-core architectures
the situation is really different, as we observe several kind of interactions and shared
resources that may affect the performance of the sequential code, and thus affect
the final result in term of performances.

We therefore extend the original concepts presented in P 3L[139] and employed
in SkiE[19], ASSIST[172] and initial versions of ASSISTANT[32], by introducing an
architecture model, that allow us to predict the performance degradation that occur
when multiple processes are executed on the same multi-core chip. It is widely known
that the major source of degradation is the sharing of the memory subsystem. One of
the first to analyze this form of degradation has been Bhandarkar[36], that modeled
the processor-memory subsystem with the queueing network in Figure 2.7, where
each processor generate a memory request and then stop its execution waiting for
the response.

2.4. SUMMARY 35

P1

P2

Pn

M2

M1

Mk

Figure 2.7: Bhandarkar’s queueing network to model the memory contention.

From his seminal work many extensions were produced, mainly in the ’80, to
model the emerging parallel architectures of that days[3, 97, 122, 164]. The focus
of these works was, however, usually different from our perspective: most of them
are more interested in mathematically sound approximations, without caring of the
possible applications of the model, or in analyzing the asymptotic behavior of an
hypothetical architecture, by selecting the parameters of the system in a realistic,
but not program-driven, way [3, 176, 188].

However, there were a small amount of work that proposed, as we are doing, to
use these models in the performance evaluation of a parallel program [2]. Still, to
our knowledge, none of these addresses the problem specifically for multi-cores.

2.4 Summary

In this chapter we introduced the reader to the world of chip multiprocessors, and in
particular to their hardware features and the programming models currently used.
Given the level of details of certain works, it was not really feasible to introduce and
describe all of them here. We therefore decided, for the sake of readability, to keep
this chapter at an introductory level, and further describe the important works in
the following chapter, when the reader will have the tools to understand them.

We presented the current state-of-the-art in CMPs and the most feasible future
trend, in which the amount of processors per chip will increase to a point that
programming these chips will become even more difficult.

We highlighted the most important problem in software development, which is
the absence of complete environments especially targeted at multi-core, able to fully
exploit these architectures without a manual intervention of the programmer.

Finally, to control the complexity of these and future chips, we advocate the
need of a different approach to performance modeling, which should be used not
only to evaluate the asymptotic performance characteristics of an algorithm, but
also to compare, at a very fine level, the performance of different implementations.

36 CHAPTER 2. BACKGROUND

Chapter 3

Structured parallel programming
to solve the multi-core problem

In this chapter we present our methodology to solve the problems of parallel pro-
gramming on multi-cores.

We introduce the general concepts of a structured programming model and mo-
tivate the need for such kind of programming. Then, we describe our model, that
finds its roots on the ASSIST programming language developed by our research
group some years ago, and compare it with respect to other classic structured pro-
gramming models. We will not provide, however, a precise definition of the language,
as this is beyond the scope of this thesis: the purpose of this chapter is to under-
stand the level of abstraction provided by the model. Abstraction is, indeed, the
strength of our approach, that let us automatically and transparently create and
transform parallel code without user interactions. In the last part of the chapter we
will introduce the workflow of our parallel compiler, highlighting the open research
points that will be partially addressed in this thesis.

3.1 The need for high level parallel programming

Since its introduction, parallel programming was strictly related to HPC environ-
ments, in which programmers were usually willing to write parallel code by mean
of low level libraries that, giving a complete control over the parallel application,
allowed them to manually optimize the code and exploit at best the parallel architec-
ture. This programming methodology exposed its first problems with the emergence
of cluster and grid computing, when the parallel architectures become dynamic and
heterogeneous, therefore limiting the possibilities of ad-hoc optimizations. The re-
cent massive introduction of parallel architectures in every computing device, and
thus in every computing sector, critically exposed the lack of proper tools to easily
implement a parallel application: the industry cannot afford the cost of re-writing
(or even re-tuning) an application for every available computing architecture.

38 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

For this reason a lot of parallel programming tool were introduced in the last
decade, both by the academic and by the industrial world. Despite the increasing
effort (especially of the scientific environment), automatic parallelizers (i.e. com-
pilers that automatically extract parallelism from a sequential program) are still
ineffective in fully exploiting parallel architectures, rarely providing good speedups
even on 4 and 8 cores [52, 82]. To the current state of the art, in short, a proper
rewrite of the program is needed to exploit parallelism. In this case, a proper mix
of ease of use and performance is still the main concern of researchers. It is widely
acknowledged that one of the mayor problems to be addressed by a parallel model
is portability. Indeed, portability for parallel programs exhibit a twofold nature:

1. code portability that is, as for sequential programs, the ability to compile
and execute the same code on different architectures;

2. performance portability that represent the ability to efficiently exploit the
underlying parallel architecture.

Performance portability is indeed very important: a parallel program that does not
exploit the architecture must be rewritten, thus nullifying most of the benefits of code
portability. It is widely acknowledged by the scientific literature [69, 171, 152] that
performance portability is achievable only by using a high-level approach to parallel
programming: exactly as in sequential program, were portability is guaranteed by
sequential high-level languages, we need to define parallel constructs that allow a
proper compiler to produce efficient code for any architecture.

In other terms, by using a high-level parallel model, we are able to describe our
parallel application and be sure that it will perform reasonably well on the wide
choice of parallel architectures available today.

In the previous chapter we described a wide set of programming models; beside
from the common low-level libraries (i.e. Posix Threads and MPI), all the current
tools express some characteristics of high-level parallel programming, i.e. help the
programmer by easing the burden of writing parallel applications. For example,
OpenMP uses a shared-memory programming model, but allow the programmer
to extend sequential code by mean of annotations, without explicitly writing the
parallel threads. The programmer must, however, know basic concept of the re-
sulting parallelization to ensure program correctness. OpenMP also allows specific
architecture-driven optimizations, i.e. the same annotated code can be “compiled”
in different programs depending on the target parallel architecture. However these
optimizations are usually quite simple; furthermore, in many cases a detailed knowl-
edge of the parallel implementation and proper annotations or code reorganizations
are required to ensure good parallel performance.

The same concept apply, more or less, to all the languages and libraries: they
help the programmer in many ways, especially hiding details typical of low-level
parallel programming, but they do not allow that kind of performance portability
described before.

3.2. STRUCTURED PARALLEL PROGRAMMING 39

3.2 Structured parallel programming

Structured parallel programming is probably the most interesting class of high-level
parallel models. It started with the concept of algorithmic skeletons defined by Cole
[61] and has been successfully applied basically in any possibile parallel environment,
starting from clusters[67] and shared memory machines[114], to grid[7], cloud and
pervasive environments[32].

Two of the most important point of structured parallel programming are the
ability to automatically create different parallel implementations starting from the
high-level description, and the parametric nature of the produced code, that is able
to run with different parallelism degrees. These points are the basic building blocks
to ensure performance portability on the various architectures. Structured parallel
programming also allows composability : a parallel code can be mixed with others,
such that an application can be described as a collection of parallel kernels, instead
of a single, big, large parallel code. Composability also allow reuse: the same kernel
can be reused inside different programs with no modifications.

Our research group history in structured parallel programming is quite long,
starting with the P 3L skeleton language in 1992, and culminating with ASSIST in
the last years. These projects incubated many interesting developments for parallel
programming: we implemented, among the others, parallel code restructuring[4, 6],
to better exploit the composition of parallel kernels; efficient fault tolerance [35],
and dynamic reconfigurations up to self-adaptive programs[127, 125], i.e. programs
that are able to exploit performance portability dynamically, at run-time, to better
fit dynamic environments such as grids or clouds. Finally, we also extended the con-
cept of High Performance Computing to Grid computing[7] and lately to Pervasive
Grids[32].

We never, however, really focused our efforts in multi-core and shared memory
architectures in general. Our experiments with FastFlow[9] demonstrated the need,
and the possibility, of multicore-specific optimizations.

3.2.1 Parallel Paradigms

A parallel paradigm (also called parallel pattern) is the core concept of structured
parallel programming; it is, in short, a well-known pattern of interaction of a parallel
code. We can identify a small number of paradigms that can be deeply studied for
the target architectures, to provide an efficient implementation. One of key concept
of paradigms is that a single pattern can be used to describe just a small part of a
complex application; their strength lies in the fact that multiple paradigms can be
easily mixed together to describe complex applications.

This is the basic idea behind structured parallel programming: expressing the
parallel code as a composition of widely-studied “building blocks”. This allows some
sort of separation of concerns : the application programmer is in charge of defining
its applications, while a parallel programmer defines the parallel implementation of

40 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

XkXk+1Xk+2

tA tA

Ym-2Ym-1Ym

tD tD

Ym+1=Xm+1

Ym+2=Xm+2

Yk-2=Xk-2

Yk-1=Xk-1

Figure 3.1: Graphical representation of a generic Stream-Parallel Pattern.

each building block (and eventually some notable compositions) on the supported
architectures. The latter is done per-pattern, and not per-applications, thus incred-
ibly relieving the amount of work for both the programmers.

Parallel paradigms can be divided in two conceptually different classes depending
on the way parallelism is exploited inside the pattern: Stream-parallel paradigms and
Data-parallel paradigms

3.2.2 Stream Parallelism

This class contains those patterns that exploit the presence of a stream. A stream
is a (virtually infinite) sequence of input elements to be processed; parallelism is
simply obtained by processing multiple elements concurrently. An important char-
acteristic of streams is that the elements arrive with a certain time distribution (i.e.
the sequence is not entirely available at the beginning of the computation, but is
produced during the computation). This represents an important limiting factor of
the parallelizations: whenever we run the parallel code, we cannot compute elements
at a higher rate than the one they arrive. In other words, although the stream is
virtually infinite, we have a limitation in the performance (and the possible number
of processors used) of the resulting parallelization.

It is important to note that stream parallelism does not speed-up the computa-
tion of a single element, but the computation of the stream. In terms of performance
evaluation this means that a stream-parallel pattern does improve the throughput
(i.e. the amount of elements computed per time unit) but not the latency (i.e.
the time needed to execute the computation on each element). When latency is
important from a performance point of view, this kind of parallelism is ineffective.

The concept of a generic Stream-Parallel pattern is depicted in Figure 3.1, where
we define the average arrival time as tA, and the average departure time as tD. In
the optimal case, tD = tA, meaning that our stream-parallel pattern is able to fully
support the incoming throughput with no performance degradation.

The existence of a large sequence of input elements is a necessary precondition in
order to apply these parallelization techniques: no performance enhancements can
be obtained if we consider a single or a limited set of input elements, because of the

3.2. STRUCTURED PARALLEL PROGRAMMING 41

limited possibility of computing them concurrently.
The need of a stream can appear as a strong limitation of this class of paradigms;

still, there exists a lot of computing environments that works with streams, such as
video processing (where there exist streams of frames), network filtering (streams of
packets), signal processing (streams of signal samples) and so on.

The two most representative parallel paradigms are the so-called task-farm and
pipeline. While the basic idea is the same (computing more input elements at the
same time), they strongly differ on the way parallelism is obtained.

3.2.2.1 Task-Farm

The Task-Farm parallel pattern is probably the simplest, yet most used, paradigm,
as it represent the functional replication of the sequential code as a whole.

The idea is pretty simple: let say our code behave as a function:

y = F (x)

we replicate the code of F on n different processors (usually called workers); then,
when an input element is received, it is forwarded to one of them, by using some
selection policy to guarantee that all the workers will take some element, as depicted
in Figure 3.2.

It is simple, because it usually do not require a rewrite of the sequential code (that
is just encapsulated in a farm pattern) and allow for virtually infinite parallelism
(i.e. we can use as much processors as we want, respecting the input stream arrival
time). The main limitation is that, to guarantee correctness, the code have to
behave like a pure function: F (xi) cannot depend on F (xi−1), ..., F (x1). To let
this paradigm perform as expected we would also need to balance load among the
function replications (i.e. ensure that all the processors will take approximately
the same amount of work); furthermore at the end of the computation a correct
element ordering is generally required, to guarantee that the resulting computation

XkXk+1

Task-Farm

Xk+2

tA tA

Ym-2Ym-1Ym

tD tD

Xm+1

Xm+2

Xk-2

Xk-1

Figure 3.2: Graphical representation of a Farm pattern.

42 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

is equivalent to the sequential. These operations are usually executed by support
entities that act as an interface between the farm and the outside world. When
present, they are called Emitter and Collector.

3.2.2.2 Pipeline

In contrast to the previous paradigm, the pipeline does not represent a functional
replication but a functional partitioning : the sequential code is divided in multiple
pieces executed concurrently.

The application of the pipeline paradigm requires some knowledge of the form of
the sequential computation, that is the sequential computation must be expressed
(or rewritten) as the composition of n functions:

F (x) = Fn(Fn−1(...F2(F1(x))...))

In this case, a pipeline parallelization consist in a set of (at most) n entities,
each executing one (or more) of the n functions. An entity (usually called “pipeline
stage”) will receive each input element and will compute its function on it. The
output of each entity is sent to the next one, respecting the function ordering (i.e
the output of F1 is sent to F2), so that the output of the last stage (i.e. Fn)
correspond to F (x), as depicted in Figure 3.3.

One of the most important benefits w.r.t the farm paradigm is that code of the
Pipeline do not have to be stateless, i.e. Fi do not need to be a pure function and
may depend on the previous computations (but only of Fi, not of other stages).
This comes, however, at a cost: the programmer need to describe its sequential
code as a composition of functions, and the number of functions limit the maximum
parallelism of the application (i.e. if the resulting parallel pattern is a 3-stages
pipeline, it will exploit at most three processors).

XkXk+1

Pipeline

Xk+2

tA tA

Ym-2Ym-1Ym

tD tD

Xk-1

Xk-2

Xm+1

Xm+2

Figure 3.3: Graphical representation of a Pipeline Pattern.

3.2. STRUCTURED PARALLEL PROGRAMMING 43

3.2.3 Data Parallelism

In contrast with the previous, this class of paradigms extract parallelism inside a sin-
gle computation, by partitioning the data structures and, by reflection, partitioning
the computation. The most common partitioning approach is defined by applying
the owner computes rule to determine, once the data structure is partitioned, which
entity should perform the computation on each piece of data.

Consider, as an example, an application defined on a matrix, as in Figure 3.4.
The matrix is partitioned, let us say in blocks, and each block is assigned to one of
the n different processors (usually called workers). Following the owner computes
rule, each worker is in charge of calculating its partition. Obviously, depending
on the algorithm, this will require data from other partitions (in the example, the
points inside function parameters), and therefore workers: we define these as data
dependencies, and one of the most important duties of a pattern implementation is
indeed handling data exchange among the workers, when needed.

Usually the number of partitions is not fixed a-priori: if more processors are
available, the pattern can exploit a finer partitioning (smaller blocks in the exam-
ple) to increase the number of partitions. This approach, however, is not always
applicable: first of all, there normally exists a minimum partitioning, determined by
the items that compose the data structures (single matrix elements in the example);
moreover, the smaller is the partition, the smaller is the calculation time per worker,
so that this approach is profitable (in terms of performance) only up to a point.

More formally, a data parallel computation is characterized by partitioning of
data structures and function replication. It may happen, however, that while some
data structures are partitioned, others are instead replicated among the workers to
allow better performances (we will see some examples later).

Theoretically any algorithm can be parallelized by following a data-parallel ap-
proach; however, in practice, many data-parallel programs may suffer of bad perfor-
mance scalability because of a high number of data dependencies or a low amount
of inherent parallelism. Nevertheless, this class of patterns is very powerful.

If we follow the original algorithmic skeleton definition, dependencies among

Y
P1

PN

P2P1(Y) = F(P1(X),...)
X

P1

PN

P2

P2(Y) = F(P2(X),...)

PN(Y) = F(PN(X),...)

Figure 3.4: Graphical representation of a generic Data-Parallel Pattern.

44 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

workers determine the parallel pattern, so that any data dependency scheme will
produce a new pattern. Fortunately, many algorithms (even from different comput-
ing sector) produce the same dependency scheme, so that we are able to define a
small number of patterns that actually cover most of the algorithms.

It is important to notice that data-parallel paradigms may also works with
streams, but differently from stream-parallel paradigms, they compute one element
at a time. From a performance evaluation point of view, a data-parallel pattern
improves the calculation time of a single execution; in the presence of a stream, this
parallelization allows better latency and, by reflection, better bandwidth.

For the sake of completeness, we present the two most used patterns, Map and
Reduce, and the general class of Data Parallel with Stencil, that basically contains
all the other algorithms.

3.2.3.1 Map

This is the simplest case of a data-parallel program, in which the resulting workers
remains independent (i.e. there are no data dependencies):

y1 = F (x1), y2 = F (x2), ..., yk = F (xn)

Where yi and xi represents the “minimum partition” of the data structure, and
therefore the maximum amount of parallelism; Figure 3.5 graphically represent this
pattern.

The applicability of this pattern usually depend on the algorithms; sometimes
different partitioning of the data, or replication of some structures permit the use
of this paradigm even in algorithms that, from a first analysis, do not resemble the
pattern.

There are also notable examples that naturally fit this paradigm, such as many
vector operations (scalar-vector multiplication, vector sum, etc), matrix multiplica-
tion (in which the result matrix is partitioned, the input matrices replicated), the
Mandelbrot Set calculation, and many others.

Y
P1

PN

P2P1(Y) = F(P1(X))
X

P1

PN

P2

P2(Y) = F(P2(X))

PN(Y) = F(PN(X))

Map

Figure 3.5: Graphical representation of a Map Pattern.

3.2. STRUCTURED PARALLEL PROGRAMMING 45

3.2.3.2 Reduce

A Reduce pattern is applicable every time we have a computation of the form:

y = x1 ⊕ x2 ⊕ ...⊕ xk

where the result is a single value obtained by applying a function (⊕) to all the
elements of the input data structure. To ensure correctness ⊕ also have to satisfy
the associative property.

This can be easily parallelizable (Figure 3.6) by partitioning the data structure
in n workers (parametric but limited by k), each one performing a “local” reduce
on their partition, followed by a “global” reduce of the results of each worker. The
global reduce can be executed in several ways (even in parallel) by one (or more) of
the workers.

Notable examples that naturally fit this paradigm are many vector- or matrix-
based operations such as the maximum and minimum of a vector, the dot product
and many others.

3.2.3.3 Map + Reduce, a notable composition

Many algorithms can be defined as a composition of two steps, in which at first
a function is applied to all the elements, and then the results are merged by us-
ing some reduction function. This is one of the most important examples of that
composability allowed by parallel patterns: we can straightforwardly represent this
class of algorithms as the composition of a Map and a Reduce pattern. This origi-
nated the famous Google MapReduce[72] programming environment (and its open-
source implementation Hadoop1), that saw an enormous success in the last years.
Map+Reduce is an interesting example also from the performance point of view be-
cause, although being a composition of two patterns, there exists optimizations, and
thus efficient implementations, that threat it as a whole (and not as two distinct pat-

1Available at http://hadoop.apache.org/

Y

Y1 = F(P1(X))
X

P1

PN

P2

Y2 = F(P2(X))

YN = F(PN(X))

Reduce

Y = F(Y1,Y2,...,YN)

Figure 3.6: Graphical representation of a Reduce Pattern.

http://hadoop.apache.org/

46 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

Y
P1

PN

X

Data-Parallel with Stencil
(Jacobi Pattern)

PN-1 PN

PN-M

P1

PM

P2

Px

Px-M

Px-1 Px+1

Px+M

Px

P1(Y) = F(P1(X),P2(X),PM(X))

Px(Y) = F(Px-M(X),Px-1(X),Px(X),Px+1(X),Px+M(X))

PN(Y) = F(PN-M(X),PN-1(X),PN(X)

Figure 3.7: Graphical representation of the Jacobi Pattern, a data-parallel with a
static fixed stencil.

terns): this is another aspect that a structured parallel programming environment
should be able to exploit.

3.2.3.4 Data-Parallel with Stencil

This is not really a pattern, but a class of patterns, that contains all those that
require data exchange among workers. The name derives from the data dependency
shape that is called “stencil”; each stencil represent a different paradigm, some
widely adopted, others limited to single algorithms.

A Stencil (i.e. the data dependency shape) can be

• Static fixed, if the shape is defined at compile-time and remain the same
throughout the computation.

• Static variable, if the shape is defined at compile-time but changes dur-
ing the computation (this is a common phenomenon in some iteration-based
algorithms such as FFT).

• Dynamic, if the shape is defined at run-time, depending on data structure
values.

Of the three, a dynamic stencil cannot be captured by a parallel paradigm,
because the dependencies are not known until execution. The others are instead very
common in skeleton-based environments: P 3L, for example, included “geometric”
(static fixed) and “tree” (static variable).

A notable example of a “static fixed stencil” is the Jacobi algorithm (depicted
in Figure 3.7, used for solving partial differential equations, where the shape is
represented by the neighbor of each point. The Fast Fourier Transform, on the other
hand, is probably the most common example of “static variable stencil”, because
the shape changes at each iteration of the algorithm, but following a well-known
mathematical rule.

3.2. STRUCTURED PARALLEL PROGRAMMING 47

3.2.4 Stencil Transformations

An important yet still quite underestimated point in structured parallel program-
ming is the possibility of transforming stencil. In fact the high-level stencil, i.e. the
stencil originated by the “minimum partitioning”, can sensibly differ with the sten-
cil obtained after the partitioning in workers. In particular, there are two mayor
operations that allows us to change the stencil (i.e. the shape of data dependencies).

Worker partitioning

An important aspect is that, starting with the “minimum partitioning”, we usually
have to increase partition sizes to fit the exact number of workers; this can change
the stencil, even significantly. For the sake of simplicity we analyze this on the
the Jacobi Algorithm introduced in the previous section. We previously described
the 4-points stencil among each point and depicted a block-based partitioning that
maintains the same stencil. However, in Figure 3.8 we show what happen if the point
partitioning is done per-row or per-column: the resulting stencil (among partitions)
is a 2-points stencil, thus reducing the number of dependencies. In general, this
method can effectively produce a completely different stencil by means of a different
worker partitioning, for many algorithms.

Data Replication

In many algorithms we can efficiently transform the application, completely re-
moving the stencil to obtain a Map data-parallel, at the cost of a (usually small)
replication of data. The basic idea is that data dependencies defined only on read-
only or input data can be replicated at the beginning of the computation to make
the workers independent. Notable examples are represented by most image filtering
algorithms that, with a proper replication, can be described with the map pattern.
Let us take, as example, the Mean Filter, a smoothing technique [182]. The ba-
sic idea of the algorithm is to smoothen an image by replacing the value of each

Element Stencil Block Stencil Column Stencil Row Stencil

xi,j

xi+1,j+1

xi-1,j

xi+1,j-1

xi,j+1xi,j-1

xi-1,j-1 xi-1,j+1

xi+1,j

Figure 3.8: Partitioning of the Jacobi Pattern that produce different stencils.

48 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

pixel with the average of the group of points near the pixel itself. For example, the
smoothing of pixel xi,j with a 3x3 group size is obtained by

yi,j =
xi−1,j−1 + xi−1,j + xi−1,j+1 + xi,j−1 + xi,j + xi,j+1 + xi+1,j−1 + xi+1,j + xi+1,j+1

9

If we consider the standard partitioning rule we mentioned earlier, we would
have that each point on the border of a partition will depend on data from other
partitions, implicating some kind of dependencies. In practice, however, we can
solve this problem with replication if we define partitions that partially overlap each
other. In the particular example we can notice that by enlarging the partition of 1
pixel in width and in height, without changing the pixel assigned by following the
owner-compute-rule, each worker will have all the data needed to compute, making
the algorithm a perfect match for the map paradigm. As depicted in Figure 3.9, we
basically solve the data dependency problem by selectively replicating parts of the
data structure.

The same concept can also be applied partially (i.e. when only some of the data
structure are read-only), resulting in stencil transformations that, however, do not
always produce a Map pattern.

Stencil Transformations and structured parallel programming

Stencil transformations can prove very effective in increasing the performance of a
parallel application, and as such they should be considered first citizen of structured
parallel programming. Nevertheless, stencil transformations represents a quite new
research field, basically because, given multiple transformations, it is still unknown
how to precisely measure their performance to select the best.

Also, the definition of correct stencil transformation is not so trivial; here a
first notable work is represented by Meneghin’s Ph.D. thesis [129], that formally
characterized a wide set of stencils, and introduced several transformations, mainly

Element Stencil

xi,j

xi+1,j+1

xi-1,j

xi+1,j-1

xi,j+1xi,j-1

xi-1,j-1 xi-1,j+1

xi+1,j

Block Stencil Map

Figure 3.9: Transforming the mean filter in a Map.

3.3. EXPRESSING PARALLEL PARADIGMS 49

to minimize data dependencies. However, the goal of a performance-driven stencil
transformation is still an interesting research topic.

3.3 Expressing Parallel Paradigms

Up to this point, we defined the basic concept of structured parallel programming
and introduced the most important pattern that characterize this approach. We did
not focus, however, on how patterns are expressed. This is a sensible problem of
this class of environment, because we should limit as much as possible the work of
the application programmer, and be able to guarantee a set of patterns that allows
a decent parallelization of most algorithms. Indeed, one of the most criticized point
of structured parallel programming has always been the limited amount of patterns
that were not able to capture many applications [61]. We introduce the first, and still
considered state-of-the-art, approach based on the concept of algorithmic skeleton;
then we present the approach, introduced by the ASSIST programming environment,
which should overcome the main limitations of the skeleton-based approach.

3.3.1 Skeletons

The algorithmic skeletons defined by Cole[61] represent the first approach to struc-
tured parallel programming. He proposed 4 skeletons (Fixed Degree Divide & Con-
quer, Iterative Combination, Cluster and Task Queue - indeed a quite small, and
particular, set of skeletons) obtained both by the isolation of particular algorithmic
techniques, and by an analysis of patterns that could perform well on the initial
target machine (a Transputer). From his idea, however, many researchers focused
on finding general yet effective patterns that could be promoted to skeleton. Among
the others, P 3L provided pipeline, task farm, map and reduce, plus geometric, loop
and tree as data-parallel with stencils [18]; SKELib[68] offered only stream-based
skeletons (farm and pipe), while Lithium [10] supported pipe, map, farm and reduce.
Once stabilized, the set of used skeleton basically remained the same over the years:
Skandium[113], one of the newest skeleton framework, implement seq, pipe, farm,
for, while, map, d&c, fork, not introducing new patterns with respect to the first
works.

All these systems employ the very same concepts introduced by Cole: the user
just write a skeletal specification, such that a program is basically a composition of
skeletons. The majority of environments defines three kinds of skeletons: data paral-
lel, task parallel and sequential skeletons. Sequential skeletons encapsulate functions
written in a sequential language and are not considered for parallel execution. The
others provide typical task and data parallel patterns. For obvious performance rea-
sons, data parallel skeletons can only encapsulate sequential skeletons: indeed there
are no performance reasons to put a stream-parallel skeleton inside the calculation
of a single element, because of the missing of a stream. Applications written in this

50 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

Program

Task Parallel Layer

Data Parallel Layer

Sequential Layer

Program

TP Skel

TP Skel TP Skel

Seq F Seq F Seq F

DP Skel

DP Skel DP Skel

Seq F Seq F

DP Skel

DP Skel

DP Skel

Figure 3.10: Three-tier structure examples of a skeleton-based program.

way respect the three-tier structure sketched out in Figure 3.10
The initial specification provided by the programmer may then be subjected to

a cost-driven transformation process with the aim of improving the performance of
the parallel program. Such transformation is done by means of semantic-preserving
rewriting rules. A rich set of rewriting rules [11, 88, 87] and cost models [11, 151, 189]
for various skeletons have been developed in the past.

3.3.2 ASSIST: Beyond the classical skeleton approach

Despite several advantages of skeletons, a strong evolution of structured parallel
programming beyond such models is needed, at least for the following reasons:

a) in addition to the capability of expressing some typical parallel schemes, we
need a larger degree of flexibility in expressing parallel and distributed program
structures: we cannot afford to produce a skeleton for any data-parallel pattern,
nor force the programmer to write applications respecting the 3-4 well studied
patterns;

b) although very interesting, pattern composability is still limited: the three-tier
structure of skeleton-based environments becomes a limitation when describing
large, complex applications;

c) we recognize that parallel patterns cannot efficiently capture every parallel appli-
cation: dynamic stencils, for example, cannot be modeled by a skeleton; we need
to allow some kind of cooperation with different parallel environments so that
skeleton-based patterns can cooperate with pre-existing, or manually optimized,
parallel code.

Actually even Cole recognized this lack of expressiveness [61]:

3.3. EXPRESSING PARALLEL PARADIGMS 51

M1

M2

M3

M4

M5

M6

M7

Figure 3.11: Example structure of an ASSIST program.

Many parallel applications are not obviously expressible as instances
of skeletons, whether existing or imagined. Some have phases which
require the use of less structured interaction primitives. Some have con-
ceptually layered parallelism, in which skeletal behavior at one layer
controls the invocation of operations involving such ad-hoc parallelism
within. It is clearly unrealistic to assume that skeletons can provide all
the parallelism we need. We must construct our systems to allow the
integration of skeletal and ad-hoc parallelism in a well defined way.

An interesting and effective approach to overcome the limitations of skeleton en-
vironments has been introduced by our research group with ASSIST [172] (A Soft-
ware development System based upon Integrated Skeleton Technology). In ASSIST
the common three-layered structure is replaced by a plain, graph-based structure:
an application is described by a generic graph of modules connected by streams.
This alone allows some basic stream-parallel paradigm such as pipelining, but at
the same time permit very complex behaviors and loops among the modules that
compose the application. Parallelism is also available inside the nodes, because each
module represents a parallel pattern. An example of an ASSIST program is depicted
in Figure 3.11.

ASSIST employ a novel approach to data-parallel by describing the parallel ap-
plication (and its stencil) at the minimum partitioning level. This approach (called
“Virtual Processor”) generalize the class of data-parallel and allow the programmer
to describe with a single formalism a generic data-parallel with a static stencil.

Lastly, a module is not forced to be implemented as a parallel pattern: the pro-
grammer may provide its specific, hand-made implementation of a parallel module.
This effectively solves the cases in which a parallel paradigm cannot be applied.

3.3.3 The Virtual Processors approach

By following this approach we are able to provide a “generic” skeleton that can
efficiently describe any kind of data-parallel program. The main idea is to describe

52 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

topology array [i :N] [j :N] VP;

attribute long S [N] [N] scatter S [∗ i] [∗ j] onto VP[i] [j] ;
attribute long L replicated ;

Listing 3.1: Replicating and partitiong data structure in ASSIST.

virtual processors {
c a l c (in guard1 out out matr ix) {

VP i =1. .N, j =1. .N {
for (h=0;h<N; h++){

F(in L , S [i] [h] , S [h] [i] out S [i] [j]) ;
}

}
}

}

Listing 3.2: Virtual Processor definition in ASSIST.

the application by using a set of “Virtual Processors” (VP), i.e. virtual entities that,
like processors, owns a partition of the data structure, execute the calculation on it
and exchange data with others.

The idea behind VPs is indeed quite simple: the programmer define the sten-
cil at the minimum partitioning level by using this abstraction, while the parallel
environment is in charge of analyzing it to determine if it represents one of the
basic, well studied paradigm, or a new, “unknown” stencil. In any case, a proper
worker partitioning must be established, so that the Virtual Processors becomes
Real Processors, perhaps with a different stencil, and perform the computation.

A small ASSIST example is depicted in listings 3.1 and 3.2. The data structure
is composed of a matrix of NxN elements and a single integer. The matrix is par-
titioned, so that each VP “own” a single element, and is in charge of computing it
by following the owner compute rule. We can notice that the number of VP is well
defined, and matches the elements of S. The second listing defines the “computa-
tion”: each VP executes a function (F, that in ASSIST can be written in C, C++
or Fortran) that takes as input parameters the replicated value plus two elements
that belong to different processors. Of course, the output value is only the element
that belong to the VP, to respect the owner compute rule.

This way of describing data-parallels is indeed very powerful, because it explicitly
define the stencil at the element level. From this, an intelligent compiler can apply
all the stencil transformation described before, and optimize the stencil with respect
to the execution environment.

As a side note we signal that, unfortunately, this optimization step was not avail-
able in ASSIST: the compiler grouped VPs in trivial ways, without any performance-
driven optimization

3.4. PARALLEL PATTERNS AND THEIR (MANY) IMPLEMENTATIONS 53

3.4 Parallel patterns and their (many) implemen-

tations

A parallel paradigm describes the parallel entities and the structure of the interac-
tions. However, the structure given by the paradigm is very general, so that there are
many ways of coding it on a parallel machine. Although we can usually find a simple
implementation that strictly resemble the definition of the parallel paradigm, there
are many different versions that may perform better than the baseline, depending
both on the algorithm and on the deployment architecture.

Let us take, as an example, the task farm paradigm. Even in this simple case
(where each parallel entity is independent), there are many possible versions for
its parallel implementation. The most common is the master/worker scheme [28],
where a parallel entity (i.e. a process) called master is in charge of receiving tasks
from the input stream, demanding work to a pool of workers and collecting results
for the output stream. There are many cases, however, in which all this is too much
for a single entity, which becomes the bottleneck of the entire application; we can
therefore “split” the master in multiple entities. Depending on this splitting we
obtain an emitter-worker-collector scheme [143], where we divide the dispatching
of input data and the collection of results, or hierarchical masters [28] or even a
mix of these two approaches. We can also be in the opposite case, in which the
master is partially idle because faster than the workers; here we can let the master
do some work on tasks in its idle time [143]. On top of this, we should also consider
a dispatching technique that will limit as much as possible idle times in workers:
on equally sized tasks a round-robin technique is usually good, but there are many
cases in which tasks are unbalanced: because of the application, of the heterogeneous
architecture, or others. Here comes an entire research area on task scheduling, with
weighted scheduling, on-demand scheduling, task stealing and so on.

If this is the case of a simple pattern (in which cooperation is done only be-
tween each worker and the supporting entities), it becomes clear that in the case of
more complex interactions, like with data-parallel programs, the number of possible
choices, and optimization possibilities, further increase, making the selection of the
proper implementation a considerably hard task, even for an automatic tool.

3.5 Mastering the possibilities, one piece at a time

We started this chapter with a strong, important point: the need for a program-
ming environment that allow performance portability. In the previous sections we
understood that Structured Parallel Programming can be a solution for the problem:

• we have a small, pre-determined, set of stream-parallel patterns;

54 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

• we have an entire family of data-parallel patterns, and a powerful model (the
“Virtual Processor” approach) to describe them;

• we have a set of stencil transformation, that allows us to transform the data-
parallel code;

• we have a large number of implementation choices for each paradigm, which
can fit one hardware architecture better than another.

What we still do not have, instead, are performance studies of structured parallel
programming on multi-core that could:

• give us some insight on which of the many choices offer good performances on
multi-core architectures;

• tell us if multi-core are just to be treated as shared-memory architectures, or
if there can be specific multicore-related optimization on parallel patterns;

• help us in finding ways to efficiently exploit specific hardware facilities that
are emerging in the last multi- and many-core, such as multithreading, explicit
message passing among processors, etc.

Finally, but, most important, we need some way to compare the possible choices at
compile-time, so that the compiler can choose a good implementation (preferably
the best) according to the previous points.

With this thesis we start filling this gap, mainly by means of specific performance
tests of explicit multicore-related optimizations and the definition of the architec-
tural performance model for a specific multi-core architecture that, tied together
with generic pattern-based cost models, will allow us to evaluate different imple-
mentations and determine, for each specific program, which solution will offer better
performances.

All these studies will be driven by keeping in mind our long-term research objec-
tive: an innovative programming environment based on structured parallelism, able
to truly provide parallel portability.

3.6 Towards a novel parallel programming envi-

ronment

The long-term project of our research group is ASSISTANT, the extension and
adaptation of ASSIST for the current world of parallel computing, composed of
multi-cores, pervasive grids and clouds. Many of the principles introduced in ASSIST
are inherited and extended, in order to provide a significant leap forward in the world
of multicore-oriented parallel programming.

3.6. TOWARDS A NOVEL PARALLEL PROGRAMMING ENVIRONMENT 55

Respecting the basic ASSIST principles, a parallel program will be described as a
generic graph of stream-connected parallel modules. Each module will be constituted
by one of the previously mentioned parallel patterns, or by a VP-based description
in the case of a data-parallel. As in ASSIST, the programmer will be able to write
the algorithm code by mean of the most used sequential language (C, C++, Matlab,
Java, and so on).

Programming models based on libraries are considered unsuitable for achiev-
ing the desired level of programmability and performance portability: our environ-
ment will need an intelligent source-to-source parallel compiler, able to analyze the
module-based description to determine the possible parallel implementations, eval-
uate them for the target machine and, finally, produce the source code of a low-level
parallel program.

Our experience in parallel programming also pointed that there are many cases
in which performance portability is not completely achievable at compile-time: the
cost model may be not detailed enough to accurately fit the <application, imple-
mentation, architecture> tuple, or some model parameters may be unpredictable
(because of both the architecture and the algorithm) so that a mere compiler-based
performance portability becomes ineffective. To handle all these important cases, it
is also mandatory to support adaptivity, by means of efficient run-time reconfigura-
tions, in addition to static optimizations[32].

In addition, to better allow performance portability and adaptivity, we believe
it is necessary to allow the programmer to explicity define different patterns for
each module. This way, if multiple parallel patterns (with different performance
characteristics) are known by the programmer, we further increase the possibilities
of our compiler. This approach, whichd has been introduced in our works with
pervasive grids[32], remains coherent with the programming model: we are adding to
the set of compiler-defined transformations (that represent different implementations
of a module) others, not automatically derivable, transformations. The compiler will
then use its cost model to select (and optimize) the best among the whole set of
implementations.

The resulting “compilation workflow” is depicted in Figure 3.12. Of course, the
meaning of compilation now is stretched to the whole execution because of the run-
time-based reconfigurations. We can easily notice how important is the Cost Model,
which affects basically every step of the workflow, making it a first-class citizen in
our approach.

In the first phase, we use the cost model to determine which modules of the ap-
plication graph negatively affects the global performance: of course it may happen
that, of the many parallel modules, some are so fast that does not truly require a
parallel implementation; moreover, considering the finite set of resources, a proper
balancing of parallelism is required among the various modules, to obtain the max-
imum performance.

In the second step the compiler determine, for each parallelized module, the best
parallel paradigm and its implementation, considering both the user-provided and

56 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

Application specification: source computation
expressed as a graph or workflow

Bottleneck Detection

Parallelization of bottlenecks
according to one or more

parallel paradigms – Selection
of a parallel solution

Encoding, possibly reusing
existing sequential codes

Parametric and restructurable
parallel object code

Mapping, loading and
deployment

ExecutionMonitoring

Dynamic
program

restructuring

Cost
Model

Figure 3.12: The “compilation workflow” in our programming environment.

the automatically derived transformations. At the end of this step the bottleneck
detection is run again, considering the expected implementation of each module and
their specific cost model. If new bottlenecks are found, these two steps are executed
iteratively to further refine the parallel implementation.

The compiler then generates the low-level parallel source code, to be compiled
using a generic C/C++ compiler (such as gcc or icc). The resulting application,
however, is also enriched with monitoring tools and other possible parallel imple-
mentations, so that, by continuously monitoring and applying the cost model, the
program self-adapt to better match the running environment and guarantee the best
possible performance.

3.7 Target architectures

Given the high amount of tests and experimentation in this thesis, we will briefly
introduce (and comment) once and for all, the multi-core architectures that will be
used in our tests.

Although there are many different multi-cores today, and probably there will be
much more in the future, we were able to select a representative group of architec-
tures from the ones discussed in Chapter 2. Given the almost exclusive presence of
x86-based processors in general purpose multi-core architectures, we selected three
architectures, differing on the processor implementation, the memory hierarchy and

3.7. TARGET ARCHITECTURES 57

the number of cores. We also used multi-chip servers, to reach interesting num-
bers of cores. Finally, as an “insight” of future multi-core architectures, we selected
one of the larger (in term of cores) multi-core available: the Tilera TilePro64. To
summarize, the platforms are the following:

• two Intel Xeon® E5-2650, Sandy-Bridge based architectures, composed of 8
cores, 20 MB of shared cache and a memory controller per chip, running at
2.00GHz;

• four Intel Xeon® E7-4820, Westmere-EX based architectures, composed of 8
cores, 18MB of shared cache and a memory controller per chip, running at
2.00GHz;

• two AMD Opteron™ 6176, for a total of 4 Magny-Cours based chips, composed
of 6 cores, 6MB of shared cache and a memory controller per chip, running at
2.3GHz;

• a single Tilera TILEPro64™, composed of 64 cores, no shared cache but 4
memory controllers, running at 866MHz.

We can notice that all the three x86 architectures basically employ the same
conceptual characteristics (i.e. multiple chips connected by point-to-point links,
chips with a small number of cores, a memory controller and a large shared cache),
and differs only for technical implementations; despite that, we will see very different
results in the aspects treated in this thesis. The many-core architecture, instead, is
notably different from the others, pointing up the fact that the previous conceptual
organization may not be really feasible with a large number of cores.

The TilePro64 chip is very interesting from many points, because employs a large
number of specific features, like explicit on-chip message passing, controllable cache
coherence, multiple memory interfaces, and an on-chip Ethernet interface. Finally,
the programming environment is complete and exhaustive: almost every detail of
the architecture is extensively described in the documentation, and a clock-accurate
simulator is provided.

For these many reasons we elected the TilePro64 as the reference architecture
for this thesis: many results are generalized on the other architectures, but the de-
tailed performance model was explicitly parameterized for this chip, and extensively
verified by using both the real architecture and the clock-accurate simulator.

58 CHAPTER 3. STRUCTURED PARALLEL PROGRAMMING FOR MULTI-CORE

Part II

Cost Models

Chapter 4

A hardware-dependent model
based on Queueing Networks

Given the considerable different characteristics of each multiprocessor, the emer-
gence of parallel architectures emphasized the need of some way to evaluate a pro-
gram without having to implement and tune it. The study of formal approaches to
the process of analyzing the performance of computer systems has always been of
great interest in computer science, and quickly become very important in parallel
computing. It is very interesting to note that performance evaluation is effectively
used in many aspects of computer science, starting from hardware development, up
to software design.

Performance evaluation has been (and still is) widely applied in hardware design-
ing [3, 36, 101, 116, 130, 133]: given the complexity of the projects, it is difficult to
evaluate the impact of a change, and very expensive to test the changes by means of
prototypes. For this reasons engineers commonly use performance evaluation tools
to drive the design of processors and parallel machines, in order to better balance
the performance/cost ratio, and to produce architectures with specific performance
requirements.

Nevertheless, performance evaluation is also quite used in software development
[2, 23, 108], in all those cases in which programs need to satisfy specific constraints
(not only performance-based but, for example, memory- or power-based), such as
real-time system, or in general to predict specific aspect of the to-be-developed
software.

Performance evaluation is usually achieved by using three different techniques:
measurement, simulation and analytical modeling. All these techniques play
equally important roles in performance studies, because each one has its own ad-
vantages and disadvantages, that basically consist in a proper mix of precision and
cost. We cannot really say that one technique is always better than another, as
it usually depends on what we are evaluating. When a single technique cannot be
effectively applied, a mix of the three is used to effectively evaluate the performance
of the system.

62 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

Our final goal is to predict the performance of a specific parallel implementation
of a program. It is important to note that the performance models presented in
Chapter 2 were defined with a different objective, which is to evaluate the asymp-
totic characteristics of a parallel program, independently of the running architecture.
It is no coincidence that these models evaluate algorithms on abstract, simplistic,
architectures. However, in our case, the general characteristics are already known
because of the use of parallel patterns. Given our need to evaluate implementations
that may differs for very small details, we also need detailed performance models,
to find the best one.

We stressed in the previous chapters that the performance of an implementation
strictly depend on both software and hardware characteristics. We know that per-
formance evaluation is successfully applied to predict the performance of those two
systems separately. In this thesis we merge the two approaches, in order to evaluate
the couple <program,architecture> and therefore ending with a prediction of the
parallel implementation we are analyzing.

An interesting point of this approach is that, given the generality of the perfor-
mance modeling techniques, it is easy to describe the whole system (comprised of
hardware and software models) by:

a) using a single methodology,

b) verifying our modeling intuitions with previous works, and

c) combining already available models of small parts of the system.

Because of these points our work has been enormously facilitated, so that we will
be able, at the end of the thesis, to provide some interesting modeling results and
prove its precision w.r.t real programs running on a real architecture.

The architecture-dependent nature of our models poses a huge problem with
respect to our need of a generally applicable performance prediction method. In
other words, we want to provide a general model suitable for the generic class of
parallel patterns running on a class parallel architectures, but at the same time we
recognize that the model need to take into account of the single characteristics of the
specific architecture. This may seems, and in a certain way is, a contradiction: the
model should be general, to be able to represent any architecture, but also detailed,
to precisely predict the performance. This is probably not really achievable by using
a single model.

In this chapter, we will present a general approach, a methodology to derive a
model to match the details of a specific architecture and of the parallel pattern.
The approach will then be used in the following chapters, targeting both specific
architectures and specific parallel pattern implementations.

The ideas presented in this chapter have been studied and developed in our re-
search groups for many years, having their roots in the P 3L skeleton language and
its implementation templates; however, many of the concepts presented were yet to

4.1. A GENERAL APPROACH TO PARALLEL PERFORMANCE PREDICTION 63

be published and during this thesis were further refined. The most comprehensive
work that address the methodology is the Italian textbook [173], where it is applied
to an abstract multiprocessor architecture, thus simplifying the model and its pa-
rameters to a level understandable by students. For these reasons this chapter does
not consist in a novel contribution of the thesis but, because of the limited visibility
of the approach, we decided to present it in a specific chapter.

4.1 A general approach to parallel performance

prediction

In our programming environment, a parallel program is defined as a graph of co-
operating (parallel) modules. This means that the programmer have two ways to
express parallelism:

• Intra-module parallelism: each module is described by a parallel pattern,
and therefore able to exploit stream-parallel or data-parallel parallelism, de-
pending on the chosen implementation;

• Inter-module parallelism: modules are composed in computation graphs
with a general structure, where interactions are possible by means of streams,
effectively adding a second layer of stream-parallel parallelism.

The methodology that we are introducing is aimed to completely model the perfor-
mance at any level, analyzing both the internal behavior of a single module, and the
performance of the entire computation graph, by providing a performance modeling
approach expressed in terms of fundamental results in the area of Queueing Theory
and Queueing Networks. In this way we will be able to formalize important issues
related to:

• how to evaluate the performance of a graph computation starting from the
knowledge of the performance of each module;

• how to evaluate the effective performance of a module based on the ideal
performance behavior of all the modules of the computation graph;

• how to detect bottlenecks in a computation graph, that is modules that seri-
ously limit the performance of the entire application.

This methodology is not new, and has been deeply described in [125], so we will
just introduce the concept, needed to intuitively understand the ideas and how the
model work; the interested reader can refer to [125] for more specific details.

The basic idea consists in modeling the performance of a module M (either
sequential or internally parallel) by abstracting its behavior as a queueing system,
as shown in Figure 4.1. This scheme is a logical one, not necessarily corresponding

64 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

MTA
TS

TDqueue

Figure 4.1: A computation module modeled as a queueing system.

to the real implementation. However, it is aimed at capturing the essential elements
of the problem at hand. The behavior of a queueing system is characterized by
expressing five different parameters:

1. the service discipline: if not explicitly defined the FIFO policy is assumed;

2. the queue size, that is the number of buffer positions available for storing the
incoming requests to the module;

3. the probability distribution of a random variable inter-arrival time ta (i.e. the
time interval between two consecutive arrivals of requests), with average value
TA and (optionally) variance σA;

4. the probability distribution of a random variable (ideal) service time ts, which
represents the ideal time needed to serve a customer, i.e. the time passed
between the beginning of the executions on two consecutive stream elements.
We denote with TS and σS the average value and (optionally) the variance of
this random variable;

5. the probability distribution of a random variable inter-departure time td (with
average value TD and optionally variance σD), which indicates the time be-
tween two successive result departures from the module.

Each computation module can be abstracted as a queueing system and the com-
putation graph can be described as a network of queues [111], where the departures
of some nodes form the arrivals of others. From the network topology viewpoint
queueing networks can be categorized into two broad classes namely open queue-
ing networks and closed queueing networks. In an open queueing network
a possibly infinite number of requests are generated by source nodes, go through
several nodes or even revisit a particular node more than once and finally leave the
system. On the other hand, in a closed queueing network requests neither arrive at
nor depart from the system, but a fixed number of requests continuously circulate
through the nodes of the network.

In our case, the graph of modules depict an open queueing network, given the
presence of infinite streams. For the sake of simplicity our approach will be limited
to acyclic computation graphs, where each task follows a certain path, passing
through each modules at most once.

4.1. A GENERAL APPROACH TO PARALLEL PERFORMANCE PREDICTION 65

With this simplification, we are able to analyze the performance of this kind of
graphs in a completely independent way w.r.t the internal behavior of each com-
putation module, i.e. it may implement any parallel pattern. The only parameter
required is the average value of the ideal service time of each module. The behavior
of intra-module parallelism can be treated independently, and will be analyzed in
Section 4.2.

The evaluation methodology - derived from common queueing theory - consist
in two interrelated phases:

• Transient analysis consists in a study of the network behavior in the initial
transient phase of the execution. For transient phase we intend the initial
situation in which the performance behavior of each node can significantly
change in relatively short time periods due to the starting conditions of the
network (e.g. due to the size of the queues);

• Steady-state analysis provides results for evaluating the effective perfor-
mance (i.e. the mean inter-departure times) of each node in the network after
the transient phase, when the performance behavior of each module is com-
pletely stabilized and it is no longer influenced by the initial conditions.

Being interested to the performance behavior of a stream-based application, we
consider the transient analysis irrelevant, because of the length of the streams, that
render this phase very small w.r.t the global computation, and focus on the steady-
state analysis.

The steady state analysis is typical in queueing networks and can be obtained
by exploiting several methods, such as using product form, mean value analysis or
simulations. The result of a steady state analysis are a set of performance indexes
for each queue of the system, including the throughput of a queue, that represent
the inverse of what we defined as “interdeparture time”.

In particular, referring to the compiler workflow already depicted in Chapter
3 (in Figure 4.2), we first have to transform the application graph in a queueing
network, to be able to perform the steady-state analysis. Each module is naturally
described by a queue, but we need to evaluate some parameters, in particular:

1. The inter-arrival times for each external input stream (i.e. the streams used
by the program to receive data);

2. The routing probabilities, when a module has multiple output stream;

3. The service time of each module.

The resulting transformation is exemplified in Figure 4.3
Theoretically we would also need to know the probability distribution of inter-

arrival and service times, to fully represent the system as a queueing network. How-
ever, [125] present a simple methodology that only require the mean values of these

66 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

Application specification: source computation
expressed as a graph or workflow

Bottleneck Detection

Parallelization of bottlenecks
according to one or more

parallel paradigms – Selection
of a parallel solution

Encoding, possibly reusing
existing sequential codes

Parametric and restructurable
parallel object code

Mapping, loading and
deployment

ExecutionMonitoring

Dynamic
program

restructuring

Cost
Model

Figure 4.2: The “compilation work-flow” in our programming environment.

M0

M2

M1

M3

M5

M4

M6

TS

TA

TS

TS

TS

TS

TS

TS

p

p

p

p

M0

M2

M1

M3

M5

M4

M6

Figure 4.3: An example module graph and its queueing network representation.

parameters, enormously simplifying our model. The interested reader can refer to
[125] for a complete description of this methods and its applicability limits. In
general we can use of any classic method of queueing theory (using exponential
probability distributions) when the previous approach is not feasible.

Of the three parameters, the first two must be expressed by the programmer, as
they depend either on external factors (i.e. the inter-arrival times) or on properties
unknown by the programming environment, so that the compiler has no mean to
estimate them. On the contrary, the third represents the ideal performance of each
module: it depends on the parallel implementation chosen by the compiler, so spe-
cific performance models will be used to derive those values. For the moment, we
assume these are automatically obtained in some ways. Later in the chapter, and
through the whole thesis, we will deal with this problem.

4.1. A GENERAL APPROACH TO PARALLEL PERFORMANCE PREDICTION 67

Back to the compiler workflow depicted in Figure 4.2, we can notice the iterative
approach of steps 2 and 3, that are executed until we find the best solution. To start
this iterative approach, we need a simple, pre-defined configuration of the parallel
program. We consider each module implemented by a sequential version, so that
we use a processor per module. With this configuration we can start evaluating the
parallel program (step 1), by:

a) fixing the source stream mean inter-arrival time and the routing probabilities by
using the programmer-given values;

b) evaluating the ideal sequential service time of each module (that is the mean
execution time of a task of a sequential implementation);

c) computing the steady-state result of the queueing network.

This way we are able to find the bottleneck of the application, i.e. the module
M that, in this configuration, slows down the entire application. We are able to do
this by using an interesting property of the steady-state analysis[125]:

Proposition 4.1. (Steady-state behavior of a node). At steady-state the effective
interarrival time of each node is equal to its inter-departure time. If that inter-arrival
time also coincides with the ideal service time of the node, the node is a bottleneck,
otherwise the node is not a bottleneck.

An example of the end of steps b) and c) is depicted in Figures 4.4 and 4.5,
respectively. We can easily notice that the only node in which TA = TS = TD is
node 2: the corresponding module is the bottleneck of our example application.

It is also important to note that, for a given configuration, a single bottleneck
exists, i.e. all the other modules will slow down to respect its computation time.
However, once the bottleneck is removed, a new bottleneck may emerge, so the
iterative approach is required to reach the optimum parallel configuration for the
graph.

M0

M2

M1

M3

M5

M4

M6

TS=150s

TA=50s
TS=40s

TS=80s

TS=40s

TS=550s

TS=50s

TS=48s

p=0.4

p=0.6

p=0.1

p=0.9

Model Parameters

Figure 4.4: The fully parameterized QN-based model.

68 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

M0

M2

M1

M3

M5

M4

M6

TA=150s
TS=150s
TD=150sTA=50s

TS=40s
TD=60s

TA=100s
TS=80s
TD=100s

TA=60s
TS=40s
TD=60s

TA=600s
TS=550s
TD=600s

TA=66.6s
TS=50s
TD=66.6s

TA=60s
TS=48s
TD=60sp=0.4

p=0.6

p=0.1

p=0.9

Steady State Analysis

Figure 4.5: The result of the steady-state analysis of the model.

From this point we diverge from the approach presented in [125], because that
work uses an approximate performance model for the modules, considering the ideal
scalability, in which using a parallelism degree of n offer a service time n times better
than the sequential one:

T
(n)
S =

T
(1)
S

n

with this approximation, it is always possible to remove a bottleneck (assuming the
correct amount of nodes is available). For this reason the approach in [125] removes
the bottlenecks during the steady state analysis.

In our case, given the use of a detailed performance model for each possible
module implementation, the estimation of T

(n)
S is more complex: in general the

scalability of a module does not coincide with the previous one and, at some point,
may stop.

We also consider that in common applications we do not have an infinite number
of nodes, and that it is also usually important to reduce, as much as possible, the
number of used nodes for power consumption reasons.

For this reason we propose a different approach, still based on the one in [125], in
which we try to remove one bottleneck at a time. We can select the most limiting
module of the application, and try to remove the bottleneck. If the bottleneck is
removed, we can re-analyze the graph, ending with:

1. no more bottlenecks in the graph: the input throughput is sustained, so our
application does not need further refinements, or

2. a new bottleneck in the graph: removing the first bottleneck exposed a new
module that was limiting (to a lesser extent) the performance of the applica-
tion; we can now remove this bottleneck, re-evaluate the graph once more and
continue this iterative approach as long as we have no more bottlenecks.

4.1. A GENERAL APPROACH TO PARALLEL PERFORMANCE PREDICTION 69

However, considering the module performance model, we also may end with not
removing a bottleneck. In this case, no further steps are required, as even by paral-
lelizing the other modules we will not improve the performance of the whole graph.

The notable advantage of this approach w.r.t [125] is that we are able to min-
imize the overall parallelism degree (i.e. the number of nodes used by the whole
application) by parallelizing one module at a time. With the previous approach, we
may parallelize modules that would have become bottlenecks after some iteration of
our approach. However, it may be not possible to remove one of the bigger bottle-
necks, thus ending in parallelizing modules that does not hurt the performance of
the application.

Removing a bottleneck

Once a bottleneck is found, the module will be parallelized, as in step 3 of the
compilation workflow, by following this approach:

1. Determine the required service time: first of all, we need to calculate
which average service time of the selected module will remove the bottleneck.
For this we need the ideal inter-arrival time of M , i.e. the inter-arrival time of
the system where M is not slowing down the other modules. This time can be
obtained by setting the service time of M to 0 and re-apply the steady state
analysis. Given its new inter-arrival time T IA, M is not a bottleneck if

TS ≤ T IA (4.1)

For example, in the model of Fig. 4.4 example, we have TS ≤ 137.5s.

2. Determine the required parallelism degree and the correct imple-
mentation: given the unknown properties of the service time function T

(x)
S of

this module, in theory we should try each possible parallelism degree to find (if
exists) a solution that removes the bottleneck. Moreover, we are interested in
a solution that minimizes the number of nodes for power consumption reasons.
The estimation of each point of T

(x)
S is not feasible, so we need to cut down

the space of possibilities. For this we adopt a reasonable heuristic that allow
us to limit the number of evaluations of T

(x)
S . We start by considering that, in

practically all the cases, a module does not superscale, so that we can find a
lower limit to T

(x)
S by using the function

T
(x)
S ≥ T

(1)
S

x

If this hold, we can estimate the minimum number of nodes required to achieve
the required service time:

n ≥ T
(1)
S

T TA

70 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

Therefore, this represent the starting point to evaluate T
(x)
S for our module.

In fact, having the (obvious) requirement of selecting an integer value of n,
the starting point will be

n =

⌈
T

(1)
S

T TA

⌉
We also apply a higher limitation to n by using the maximum allowed number
of nodes.

n ∈

[⌈
T

(1)
S

T TA

⌉
, nmax

]

If we are lucky, our module scale well and the first possible value of n already
represent the correct parallelism degree required to remove the bottleneck; if
it is not, we know that we will need to find an higher value of n that removes
the bottleneck in that interval.

Given that T
(x)
S is a generic function, any point of the interval is a is possible

candidate to remove the bottleneck. However, in most cases T
(x)
S is, or can

be approximated with, a monotonic function. We therefore apply a second
heuristic, assuming that the T

(x)
S function is monotonically decreasing, i.e.

it cannot increase by rising the number of nodes. If this hold, we can apply
some optimized search function in the selected interval, for example a bisection
method, to effectively reduce the amount of analyzed points of T

(x)
S to find the

best value n that, however, may not remove the bottleneck.

After these steps we removed (or limited in those cases in which a complete
removal was not possible) the bottleneck; now we need to re-evaluate the steady-
state analysis of the graph: indeed removing the bottleneck drastically change the
performance of the graph, resulting in three possible cases:

1. A new bottleneck is found, so that there exist a new module K such that
TA = TS: we proceed parallelizing K; or

2. The bottleneck has not been removed: in this case we can stop our
evaluation, as there is no way of further increasing the performance of the
graph; or

3. All the bottlenecks were removed, so that all the modules satisfy the
condition TA > TS: the performance evaluation step is done.

For our example, let’s assume that we are able to implement the module with a
data-parallel approach that will achieve T

(2)
S = 85s and a farm approach with T

(2)
S =

80s. Now, they all introduce a slight overhead (a perfect scalability will produce

T
(2)
S = 150/2 = 75s), and the data parallel is even a bit slower; however they both

remove the bottleneck because of the integer approximation of n, so we choose the

4.1. A GENERAL APPROACH TO PARALLEL PERFORMANCE PREDICTION 71

M0

M2

M1

M3

M5

M4

M6

TA=137.5s
TS=85s
TD=137.5sTA=50s

TS=40s
TD=55.5s

TA=91.6s
TS=80s
TD=91.6s

TA=55s
TS=40s
TD=55s

TA=550s
TS=550s
TD=550s

TA=61.1s
TS=50s
TD=61.1s

TA=55s
TS=48s
TD=55sp=0.4

p=0.6

p=0.1

p=0.9

Steady State Analysis

Figure 4.6: Result of the steady-state analysis after the parallelization of module 2.

M0

M2

M1

M3

M5

M4

M6

TA=125s
TS=85s
TD=125sTA=50s

TS=40s
TD=50s

TA=83.3s
TS=80s
TD=83.3s

TA=50s
TS=40s
TD=50s

TA=550s
TS=550s
TD=550s

TA=55.5s
TS=50s
TD=55.5s

TA=50s
TS=48s
TD=50sp=0.4

p=0.6

p=0.1

p=0.9

Steady State Analysis

Figure 4.7: Result of the steady-state analysis after the parallelization of module 5.

data-parallel approach for the possible benefits w.r.t latency. We effectively removed
the bottleneck, but a steady-state analysis of the new model (Figure 4.6) shows that
a new bottleneck exists: module 5 is now slowing the application. However, after
this second iteration, all bottlenecks are removed as shown in Figure 4.7.

It is worth noting that in a general iterative process, a module M may be an-
alyzed more than once, depending on the complexity of interaction of the graph;
nevertheless, the process will definitely end at a certain point where we will either:

• reach a steady-state solution with no bottlenecks, or

• reach a steady-state solution with unsolvable bottlenecks.

4.1.1 The case of single-element streams

The presented analysis works very well in the case of stream-connected modules.
However, in our programming environment, we also want to allow the programmer

72 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

to work on pure data-parallel parallelizations, i.e. parallel programs that works in
the presence of a single, possibly large, data structure. From a modeling point of
view, this is possible by:

a) expressing data parallel parallelizations of a module, and

b) connecting multiple data-parallel modules with single-element streams in the case
of complex parallelizations.

Nevertheless, the stream-based analysis does not hold anymore, as we are indeed
interested in different metrics, i.e. minimize the time the single element spend in
the whole system.

We propose a latency-based performance evaluation, in which the user provide a
special value for source streams: TA =∞. This basically represent the fact that no
further elements will be received from the source stream. Recognizing this particular
value, the compiler will perform a different performance analysis.

Given the absence of an input frequency, we do not have an intrinsic limit on
the performance of our application: we can lower the latency as much as possible,
considering only the limitation on the maximum parallelism degree, given by the
amount of nodes.

In addition, we do not have to partition the amount of nodes on the different
modules, as each one will work in different times (because we do not have multiple
elements).

The problem is thus limited in finding, for each module, the best configuration,
given the maximum amount of nodes. This represent, of course, a much simpler
problem w.r.t the previous one.

4.2 Performance prediction of a parallel module

In the previous section we discussed the performance prediction of a parallel appli-
cation, assuming we were able to predict the performance of each module.

In this section we discuss the general methodology to evaluate the modules, and
provide a simple example to clarify its application. Because of the deep implications
of the implementation in the performance model of a module, at this point we are
unable to provide the model of each possible pattern, so we can only present the
underlying methodology. In the following chapters, however, when optimizations
are presented, will discuss the possible ways to model these features and, in the
last chapter of the thesis, we will show the application of this methodology to a
real-world example.

The basis of our methodology can be considered, in some way, inherited from
BSP or LogP, in which we identify and measure, for each processor:

a) a sequential code that is run independently from the others;

4.2. PERFORMANCE PREDICTION OF A PARALLEL MODULE 73

b) synchronization points, in which the processor waits for others to complete
their tasks;

c) communication points, in which the processor sends and receives data to or
from the others.

However, with respect to the previously presented models, we aim to a precise
evaluation, based on the program and the architecture, of both the service time and
the latency of the module.

The main idea that allows us to tackle the complexity of the model is that we
are able to separate the behavior of the algorithm and that of the parallel pattern.

The sequential code is, indeed, strictly dependent on the application, given by
the user, and does not depend in any way on the parallel implementation of the
pattern, so it can be estimated from the code inserted in the patterns.

The other two points (synchronizations and communications) are not influenced
by the sequential code, as they are defined by the pattern and its implementation;
moreover, because of its “pattern-based” nature, each implementation will have well
defined communication and synchronization points, allowing us to study these two
points on a per-pattern implementation basis.

This way we are able to restrict the scope, and therefore enormously simplifying
the development of a performance model, w.r.t. an undisciplined parallel program-
ming environment, in which communications and synchronization are defined by the
application programmer in a generic way.

4.2.1 An example: cost model for a trivial task-farm imple-
mentation

Here we introduce a simple implementation of a task-farm, that will be used in
the rest of the chapter to exemplify the methodology used to define a model for
a pattern implementation. We selected the farm as a starting point because of
its simplicity; nevertheless, it still represents a significant example to understand
the underlying methodology. The discussed implementation is the classic, skeleton-
based implementation of P3L [140, 143], initially defined for distributed memory
architectures, with no particular optimizations w.r.t multi-core architectures. The
pattern uses the Emitter → Workers → Collector scheme, exploiting two cores to
implement the supporting entities. The pseudo-code of the three classes of processes
is reported in Listings 4.1, 4.2 and 4.3.

Regardless the existence of a hardware shared memory, this implementation uses
explicit communications, implemented with a simple message-passing library. The
pseudo-code is pretty straightforward: the emitter follows a round-robin scheduling
policy, starting from the first worker (i = 0). The collector follows a similar pattern,
receiving data from the workers (again, in a round-robin fashion) and forwarding
them to the output stream. For the sake of simplicity, this example do not intro-
duce the termination code, needed to identify the end of the stream and to close

74 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

while (true) {
for (i : 0 . . n−1){

message temp ;
r e c e i v e (temp , input stream) ;
send (temp , worker [i]) ;

}
}

Listing 4.1: Pseudocode of the emitter.

while (true) {
for (i : 0 . . n−1){

message temp ;
r e c e i v e (temp , worker [i]) ;
send (temp , output stream) ;

}
}

Listing 4.2: Pseudocode of the
collector.

while (true) {
message temp ;
r e c e i v e (temp , emi t t e r) ;
. . .
// Computation
. . .
send (temp , c o l l e c t o r) ;

}

Listing 4.3: Pseudocode of the generic worker i.

the application. Communications are asynchronous and blocking, following a
semantic similar to that of ECSP[20] and, w.r.t MPI, analogous to the MPI_Send

and MPI_Recv, but with an important difference: asynchrony is guaranteed for
a fixed number k of messages, so that the send operation do not need to wait for
the corresponding receive, regardless of the length of the message.

Despite the lack of many information about the actual implementation of the
pattern, we can already start building a performance model for our task-farm. In
particular, we already know the sequential code of each process of the application
and the flow of tasks through the entities of the computation.

4.2.2 Sequential code analysis

We identify three classes of processes, each one executing a different code; we can
start by assigning an average time length to each step of the code. In particular, for
each task

• The emitter E:

1. receive the task from the input stream (TE−recv);

2. send the task to the selected worker (TE−send).

• The worker W:

1. receive the task from the emitter (TW−recv);

4.2. PERFORMANCE PREDICTION OF A PARALLEL MODULE 75

2. compute the task (TW−calc);

3. send the computed task to the collector (TW−send).

• The collector C:

1. receive the computed task from a worker (TC−recv);

2. send the computed task to the output stream (TC−send).

Assume, for now, that we are able to measure a mean value for all these pa-
rameters, and that all the receive and send times do not account for blocking (i.e.
when we execute a receive, the data to be received has been already sent, and when
we execute a send, we are able to send the data). In this condition, we have that
T∗−send and T∗−recv contain only the time needed to exchange the message (i.e. ac-
cess to the shared structure that represent the communication channel, modify it
and write/read the message). TW−calc, on the other hand, represent the time to
execute the computation on a single element.

4.2.3 Latency Model

By using the information obtained by the previous analysis we can easily evaluate
the latency of the parallel pattern. In particular, we can see in Fig. 4.8 the tem-
poral behavior of our pattern in the presence of a single stream element (a perfect
candidate for studying the latency). In practice, not only each process executes its
part sequentially, but the whole computation is executed sequentially, so that we pay
the whole computation time TW−calc plus all the communications. From the figure

Receive Send Compute

E

0 3 6 9 12 15 18 21

W0

W1

C

24 27 30 33 36 39 Time

TE-recvTE-send Tw-calcTW-recv TC-recvTW-send TC-send

Figure 4.8: The temporal behavior of the farm implementation with a single element.

76 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

we can easily produce a formula to predict the latency of this implementation, that
consist in the sum of the latency of each entity of the parallel pattern:

LFARM = LE + LW + LC (4.2)

LFARM = TE−recv + TE−send +

+ TW−recv + TW−calc + TW−send +

+ TC−recv + TC−send (4.3)

From this we can already understand the problems of a stream-parallel pattern in
the presence of a single element: despite the number of processes and cores allocated,
the application is not parallel.

4.2.4 Service Time Model

Of course, with a stream things are different, as exemplified in Fig. 4.9 and 4.10.
The two cases differ on the ability of the emitter to sustain the computation. In

particular, in Fig. 4.9 we can easily see that each worker can start the next task as
soon as it finishes the first. The Emitter, on the other hand, after a transition phase,
stop after each send, to wait the completion of the previous receive from the worker.
This is because the channel implement an asynchrony level of 1: it allows only one
message in the buffer. This example was selected to keep the drawing small, but
the behavior remain the same with different k: by using a higher asynchrony we
just increase the length of the transition phase, but the steady-state behavior of the
pattern will remain the same. Fig. 4.10 shows the opposite, i.e. a case where the

Receive Send Compute

E

0 3 6 9 12 15 18 21

W0

W1

C

T*-recv T*-send Tw-calc

24 27 30 33 36 39 Time

Figure 4.9: The temporal behavior of the farm implementation with a stream, the
workers are limiting the throughput of the system.

4.2. PERFORMANCE PREDICTION OF A PARALLEL MODULE 77

Receive Send Compute

E

0 3 6 9 12 15 18 21

W0

W1

C

T*-recv T*-send Tw-calc

24 27 30 33 36 39 Time

Figure 4.10: The temporal behavior of the farm implementation with a stream, the
emitter is limiting the throughput of the system.

Workers are limited by the throughput of the Emitter, that is unable to sustain the
number of worker. This characteristic have an enormous impact on the service time
of the pattern.

In the general case, given the flow of tasks, we can model this implementation
as a three-stage pipeline (Fig. 4.11): a task, after being served by the Emitter, will
step through one of the Workers, and then to the Collector. The service time of
a pipeline is well known, and will not be studied here. The interested reader can
refer to [139, 140] for a detailed analysis. The result is given in Eqn. 4.4: it is
simply the maximum of the service time of each stage. For the sake of simplicity
and completeness we also report the throughput (also referred with Bandwidth, B),
i.e. the amount of task processed per unit of time, in Eqn. 4.5.

Emitter Collector

Worker1

Workeri

Workern

...
...

Stage 1 Stage 2 Stage 3

Figure 4.11: Stream-oriented pipeline modeling of the implementation.

78 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

TS−FARM = max {TS−E, TS−W , TS−C} (4.4)

BFARM =
1

TS−FARM
= min {BE, BW , BC} (4.5)

Now, given the fact that the Emitter and the Collector are sequential entities,
they compute a task every L〈E,C〉, so we have that their service time match the
latency:

BE =
1

TS−E
=

1

TE−recv + TE−send

BC =
1

TS−C
=

1

TC−recv + TC−send

(4.6)

Things are quite different for the workers, because we have a set of n workers (2 in
the previous examples) that works concurrently. Each one has its throughput (that
can be derived as with the emitter and collector by considering the reciprocal of the
latency); the cumulative throughput can be easily obtained by summing the through-
put of each worker. Given the fact that the workers are all equals, their throughput
is simply calculated by multiplying the single throughput by n (Eqn. 4.7). The
service time is therefore the single service time divided by n (Eqn. 4.8).

BW =
1

TS−W1

+ ...+
1

TS−Wn

=
n

TW−recv + TW−calc + TW−send
(4.7)

TS−W =
1

BW

=
TW−recv + TW−calc + TW−send

n
(4.8)

4.2.5 Evaluating the model parameters

We reached a set of equations to model the service time and the latency of our
task-farm pattern implementation. Still, we have a set of parameters that need
to be estimated, using data collected from the deployment architecture and from
the algorithm. Nevertheless, we confined the algorithm code to a single parameter,
TW−calc, while the others are just communication latencies that do not depend on
the programmer code.

In general, to evaluate these parameters we can use any of the three main tech-
niques of performance evaluation. Given the analytical modeling of latency and
service time, we would prefer the same formalism here. However, where not possible,
we can also choose to estimate the parameters by means of measurements, given
the presence of both the architecture and the parallel program code (created by our
compiler).

4.2. PERFORMANCE PREDICTION OF A PARALLEL MODULE 79

Shared resources in parallel architecture

By evaluating the parameters, we want to take into account the fact that multiple
processes are executed concurrently on the parallel machine. This means that an
isolated study of the behavior of each process will probably produce different results
w.r.t the concurrent execution because of interference between processes. Neverthe-
less, an isolated study is much simpler, both from a modeling and from an evaluation
point of view, than a global study.

For this reason we selected a mixed approach: starting from the isolated study,
we count the possible interference, so that we are able to derive the global behavior
with sufficient precision. The main source of interference is the presence of shared
resources : each processor (and therefore process) compete for its access and, of
course, this is not captured by an isolated study where the whole system is reserved
for a single process. Current multi-core architectures provide a wide set of shared
resources, such as:

a) cores, because of multithreaded implementations (such as SMT[168] or its com-
mercial name Hyper Threading);

b) caches, because of (multiple) cache levels shared among groups of cores (espe-
cially the LLC usually shared among all the cores);

c) memory, to allow sharing of data between processes in the parallel architecture.

Of course, although possible, an interference model able to capture all the shared
resources becomes very complex; for the moment, in this thesis, we consider only
the most important source of interference, present by definition in all multi-core
architectures: the shared memory. To address and evaluate the time overhead
related to this kind of interference, we will define our parameters as the sum of:

1. a fixed time, evaluated on all those operations that do not rely on the memory
(i.e. register-register operations, load/store that generates a cache hit, etc.),
and therefore not influenced by the shared resources.

2. a variable time, evaluated as the number of memory operations that, by
definition, are affected by the interference.

4.2.5.1 Evaluating the sequential time

The evaluation of Tw−calc is the only part that requires the knowledge of the applica-
tion code. Because of isolation, we only need to estimate the execution time of the
sequential source code in the target architecture. This is surely an easier problem
w.r.t. evaluating the performance of a parallel application. Several works aimed to
solve this problem exists in literature, so that we can safely consider this a solved,
or at least solvable, problem that do not require further studies in this thesis.

80 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

For example, we find of extreme interest the approach in [121] that exploit a mix
of static and dynamic analysis to predict the performance of a sequential program
independently of the running architecture. In particular, the methodology deeply
analyze the binary code created for a specific architecture, by means of static analy-
sis, to derive the execution paths of the application. The code is then instrumented
to gather run-time information for those paths marked as interesting by the static
analysis. The frequency of each execution path and the memory access pattern is
then extrapolated by means of specific models, to predict the program behavior in
a parametric way w.r.t data structure sizes, for an abstract execution architecture.

Finally, by instantiating the execution architecture (i.e. the amount and type of
execution units of the processor, the sizes of cache levels, etc.) and the problem size,
the methodology allow us to derive the miss frequency for the various cache levels
and the execution time of the application. To validate the methodology, the authors
modeled the behavior of some applications from the NAS[21] benchmark toolkit
using a Sun UltraSPARC-II system, and successively predicted the performance of
an Alpha R12000 CPU, obtaining results usually within a 10% relative error. By
following this approach we are able to gather all the information required to estimate
our Tw−calc.

Nevertheless other, simpler approaches exists in literature [94, 96, 136, 187]. For
the sake of simplicity, in our thesis propose use a very simple methodology based on
the actual execution of the sequential program on our target machine. In particular,
we use the following execution time model:

Tw−calc = CPU execution clock cycles

+ Memory stall clock cycles

= CPU execution clock cycles (4.9)

+
n−1∑
i=1

Li misses× time(Li miss) (4.10)

+ Ln misses× time(Memory Latency) (4.11)

That essentially separate the CPU time and the memory hierarchy latencies.
Despite its simplicity, this is actually used in many performance evaluation works
(such as [94]) and is believed to model the behavior of a program with sufficient
precision. In our case we split the time in memory accesses and cache hits, assuming
an entirely private cache hierarchy, so that the only shared point in the architecture,
and therefore the part that affect the variable time of the model, is the memory level.

We have that the first two addends of the formula (4.9 and 4.10) compose the
fixed time of our Tw−calc, while the third (4.11) represents the variable time, that
will depends on the amount of total requests sent to the shared resource (i.e. the
memory):

Tw−calc = Fixed T ime+ Ln misses× time(Predicted Memory Latency) (4.12)

4.2. PERFORMANCE PREDICTION OF A PARALLEL MODULE 81

By fixing the problem size and the execution architecture, our approach does not
need specific instrumentation to gather these values from the source code, but can
only rely on the measurement of some hardware counters during the execution.

Current processor, unfortunately, do not count the exact parameter Fixed T ime
we need for our approximation. In particular, we are usually able to measure the
total execution time and the so-called load/write stall time, i.e. the time a processor
wait for data from the whole cache hierarchy (4.10 + 4.11), but not the load/write
stalls that results in memory accesses (4.11). We can, however, measure the number
of cache miss for each cache level, and evaluate the sequential memory latency by
using specific benchmarks.

For example, for the processors used in this thesis, we can use the performance
events in Tables 4.1, 4.2 and 4.3 to gather the needed values, and then derive the
two parameters as in Table 4.4

It is important to notice that in Table 4.4 we use two different values for the
memory latency:

i) Measured Memory Latency, that is the memory latency in a sequential
program that issue only one memory request at a time, measured by means of
a benchmark previously executed on the target architecture;

ii) Predicted Memory Latency, that is the memory latency in a parallel pro-
gram, with multiple cores issuing memory requests concurrently, predicted by
means of specific architecture-based models that will be introduced in the rest
of the chapter.

4.2.5.2 Modeling communications latencies

For the communication latencies we can derive a similar model, by analyzing the
implementation of the communication primitives send and receive. For this ex-
ample, we will study the implementation in Listings 4.4 and 4.5, that represent a
channel implemented by using a FIFO queue. For the sake of readability we also
list the structure of the queue (Listing 4.6), that contains a circular buffer used to
store elements, a mutex and two condition variables to handle critical section and
blocking in cases of full/empty channel. We highlight some important points of the
implementation:

• The semantics of mutexes and condition variables follows the posix specifica-
tion: for example when we perform a cond_wait we atomically enter in the
condition variable waiting queue and release the mutex; when the process is
woken up, it automatically reacquire the mutex, so that at the end of the exe-
cution of cond_wait we already are the only entity working within the critical
section.

82 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

• To increase non-determinism, the waiting on the channel is not implemented
with a FIFO behavior: when the send put a message, for example, it does wake
all the waiting receivers. Then, all the receivers will try to acquire the mutex

Parameter Event(s)
Tw−calc CPU_CLK_UNHALTED

Ln misses LLC_MISSES

Table 4.1: Performance events used on
Intel processors.

Parameter Event(s)
Tw−calc CPU_CLK_UNHALTED

Ln misses L3_CACHE_MISSES

Table 4.2: Performance events used on
the AMD processor.

Parameter Event(s)
Tw−calc ONE

Ln misses
LOCAL_DRD_MISS + REMOTE_DRD_MISS +
+ LOCAL_WR_MISS + REMOTE_WR_MISS

Table 4.3: Performance events used on the Tilera processor.

Parameter Model
Fixed T imew Tw−calc − (Ln misses×Measured Memory Latency)
V ariable T imew Ln misses× Predicted Memory Latency

Table 4.4: Modeling of fixed and variable time starting from evaluated parameters.

send (message msg , channel ch) {
l o ck (ch . mutex) ;
while (ch . elem == ch . s i z e) {

// Wait f o r a f r e e space
cond wait (ch . f u l l , ch . mutex) ;

}
i f (ch . elem == 0) {

// Wake up a l l the w a i t i n g
r e c e i v e r s

cond broadcast (ch . empty) ;
}

// Send the message
ch . t a i l = (ch . t a i l +1)

% ch . s i z e ;
ch . l en [ch . t a i l] = msg . l en ;
memcpy(ch . b u f f e r [ch . t a i l] ,

msg . value , msg . l en) ;
ch . elem++;
unlock (ch . mutex) ;

}

Listing 4.4: Implementation of send.

r e c e i v e (message msg , channel ch) {
l o ck (ch . mutex) ;
while (ch . elem == 0) {

// Wait f o r an element
cond wait (ch . f u l l , ch . mutex) ;

}
i f (ch . elem == ch . s i z e) {

// Wake up a l l the w a i t i n g
senders

cond broadcast (ch . empty) ;
}
// Receive a message
msg . l en = ch . l en [ch . head] ;
msg . va lue = mal loc (msg . l en) ;
memcpy(msg . value ,

ch . b u f f e r [ch . head] , msg . l en) ;
ch . elem−−;
ch . head = (ch . head+1)

% ch . s i z e ;
unlock (ch . mutex) ;

}

Listing 4.5: Implementation of receive.

4.2. PERFORMANCE PREDICTION OF A PARALLEL MODULE 83

typedef struct channel {
mutex t mutex ;
cond t empty ;
cond t f u l l ;

int s i z e ;
int head ;
int t a i l ;
int e lements ;
void ∗∗ b u f f e r ;
int ∗ l en ;

} channe l t ;

Listing 4.6: Fields of the structure channel.

again and, of course, only one of them will be able to consume the inserted
message; the other will find the channel empty and return in a waiting state.

• Messages are considered a simple array of bytes; more complex structures will
need a serialization/deserialization phase that will be performed (in our farm
example) inside the worker - and therefore included in Tw−calc.

• Messages can be of variable size, so we also need to store the length of each
message. The buffers inside the queue can be sized by using an upper limita-
tion to message sizes. For the same reasons inside the receive each message
structure is allocated by using the exact size of the received message.

Now that we have an implementation, we easily model T∗−send and T∗−recv by
following our modeling approach:

T∗−send = Fixed T imes + V ariable T imes (4.13)

T∗−recv = Fixed T imer + V ariable T imer (4.14)

As previously explained, for our model we need to measure the time needed to
perform a send or a receive in a block-free execution, i.e. when the communication
does not block because of a full or empty channel, respectively. Therefore, we
basically have a limited number of simple operations on the data structure that
represent the channel plus a copy of the message to/from the channel. This code
consist mainly in load/store, so we have a negligible computational time with an
high number of memory transfer. We can therefore model T∗−send and T∗−recv, with
reasonable precision, with a Fixed T ime{r,s} = 0. For the variable part, we need
to know how much data we transfer, i.e. the length of the messages that, however,
is not always fixed because of the possible variable message length. We have two
options here:

84 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

a) Worst Case analysis: we consider the upper limitation on the size of the
messages (also required to correctly size the buffers of the channel);

b) Average Case analysis: we consider the average length of messages;

As we are more interested in the average performance of the program, we usually
prefer the second option.

Given the size of the messages, we have that a good approximation for our
parameter is:

T∗−send = 0 +
Message Size

Ln Block Size
∗ Predicted Memory Latency (4.15)

T∗−recv = 0 +
Message Size

Ln Block Size
∗ Predicted Memory Latency (4.16)

In this case the cost of send and receive is the same, as both execute a copy of
the message. There are, however, more interesting (and complex) implementations
that can limit the number of total copies to one; in this case we will have a different
cost (i.e. a T∗−send like 4.15 and a T∗−recv = 0). For this example we deliberately
used a straightforward implementation for the sake of simplicity.

4.2.6 The final model for the task-farm example

We briefly summarize here the result of the steps from section 4.2.2 to 4.2.5: a
model for estimating the latency and the service time of the studied task-farm
implementation.

The resulting model is composed of measured values (i.e. Fixed T imew and
Ln misses) obtained through the execution of isolated sequential parts of the appli-
cation, values modeled by manually analyzing the pattern-related code (i.e. Message Size

Ln Block Size
)

and a further parameter, Predicted Memory Latency, to model the interference
generated by the use of a shared memory. The latter is an important point of our
modeling, that allows us to predict the performance of the system by using small,
isolated measurements, and then introduce a corrective factor that will take into
account the presence of shared resources that affects the overall performance of the
parallel application. The estimation of this corrective factor requires a detailed
model of the target architecture, that will be discussed in Section 4.3.

In Table 4.5 we summarize the estimation of the fixed and variable parts of
Tw−calc, starting with the measured events on an target architecture (we used the
event names of the Intel architecture for conciseness), while in Equations 4.17-4.24
the service time and latency of each entity and of the whole parallel pattern are
presented.

4.3. PERFORMANCE DEGRADATION ON SHARED MEMORY ARCHITECTURES 85

Parameter Event / Model
Tw−calc CPU_CLK_UNHALTED

Ln misses LLC_MISSES

Fixed T imew Tw−calc − (Ln misses×Measured Memory Latency)
V ariable T imew Ln misses× Predicted Memory Latency

Table 4.5: Modeling of fixed and variable time on an example architecture.

LE = 2 ∗ Message Size

Ln Block Size
∗ Predicted Memory Latency (4.17)

LC = 2 ∗ Message Size

Ln Block Size
∗ Predicted Memory Latency (4.18)

LW = Fixed T imew

+ Ln misses ∗ Predicted Memory Latency

+ 2 ∗ Message Size

Ln Block Size
∗ Predicted Memory Latency (4.19)

TS−E = LE (4.20)

TS−C = LC (4.21)

TS−W =
LW
n

(4.22)

LFARM = LE + LC + LW (4.23)

TS−FARM = max (TS−E, TS−C , TS−W) (4.24)

4.3 Performance degradation on shared memory

architectures

With this section we finalize our performance modeling methodology by introducing
the mechanisms used to predict the behavior of shared architectural resources in the
parallel execution. In particular, our focus is on Predicted Memory Latency ,
that represents the only remaining parameter of the model. For this purpose we rely
on many works that emerged when shared memory architectures became popular.
The first is probably dated back to 1975, when Bhandarkar [36] introduced the main
idea of modeling the Processor-Memory subsystem of a shared memory architecture,
considering the memories as servants and the processors as clients. The concept is
that the behavior of a processor in the system can be exemplified as follows:

i) Processor Pi execute some “internal work”, i.e. decoding instruction, executing
integer/floating operations, etc.; in this step Pi works independently, without

86 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

P1

P2

Pn

M2

M1

Mk

Figure 4.12: Bhandarkar’s queueing network to model the memory contention.

the need of the memory;

ii) Processor Pi execute a memory read/write request, that is issued to the des-
tination memory; Pi is now stalled, waiting for the result from the memory to
continue the execution;

iii) The request travels through the interconnection network and reaches the mem-
ory; it is enqueued on the corresponding memory controller;

iv) When its turn is reached, the read/write operation is handled by the memory
and a result is produced;

v) The results is sent back in the network and reaches the issuing processor Pi
that completes the operation and return executing Point i.

This loop is executed by each processor, for the whole execution; its behavior
can be easily modeled by the queueing network in Fig. 4.12: we use a closed network
because the number of tasks in the system is fixed and it depends on the number of
processors. In this initial definition each processor can emit a single memory request
at a time; we can notice in Fig. 4.12 that the processors do not need a queue, as
they always receive a single task at a time. Nevertheless, they behave as servers
because, when a task is received (i.e. a memory response) they execute Point i for
a certain time, before sending the task again to the memory (representing a new
request, Point ii). Each memory can be straightforwardly modeled as a FIFO queue
followed by a server.

Parameters to instantiate the queueing network and derive performance indexes
can be captured by determining the proper probability distribution for the duration
of each of the previous point (e.g. point i can be characterized by using an expo-
nential distribution with average tp). Another important point is that the memory
access pattern determines the distribution of requests among the different memo-
ries; in [36] the author modeled the problem as a sequence of Bernoulli trials. The

4.3. PERFORMANCE DEGRADATION ON SHARED MEMORY ARCHITECTURES 87

modeling effort is not further discussed in the paper, mainly focused on resolution
methods for this queueing model.

This queueing network allow us to estimate Predicted Memory Latency , by
deriving the Response Time of the memory servers, that consist in the Service
Time of the memory plus the average Waiting Time, i.e. the time spent by a request
waiting for its turn. The model can be easily parameterized by using exponential
distributions, that represents a good approximation.

The processor server will use a service time calculated by considering its total
working time Fixed T imew and the number of memory requests executed, assuming
that memory requests are uniformly distributed among the whole execution time:

TP =
Fixed T imew
Ln misses

The memory server, on the other hand, will use TM = Measured Memory Latency
as its service time.

4.3.1 Extensions to the original queueing network

Research on Bhandarkar’s seminal work followed two main branches:

• the study of computationally simple model approximations, to solve the queue-
ing network efficiently;

• the extension of the model to match the evolution of computer architectures.

Indeed, although simple from a conceptual point of view, this model was already
too complex to be solved by using the then-state-of-the-art results in queueing net-
work. In our case, we are not (yet) interested in efficient methods to solve the
queueing network, so we are not giving more details on this specific topic.

Focusing on the second point, this simple yet elegant model has been extended
in the following years, to cover the increasing complexity in parallel architectures.

4.3.1.1 Modeling caches

Among the most important works, we cite again Bhandarkar[36] that, in the last
part of the paper, proposed an extension to deal with caches, based on the simple
concept of cache hit probability (ph): among the whole set of memory request T ,
a fraction will be completely handled by the cache (T ∗ ph), and only the rest will
reach the memory. A queueing network to handle caches is depicted in Fig. 4.13:
each memory request is sent to a server, that represent the cache; with a certain
time tc the cache will finish its work and will either:

1. produce an hit with p = ph: the task is sent back to the processor;

88 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

P1

P2

Pn

C1

C2

Cn

M2

M1

Mk

Figure 4.13: Queueing network model for systems with caches.

2. produce a miss with p = 1 − ph: the task is sent to the memory, as in the
simple case;

This behavior, of course, can be generalized to model an entire private cache
hierarchy.

4.3.1.2 Bus interconnections

In the following years the model was extended to cover the widely used bus intercon-
nection; the queueing network for multiple-bus systems (a widely adopted solution
for parallel machines at the time) is depicted in Fig. 4.14, following the solution
described in [37]. The bus(es) itself is represented by a queue that process tasks
(requests from the processors or replies from the memories) once at a time. Sev-
eral analytical solution based on this or very similar queueing networks have been
studied [97, 122, 164], proving the effectiveness and correctness of this model.

Bus

M2

M1

Mk

P1

P2

Pn

Figure 4.14: Queueing network model for multiple-bus interconnections.

4.3. PERFORMANCE DEGRADATION ON SHARED MEMORY ARCHITECTURES 89

Pn

P2

P1

M2

M1

Mk

Figure 4.15: QN model for systems with multiple requests per processors.

4.3.1.3 Multiple Requests per processor

With the emergence of superscalar and out-of-order processors, the assumption of
having a single task per processor in the system became too restrictive to effectively
model this kind of systems. From the queueing network point of view, however, a
straightforward update of the network is possible, by adding a queue to the P servers
and fixing the number of tasks per processor to a value higher than 1 (depending on
the architecture to be modeled). By transforming P in a service center (Fig. 4.15), we
are able to express the possibility of generating multiple requests, up to the amount
of tasks in its queue. When all tasks in the queue are consumed, P has reached
its maximum number of outstanding requests and blocks. At each response, it will
restart the computing phase to produce a new request.

With this modeling, it is extremely important to select the proper amount of
requests per processors, that depend on the executed code. Indeed we can use the
hardware limit (i.e. the maximum amount of outstanding requests), but this will
probably represent an higher number than the real amount of concurrent requests
issued by the processor because of data dependencies that cannot be avoided even
by using out-of-order processing. Therefore it is important, if we want to analyze
the performance of a specific program, to derive in some way this parameter from
the code. This extension has been used, for example, in [183].

4.3.1.4 Complex interconnection networks

Crossbars and buses represents two opposite corners in the world of interconnec-
tion networks: the first allows the maximum number of independent connections
concurrently at the cost of being the most expensive interconnection; the latter, on
the other hand, allows a single communication at a time, but is also very cheap.
Many interconnections were proposed in the middle, to increase concurrency with
limited costs. In the years, the group of so-called multistage networks (that includes,
among the others, banias and butterfly networks) gained a lot of popularity. The
generalization of the model to multistage networks is indeed quite difficult and, at

90 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

the moment, a limited number of works try to solve the problem. Of particular
interest is the modeling effort of Willick[183], that extend the base QN model by
considering a service center for each output port of each switch, and class-based
routing to correctly “forward” tasks from processors to memories and back. The
work also consider multiple-packet messages, to better handle the packet-switching
nature of this class of interconnection networks.

Starting from this queueing network, an analytical approximation is derived
by using approximate mean value analysis. The model is validated by comparing
analytical results with a simulation of the behavior of a real multistage network,
resulting in extremely low errors with architectures up to 128 processors and memory
interfaces.

4.3.1.5 Cache coherency

Another sensible problem of current architectures is the presence of cache coherence
protocols, that massively affect the data exchange pattern inside a parallel archi-
tecture. In hardware-based cache coherency, caches exchange data to synchronize
themselves on write operations. The most common protocols provide invalidation
mechanisms, to remove obsolete copies of cache blocks. This increase the cache miss
rate and, depending on the interconnection networks, requires the use of invalida-
tion messages. Modeling the behavior of cache coherency analytically is still an open
research, because of the strong implications of the program (in particular its data
access pattern) on the coherence traffic. The problem was addressed by adopting
several simplifications on the workload model, and analytically deriving the coher-
ence overhead by using tools such as Markov chains [73] or Generalized Timed Petri
Nets [176]. Among the others, the work of Yang et all [188] is quite interesting as it
uses a queueing network that indeed represents an extension of the original model
of Bhandarkar. The resulting network is quite complex, as it mixes both closed and
open classes of customers, the latter needed to model the cache invalidation traffic.
The resulting QN is depicted in Fig. 4.16.

Cn

C1P1

P2

Pn

M2

M1

Mk

Bus

SCwt SCwt

SCwb
SCwb

SC1 SK1

SC2

C2

SK2

SKn
SCn

Figure 4.16: Queueing network model for cache coherent systems.

4.3. PERFORMANCE DEGRADATION ON SHARED MEMORY ARCHITECTURES 91

4.3.2 Adapting the model to a concrete parallel architecture

We now present an application of this model to the Symmetry S-81 parallel archi-
tecture, studied by Tsuei and Vernon[165]. This represents a significant application
of our approach, able to measure several metrics, including the Response Time
of the memory servers. The resulting Queueing Network is depicted in Fig. 4.17;
without entering in specific details, one of the main characteristics of this model is
that uses different queues to address specific operations; all those queues, of course,
competes for acquiring the bus. In particular we have:

• iv, that represents a cache invalidation request;

• r, that represents a read requests, that will be addressed by the shared memory
or another cache;

• rw, that represents a write requests, that will be addressed by the shared
memory;

• memrp, that represents a shared memory response;

• cacherp, that represents a remote cache response.

This model has been validated against the real architecture by using two parallel
programs, resulting in a measured error always within 9%. This proves the accuracy
of the model and the feasibility of queueing-network models to analytically predict
the behavior of a system.

Figure 4.17: Queueing network model for the Symmetry S-81.

92 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

4.4 Summary

In the previous chapter we discussed the need of a performance model, to allow the
parallel compiler to compare the possible implementations and determine the best
(or at least a good) solution. In this chapter we addressed the problem by using
queueing network concepts; the result of this chapter not a well defined model, but
a set of tools and modeling building blocks that can be used to create the required
model.

We decomposed the modeling problem in three points:

1. Evaluate the performance of the application as a graph of parallel modules;

2. Evaluate the performance of each parallel module;

3. Evaluate the performance degradation of shared memory.

Because of the strong implications of the parallel pattern and the target archi-
tecture on each point, we are not able to offer a general queueing network for these
points: the model have to be studied on a per-pattern and per-architecture basis.

Nevertheless, we were able to adapt an already existing methodology for Point 1,
that is general enough to abstract from these characteristics and allow us the study
of stream-based parallel applications; a similar approach is proposed for entirely
data-parallel applications composed of several modules; this, however, needs further
refinements (that are left as possible future works) to allow its applicability in general
cases.

On the other hand, a pattern-based model is required for Point 2, while a detailed
architectural model is used in Point 3. These two need, of course, a specific definition
for each pattern implementation and target architecture. Throughout the chapter
we discussed several modeling solutions for common problems, to give an idea of the
strength of QN-based models and to prove the feasibility of our approach.

In particular, for Point 2 we exploit the knowledge given by the pattern to derive
the behavior in terms of communications and synchronizations; this, together with
the pattern implementation details, allow us to predict the time spent by our parallel
module in communications and synchronizations. The remaining time, spent by
executing the algorithmic code, is evaluated by profiling the sequential code. All
the times consist in a Fixed Time, that is not affected by the parallel execution,
and a Variable Time that, on the other hand, depends on the presence of multiple,
cooperating processors in the architecture.

The Variable Time is analyzed in Point 3, by taking into account of the specific
details of the running architecture, and its shared resources. Here we use the well-
established approach of modeling the Processor-Memory subsystem as a queueing
network. Nevertheless, the different characteristics of each architecture requires the
definition of a specific QN model for the target parallel machine.

4.4. SUMMARY 93

In the next chapters, after a deeper analysis of current parallel architectures and
parallel pattern implementations, we will be able to discuss the proper QN-based
models on specific examples.

94 CHAPTER 4. A HARDWARE-DEPENDENT MODEL BASED ON QNS

Chapter 5

A Queueing Network Model for
Tilera TILEPro64™

In this chapter we study a commercially available multi-core architecture, in order
to develop a detailed Queueing Network model of the chip. This model, defined
by using the modeling basis provided in Chapter 4, Section 4.3, will allow us to
evaluate the performance effects of the shared memory contention. From the set of
architectures presented at the end of Chapter 3 we selected the Tilera TilePro64™

processor, mainly for two important points:

1. Despite its low peak performance in terms of instruction per second, it rep-
resent a very advanced multi-core chip, as it contains a very large number of
cores1, a complex interconnection network, multiple memory controllers and
several interesting solutions that are likely to be integrated in other architec-
tures in the future.

2. The architecture is extremely documented, so that we are able to under-
stand low-level characteristics required for the development of our performance
model; furthermore, the development environment offer a cycle-accurate sim-
ulator that allow us to accurately study the behavior of the chip and the
performance effect of the various design choices.

The design of a Queueing Network model for an architecture can be a tricky
task, that involves watching the real behavior, thinking of modeling ideas to cap-
ture the behavior, and finally test if the designed model really works as the real
machine. To efficiently check our ideas we created our own queueing network simu-
lator, EQNSim, that will be presented in the next section.

In the rest of the chapter, after a first overview of the architecture, we will study
each key module of the chip, its characteristics and how to model it in our QN-based

1As of today, the only commercially available chip that contain an higher number of general-
purpose cores is the Tilera TILE-Gx8072[163], that represents the direct evolution of the TilePro64,
and as such shares most of its characteristics

96 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

model. At the end the overall Queueing Network Model will be presented, along
with some experiments w.r.t the real architecture to demonstrate the effectiveness
of the model.

5.1 EQNSim: a testing environment for queueing

network models

Designing a Queueing Network model for an architecture involves several tasks:

1. Analyze the behavior of the real architecture, usually by means of specific tests
or benchmarks targeted at studying specific aspects (i.e. the network latency,
the memory response time, the behavior of cache coherency protocols, etc.).

2. Use the tools available to create or adapt a model that should behave, with a
sufficient level of approximation, as the analyzed system.

3. Instantiate the model and verify if the required level of approximation is met.

During the definition of a model we usually try to study one effect at a time,
modeling each one individually, and then mix them up to obtain a model of the
overall system. This means that, by definition, these three steps will be executed
several times, depending on the effects to be modeled.

Furthermore, modeling idea from point 2 may not meet our expectation, resulting
in approximations not as effective as thought when verified at point 3. In this
case, we need to refine the model, by changing some parts or sometimes discard it
completely and restart from scratch.

In this incremental and iterative scenario we wanted a tool to rapidly prototyping
our model ideas and compare them w.r.t the real architecture. In literature, queueing
networks are usually solved by means of two very different tools:

• Analytic Solvers, such as the qnetworks Toolbox[123] and PDQ2, that are
able to analytically compute the steady-state statistics using mean value anal-
ysis, markov chains or similar approaches; the problem of these tools is that
analytic solutions are known only for a (small) subset of queueing networks
models (for example, a product form (required by most solvers) is only avail-
able for a very small subset of closed networks, called BCMP networks [25]).

• Simulators, such as Java Modelling Tools[29], able to simulate generic net-
works until a steady-state system is reached to gather the statistics; in this
case there is no need of any kind of transformations.

2Pretty Damn Quick, http://www.perfdynamics.com

 http://www.perfdynamics.com

5.1. EQNSIM: A TESTING ENVIRONMENT FOR QUEUEING NETWORK MODELS 97

The first class of tools is actually very fast in finding the steady-state statistics;
however, if the original model does not fit the required restriction, a further approx-
imation effort is required. Given the uncertainty of the model we are solving, we
did not want to spend a lot of time in adapting our ideas to the kind of networks
allowed by these tools and decided to use simulators. Of course, when the complete
architectural model is found, it is possible (and recommended) to study analytic
solving methods: it is not convenient to equip our parallel compiler with a queueing
network simulator, that could take a lot of time to reach the steady-state solution;
however, in this first step towards the parallel programming environment, we are
just interested in finding a good model, not on efficient ways to solve it.

Unfortunately, also most queueing network simulators are difficult to use in an
environment in which the QN is to be refined continuously, where you need to
change hundreds of service times per test, preferably in an automatic way. We also
wanted something more powerful and customizable: EQNSim was born. While
the name stands for Extensible Queueing Network Simulator, the idea behind
EQNSim was not really to produce a queueing network simulator, but more like a
“playground”, where queueing network concepts could be applied, generalized and
mixed with other, more architecture-related, behaviors.

Let us say, for example, that we want to model the behavior of a specific com-
ponent of the architecture, such as the memory controllers or the interconnection
network, and we have a modeling idea that we want to test. We could use the cycle-
accurate simulator of the TilePro64, but the closed nature of the system makes the
performance of each component strictly related to the behavior of the others that,
however, we do not know (yet) how to model. In practice, we do not really know
how to test our idea because we do not have the entire queueing network model.

A solution (or at least a starting point towards the solution) is to “mix” queue-
ing networks and real architecture simulators. For example, if we are testing
the memory, we could create a closed queueing network, such that proposed by
Bhandarkar[36], and substitute the memory queue with a cycle-accurate memory
simulator. This “model” gives us the behavior of the memory when requests are
generated by following a very specific frequency pattern, making it comparable with
an entire queueing network model in which we introduce our modeling idea for the
memory controller.

To reach this level of extensibility we selected the well known simulation frame-
work OMNeT++[174]. OMNeT++ was born mainly for research in computer
networks, as a substitute for NS-2[22] and OPNET[55], but with extensibility in
mind: according to the authors

OMNeT++ represents a framework approach. Instead of directly
providing simulation components for computer networks, queuing net-
works or other domains, it provides the basic machinery and tools to
write such simulations. Specific application areas are supported by vari-
ous simulation models and frameworks such as the Mobility Framework

98 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

Simple_Network

Mesh_QN_Crossbar

Figure 5.1: Two queueing network models represented on EQNSim.

or the INET Framework.

In practice, OMNeT++ is just a framework that provides an event-based simula-
tor, on top of which the user can define proper entities that cooperate throughout the
simulation. In the case of EQNSim, we developed the classic entities of queueing
networks: sink, sources and queues. These components have a well defined inter-
face, so that we can actually substitute each of them with different, more complex
components, to simulate single parts of the real system, as long as they respect the
interface.

To ensure the correctness of the queueing network components of EQNSim, we
tested them by comparing the results of some networks w.r.t the same networks
simulated with JMT. EQNSim has been extensively used throughout the thesis:
the results of all the queueing networks reported in the thesis were obtained by using
our tool.

5.2 Architecture overview of Tilera TILEPro64™

In this section we give an overview of the TilePro64 [26, 162], introducing the key
points of the architecture. Then, in the following sections we will analyze, piece
by piece, each part of the architecture to define a way to model it inside our
Queueing Network Model. The starting point is, of course, the initial model by
Bhandarkar[36](Fig. 5.2), that will be “extended” by using some of the already
known solutions listed in the previous chapter, mixed with new ideas for the specific
architecture.

5.2. ARCHITECTURE OVERVIEW OF TILERA TILEPRO64™ 99

P1

P2

Pn

M2

M1

Mk

Figure 5.2: Bhandarkar’s queueing network to model the memory contention.

The TilePro64 features 64 identical processing cores (tiles), interconnected with
Tilera’s iMesh[180] on-chip network. Each tile consists of

a) a 3-way superscalar VLIW processor;

b) a cache subsystem, composed of two separate L1 caches for data and instructions,
a unified L2 cache and a Translation Lookaside Buffer (TLB);

c) a switch that implements the iMesh interconnection network.

The iMesh [180] NoC is, in fact, composed of five independent meshes, each
one carrying a different kind of traffic, such as I/O transfer, memory access and
cache coherence protocol. One of them is particularly interesting because it can
be directly used by the programmer to exchange small messages among processors
without exploiting the shared memory system. This mechanism ensure ultra low
latency communications (tens to hundreds of clock cycles) for very small message
(up to 125words, corresponding to 500Bytes).

To sustain the memory bandwidth requirements of 64 cores, the TilePro64 pro-
vides four on-chip memory controllers, placed at the four edges of the mesh. This
means that, in general, the memory latency for a core depends on its position in the
mesh and on the memory controller selected. In practice, however, several features
of the architecture, such as the cache coherence protocol and the memory striping
system, can attenuate this effect.

Figure 5.3 shows the architecture diagram of the TilePro64 processor. Overall,
this is a far more complex structure compared to commodity multi-core CPUs, where
the number of core is limited (up to 8, at the moment being), and all the cores are, in
practice, equidistant with respect to the single memory controller usually available.

The TilePro64 design includes innovative, distributed and scalable approaches
to handling virtual memory and cache coherence. To ease the burden of having
multiple memory controllers, virtual memory pages (64KB long) can be “striped”
among the physical controllers in 8KB chunks. This way memory requests are

100 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

Tile

Sw

P

L2

Chip

Mem

Mem

Mem

Mem

N
etw

ork

I/O

Figure 5.3: TilePro64 architecture: chip architecture (left) and single core (right).

automatically and transparently spread across the different memory controllers. Of
course, if desired, the programmer may also require to directly allocate entire VM
pages on particular memory controllers, as usual in NUMA architectures.

The use of a complex interconnection network have a deep impact on the cache
hierarchy, and in particular the cache coherency mechanism. Indeed, a snoopy-based
approach is unfeasible in such architecture. The TilePro64 implements Dynamic
Distributed Cache (DDC)[160]. This is a kind of distributed directory mechanism
implemented on top of L2 caches. The basic idea is that for each cache line a tile
is elected to be the line Home Node. The Home Node is responsible for handling
the coherency relative to the line, by always maintaining an updated version of the
line and working as a directory, i.e. keeping the list of sharers and sending proper
invalidations when needed. This “homing” mechanism is handled by using the L2
cache of the tiles, so that any local L2 space is contended by the core on the tile (for
the standard cache behavior) and the others (for the DDC behavior).

The presence of a Home Node significantly affect the cache hierarchy: with
common cache coherence mechanisms, on a cache miss, the line is usually requested
to the next level of the hierarchy; a (faster) cache-to-cache transfer may occur iff
another processor is using (or recently used) the same cache line. With the DDC,
on a cache miss, the request is sent to the Home that, aside from working as its
directory, may keep the line in its cache, even if the processor on the Home never
used it. For this reason Tilera presents the DDC mechanism as a virtual distributed
L3 cache; of course, it is virtual because implemented on top of the level two caches.
The downside of this cache coherency mechanism is that, for each cache line allocated
in the chip, the corresponding Home node need to keep an updated copy of the line.
This means that, if the Home node does not overlap with one of the cores that are
currently using the line, the number of copies will be |sharers|+1, thus introducing
a space overhead for keeping the line coherent. Given the (relatively) small amount
of cache per core, the space overhead can seriously affect the performance of a

5.2. ARCHITECTURE OVERVIEW OF TILERA TILEPRO64™ 101

program; for this reason the Home node can be selected with several policies. The
common behavior is to determine the Home by using a hash function, that ensure a
uniform distribution among the 64 tiles. The programmer can modify this behavior
by explicitly selecting a Home node for a slice of the virtual space. This “customized”
behavior is effective when a specific sharing pattern is identified by the programmer,
to minimize the space overhead of the DDC mechanism (i.e. by selecting as Home a
node that is known to use the line). In addition, the Home node can be completely
disabled, resulting in an incoherent mode. It is important to notice that these DDC
policies coexist inside a single process : the programmer is able to select the best
homing mechanism for each memory area. This is possible by using specific bits
of the page table entries to identify, for each page, the selected policy and/or the
specific Home node of the page.

The TilePro64 processor architecture defines a relaxed memory consistency model,
in which both load and store can be reordered (similar to POWER architectures and
in contrast to x86 architectures where store order is guaranteed). A memory fence
instruction is provided to force ordering, if needed. Moreover, according to a pure
RISC approach, a single atomic instruction (Test-And-Set) has been included in
the instruction set. It should be noted that the atomicity is guaranteed only if the
instruction is used on a cache coherent address.

According to a “general-purpose accelerator” philosophy, the engineers preferred
to adopt a large number of general-purpose cores in place of special-purpose acceler-
ators for specific tasks. The use of the cores is left to the programmer: if preferred,
some of them can be equipped with special “driver” programs that works as intel-
ligent interfaces w.r.t the external interfaces of the chip (i.e. networks and PCIe).
Indeed it is a programmer choice to use these helper processes at the cost of reducing
the number of available cores, or work directly with the interfaces at the cost of a
more complex interaction.

Several degrees of freedom are also given from the operating system point of
view: each tile may run its own (full) copy of the operating system, or the whole
chip can be used by a single O.S. instance (in both cases a customized Linux kernel).
In the latter, a specific operating mode exists (Zero Overhead Linux) to disable
the operating system on specific cores (by disabling several interrupts), so that a
selected process runs on the core without being interrupted by O.S. tasks (including
the scheduler). Lastly, it is possible to run a program without a (properly said)
operating system, by using the Tilera Bare-Metal Environment, that consists in
a set of libraries that provides support for basic O.S. tasks (i.e. handling virtual
memory and starting processes) to offer the complete control of the architecture.
All the results presented in this thesis were obtained by using the Zero Overhead
Linux configuration, that offered almost the same control and predictability of the
Bare-Metal Environment, but with a much easier programming workflow.

102 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

5.3 Processors

The processor architecture is significantly different w.r.t the current generation of
CPUs. Its design choices clearly highlight the need of a simple architecture, to
save space and thus increase the number of cores per chip. Despite its simplicity,
however, the design of TilePro64 cores is interesting and, in many ways, elegant.
The processor clearly follows a RISC paradigm (sometimes referred as “load-store”
or “register-register” architecture[92]), with operations allowed only among the 64
general purpose register, and explicit load/store instructions. The Processor uses a
short, in-order pipeline that consist of five stages (Fetch, Decode, Execute0, Exe-
cute1, and Register Updating). The processor is superscalar, supporting up to three
instruction concurrently (two arithmetic operations and a memory one); again, the
need of simplicity pointed to the development of a VLIW instruction set3: each
“instruction bundle” is 64-bit long and contains one instruction for each of the three
execution units; the bundle must contain independent instructions (i.e. no depen-
dencies can exist inside a bundle) and the whole bundle is stalled until all the input
registers are ready. The VLIW approach is able to offer superscalar in-order proces-
sors as fast as their corresponding out-of-order version, provided that the compiler
is able to correctly identify independent instructions. The size of the pipeline also
reduces the amount of stalls and their impact w.r.t more complex architectures (a
branch misprediction, for example, takes only 2 cycles on the TilePro64 [160] w.r.t
the 14 cycles of an Intel Sandy Bridge architecture4).

All those features makes it possible to easily model the processor behavior and, in
particular, its service time (i.e. the number of clock cycles that passes between two
memory requests; the only point of interest in our model is the load/store subsystem,
that allows more than one pending operation, meaning that the processor can send
multiple memory requests. However, given the in-order processing, we approximate
the system by considering a single request at a time. Thus, for the processor part,
we keep the single queue of the starting model.

5.4 Cache Hierarchy and Coherency

As previously pointed, the cache subsystem of the chip is quite common (two levels
of private cache), but the innovative cache coherence mechanism is likely to become a
modeling nightmare. We briefly analyze the different possible working modes of the
cache coherency mechanism, to finally end with our motivations to model programs
in which cache coherency has been disabled.

3The TilePro64 is one of the few processors implementing a VLIW approach today, along with
the Intel Itanium and some embedded processors.

4Sandy-Bridge latencies are reported at http://www.7-cpu.com/cpu/SandyBridge.html

http://www.7-cpu.com/cpu/SandyBridge.html

5.4. CACHE HIERARCHY AND COHERENCY 103

5.4.1 Hash-for-Home

This represent the default approach to automatic cache coherency, where the DDC
is distributed among all the caches, consuming approximately the same amount
of L2 on any tile. This DDC policy is extremely important when the application
uses a single core. In this case, with a common cache coherency mechanism, the
single process would have access only to its local cache: any L2 miss would end in
a memory request, and the other caches would remain unused. By using DDC, the
local level two cache is partially used as a directory, but only for cache lines used by
the core itself, resulting in no cache space loss. On the other hand, the other caches
devote all their space (that would have been otherwise unused) as DDC. This way a
local L2 cache miss, have still a chance of finding the cache line on its Home node,
without the need of reaching the slower shared memory. This is the best use case of
the DDC as a virtual L3 cache, as all the other caches will contribute as a further
hierarchy level. Of course, the same behavior can be experimented when a limited
number of cores is used. This policy can become ineffective when all the cores (or a
large number of them) are exploited for the computation.

From the modeling point of view, with this policy each cache miss will produce
a request towards the selected home, that is uniformly distributed among all the
tiles. This means that, in theory, each of the cache would also become a server that
receives requests from any core and, eventually, forward the request towards the
memory. We should also consider that the miss probability of each cache is changed,
because a large portion of the cache may be used as directory. We would have a
completely different queueing network, difficult both to be parameterized and to be
evaluated.

5.4.2 Single-Home

With the Single-Home policy the programmer is able to manually select the directory
node for a portion of memory. This is important partially to solve the space overhead
of using automatic cache coherence, as the directory can be selected to overlap with
one of the cores that is actively using the data.

From the modeling point of view here we partially avoid the problems on the
miss probability of the caches, as the space we are devolving for the directory can
be effectively used also as cache for the local processor. We still retain the problem
of modeling the caches as a further level of servers, and the additional hop to reach
the directory node when needed.

5.4.3 No-Home

With the No-Home policy we simply disable the automatic cache coherence. The
flow of a request is much simpler here: if the cache does not have the required
address, a request to the memory is issued, as common in most incoherent or

104 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

snoopy-based architectures. In this case, we can use the original model with no
modifications.

5.4.4 Restriction on the model

To keep the model simple (we already have many characteristics to be correctly
modeled and verified) we decided to allow the parallel compiler to only use the No-
Home policy, thus requiring to handle cache coherence at software. Of course, this
does not mean that the application developer will have to explicitly handle cache
coherence: this will still be a duty of the parallel compiler. However, requiring the
parallel programs to not use automatic cache coherence may result in not fully ex-
ploiting the architecture. This is still a debated issue, that will be further addressed
in later chapters. For the moment we can say that we consider this possible perfor-
mance loss aligned with the concept of finding predictable and good (and only
preferably the best) implementations of the parallel pattern to be able to compare
them.

5.5 Interconnection Network

We now consider the interconnection network of the chip. The presence of five
independent meshes simplify our work, because we can focus only on the one that
is used for memory transfers, allowing us to avoid any other source of traffic (e.g.
processor-to-processor messages, invalidations and I/O messages), that could affect
the under-load response time but are handled by independent networks.

The mesh interconnection exploit wormhole switching [92]. Each message (packet)
is composed of a header plus a variable number (up to 128) of flits5 (32bytes long);
the header is used by the router to (statically) determine the destination. Each
switch is able to forward a flit in a single clock cycle. The use of a single, chip-wide,
clock domain makes all the switch synchronized, such that a flit forwarded by a
switch at cycle t is received and handled by the next switch in the path at cycle
t + 1. This, paired with a credit-based flow-control mechanism, allow each switch
to forward a flit in every cycle, as depicted in Figure 5.4. In the example an 18 flit
long packet is sent from SW1 to SW3, through a path long 4 hops. From the Figure
we can derive a simple formula to predict the forwarding time of a packet (i.e. the
time between the entering of the header in the network and the arrival of the last
flit to the destination) given its size (m, including the header) and the number of
hops in the interconnection network (d), as depicted in Eqn. 5.1

(d− 1) +m (5.1)

5A flit (flow control digits) represent the amount of data sent in a single communication between
hardware units, and thus the smallest unit of flow control.

5.5. INTERCONNECTION NETWORK 105

Time
(Cycles)

Sw1 H 122 3 4 5 6 9 11 137 8 10 14 181615 17

H 122 3 4 5 6 9 11 137 8 10 14 181615 17

H 122 3 4 5 6 9 11 137 8 10 14 181615 17

0 3 6 9 12 15 18 21

Sw2

Sw3

Sw4 H 122 3 4 5 6 9 11 137 8 10 14 181615 17

d-1 m

d=4

H 122 3 4 5 6 9 11 137 8 10 14 181615 17
Message: 18 flits
(including header)

Figure 5.4: Time diagram for the dispatch of a packet in the iMesh network.

Of course, the latency may increase if the network is loaded and multiple packets
compete to acquire the switch resources. The estimation of under-load latency will
be addressed later.

While correct in general, Eqn. 5.1 needs to be adjusted to consider important
characteristics of the iMesh interconnection.

1. iMesh switch usually takes a single cycle to forward a flit. However, according
to [180], the header forwarding takes an extra cycle if the packet “must make
a turn” (e.g. a packet received from the left/right interface must be forwarded
on the up/down one).

2. Routing on iMesh is statically defined, and follows a dimension-ordered routing
policy: giving the 2D nature of a mesh, a packet is first forwarded to match the
correct row/column of the destination, then on the second dimension until the
destination is reached. The TilePro family of processors allow each network to
be configured to either route X first, or Y first. In particular, our experiments
demonstrated that the memory network follows an XY routing, where packets
are first forwarded towards the correct row, and then towards the destination
column. This routing has an interesting property: packets that flows from
a core to the memory (i.e. memory requests) follow a different route than
packets that flows from the memory to a core (i.e. memory responses). In
Figure 5.5 are shown, as example, the routes for node 〈5, 3〉.

3. Each memory interface is connected to multiple switches of the mesh: using a
single switch would cause all the requests to be directed towards that switch

106 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

Mem

Mem

Mem

Mem

N
etw

ork

I/O

To Sw1,0

To Sw2,0

To Sw3,0

Request
Response

Figure 5.5: Routing paths on Tilera: destination interfaces for requests to the first
memory controller and request-response paths for node 〈5, 3〉.

that, according to Tilera documentation[160], would become a bottleneck. By
following a simple assumption on the maximum theoretical bandwidth of the
memory controller, we obtain that the switch should support a bandwidth of
(according to Tilera documents[160]):

MaxBWMemCtl ' 52Gbps (5.2)

while a single switch has a maximum bandwidth (considering a 32-bit flit per
cycle) of

MaxBWSW = 866 ∗ 106 ∗ 32 ' 27Gbps (5.3)

So a single switch can indeed become a bottleneck. The architects selected
three switches, which give a total bandwidth of ∼ 83Gbps, enough to guaran-
tee that this connection does not become a bottleneck even under its maxi-
mum load, assuming that the requests are equally distributed among the three
switches.

Each core select its destination depending on its position (specifically, its “col-
umn”) on the mesh. This is depicted in Figure 5.5 for the first memory in-
terface (upper left). It is interesting to note that the fourth column, despite
having a direct connection to the memory interface, routes its packets towards
the third column, reserving the interface on the fourth for the other half of
the mesh. The fact that two switches are allocated for the nearest half of the
mesh, and only one for the other can still, at least in theory, produce bottle-
necks (e.g. if all the memory bandwidth is exploited by the wrong half of the
mesh), and may encourage the use of NUMA allocation to manually select the
correct memory controller for each core. The same configuration is used for
the corresponding interface on the bottom (bottom, left), while for the two
right interfaces the matching is mirrored w.r.t the one in Figure 5.5.

5.5. INTERCONNECTION NETWORK 107

4. We should also consider that request and response packets have different sizes;
for example, on a cache miss, the cache will request a line, sending a packet
composed of 3 flits (the header, one containing the operation request, and one
containing the starting physical address); the response, on the other hand, will
contain the entire cache line (64Bytes in the TilePro64 architecture[160]), thus
requiring a packet of 18 flits (the header, the operation identifier and 16 flits
for the cache line). A store request (that happen when the cache is removing a
modified line because of its write-back behavior) will basically be the opposite,
with a request packet of 19 flits (one more to contain the physical address)
and a response packet (an acknowledgment) of 2 flits.

These characteristics are all shown in the timing diagrams in Figures 5.6 and 5.7,
that summarize what happens when an instruction running on the processor 〈5, 3〉
produces a cache miss. Figure 5.6 shows the flow of the request, while Figure 5.7
shows the return of the response to the originating tile. The timing diagrams are
obtained by using the trace files of the Tilera clock-accurate simulator.

The model in Equation 5.1 is therefore extended to correctly match the behavior

Communication

399 402 405 408 411 414 417 420 423 426396393 429

Time
(Cycles)

Time
(Cycles)

x Forwarding
flit x

Determining
route

Stalled

Working

Time Diagram of a Memory Request

P5,3

C5,3

Sw5,3

Sw5,2

Sw5,1

Sw5,0

Sw4,0

Sw3,0

Mem

H 2 3

H 2 3

H 2 3

H 2 3

H 2 3

H 2 3

H 2 3

399 402 405 408 411 414 417 420 423 426396393 429

H 2 3

Figure 5.6: Time diagram of the dispatch of a memory read request in the TilePro64.

108 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

Mem H 122 3 4 5 6 9 11 137 8 10 14 181615 17

Sw3,0 H 122 3 4 5 6 9 11 137 8 10 14 181615 17

Sw3,1 H 122 3 4 5 6 9 11 137 8 10 14 181615 17

Sw3,2 H 122 3 4 5 6 9 11 137 8 10 14 181615 17

Sw3,3 H 122 3 4 5 6 9 11 137 8 10 14 181615 17

Sw4,3 H 122 3 4 5 6 9 11 137 8 10 14 181615 17

Sw5,3 H 122 3 4 5 6 9 11 137 8 10 14 181615 17

C5,3 H 122 3 4 5 6 9 11 137 8 10 14 181615 17

P5,3

460 463 466 469 472 475 478 481 484 487457454 490

460 463 466 469 472 475 478 481 484 487457454 490

Time
(Cycles)

Time
(Cycles)

x Forwarding
flit x

Determining
route

Stalled

Working

Fill L1

Communication

Time Diagram of a Memory Response

Figure 5.7: Time diagram of the dispatch of a memory read resp. in the TilePro64.

of the TilePro64 interconnection. In Equation 5.7, we evaluate the total network
latency that a processor pays when a cache line is read or written: starting from
the network latency for the request and the response (5.4 and 5.5, respectively), we
calculate the total Lnet. Notice that mreq + mresp have been substituted with their
value, that is 21 both for memory reads and writes. In addition, while the path
for requests is different w.r.t the one for responses, the total number of hops is the
same. Nevertheless, the request requires two direction change, so the additive factor
is 2, while the response takes only one direction change resulting in the addition
of 1. The distance has been divided in dy and dx, to easily identify the number of
vertical and horizontal hops, respectively; the distances are reported in Table 5.1
for each node. Columns 1 and 2 uses a negative value in dx because the number of
horizontal hops is 0, and the packet do not change direction, so we need to remove
the additional routing costs. Given the difference between request and responses,
we used the averaged value here.

5.5. INTERCONNECTION NETWORK 109

Lreqnet = (dx + dy − 1) + (mreq) + 2 (5.4)

Lrespnet = (dx + dy − 1) + (mresp) + 1 (5.5)

Lnet = 2(dx + dy − 1) + (mreq +mresp) + 3 + k (5.6)

Lnet = 2(dx + dy − 1) + (21) + 3 + k (5.7)

Vertical Hops : dy

Y
X

0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4 4
4 5 5 5 5 5 5 5 5
5 6 6 6 6 6 6 6 6
6 7 7 7 7 7 7 7 7
7 8 8 8 8 8 8 8 8

Horizontal Hops : dx

Y
X

0 1 2 3 4 5 6 7

0 1 -1.5 -1.5 1 1 2 3 4
1 1 -1.5 -1.5 1 1 2 3 4
2 1 -1.5 -1.5 1 1 2 3 4
3 1 -1.5 -1.5 1 1 2 3 4
4 1 -1.5 -1.5 1 1 2 3 4
5 1 -1.5 -1.5 1 1 2 3 4
6 1 -1.5 -1.5 1 1 2 3 4
7 1 -1.5 -1.5 1 1 2 3 4

Table 5.1: Distance table (dy and dx) used to evaluate Lnet.

Finally, a further factor k is added to Equation 5.7. This will be used to “ad-
just” Lnet when comparing it with the values obtained by using the cycle-accurate
simulator. The reason is that the Lnet obtained by the simulator is calculated at the
processor level, evaluating the stall time. The timing diagrams shows that the stall
time is slightly different from the real network latency, because the processor enter
the stall some cycles after the requests (it stall only when the data is required), and
exit the stall some cycles before the complete reception of the response (it start as
soon as the required word is available).

Equation 5.7 has been verified by mean of a hand-made benchmark run on the
cycle-accurate simulator. The benchmark consist of a single thread, placed on the
selected core, that issue load requests to the first memory controller. The program
produces a high number of cache miss by linearly reading an array. After each load,
a proper code is executed, using the loaded value, to ensure the processor stall.
Notice that in this benchmark the time spent by the processor between two cache
miss is irrelevant, as the memory will always serve a message at a time. Cache
coherency has been disabled in this test, so that a cache miss immediately produce
a read request, without contacting the Home node (that would have produced a
different message pattern across the network). The benchmark results are reported
in Table 5.2, along with the estimated Lnet by using k = −4. Having an error always
below 1 clock cycle, we can safely confirm that Equation 5.7 correctly model the
network latency.

110 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

Table 5.2: Simulated and Estimated Lnet. Times are in clock cycles.

Node Lnet Error Node Lnet Error
X Y Simulated Estimated X Y Simulated Estimated

0 0 21.25 22 0.75 4 0 21.36 22 0.64
0 1 24.12 24 0.12 4 1 24.43 24 0.43
0 2 26.24 26 0.24 4 2 26.27 26 0.27
0 3 28.16 28 0.16 4 3 28.34 28 0.34
0 4 30.23 30 0.23 4 4 30.31 30 0.31
0 5 32.33 32 0.33 4 5 32.30 32 0.30
0 6 34.18 34 0.18 4 6 34.07 34 0.07
0 7 36.08 36 0.08 4 7 36.33 36 0.33
1 0 16.24 17 0.76 5 0 23.40 24 0.60
1 1 18.19 19 0.81 5 1 26.48 26 0.48
1 2 20.32 21 0.68 5 2 28.31 28 0.31
1 3 22.23 23 0.77 5 3 30.44 30 0.44
1 4 24.22 25 0.78 5 4 32.37 32 0.37
1 5 26.37 27 0.63 5 5 34.39 34 0.39
1 6 28.09 29 0.91 5 6 36.18 36 0.18
1 7 30.04 31 0.96 5 7 37.34 38 0.66
2 0 16.28 17 0.72 6 0 25.49 26 0.51
2 1 18.25 19 0.75 6 1 28.35 28 0.35
2 2 20.17 21 0.83 6 2 30.34 30 0.34
2 3 22.26 23 0.74 6 3 32.41 32 0.41
2 4 24.19 25 0.81 6 4 34.33 34 0.33
2 5 26.20 27 0.80 6 5 36.33 36 0.33
2 6 28.09 29 0.91 6 6 38.17 38 0.17
2 7 30.11 31 0.89 6 7 40.65 40 0.65
3 0 21.24 22 0.76 7 0 27.34 28 0.66
3 1 24.16 24 0.16 7 1 30.31 30 0.31
3 2 26.29 26 0.29 7 2 32.35 32 0.35
3 3 28.36 28 0.36 7 3 34.31 34 0.31
3 4 30.32 30 0.32 7 4 36.40 36 0.40
3 5 32.31 32 0.31 7 5 38.31 38 0.31
3 6 34.30 34 0.30 7 6 40.09 40 0.09
3 7 39.04 36 3.04 7 7 40.72 42 1.28

Node Lnet Error
Simulated Estimated

Average 29.19 29.25 0.06

5.5. INTERCONNECTION NETWORK 111

5.5.1 Under Load Latency

Now that we know Lnet, we need to find a way to model the mesh, and in particular
the possible switch contention, inside the Queueing Network model. Starting from
the results already presented in the previous chapter, we have three different choices:

a) Model the network as a network of queues, one for each switch, and a proper
class-based routing to mimic the low-level behavior of the mesh; this approach
tends to be excessively complex, as we would have a queue to model each switch,
a large number of task classes and class-based routing on each queue.

b) Approximate the behavior of the mesh using the (multi)bus model, with a single,
possibly parallel, queue and thus manually limiting the number of requests that
the network support concurrently; the queue can also be used to model the
network delay; nevertheless we saw that each node have a different Lnet, so we
need to apply an average value in this case.

c) Approximate the behavior of the mesh using the crossbar model: all the pro-
cessors can issue requests concurrently; in this case we model the delay of the
network for each request by coupling each processor with a queue that will rep-
resent its connection to the memory, so that we are able to model per-node Lnet,
at the cost of an increased number of queues that, however, are fairly simple,
with no class-based routing.

Given the complexity of point a, we are more interested in the two approxima-
tions and, in particular, in studying how much these approximations differ from the
real behavior: if we are able to verify that one offers accurate enough results, we
could use a much simpler model.

The idea of using a bus (point b) is quite interesting because of its simplicity and
also because of the availability of several previous studies on this kind of models.
A single bus, with no concurrency at all is indeed a very rough approximation that
will probably affect the result negatively. A multi-bus, on the other hand, should
be able to capture the amount of concurrent requests of a mesh; however we have
the very hard task of estimating the number of servers for the bus. We should also
consider that, w.r.t buses, in a wormhole-routed mesh conflicts do not happen at
the level of packet (messages) but between flits; this is a further difference in the
behavior that affects the amount and type of conflicts and, therefore, the response
time we model.

On the other hand we have another approximation, in which conflicts are not
modelled at all. Yet we have the freedom of using a different Lnet for each node, that
better fit the distance between the processor and the memory in this architecture.

At the end, however, the real question to be answered is not really how many
conflicts happen on the mesh but, instead, how much they affect the under-load
system response time. While these two are strictly related (i.e. each conflict usually
increment the average response time of the system), in a complex, closed-loop system

112 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

Bus

P1

P2

P3

P4

Mem

Figure 5.8: Example architecture model.

like our, the two aspects may not be as much related as one could think. In fact, it
may happen that a conflict on the interconnection network is completely hidden by
the queueing delay of the memory.

Consider the example model in Fig. 5.8, where we have four processors connected
to a memory by means of a single bus. Consider constant latencies of Lnet = 99
and Lmem = 100. The processor queues should have a very low service time, so
that the memory subsystem becomes the bottleneck; we selected a Tp = 1 with an
exponential distribution. Let us say tasks 1 and 2 are generated, respectively, at
times T P1

1 = 1 and T P2
2 = 10 by their respective processors. T1 is the first to enter

the bus and is immediately served: exit the bus at TBus1 = 100, subsequently enter
the memory queue and exit at TMem

1 = 200. On the other hand, 2 is enqueued in
the network; the Bus start handling it at time 100, when task 1 has been completed,
and exit at TBus2 = 199. Now, when 2 reaches the memory, it is enqueued because
1 has not yet finished. Its processing by the memory will start at time 200 and
will complete at TMem

1 = 300. Now, in this example, the queueing time at the bus
has been completely masked, as task 2 may enter the memory any time between
[101, 200] and the final result will always be TMem

2 = 300, meaning that we did not
pay the conflicts on the bus at all.

A similar behavior also happen at steady state: an analysis of the network6

shows that, on average, the Bus have an average population of ∼ 0.99, and the
Memory of ∼ 3. This means that we have one task being computed at the Bus
queue, two tasks waiting and one computing at the Memory. In practice when a
task reaches the Bus, it will find the queue empty and will begin its processing: no
conflict happens in the Bus at steady state because the network is self-regulating
based on the response of the memory. The response time for a request becomes of
Rq = 400, for any processor, as one may expect. One can easily verify that by using
the crossbar modeling, the steady-state Rq is the same.

This basic example allow us to understand that, if the memory is the component
that is slowing down the system, it may not really matter which way the intercon-
nection network is modeled. We already saw that the Memory-Mesh interface has
been designed such that the overall bandwidth between the Mesh and the Memory
is capable of sustaining the maximum theoretical bandwidth of the Memory. This

6Obtained by simulating the network using the JMT[29] simulation tools

5.5. INTERCONNECTION NETWORK 113

alone gives a first insight that the mesh should not be the bottleneck of the system.

From these first considerations, we believe that, for the TilePro64, a simple yet
accurate enough approximation of a mesh may be a crossbar, thus completely ne-
glecting the possible conflicts of the network. We could use the TilePro64 simulator
with specific benchmarks, and compare them w.r.t. queueing network models of
Bus and Crossbars. However, at this time we also do not know how to model the
Memory and the Processor, so that we would not be able to identify the source of ap-
proximation when comparing the results. We needed a way to “put” the TilePro64
mesh inside a system where the Processor and the Memory behave exactly like their
corresponding queues.

We were able to obtain this result by using our EQNSim framework, creating
three models where the Memory and the Processors are always modeled in the same
way, while the network is defined as follows:

• A Bus model, in which the interconnection network is modeled with a single
queue with an averaged Lnet (see Table 5.2).

• A CrossBar model, in which each processor is coupled with a queue to
model its exclusive connection to the memory; in this case each queue has a
different Lnet, depending on the position of the node in the Mesh.

• A Mesh model, in which we interface the Memory and Processor queues to
a Network-On-Chip simulator that simulates a Mesh.

The implementation of the Mesh model was possible by using several features of
the OMNeT++ framework on which EQNSim is based. We used an already avail-
able open-source NoC simulator (HNoCS[27]) that runs within OMNeT++, and
interfaced it with our queue modules. The use of an already existing simulator was
preferred because it avoided us the excessively long test phase to guarantee that
the NoC simulator accurately simulate a Mesh. The Mesh was parameterized to
be as much as similar to the target architecture: wormhole, same bandwidth, flit
propagation delay and routing algorithm. The only characteristic that we were not
able to simulate was the additional 1-clock delay on changing routing direction. We
believe, however, that while this slightly affect the Lnet value, its impact on the con-
flicts is negligible. To keep the three models comparable, we evaluated a per-node
Lnet on the simulated Mesh with a not loaded system (i.e. a single node working),
and used this result to instantiate the Lnet of the interconnection queue(s) on the
other two models. For the Memory queue, we used a constant distribution with
Lmem = 8clocks. This represents a lower limit on the possible response time of
the memory, evaluated by using the maximum theoretical bandwidth of the mem-
ory: 52Gbps, at the frequency of the TilePro64, means 7.5 bytes per clock cycle.
Considering the cache line size of 64Bytes, the memory takes, at best, 8.5 clock
cycles to produce a response to a memory request. The service time of the processor

114 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

Model Processors Lnet(clocks) Lmem(clocks) Tp(clocks)

Mesh 64 22-44 8 50-4000
Bus 64 32 8 50-4000

Crossbar 64 22-44 8 50-4000

Table 5.3: Parameters of the three models compared.

is modelled by an exponential distribution. We simulate different load conditions
by changing its average value, within a range of 50 and 4000, where 50 clocks can
be considered a realistic lower bound for programs running on that architecture.
These parameters are summarized in Table 5.3, while the models are depicted in
Figures 5.9, 5.10 and 5.11 using the graphical representation of EQNSim. Fig. 5.9
shows the complexity of the Mesh-based model: each node is composed of a router,
and its corresponding core. We use a 10x10 Mesh to easily implement the memory
interfaces on the top and bottom rows with the HNoCS routers; however, messages
only flows among the inner 8x8 Mesh, mimicking the iMesh behavior. The Bus
model (Fig. 5.10) is indeed quite simple, with a square of 8x8 clients connected to
the Network Queue (up left). This is connected to the Memory queue (up right),
that send results directly to the clients. Finally, Fig. 5.11 shows the Crossbar Model,
in which each processor is coupled with its Network queue that is, in turn, connected
to the Memory queue.

The simulation results are summarized in Table 5.4 and Figure 5.12. First of all
we notice that the Memory is indeed the bottleneck of the architecture. Consider

Mesh_NoCs

Figure 5.9: Graphical representation of the Mesh model on EQNSim.

5.5. INTERCONNECTION NETWORK 115

Mesh_QN_Bus

Figure 5.10: EQNSim Bus model.

Mesh_QN_Crossbar

Figure 5.11: EQNSim Crossbar model.

that a not-loaded system would have an Rq = Lnet+Lmem ' 40clocks. With Tp = 50
the average Rq goes up to ∼ 450, that represent more than a ten-fold increase
over the original response time. As the Tp increase, the frequency of requests is
decreased and the Rq returns to acceptable values: with a Tp ≥ 1000 we practically
obtain the same values of not-loaded systems. From the approximation point of
view, as we already expected, the bus introduce an excessive bottleneck, so that
we can safely ignore this model for our Queueing Network. On the other hand,
the crossbar delivers excellent results, especially with extremely low or high Tp: the
< 3% approximation in the [50− 300] range is really good for our purpose, while in
the [1000−4000] we have a slightly higher approximation, within 10%, corresponding
to an absolute error of 2-3 clock cycles that is, again, acceptable for our purpose.
We are a bit worried about the [300 − 1000] interval, where the error reaches the
27%. It seems that, in this interval, the mesh-induced conflicts affect the resulting
response time. In general, a 27% approximation is not acceptable for our model.
We should note, however, that these values were obtained with a value of Lmem
that should be considered a lower bound, and not the real average latency of the
memory, as it was obtained by considering the maximum theoretical bandwidth of
the memory. During the execution of a parallel program this bandwidth will be, for
many reasons addressed later in the chapter, only a fraction of the theoretical limit.
The graph in Figure 5.13 shows the behavior of the percent error with higher Lmem:
with 10clocks we already lower the error to a maximum of ∼ 13%, and with higher
values we can easily bound this error to less than 5%.

116 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

Given these considerations, we deem the Crossbar model an accurate enough
approximation of the iMesh interconnection network.

Tp
Average Rq Error Percent Error

Mesh Crossbar Bus Crossbar Bus Crossbar Bus

50 467.7336 461.2997 1989.996 6.433868 1522.263 1.375541 325.4551
100 418.6502 411.7429 1940.942 6.907363 1522.292 1.649913 363.619
150 368.4983 362.2851 1890.861 6.213117 1522.363 1.686064 413.1262
200 320.0667 312.1018 1840.171 7.964893 1520.105 2.488511 474.9338
250 269.2603 263.0031 1791.825 6.257229 1522.564 2.323858 565.4618
300 220.0449 213.2575 1738.633 6.787326 1518.588 3.084519 690.1268
350 172.979 163.0053 1693.006 9.973715 1520.027 5.765853 878.7351
400 135.0604 115.2616 1643.309 19.79882 1508.249 14.65924 1116.722
450 106.8769 80.54745 1590.937 26.32945 1484.06 24.6353 1388.57
500 87.25117 63.46506 1541.733 23.78611 1454.481 27.26165 1667.005
550 74.37144 54.92414 1496.977 19.4473 1422.606 26.14888 1912.839
600 66.04933 50.45271 1448.025 15.59662 1381.976 23.61359 2092.339
650 60.91022 47.61659 1397.757 13.29363 1336.847 21.82496 2194.782
700 57.08377 45.87084 1348.963 11.21293 1291.879 19.64294 2263.128
750 54.36241 44.6865 1299.159 9.675915 1244.796 17.79891 2289.81
800 52.29279 43.66689 1246.425 8.625899 1194.132 16.49539 2283.55
850 50.93849 42.91707 1197.703 8.021418 1146.765 15.74726 2251.274
900 49.51538 42.52503 1143.915 6.99035 1094.4 14.11753 2210.221
950 48.46683 41.99369 1106.365 6.473146 1057.898 13.35583 2182.726

1000 47.65006 41.69449 1044.466 5.955567 996.816 12.49855 2091.951
1500 43.66096 39.80172 552.7655 3.859236 509.1045 8.839101 1166.041
2000 42.28185 39.05176 177.1227 3.230088 134.8408 7.639421 318.9096
2500 41.7978 38.86385 89.96244 2.933954 48.16464 7.019398 115.2325
3000 41.35286 38.62825 67.71589 2.724604 26.36303 6.588672 63.75142
3500 40.98316 38.552 58.61975 2.431159 17.6366 5.932093 43.03377
4000 41.13613 38.4112 53.2243 2.724929 12.08817 6.624175 29.38576

Table 5.4: Simulation Results with Lmem = 8 clocks.

5.5. INTERCONNECTION NETWORK 117

 40

 60

 100

 150

 250

 500

 1000

 2000

 50 300 600 1000 1500 2000 2500 3000 3500 4000

R
es

po
ns

e
T

im
e

Client Tp

Average Response Time with Lmem=8

Mesh Model.
Crossbar Model.

Bus Model.

Figure 5.12: Graphical comparison of the average Rq for the selected models.

 5

 10

 15

 20

 25

 30

 35

 40

 50 300 600 1000 1500 2000 2500 3000 3500 4000

P
er

ce
nt

 E
rr

or
 (

%
)

Client Tp

Crossbar model approximations increasing Lmem

LMem= 8clocks.
LMem=10clocks.
LMem=12clocks.
LMem=15clocks.
LMem=18clocks.

Figure 5.13: Graphical comparison of the percent error of the Crossbar model w.r.t
the Mesh increasing Lmem.

118 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

5.6 Memory Subsystem

The TilePro64 chip is connected to four independent memory controllers. The
presence of multiple memory interfaces is not really a problem from the modeling
point of view, as even the original model by Bhandarkar[36] considered multiple
memories by using a queue for each memory, and a proper probability distribution of
tasks among the different memories. We will call these probabilities pmc1, pmc2, pmc3,
and pmc4. What we need to model is the response time of a single memory, so that
we are able to parameterize the memory queues. Bhandarkar’s model considered a
simple sequential memory, in which all memory operations took the same amount of
time, regardless of the type (i.e. load or store) and of the system load (i.e. amount
of enqueued requests).

Unfortunately, memory technology saw an important increase in complexity to
address the requirements driven by processor evolution. As a result, current mem-
ory modules may exhibit very different access times depending on the sequence and
timing of issued requests. Their behavior is so complex that cycle-accurate simula-
tors of the memory subsystem have been developed in the last years[146], to study
in detail the behavior of a memory under various loads. The interested reader can
refer to Wang’s PhD thesis[178] for a detailed description of current ram technolo-
gies, their access protocol and the implementation details of a memory controller.
We will just highlight the most important points required for our modeling purpose.

Working with cache lines

Memories works on single addresses, composed of a limited number of bits (64bits
for the DDR2 memories of the TilePro64), certainly smaller than the size of a cache
line. Therefore, at least from a theoretical point of view, the reading or writing of
a cache line should require the issuing of several memory operations.

In practice, however, given the fact that since several years all the processors
uses caches, and thus require memory operations on entire cache lines, memory
commands have been optimized to issue single request working on entire cache lines.
This is possible by exploiting some form of parallelism and buffering inside the
memory (such that the whole cache block is read at once, and then buffered to be
sent throughout the 64-bit interface using multiple clock cycles). This, together with
pipelined requests (i.e. while the memory is producing the sequence of 64-bit words,
another address selection operation can be issued), allow us to safely model the
memory operation time as the selection of the first address, Tmem, plus a fixed latency
Tmc required by the memory controller to receive the other words from the memories
and prepare the response packet to be sent: we have that Lmem = Tmem + Tmc.

It is important to notice that, because of pipelining, it is also safe to assume
that the memory queue has a service time equal to Tmem, as it can start processing
the next cache block without waiting the production of all the data. The TilePro64
simulator traces shows a constant Tmc = 41 clocks.

5.6. MEMORY SUBSYSTEM 119

5.6.1 Memory Read Service Time

We start with the analysis of Tmem in the case of memory read operations. Then, we
will generalize the study in case of mixed read and write operations. At this point
of the model, we know that the network interconnection can be efficiently modeled
as a crossbar. Using EQNSim we had two ways:

• Study the memory system alone, as with done with the network interconnec-
tion: take the original Bhandarkar’s model and substitute the memory queue
with a cycle-accurate memory simulator such as DRAMSim2.

• Study the memory system and the interconnection network, using for example
HNoCS for the interconnection network and DRAMSim2 for the memory, and
compare this simulation with an extended model, in which the interconnection
network is modeled using the results of the previous section.

Given the previous results, and towards the definition of a complete model, the
two approaches are equally good. However, both of them are technically difficult
to realize because the memory simulator requires a trace of memory addresses to
behave correctly. While this is possible because the extensibility of the simulation
environment, it requires the production of these trace files, starting from real (or at
least realistic) programs. The final resulting model would still need to be parame-
terized using the cycle-accurate TilePro64 simulator to model the exact timings of
the architecture. We therefore considered the direct use of the the cycle-accurate
TilePro64 simulator. This was made possible because we are able to write specific
programs with a well-defined constant Tp. In this scenario we know how to model (in
the QN world) two of the three major entities of the model: processor and network,
so that the modeling and verifying effort is just confined to the single unknown com-
ponent. All the tests presented in this section will therefore compare the TilePro64
simulator, where we explicitly disabled the automatic cache coherence so that
memory requests are directly sent to the memory controller, w.r.t the QN-based
model executed on EQNSim.

Open Page Policy

For both historical and performance reasons, memory chips divide the physical ad-
dress in several parts: row, column and bank (at least). Different “banks” cor-
respond to independent memory arrays. Rows and Columns are more interesting,
because they affects the response time of the memory: for technical reasons, row
and column selections cannot be executed concurrently, so that we pay a time of
Tmem = tRCD

7 + TCL
8 to select a specific word from the memory. To reduce the

memory latency, memory controllers exploit the so-called open-page policy : once a

7RAS to CAS delay, indicate the time to select a row
8CAS latency, indicate the time to select a column once the row has been selected

120 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

row is selected, multiple data belonging to the same row can be gathered by just
changing the column. If the controller keep a row open, subsequent requests result
in Tmem = TCL. Of course this is possible only if the addresses belong to the same
row (called page hit). A common way of exploiting locality is to map the lower
part of the physical address to the column, so that consecutive physical addresses
belong to the same row. This allow to exploit the open-page policy in basically all
the algorithms that generate streams of consecutive addresses.

The TilePro64, as most of the current architectures, implement the open-page
policy, so we created a small number of benchmarks to test its behavior. In our
tests the cycle-accurate simulator of the architecture was of great importance, as it
allowed us to measure the memory service time Tmem for each individual request.
We created two different sequential benchmarks, written in assembler code, to test
the behavior of the memory subsystem:

1. load linear, reported in Listing 5.1, in which the code perform multiple loads
from a contiguous memory area by linearly scanning an array.

2. load sparse, reported in Listing 5.2, in which the code perform multiple loads
scattered among a memory area by reading data from a linked list carefully
allocated such that each element belong to a different, random location of a
large memory area.

addi r5 , %0, 0 # N

addi r4 , zero , 0 # i

addi r10 , %1, 0 # b

.START_bench:

slte r6 , r5 , r4 # N<=i

bnz r6 , .END

addi r7 , zero , 0 # j

addi r11 , zero , N_NOPS

STARTJ:

slte r12 , r11 , r7

bnz r12 , .ENDJ

REPEAT_10(addi r9 , r9, 1)

REPEAT_10(addi r9 , r9, 1)

addi r7 , r7 , 1 # j++

j .STARTJ

.ENDJ

addi r8 , r4 , 0 # i

s2a r8 , r8 , r10 # b+4i

lw r9, r8 # load

addi r4 , r4 , 16 # i+=16

j .START_bench

Listing 5.1: load linear Benchmark.

addi r4 , %0, 0 # *list

.START_bench:

lw r5, r4 # curr ->next

addi r7 , zero , 0 # j

addi r11 , zero , N_NOPS

.STARTJ:

slte r12 , r11 , r7

bnz r12 , .ENDJ

addi r9 , r5 , 0

REPEAT_10(addi r9 , r9 , 1)

REPEAT_10(addi r9 , r9 , 1)

addi r7 , r7 , 1 # j++

j .STARTJ

.ENDJ:

curr=curr ->next

addi r4 , r5 , 0

check for curr=NULL

bnz r4 , .START_bench

Listing 5.2: load sparse Benchmark.

5.6. MEMORY SUBSYSTEM 121

If we run the two benchmarks on the simulator, we obtain two very different
average memory service time:

T linearmem = 9.9313τ (5.8)

T sparsemem = 33.18011τ

A detailed inspection shows exactly what we expected: with the load linear
benchmark, most memory reads take 8 clocks, that is exactly TCL, as the requests
find the row already open (page hit); conversely, with load sparse most operations
takes 34 clocks, corresponding to tRCD + TCL because the requests require a change
of the open row (page miss). More precisely, in Figure 5.14 we show the various
response times and the corresponding percent of requests. The result shows that in
the linear case ∼ 91% of the requests find page already open, while in the sparse
case ∼ 93% of them produce a page miss, requiring to change the row.

This effect could become a big problem in our queueing network, as the difference
is so high that we would need to model the effect of different memory access patterns.
Fortunately (for our purpose), the open page policy does not work very well on a
parallel program, where each core generates its own stream of memory requests: in
this case, even if each stream would exploit the open page policy, when the requests
are mixed together, the memory controller is not able to take advantage of the open
pages. To test this condition we created a semi-parallel version of the previous code,
in which multiple independent threads running the same benchmark are created and
allocated on different cores. The resulting memory service times breakdown using 64
cores is reported in Figure 5.15: we can easily notice that the effects of the open page
policy completely vanish, resulting in most requests taking exactly 34 cycles in both
cases. To understand when this effect is triggered on the load linear benchmark
we report the average Tmem when varying the number of cores used in Figure 5.16:
we can observe that with 2 cores the time is already increased and with only 4 cores
the two benchmarks exhibit the same average Tmem.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

8 10 12 14 21 24 33 34 38 43 47

F
re

qu
en

cy
 (

%
)

Memory Service Time (clocks)

Memory Service times with a single processor

Sparse
Linear

Figure 5.14: Detailed breakdown of
Tmem using a single benchmark core.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

8 10 12 14 21 24 33 34 38 43 47

F
re

qu
en

cy
 (

%
)

Memory Service Time (clocks)

Memory Service times with 64 processors

Sparse
Linear

Figure 5.15: Detailed breakdown of
Tmem using 64 benchmark cores.

122 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

M
em

or
y

S
er

vi
ce

 T
im

e
(c

lo
ck

s)

Processors

Memory Service times

Linear
Sparse

Figure 5.16: Average Tmem varying the number of cores generating memory requests.

It should be noted that for this benchmark we selected a number N_NOPS par-
ticularly high (resulting in Tp = 3015 cycles) so that the memory controller receives
a single request at a time. We verified this by checking the number of enqueued
requests at the memory controller, that is always zero, even with 64 cores.

For this reason we believe that neglecting the possible performance improvement of
the open page policy, thus using Tmem = tRCD + TCL consist in a good approximation
for our model.

Request reordering and parallelism inside the controller

In the previous benchmarks we deliberately selected an N_NOPS so that the memory
was never a bottleneck. This is not a realistic case for our model, as our objective
is indeed evaluating the response time when the memory is a bottleneck. So we
decreased the waiting time between two requests to test the memory under load. For
the sake of conciseness, we show only the results for load sparse. We selected three
different decreasing values of Tp, to understand the behavior of Tmem under load.
The results reported in Figure 5.17 and Table 5.5 are pretty clear: as the frequency
of requests increase, the response time of the memory Tmem tend to decrease.

A breakdown for the requests in the 64 cores experiment (Figure 5.18) show an
intriguing result: the number of plain page miss is decreased, in favor of service
times of 24 and 12 clocks that, however, are still marked by the simulator as “page
miss”. We are still changing the row but we are able to do it faster, probably because
of some pipeline effects between the selection of an address and the reply from the
memories.

5.6. MEMORY SUBSYSTEM 123

Tp = 40 Tp = 1015 Tp = 3015
Lq Tmem Lq Tmem Lq Tmem

1 0 33.91437 0 33.87897 0.000552 33.18011
2 0.004517 33.93857 0.036969 27.42596 0.001427 33.29444
4 0.038971 33.75643 0.028406 30.40966 0.001195 33.95565
8 0.849501 27.69459 0.01323 34.02548 0.015322 31.94242

12 2.195512 21.00406 0.024923 33.94668 0.004226 34.07601
16 4.007253 17.66907 0.045807 33.79771 0.023232 33.00857
20 7.070376 15.85322 0.072103 33.62934 0.021096 33.28639
24 9.680906 15.18303 0.113479 33.31475 0.030062 33.28132
28 13.02022 14.49752 0.239494 32.24164 0.042859 33.25115
32 16.30971 14.10587 0.438312 30.73988 0.052501 33.42837
36 20.07768 13.97966 0.588089 29.90958 0.053674 33.4772
40 24.17332 13.78302 0.810481 28.40889 0.084061 33.18345
44 27.3199 13.67006 1.236569 25.84654 0.081238 33.49642
48 30.91879 13.63092 1.465879 24.53571 0.082645 33.53439
52 34.73994 13.51555 1.830985 22.8638 0.108236 33.38213
56 38.89917 13.51747 2.155002 21.47939 0.133312 33.21996
60 42.92958 13.49963 2.533383 20.18774 0.177057 33.01201
64 46.56375 13.48873 2.918729 19.20154 0.211984 32.80809

Table 5.5: Average Tmem and memory queue length varying Tp and the number of
cores. Times in cycles.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

M
em

or
y

S
er

vi
ce

 T
im

e
(c

lo
ck

s)

Processors

Memory Service times - Load Sparse

Tp = 40 clocks
Tp = 1015 clocks
Tp = 3015 clocks

Figure 5.17: Average Tmem varying the
number of cores and Tp.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

8 10 12 14 21 24 33 34 38 43 47

F
re

qu
en

cy
 (

%
)

Memory Service Time (clocks)

Memory Service times with 64 processors - Load Sparse

Tp= 40
Tp=1015
Tp=3015

Figure 5.18: Detailed breakdown of
Tmem using 64 cores with Tp = 40clocks.

124 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

Furthermore, with Tp = 40 clocks, we find some requests that actually generate
a page hit, obtaining a Tmem = 8 clocks. This is probably due to the reordering
engine of the memory controller, that, in presence of several requests, try to order
them as much as possible to guarantee page hits.

The final result is that the memory is faster if many requests are enqueued. In
particular, measuring the request queue of the memory controller (that keeps all the
requests that still need to be processed) seems very important to determine Tmem:
in Table 5.5 we can see that a value of Lq ' 0.8 result in a Tmem ' 27− 28 cycles,
for both Tp = 40 and Tp = 1015. The same apply for Lq ' 2.1, that correspond to a
Tmem ' 21 cycles. We confirmed the effect by further investigating this correlation:
Table 5.6 report a broader range of Lq values, with the corresponding Tmem and core
configurations for the two faster frequencies (Tp = 3015 is irrelevant as the queue is
always empty).

Lq
Tp = 40 Tp = 1015

Lq Tmem Cores Lq Tmem Cores

∼ 0.5 0.527595 30.2587 7 0.588089 29.90958 36
∼ 0.8 0.849501 27.69459 8 0.810481 28.40889 40
∼ 1.2 1.182808 25.73326 9 1.236569 25.84654 44
∼ 1.8 1.873849 22.37465 11 1.830985 22.8638 52
∼ 2.1 2.195512 21.00406 12 2.155002 21.47939 56

Table 5.6: Correlation between Lq and Tmem.

A natural way of modeling this is by using a load dependent queue [112] for
the memory, that allow us to select different values of Tmem depending on the actual
load of the queue. Of course, the idea seems pretty good, but we need to find the
correct values of Tmem for each possible queue size.

By parsing the trace files of the TilePro64 simulator we are able to identify, for
each memory request, its Tmem and the number of enqueued requests. We therefore
gathered these statistics by using several runs, with different Tp and number of cores,
of the load sparse benchmark, and obtained the average Tmem for each possible
queue size. The results are reported in Table 5.7 and Figure 5.19. We used these
values for our load-dependent memory queue model. The values were first smoothed
(as reported in the same Table), mainly for two reasons:

• When designing EQNSim, we expected that, modeling a discrete system
driven by clock cycles, it would have been helpful to define queueing network
elements that worked with the same time unit. We therefore defined a “clock
cycle”, and each event time of the simulation is rounded to the next clock
cycle. While this seemed a good idea in the beginning, now that we work with
averaged values, we have to use round values for our load-dependent queue.

5.6. MEMORY SUBSYSTEM 125

Lq
% of Tmem Lq

% of Tmem
Samples Meas. Smooth Samples Meas. Smooth

0 26.735 33.16098 33 34 1.218 13.43913 13
1 6.156 26.65501 27 35 1.246 13.39959 13
2 4.358 21.1373 21 36 1.266 13.43915 13
3 3.254 18.05551 18 37 1.287 13.42106 13
4 2.295 16.27781 16 38 1.288 13.45796 13
5 1.631 15.33176 15 39 1.301 13.43534 13
6 1.282 14.80604 15 40 1.326 13.44543 13
7 1.131 14.54571 15 41 1.329 13.42193 13
8 1.089 14.26347 14 42 1.33 13.41958 13
9 1.077 14.03642 14 43 1.333 13.48715 13

10 1.085 13.90968 14 44 1.353 13.48852 13
11 1.06 13.76392 14 45 1.368 13.43211 13
12 1.035 13.65461 14 46 1.392 13.43136 13
13 1.037 13.51876 14 47 1.412 13.47264 13
14 1.073 13.32687 13 48 1.422 13.40865 13
15 1.091 13.12141 13 49 1.274 13.53869 13
16 1.084 13.2854 13 50 1.068 13.66938 13
17 1.089 13.31197 13 51 0.824 13.80125 13
18 1.114 13.35151 13 52 0.588 13.93621 13
19 1.123 13.38625 13 53 0.377 14.06716 13
20 1.091 13.42446 13 54 0.22 14.09796 13
21 1.032 13.49279 13 55 0.116 14.29843 13
22 1.034 13.47754 13 56 0.056 14.90873 13
23 1.054 13.43892 13 57 0.023 14.60017 13
24 1.111 13.41633 13 58 0.009 14.71524 13
25 1.138 13.38652 13 59 0.002 15.58015 13
26 1.152 13.42235 13 60 0.001 16.77586 13
27 1.156 13.42171 13 61 0 15.21052 13
28 1.159 13.40428 13 62 0 12 13
29 1.135 13.47351 13 63 0.147 31.16372 13
30 1.146 13.44923 13 64 0.124 31.73716 13
31 1.164 13.42909 13 65 0.088 31.07267 13
32 1.183 13.47575 13 66 0.049 27.65798 13
33 1.185 13.40266 13 67 0.033 24.70453 13

Table 5.7: Measured values of Tmem and the smoothed value used for the load-
dependent queue, for different queue sizes.

126 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

S
er

vi
ce

 T
im

e
(c

lo
ck

s)

Lq

Load Dependent Memory Service times

Tmem Measured
Tmem Smoothed

Figure 5.19: Measured Tmem varying Lq and the smoothed value for the model.

• With Lq higher than 50, the number of samples used for computing the average
is minimal, greatly below 1%, meaning that we have a small number of events.
The amount of data collected is not sufficient to consider these numbers a
correct average of the behavior, and would give us a wrong approximation of
Tmem; in fact, of the spike that happen with Lq = 63 is obviously misleading,
as it is very unlikely that it represent the real behavior. We decided to cut-off
the value of Tmem to the previous value of 13, that produces a much more
reasonable behavior.

Now that we have the service time parameters for the load-dependent mem-
ory queue, we are able to build a queueing network that should model the entire
Processor-Memory subsystem and evaluate the steady state values w.r.t the data
obtained by the TilePro64 simulator. This will allow us to confirm if the idea of
using a load-dependent queue is a feasible way of modeling the particular behavior
of the TilePro64 memories. The problem of finding values for Tmem that holds for a
generic program will be addressed later.

In Figure 5.20 we show the resulting queueing network, with a queue per proces-
sor to model the interconnection network delay, a load-dependent queue for modeling
Tmem, plus a second queue to model Tmc.

In Table 5.8, Table 5.9 and Table 5.10 we summarize the results for Tmem and Lq

5.6. MEMORY SUBSYSTEM 127

P1

P2

P63

P64

MCMem

N2

N63

N64

N1

Figure 5.20: Queueing network model with a load dependent memory queue and
independent network queues per core.

of the TilePro64 simulator and our model, using the previously studied Tp values.
With the very high Tp of ∼ 3000 cycles (Table 5.8), the model works very well, giving
values very similar to the ones of the TilePro64. Still, we see that the average Lq of
the model is a bit higher than the one of the memory controller queue, resulting in
small variations of Tmem.

Decreasing Tp to ∼ 1000 cycles (Table 5.9), the model is still working very well,
especially on Tmem, that is always within 3 cycles of difference w.r.t the architectural
value. We notice, again, the problem on Lq that this time is more evident (at the
end of the table we have a difference of 2 on the average queue length), but this
does not affect so much Tmem.

Finally, the most interesting results are with Tp = 40 cycles, when the memory is
a real bottleneck. Here we start paying too much for the difference between the two
Lq: with 64 cores the difference is of 8. This problem is highlighted mostly in the
middle of the table, when the values of Lq are between [5, 20] and the difference in
Tmem that can reach 4 cycles, corresponding on an error of almost 20% percent. This
is a quite large difference, that we expect will affect the precision of the predicted
Rq. Fortunately, with very high Lq values Tmem on the TilePro64 memory stabilize
at 13 clocks, so the difference in Lq does not affect Tmem.

The difference on the estimated and the measured Lq is probably due to the
approximations on the network interconnection: the rationale behind using a cross-
bar was to avoid a complex network because conflicts can just be “postponed” on
the memory interface; however, with a load-dependent queue, we recognize that
this may affect the precision of the model because the queueing network produces
higher values of Lq (as all the conflicts are handled at the memory point); in the
cases studied the approximation seems good enough; however if more accuracy is
need, this surely represent a point in which the QN model can be further extended.

128 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

C
or

es
T

il
eP

ro
64

M
o
d
el

E
rr

or

L
q

T
m
em

L
q

T
m
em

L
q

T
m
em

A
b
s

P
er

ce
n
t

1
0.

00
33

.1
8

0.
01

33
.0

0
0.

01
0.

18
0.

54
2

0.
00

33
.2

9
0.

02
33

.0
0

0.
02

0.
29

0.
88

4
0.

00
33

.9
6

0.
04

33
.0

0
0.

04
0.

96
2.

81
8

0.
02

31
.9

4
0.

08
33

.0
0

0.
07

1.
06

3.
31

12
0.

00
34

.0
8

0.
13

33
.0

0
0.

12
1.

08
3.

16
16

0.
02

33
.0

1
0.

18
32

.9
2

0.
16

0.
09

0.
26

20
0.

02
33

.2
9

0.
23

32
.8

6
0.

21
0.

43
1.

28
24

0.
03

33
.2

8
0.

28
32

.8
1

0.
25

0.
47

1.
43

28
0.

04
33

.2
5

0.
33

32
.7

4
0.

29
0.

51
1.

54
32

0.
05

33
.4

3
0.

39
32

.6
3

0.
34

0.
80

2.
40

36
0.

05
33

.4
8

0.
45

32
.5

1
0.

39
0.

96
2.

87
40

0.
08

33
.1

8
0.

51
32

.3
8

0.
42

0.
81

2.
43

44
0.

08
33

.5
0

0.
58

32
.2

1
0.

49
1.

28
3.

83
48

0.
08

33
.5

3
0.

64
32

.0
2

0.
56

1.
51

4.
51

52
0.

11
33

.3
8

0.
72

31
.8

2
0.

61
1.

57
4.

69
56

0.
13

33
.2

2
0.

79
31

.5
9

0.
66

1.
63

4.
91

60
0.

18
33

.0
1

0.
87

31
.3

4
0.

69
1.

67
5.

06
64

0.
21

32
.8

1
0.

95
31

.0
6

0.
74

1.
74

5.
31

T
ab

le
5.

8:
C

om
p
ar

is
on

b
et

w
ee

n
ar

ch
it

ec
tu

re
an

d
m

o
d
el

va
l-

u
es

of
L
q

an
d
T
m
em

w
it

h
T
p

=
30

15
cl

o
ck

s.
T

im
es

in
cy

cl
es

.

C
or

es
T

il
eP

ro
64

M
o
d
el

E
rr

or

L
q

T
m
em

L
q

T
m
em

L
q

T
m
em

A
b
s

P
er

ce
n
t

1
0.

00
33

.8
8

0.
03

33
.0

0
0.

03
0.

88
2.

59
2

0.
04

27
.4

3
0.

06
33

.0
0

0.
02

5.
57

20
.3

2
4

0.
03

30
.4

1
0.

10
33

.0
0

0.
07

2.
59

8.
52

8
0.

01
34

.0
3

0.
24

32
.8

5
0.

23
1.

18
3.

46
12

0.
02

33
.9

5
0.

41
32

.6
8

0.
38

1.
27

3.
75

16
0.

05
33

.8
0

0.
58

32
.3

0
0.

53
1.

50
4.

44
20

0.
07

33
.6

3
0.

77
31

.7
8

0.
70

1.
85

5.
50

24
0.

11
33

.3
1

0.
99

31
.0

9
0.

88
2.

22
6.

67
28

0.
24

32
.2

4
1.

24
30

.1
9

1.
00

2.
05

6.
36

32
0.

44
30

.7
4

1.
50

29
.1

5
1.

06
1.

59
5.

16
36

0.
59

29
.9

1
1.

80
27

.9
4

1.
21

1.
97

6.
59

40
0.

81
28

.4
1

2.
11

26
.6

4
1.

30
1.

77
6.

23
44

1.
24

25
.8

5
2.

43
25

.3
1

1.
20

0.
54

2.
09

48
1.

47
24

.5
4

2.
78

23
.9

6
1.

31
0.

57
2.

33
52

1.
83

22
.8

6
3.

14
22

.6
4

1.
31

0.
22

0.
96

56
2.

16
21

.4
8

3.
52

21
.4

2
1.

36
0.

06
0.

28
60

2.
53

20
.1

9
3.

93
20

.2
6

1.
40

0.
07

0.
35

64
2.

92
19

.2
0

4.
37

19
.2

3
1.

46
0.

02
0.

12

T
ab

le
5.

9:
C

om
p
ar

is
on

b
et

w
ee

n
ar

ch
it

ec
tu

re
an

d
m

o
d
el

va
l-

u
es

of
L
q

an
d
T
m
em

w
it

h
T
p

=
10

15
cl

o
ck

s.
T

im
es

in
cy

cl
es

.

5.6. MEMORY SUBSYSTEM 129

Cores
TilePro64 Model Error

Lq Tmem Lq Tmem Lq
Tmem

Abs Percent

1 0.00 33.91 0.23 33.00 0.23 0.91 2.70
2 0.00 33.94 0.48 33.00 0.47 0.94 2.77
3 0.02 32.05 0.82 32.73 0.80 0.68 2.13
4 0.04 33.76 1.18 32.26 1.14 1.50 4.44
8 0.85 27.69 3.08 23.28 2.23 4.42 15.96

12 2.20 21.00 5.13 16.92 2.93 4.09 19.45
16 4.01 17.67 7.99 14.85 3.98 2.82 15.96
20 7.07 15.85 11.51 14.02 4.44 1.83 11.56
24 9.68 15.18 15.03 13.45 5.35 1.73 11.40
28 13.02 14.50 18.67 13.00 5.65 1.49 10.30
32 16.31 14.11 22.59 13.00 6.28 1.11 7.84
36 20.08 13.98 26.57 13.00 6.50 0.98 7.01
40 24.17 13.78 30.50 13.00 6.32 0.78 5.68
44 27.32 13.67 34.51 13.00 7.19 0.67 4.90
48 30.92 13.63 38.44 13.00 7.52 0.63 4.63
52 34.74 13.52 42.43 13.00 7.69 0.52 3.81
56 38.90 13.52 46.33 13.00 7.43 0.52 3.83
60 42.93 13.50 50.32 13.00 7.39 0.50 3.70
64 46.56 13.49 54.27 13.00 7.71 0.49 3.62

Table 5.10: Comparison between architecture and model values of Lq and Tmem with
Tp = 40 clocks. Times in clock cycles.

Response time prediction accuracy

In the previous section we analyzed how to parameterize Tmem and Tmc for our
model; now, it is finally time to test the entire model, in order to check its level of
accuracy in predicting Rq. We report the numerical values with various Tp and cores
on Table 5.11. We are able to model the most difficult behavior (with Tp = 40) with
an average error of ∼ 5.7% and at most of ∼ 12.5%. For the sake of completeness
we also report a graphical comparison of the three values of Tp in Figure 5.21, where
we can appreciate the accuracy of the modeled Rq function. We are very happy of
the model of Figure 5.20, that is able to estimate the Rq of our parallel application
with a sufficient level of accuracy.

130 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

 80

 90

 100

 110

 120

 130

 140

 150

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
q

(c
lo

ck
s)

Processors

Memory Response times - Load Sparse Tp=3015

Measured
Model

 80

 100

 120

 140

 160

 180

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
q

(c
lo

ck
s)

Processors

Memory Response times - Load Sparse Tp=1015

Measured
Model

 100

 200

 300

 400

 500

 600

 700

 800

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
q

(c
lo

ck
s)

Processors

Memory Response times - Load Sparse Tp=40

Measured
Model

Figure 5.21: Comparison between architecture and model values of Rq. Times in
clock cycles.

5.6. MEMORY SUBSYSTEM 131

30
15

10
15

40

R
q

E
rr

or
R
q

E
rr

or
R
q

E
rr

or
R

ea
l

M
o
d
el

A
b
s

%
R

ea
l

M
o
d
el

A
b
s

%
R

ea
l

M
o
d
el

A
b
s

%

1
10

3.
31

10
3.

00
0.

31
0.

30
10

3.
11

10
3.

00
0.

11
0.

11
10

3.
25

10
3.

00
0.

25
0.

24
2

10
0.

88
10

0.
50

0.
38

0.
38

10
1.

14
10

0.
96

0.
18

0.
18

10
2.

43
10

3.
44

1.
01

0.
99

4
10

1.
36

10
0.

97
0.

38
0.

38
10

1.
52

10
1.

22
0.

29
0.

29
10

5.
62

11
2.

97
7.

35
6.

96
8

10
4.

31
10

4.
25

0.
05

0.
05

10
5.

91
10

5.
75

0.
16

0.
15

13
0.

11
13

9.
96

9.
84

7.
56

12
10

4.
57

10
4.

55
0.

02
0.

02
10

6.
87

10
7.

76
0.

90
0.

84
14

1.
59

15
2.

77
11

.1
7

7.
89

16
10

6.
64

10
6.

65
0.

01
0.

01
10

8.
18

11
2.

93
4.

75
4.

39
16

2.
55

18
2.

82
20

.2
7

12
.4

7
20

10
7.

16
10

7.
58

0.
42

0.
39

11
1.

88
11

5.
94

4.
06

3.
63

19
9.

41
22

2.
03

22
.6

2
11

.3
4

24
10

9.
02

10
9.

24
0.

22
0.

20
11

5.
08

12
0.

17
5.

09
4.

43
23

3.
87

26
0.

37
26

.5
0

11
.3

3
28

10
9.

80
11

0.
27

0.
47

0.
43

11
8.

27
12

3.
65

5.
38

4.
55

27
5.

30
29

7.
20

21
.8

9
7.

95
32

11
1.

57
11

1.
93

0.
36

0.
32

12
4.

58
12

7.
97

3.
40

2.
73

32
0.

06
34

4.
83

24
.7

7
7.

74
36

11
2.

15
11

3.
51

1.
36

1.
21

12
9.

21
13

1.
77

2.
56

1.
98

37
7.

08
39

3.
07

15
.9

9
4.

24
40

11
4.

58
11

4.
82

0.
25

0.
21

13
4.

37
13

5.
84

1.
47

1.
09

42
5.

10
44

0.
92

15
.8

2
3.

72
44

11
5.

22
11

6.
43

1.
21

1.
05

13
9.

13
13

9.
54

0.
41

0.
30

46
6.

98
48

8.
49

21
.5

1
4.

61
48

11
6.

43
11

8.
41

1.
98

1.
70

14
2.

74
14

3.
45

0.
71

0.
50

52
3.

69
53

7.
23

13
.5

4
2.

58
52

11
7.

67
11

9.
88

2.
21

1.
88

14
6.

65
14

6.
77

0.
12

0.
08

57
4.

32
58

4.
90

10
.5

8
1.

84
56

11
9.

69
12

1.
37

1.
68

1.
41

15
0.

30
15

0.
42

0.
13

0.
08

62
9.

98
63

2.
16

2.
18

0.
35

60
12

0.
74

12
3.

07
2.

33
1.

93
15

3.
77

15
4.

01
0.

23
0.

15
68

4.
28

67
8.

68
5.

60
0.

82
64

12
2.

16
12

4.
87

2.
71

2.
22

15
7.

73
15

8.
41

0.
67

0.
43

73
2.

87
72

7.
31

5.
56

0.
76

T
ab

le
5.

11
:

C
om

p
ar

is
on

b
et

w
ee

n
ar

ch
it

ec
tu

re
an

d
m

o
d
el

va
lu

es
of
R
q
.

T
im

es
in

cl
o
ck

cy
cl

es
.

132 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

5.6.2 Memory Write Service Time

Now that we are able to model memory read operations and their service time, it is
time to analyze the behavior of the memory w.r.t write operations. In basically all
the previously studied models, there is rarely a distinction in the type of operations
for the memory queue, but we still need to check if this approximation is sufficient
for our architectural model.

We took one of the previous tests, load linear, and modified the code to issue a
store after each load. In this more realistic benchmark, that we called store linear,
the memory receives both read and write operations. The assembler code is basically
untouched, as reported in Listing 5.3, except for the store that write the register
value back in the memory.

As in the previous study, we start with an analysis of the service time when
the memory is not a bottleneck, and we compare it with the service time for the
loads. For the sake of clarity, we now denote with TRmem and TWmem the memory
service times for read and write operations, respectively. We take the old value of
Tp ' 3000, run the benchmark and calculate, starting from the simulation traces,
the average service time of only memory writes. We graphically show the result in
Figure 5.22, where we can notice two important things:

1. With the Tp ' 3000, the store linear benchmark produce a greater pressure
on the memory w.r.t load linear, that translates in a decrease of the average

addi r5, %0, 0 # N

addi r4, zero , 0 # i

addi r10 , %1, 0 # b

.START_bench:

slte r6, r5, r4 # N<=i

bnz r6 , .END

addi r7, zero , 0 # j

addi r11 , zero , N_NOPS

STARTJ:

slte r12 , r11 , r7

bnz r12 , .ENDJ

REPEAT_10(addi r9, r9, 1)

REPEAT_10(addi r9, r9, 1)

addi r7, r7, 1 # j++

j .STARTJ

.ENDJ

addi r8, r4, 0 # i

s2a r8 , r8 , r10 # b+4i

lw r9 , r8 # load

sw r8 , r9 # store

addi r4, r4, 16 # i+=16

j .START_bench

Listing 5.3: store linear Benchmark.

5.6. MEMORY SUBSYSTEM 133

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

M
em

or
y

S
er

vi
ce

 T
im

e
(c

lo
ck

s)

Processors

Memory Service Times (Write operations)

TR
mem - Tp ~ 3000 (Load_Linear)

TW
mem - Tp ~ 3000 (Store_Linear)

TW
mem - Tp ~ 4800 (Store_Linear)

Figure 5.22: Average TWmem varying the number of cores generating memory requests.

service time with a high number of cores. This is indeed to be expected, as we
keep the same Tp but double the amount of requests per time (we now have
one read and one write request every Tp), so we just need to further increase
the Tp to obtain the baseline; a value of Tp ' 4800 clocks seems to be sufficient.

2. Memory service times for the two kind of requests seems slightly different: at
the beginning, when the open page policy should ensure page hits, the write
operation seems slower; then, from 4 cores on, when we basically have only
page misses, the write operation seems slightly faster than the read one.

The second aspect surely deserve a further investigation, so we compared the
service time per request of load linear and store linear for the 1 and 4 cores
benchmarks. The two breakdowns, reported in Figures 5.23 and 5.24 show some
important behaviors that explains the results:

• First of all, we notice that for the “common” cases, TWmem = TRmem: both have
a service time of 8 clocks and 34 clocks for page hit and miss, respectively.

• With a single core, however, the store benchmark is not able to fully exploit the
open page policy, as only 16% of the requests generate a clean page hit. The
reason is that, in store linear, even with a single worker, the memory works

134 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

with two different address streams: one for the sequence of load operations,
and one for the sequence of store operations. Mixing them together, as in this
case, generate an increase in page misses when the two streams works with
sufficiently distant accesses. For this reason we have that ∼ 40% of the write
requests generate a page miss. This is not really a problem in our model, as
we already decided to handle all the memory requests as page miss.

• Mixing read and write operations may also increase its service time: in Fig-
ure 5.23 we have a lot of requests (∼ 38%) that takes slightly more than the
time of a page hit. The TilePro64 simulator marks them as “hit after read”,
meaning that, in fact, switching from read to write operations causes a further
overhead. This may be a problem, especially if we have the same behavior
with reads (i.e. “hit/miss after write”), so we probably need to evaluate again
the parameters for TRmem on an heterogeneous environment with read and write
requests.

• With four cores the two breakdowns are more similar: both takes a limited
fraction of page hits, while the large part of requests incur in a page miss.
However, for the store case, we also have a significant percent of requests that
takes 24 or 12 cycles. We already saw this behavior on the load benchmark,
when the memory was a bottleneck, and motivated it with the possibility of
pipelining requests to the memory. In this case one would think that it is
not possible to pipeline requests, as the memory is not a bottleneck, so the
probability of having multiple request should be negligible. In fact, however,
what usually happen is that each processor send almost concurrently a read
and a write request, because of the behavior of the L2 cache. With this level of
concurrency it is indeed highly probable that the memory controller receive two
requests (of different type) and is able to partially overlap the second with the
first, explaining the behavior of Figure 5.24. This should not pose any problem,
as the behavior should be completely captured by the load-dependent queue.

Under load behavior

Decreasing the value of Tp (Figure 5.25) we obtain results qualitatively similar to
the ones previously seen with load sparse: as the amount of enqueued requests at
the memory controller increase, the average service time tend to decrease.

However, the obtained values are numerically different. This means that the
values of the load-dependent queue modeling the memory should be different in
case of write operations. In the next section we will handle the problem of modeling
a memory queue that behave differently when executing read and write operations;
for the moment we are just interested in gathering the values to parameterize the
load-dependent queue as previously done with the read-only operations.

5.6. MEMORY SUBSYSTEM 135

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

8 10 12 14 21 24 33 34 38 43 47

F
re

qu
en

cy
 (

%
)

Memory Service Time (clocks)

Memory Service times with 1 core, high Tp

TR
mem

TW
mem

Figure 5.23: Detailed breakdown of
Tmem using a single benchmark core.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

8 10 12 14 21 24 33 34 38 43 47

F
re

qu
en

cy
 (

%
)

Memory Service Time (clocks)

Memory Service Times with 4 cores, high Tp

TR
mem

TW
mem

Figure 5.24: Detailed breakdown of
Tmem using 4 benchmark cores.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

M
em

or
y

S
er

vi
ce

 T
im

e
(c

lo
ck

s)

Processors

Memory Service Times (Write operations)

Tp= 40
Tp= 975
Tp=2895
Tp=4815

Figure 5.25: Average TWmem varying the number of cores generating memory requests
and the Tp.

136 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

Parameterizing the Memory Queue for write requests

We used the same methodology previously applied, analyzing trace files of several
runs of the benchmark, to obtain average values for TRmem and TWmem depending on
the size of the memory controller queue. The results are shown in Table 5.12 for
reads and Table 5.13 for writes. The tables clearly show that the behavior is quite
different w.r.t the previously obtained, especially for TRmem that is actually higher
than the previous of several clocks. As hypothesized, executing reads after writes
have a cost, that is actually quite high and require a new parameterization of the
queue. It is important to note that now the maximum queue size is increased, as we
produce up to two requests every Tp, ending with a queue size of at most 2∗64 = 128
requests.

We can model the different behavior of read and writes by defining a load-
dependent queue with class-based service times, i.e. a queue that have different
service times also depending on the class that is being served. This way, we can
introduce two different classes for read and write requests, and use the data of
Tables 5.12 and 5.13 to define the service times. Otherwise, knowing the amount
of read and write requests, we can use a weighted mean of TRmem and TWmem for each
queue size.

For the sake of conciseness we are not testing, here, the precision of this part
of the model. This is mainly because we are not able to measure an Rq on the
benchmark, as the write operations are non-blocking and happen in different times
w.r.t the related store instructions, because of the caches. We will address this
point in the next section, by modeling the behavior of the L2 cache of the tiles
and therefore being able to precisely characterize the flow of requests issued by the
processor.

5.6. MEMORY SUBSYSTEM 137

T
ab

le
5.

12
:

M
ea

su
re

d
va

lu
es

of
T
R m
em

u
se

d
fo

r
th

e
lo

ad
-d

ep
en

d
en

t
q
u
eu

e,
fo

r
d
iff

er
en

t
q
u
eu

e
si

ze
s.

L
q

%
of

T
R m
em

L
q

%
of

T
R m
em

L
q

%
of

T
R m
em

L
q

%
of

T
R m
em

L
q

%
of

T
R m
em

S
am

p
le

s
S
am

p
le

s
S
am

p
le

s
S
am

p
le

s
S
am

p
le

s

0
8.

89
39

.3
3

25
0.

52
25

.5
1

50
0.

77
25

.2
6

75
0.

82
24

.0
5

10
0

0.
77

24
.3

8
1

2.
55

35
.3

1
26

0.
53

25
.6

3
51

0.
78

25
.3

3
76

0.
82

24
.0

0
10

1
0.

76
24

.4
5

2
1.

54
31

.4
2

27
0.

61
27

.0
6

52
0.

76
24

.8
0

77
0.

81
23

.9
5

10
2

0.
76

24
.4

8
3

1.
19

30
.4

0
28

0.
55

25
.6

2
53

0.
82

25
.6

7
78

0.
80

23
.9

3
10

3
0.

75
24

.5
6

4
0.

87
28

.5
3

29
0.

55
25

.4
4

54
0.

77
24

.6
4

79
0.

80
23

.9
4

10
4

0.
75

24
.5

4
5

0.
75

28
.5

2
30

0.
57

25
.4

1
55

0.
78

24
.5

5
80

0.
80

23
.9

1
10

5
0.

75
24

.5
9

6
0.

68
28

.2
0

31
0.

60
25

.6
8

56
0.

78
24

.3
9

81
0.

79
23

.8
9

10
6

0.
76

24
.5

9
7

0.
73

28
.9

3
32

0.
63

25
.9

4
57

0.
80

24
.6

5
82

0.
78

23
.9

6
10

7
0.

75
24

.5
4

8
0.

67
27

.8
4

33
0.

64
25

.8
6

58
0.

80
24

.5
4

83
0.

78
24

.0
7

10
8

0.
75

24
.5

3
9

0.
66

27
.6

6
34

0.
62

25
.1

1
59

0.
81

24
.6

2
84

0.
79

24
.2

0
10

9
0.

75
24

.5
3

10
0.

63
26

.9
8

35
0.

63
25

.0
6

60
0.

81
24

.5
3

85
0.

79
24

.2
5

11
0

0.
74

24
.5

1
11

0.
61

26
.9

2
36

0.
65

25
.3

0
61

0.
83

24
.7

1
86

0.
80

24
.2

3
11

1
0.

75
24

.5
3

12
0.

60
26

.5
4

37
0.

67
25

.4
2

62
0.

84
24

.7
9

87
0.

81
24

.2
9

11
2

0.
74

24
.5

6
13

0.
60

26
.2

6
38

0.
68

25
.3

1
63

0.
86

24
.9

3
88

0.
80

24
.2

3
11

3
0.

74
24

.6
7

14
0.

59
25

.7
3

39
0.

67
25

.1
5

64
0.

82
24

.4
2

89
0.

80
24

.2
1

11
4

0.
73

24
.6

5
15

0.
64

26
.7

1
40

0.
67

24
.9

9
65

0.
80

24
.1

0
90

0.
80

24
.2

8
11

5
0.

70
24

.7
5

16
0.

56
25

.3
0

41
0.

68
24

.9
6

66
0.

79
23

.9
7

91
0.

80
24

.3
2

11
6

0.
66

24
.6

9
17

0.
54

25
.1

3
42

0.
69

24
.9

9
67

0.
79

23
.9

6
92

0.
80

24
.4

1
11

7
0.

61
24

.6
6

18
0.

53
25

.0
2

43
0.

71
25

.0
0

68
0.

80
24

.0
0

93
0.

80
24

.4
3

11
8

0.
54

24
.5

5
19

0.
59

26
.6

7
44

0.
73

24
.9

6
69

0.
81

24
.0

6
94

0.
79

24
.3

9
11

9
0.

45
24

.4
2

20
0.

53
25

.6
3

45
0.

74
24

.9
6

70
0.

81
24

.1
0

95
0.

79
24

.4
2

12
0

0.
37

24
.1

8
21

0.
51

25
.5

6
46

0.
75

24
.9

7
71

0.
81

24
.1

0
96

0.
79

24
.3

3
12

1
0.

29
23

.9
5

22
0.

51
25

.2
8

47
0.

76
25

.0
0

72
0.

82
24

.1
2

97
0.

78
24

.3
2

12
2

0.
22

23
.6

3
23

0.
59

27
.0

0
48

0.
76

25
.0

5
73

0.
81

24
.1

6
98

0.
78

24
.3

5
12

3
0.

17
23

.2
5

24
0.

53
25

.6
7

49
0.

76
25

.2
2

74
0.

82
24

.0
9

99
0.

77
24

.3
7

12
4

0.
13

22
.9

0

138 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

T
ab

le
5.

13
:

M
ea

su
re

d
va

lu
es

of
T
W m
em

u
se

d
fo

r
th

e
lo

ad
-d

ep
en

d
en

t
q
u
eu

e,
fo

r
d
iff

er
en

t
q
u
eu

e
si

ze
s.

L
q

%
of

T
R m
em

L
q

%
of

T
R m
em

L
q

%
of

T
R m
em

L
q

%
of

T
R m
em

L
q

%
of

T
R m
em

S
am

p
le

s
S
am

p
le

s
S
am

p
le

s
S
am

p
le

s
S
am

p
le

s

0
7.

65
32

.6
7

25
0.

47
18

.6
6

50
0.

69
18

.1
5

75
0.

87
18

.4
2

10
0

0.
85

18
.6

6
1

2.
36

28
.4

7
26

0.
47

18
.6

6
51

0.
69

18
.1

9
76

0.
87

18
.4

6
10

1
0.

84
18

.6
3

2
1.

89
24

.3
3

27
0.

48
18

.5
7

52
0.

71
18

.2
2

77
0.

87
18

.4
7

10
2

0.
83

18
.7

0
3

1.
16

21
.7

5
28

0.
49

18
.6

9
53

0.
72

18
.2

7
78

0.
86

18
.4

5
10

3
0.

82
18

.7
3

4
0.

93
20

.7
0

29
0.

50
18

.5
9

54
0.

74
18

.3
0

79
0.

86
18

.5
2

10
4

0.
83

18
.7

6
5

0.
75

20
.4

5
30

0.
51

18
.7

1
55

0.
75

18
.3

8
80

0.
86

18
.4

5
10

5
0.

83
18

.7
0

6
0.

69
20

.3
3

31
0.

53
18

.7
1

56
0.

76
18

.2
2

81
0.

85
18

.3
6

10
6

0.
84

18
.7

4
7

0.
67

20
.6

8
32

0.
54

18
.3

8
57

0.
76

18
.2

4
82

0.
84

18
.4

0
10

7
0.

84
18

.7
6

8
0.

67
20

.2
3

33
0.

54
18

.2
5

58
0.

76
18

.2
7

83
0.

83
18

.3
9

10
8

0.
84

18
.7

1
9

0.
66

20
.1

4
34

0.
55

18
.2

6
59

0.
77

18
.2

4
84

0.
84

18
.4

3
10

9
0.

84
18

.7
3

10
0.

62
19

.5
0

35
0.

56
18

.1
0

60
0.

78
18

.2
5

85
0.

85
18

.4
6

11
0

0.
83

18
.7

3
11

0.
60

19
.4

2
36

0.
57

18
.2

0
61

0.
80

18
.2

2
86

0.
86

18
.5

1
11

1
0.

84
18

.7
3

12
0.

59
19

.3
0

37
0.

58
18

.1
0

62
0.

81
18

.2
2

87
0.

87
18

.6
2

11
2

0.
83

18
.7

2
13

0.
59

19
.2

4
38

0.
59

18
.1

5
63

0.
81

18
.2

7
88

0.
86

18
.4

0
11

3
0.

83
18

.7
3

14
0.

59
18

.9
3

39
0.

59
18

.1
4

64
0.

81
18

.0
6

89
0.

86
18

.4
4

11
4

0.
83

18
.8

3
15

0.
59

18
.6

7
40

0.
60

18
.2

1
65

0.
81

18
.1

0
90

0.
86

18
.4

7
11

5
0.

80
18

.8
5

16
0.

55
18

.8
0

41
0.

60
18

.1
2

66
0.

82
18

.1
6

91
0.

86
18

.4
8

11
6

0.
76

18
.9

8
17

0.
53

18
.7

7
42

0.
61

18
.1

6
67

0.
82

18
.2

2
92

0.
86

18
.5

2
11

7
0.

71
19

.0
6

18
0.

50
18

.7
0

43
0.

63
18

.1
5

68
0.

84
18

.3
3

93
0.

86
18

.5
7

11
8

0.
63

19
.1

3
19

0.
49

18
.5

2
44

0.
65

18
.1

5
69

0.
85

18
.3

6
94

0.
86

18
.5

9
11

9
0.

54
19

.1
8

20
0.

47
18

.6
9

45
0.

66
18

.1
6

70
0.

86
18

.4
8

95
0.

86
18

.5
8

12
0

0.
45

19
.3

2
21

0.
47

18
.6

0
46

0.
67

18
.1

8
71

0.
86

18
.4

3
96

0.
86

18
.5

8
12

1
0.

35
19

.3
1

22
0.

47
18

.8
3

47
0.

67
18

.0
9

72
0.

86
18

.4
5

97
0.

85
18

.5
8

12
2

0.
27

19
.2

9
23

0.
48

18
.8

9
48

0.
68

18
.1

2
73

0.
87

18
.4

3
98

0.
85

18
.5

4
12

3
0.

21
18

.9
7

24
0.

48
18

.6
3

49
0.

68
18

.1
1

74
0.

87
18

.4
5

99
0.

85
18

.5
8

12
4

0.
16

18
.9

2

5.6. MEMORY SUBSYSTEM 139

5.6.3 Working with Caches

We complete the memory subsystem analysis by modeling of the behavior of caches,
and in particular defining how and when memory requests are generated. In a
system with no caches, the behavior is quite simple: when a request is generated by
the processor, it is directly sent to the memory. With caches, the behavior is quite
more complicate.

Load instructions

Read operations can be modeled quite easily: on a load instruction, the processor
will ask the cache for the data and, if the required cache line is not available, a read
request is generated. We can easily model the generation of read operations by using
the miss probability: a load instruction executed by the processor will generate a
read with probability plmiss. In this case, the processor will stop, waiting for the
result from the cache to continue the execution. This is a first approximation, as in
reality the processor is free to continue the execution of the following instructions,
as long as they do not depend on the load. However, in an in-order processor like
the TilePro64, it is indeed quite usual that a cache miss will stall the processor, as
there are no complex mechanisms to advance in the computation.

Store instructions

On the contrary, store operations can be quite difficult to be modeled, for several
reasons:

• Stores are non-blocking, i.e. the processor can continue the execution with-
out waiting for the completion of the store; this means that, from the processor
point of view, it is not much different if the store is handled completely by the
cache or forwarded to the memory

• Store can generate cache misses: if the address to be modified is not
already allocated in cache, the cache will first issue a memory read operation
to gather the current values from the memory. This is required for correctness
reasons, because the cache works only on lines, not single words, and does not
know if the program will end modifying all the words of the line.

• TilePro64 caches are write-back, meaning that modified values are not
forwarded immediately to the memory. In fact, a cache line is written back
only when selected by the LRU replacement policy to make space for another
line.

The first point is just telling us that all the memory operations required to
execute a store does directly affect the performance of our program, as the processor
is free to continue its execution. Nevertheless, these operations must be considered

140 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

Px

Wx

Rx

Nx

Write Queue

Read Queue

To Mem

From Mem

pmod

pclean

Figure 5.26: Processor-cache subsystem in our queueing network model.

to correctly evaluate the load of the system and, in particular, of the memory queue.
For the second point, we just need to define (by using profiled data from a previous
execution, for example), the miss probability of a store, psmiss, and generate a read
request according to that, exactly like the case of load operations.

The third is, indeed, the most difficult characteristic to be modeled. First of all,
it tell us that a memory write operation can happen only because of the replacement
of a modified cache line. So, to identify the amount of memory write, we should
consider the probability of replacing a modified line. Of course, we also need to
consider the problem of when write operations are issued: one could consider them
in Tp, i.e. defining Tp as the time between two memory operations, regardless of their
type. Yet, this does not correctly model the behavior, as in a real environment a
write operation is always issued concurrently to a read operation (for the new cache
line). If we threat the two requests separately, we would have a lower overall pressure
on the memory: for example, we could not have more than 64 requests enqueued (the
number of processors), while we already saw by analyzing the TilePro64 simulator
traces that the memory controller queue can easily exceed that value. To issue the
two requests concurrently we created the queueing network in Figure 5.26 to model
the processor-cache subsystem.

The idea is quite simple: each task generated by the processor queue is split in
two different tasks by a fork node: one representing a read, that is always forwarded
to the memory, and one representing the “companion” write. Of course, the write
is not always generated in the real architecture, so we use a probabilistic routing to:

• send the write task to the memory (pmod): this represent the replacement of
a modified cache line and in this way we have two requests that reach the
memory;

• send the write task directly to the join node (pclean = 1− pmod): this represent
the replacement of a clean cache line, where the write request is not sent to
the memory.

5.7. MODEL VALIDATION 141

In both cases, the semantic of the join node allow the task to be joined and sent
back to the processor queue only when both of them are back. This way we can
easily model the existence of two concurrent requests and, at the same time, keep
the model fairly simple. By modifying the routing probability of the write queue,
we are able to model different programs, with different amount of write operations.

With this modeling, the processor queue becomes fairly simple to be parameter-
ized, as we just need to find the average time between two memory read requests;
these values can be easily gathered by using the processor performance counters we
already mentioned in the previous chapter, considering both load and store misses.

5.7 Model Validation

Now that we know how to model every aspect of the memory subsystem we can
try to evaluate the accuracy of the queueing network on the previously studied
benchmarks. The final model is depicted in Figure 5.27, were we have:

• The Processor-Cache subsystem modeled by using several queues and the
fork/join nodes, to generate concurrent read and write requests.

• The Interconnection network modeled as four crossbars, one per memory
interface, in which each processor have a different set of queues to model its
specific network latency. The selection of the output queue (i.e. crossbar
interface) is done with probabilistic routing.

• The Memory modeled as a queue with load-dependent, class-based service
times for Tmem, followed by a second, simpler queue with constant service
times for Tmc.

During the experiments with the model, we decided to apply a further approxima-
tion: in the current version of EQNSim we did not have an implementation for
class-based service times; following the rapid prototyping philosophy, we decided to
adapt the current load-dependent queue to behave like the load-dependent, class-
based queue. As previously mentioned, considering the total amount of requests
that reaches the queue, we are able to estimate the probability pR of receiving a
read request, and the corresponding pW = 1− pR for the writes. The average Tmem
for the queue will be

Tmem = pW ∗ TWmem + pR ∗ TRmem (5.9)

because of the load-dependent behavior, we apply the formula to the service time
of each queue size (we indicate with T

(k)
mem the service time with queue size of k):

T (0)
mem = pW ∗ TW (0)

mem + pR ∗ TR(0)
mem

T (1)
mem = pW ∗ TW (1)

mem + pR ∗ TR(1)
mem

... = ...

T (128)
mem = pW ∗ TW (128)

mem + pR ∗ TR(128)
mem

142 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

Mem1

Mem2

Mem3

Mem4

P1

P2

P63

P64

P

W

pmc1

R

N1

N2

N3

N4pmc4

pmc3

pmc2

To Mem1

To Mem2

To Mem3

To Mem4

pclean

pmod

From Mem1

From Mem2

From Mem3

From Mem4

MC

TilePro64

Figure 5.27: Architectural model of the TilePro64 processor: conceptual represen-
tation and EQNSim implementation.

5.7. MODEL VALIDATION 143

To summarize, we present in Tables 5.14 and 5.15 the parameters of the model.
We divided them in “architecture” parameters, that are fixed with the values already
gathered, and “program” parameters, that need to be selected according to the
program that is executed on the architecture.

Parameter Description Multiplicity

Lmem Memory latency, composed of Tmem + Tmc One per memory
Tmc Fixed time to prepare a memory response One per memory

Tmem
Service time of the memory, defined as

pR ∗ TRmem + pW ∗ TWmem
Many per memory

TRmem Service times of the memory for read requests. Many per memory
TWmem Service times of the memory for write requests. Many per memory
L1
net

Network latency to reach the memory
controllers

One per core
L2
net

L3
net

L4
net

Table 5.14: Summary of the model parameters that depend on architecture.

Parameter Description Multiplicity

n
Number of processors that generate memory

requests
One

Tp
Computing time between two memory
requests. Depends on plmiss and prmiss

One per core

pmod Probability of replacing a modified cache line One per core
pmc1

Probability of sending a memory request
towards the specified memory interface

One per core
pmc2
pmc3
pmc4

k

Corrective factor to take into account the
exact moment in which the processor enter

and exit the stall (required to correctly
estimate the memory latency)

One per core

pW
Probability of receiving a memory write

request
One per memory

Table 5.15: Summary of the model parameters that depend on the program.

144 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

5.7.1 Evaluation of Rq for store linear

We start evaluating the model over the previous benchmark, store linear. We
selected the values of the model according to the benchmark, in particular:

• plmiss = 1: each iteration of the benchmark will produce a load request that
result in a miss, because of the offset chosen between elements (see Listing 5.3).

• psmiss = 0: store are executed on previously loaded addresses, so the corre-
sponding line will be already in cache.

• pmod = 1 : we write each word we are loading, so at steady state each line allo-
cated on the cache will be modified, producing a write request when replaced.

• pW = 0.5: given the previous vale of pmod, we have that each read is coupled
with a write, so that half of the requests reaching the memory interface will
represent write requests.

• pmc1 = 1, as all the requests are directed towards the first memory controller
of the chip; obviously, the other probabilities are set to 0.

• Tp, on the other hand, is gathered by the profiling of the code and set with
the values already presented.

In Figure 5.28 we report the results for three values of Tp that covers a highly
loaded system, a moderately loaded one and finally a lightly, practically not loaded,
system. We can definitely say that we are able to correctly predict the qualitative
behavior of the response time of the memory, yet we already observe from the
graph numerical differences between the predicted and the real Rq. These values are
presented in Table 5.16. With the first values (up to 4 cores) we have, as expected, an
important difference because we did not model the possible page hits at the memory
controller level. Overall, the maximum error is always within 20% in all our tests,
while the average error stops at 6.16%, 9.03% and 8.29% for the analyzed Tp values
of 4815 975 and 40 clock cycles, respectively. We think the model approximation is
acceptable for our purpose.

5.7. MODEL VALIDATION 145

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
q

(c
lo

ck
s)

Processors

Memory Response times - Store Linear Tp=40

Measured
Model

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
q

(c
lo

ck
s)

Processors

Memory Response times - Store Linear Tp=975

Measured
Model

 0

 50

 100

 150

 200

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
q

(c
lo

ck
s)

Processors

Memory Response times - Store Linear Tp=4815

Measured
Model

Figure 5.28: Comparison between architecture and model values of Rq for the
store linear benchmark. Times in clock cycles.

146 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

T
p

=
48

15
T
p

=
97

5
T
p

=
40

R
q

E
rr

or
R
q

E
rr

or
R
q

E
rr

or
R

ea
l

M
o
d
el

A
b
s

%
R

ea
l

M
o
d
el

A
b
s

%
R

ea
l

M
o
d
el

A
b
s

%

1
88

,9
6

10
6,

00
17

,0
4

19
,1

5
92

,5
0

10
6,

00
13

,5
0

14
,6

0
93

,8
4

10
6,

00
12

,1
6

12
,9

5
2

10
6,

46
10

3,
98

2,
48

2,
33

10
4,

35
10

3,
59

0,
76

0,
73

11
3,

45
11

8,
24

4,
79

4,
22

4
11

1,
78

10
3,

98
7,

80
6,

98
11

3,
12

10
6,

33
6,

78
6,

00
15

3,
07

16
8,

65
15

,5
7

10
,1

7
8

11
7,

30
10

7,
64

9,
66

8,
23

12
0,

24
11

8,
57

1,
66

1,
38

27
8,

04
31

8,
05

40
,0

1
14

,3
9

12
11

7,
84

10
8,

47
9,

36
7,

94
12

1,
79

13
1,

51
9,

72
7,

98
39

4,
12

46
9,

84
75

,7
2

19
,2

1
16

12
1,

21
11

0,
45

10
,7

7
8,

88
15

2,
03

15
2,

04
0,

01
0,

01
57

6,
82

63
7,

32
60

,4
9

10
,4

9
20

12
1,

38
11

3,
30

8,
08

6,
66

22
1,

36
18

3,
10

38
,2

6
17

,2
8

67
0,

63
79

6,
09

12
5,

46
18

,7
1

24
12

4,
24

11
5,

94
8,

29
6,

68
27

2,
46

23
6,

07
36

,4
0

13
,3

6
89

9,
40

96
5,

57
66

,1
7

7,
36

28
12

5,
23

11
7,

59
7,

64
6,

10
35

3,
47

31
3,

88
39

,5
9

11
,2

0
10

20
,4

5
11

32
,6

8
11

2,
22

11
,0

0
32

12
7,

33
12

1,
48

5,
84

4,
59

47
1,

64
42

4,
65

46
,9

9
9,

96
11

97
,9

2
12

98
,5

6
10

0,
64

8,
40

36
12

8,
47

12
4,

31
4,

16
3,

24
60

7,
55

55
9,

23
48

,3
2

7,
95

13
58

,8
0

14
66

,5
0

10
7,

70
7,

93
40

13
1,

34
12

7,
84

3,
50

2,
67

77
4,

00
71

3,
68

60
,3

2
7,

79
15

57
,5

0
16

33
,5

5
76

,0
5

4,
88

44
13

2,
30

13
0,

80
1,

50
1,

13
94

2,
24

87
6,

82
65

,4
2

6,
94

17
32

,7
3

18
02

,6
4

69
,9

0
4,

03
48

13
5,

50
13

5,
30

0,
21

0,
15

11
40

,1
9

10
40

,1
9

10
0,

00
8,

77
19

32
,6

6
19

66
,5

6
33

,9
0

1,
75

52
13

6,
74

13
9,

33
2,

59
1,

89
13

68
,6

6
12

05
,4

0
16

3,
25

11
,9

3
21

70
,7

6
21

34
,5

5
36

,2
1

1,
67

56
14

0,
02

14
4,

14
4,

12
2,

94
15

43
,8

4
13

70
,5

2
17

3,
32

11
,2

3
23

63
,7

2
23

02
,3

1
61

,4
0

2,
60

60
14

1,
42

14
8,

90
7,

47
5,

29
17

78
,1

4
15

40
,9

1
23

7,
23

13
,3

4
25

48
,4

0
24

71
,8

3
76

,5
7

3,
00

64
15

4,
43

15
4,

76
0,

33
0,

22
19

36
,4

9
17

02
,4

7
23

4,
02

12
,0

8
27

63
,7

2
25

87
,7

9
17

5,
94

6,
37

T
ab

le
5.

16
:

C
om

p
ar

is
on

b
et

w
ee

n
ar

ch
it

ec
tu

re
an

d
m

o
d
el

va
lu

es
of
R
q

fo
r

th
e

st
o
re

li
n
e
a
r

b
en

ch
m

ar
k
.

T
im

es
in

cl
o
ck

cy
cl

es
.

5.7. MODEL VALIDATION 147

5.7.2 Evaluation of Rq for store linear with a different store
rate

One of the most important part of the queueing network model is the memory queue.
In particular, we wanted to test its behavior under a different mix of read/write

operations, to check if the gathered values for T
(x)
mem hold with different streams of

requests. To obtain this we modified the store linear benchmark, in such a way
that the code is basically unchanged, but we do perform the store operation once
every two loads. In fact, we added a parameter to the benchmark (that we called
Sp) to determine the probability of issuing a store after the load. The previously
studied run have a Sp = 1, while this new run have Sp = 0.5. This way we have
that, on steady state, only half of the cache lines are in a modified state. A direct
consequence is that we have a different pmod, that in turn affect pW . We report in
Table 5.17 the parameters of this benchmark, compared with the previous one. The
resulting Rq are depicted in Figure 5.29, while numerical values can be found on
Table 5.18. The results are aligned to the previous ones, with only slightly higher
errors; this is a very good sign as we sensibly changed the behavior of the program
(w.r.t the kind and frequency memory requests), and we were still able to capture
the qualitative behavior with a quite good accuracy, and an average error of 10.74%.

 0

 500

 1000

 1500

 2000

 2500

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
q

(c
lo

ck
s)

Processors

Memory Response times - Store Linear Tp=37, Sp=0.5

Measured
Model

Figure 5.29: Comparison between architecture and model values of Rq for the
store linear benchmark with Tp = 37, Sp = 0.5. Times in clock cycles.

148 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

Store linear

Sp = 1 Sp = 0.5

Tp 40 37

plmiss 1 1

psmiss 0 0

pmod 1 0.5

pW
1

2

1

3
pmc1 1 1

Table 5.17: Difference in parameters
between the two store linear runs.

Rq Error
Real Model Abs %

1 85,31 107,00 21,69 25,42
2 94,19 112,69 18,50 19,64
4 144,67 153,09 8,41 5,82
8 207,97 262,16 54,19 26,06

12 320,08 375,94 55,86 17,45
16 429,80 496,67 66,88 15,56
20 547,00 629,41 82,41 15,07
24 670,12 755,30 85,18 12,71
28 800,07 889,45 89,38 11,17
32 950,91 1019,94 69,03 7,26
36 1054,25 1148,59 94,35 8,95
40 1204,12 1276,99 72,87 6,05
44 1318,75 1412,15 93,39 7,08
48 1470,23 1540,69 70,46 4,79
52 1663,55 1669,82 6,27 0,38
58 1817,59 1808,17 9,42 0,52
60 2034,16 1944,09 90,07 4,43
64 2179,11 2069,90 109,21 5,01

Table 5.18: Rq values for the
store linear benchmark with Sp =
0.5.

5.7.3 Considerations on the accuracy of the model

We tested the model with two different benchmark, obtaining approximations within
∼ 10% of average error on the values of Rq. We believe that this is a remarkable
result, that allow us to use this model to estimate the behavior of a parallel program
executed on the TilePro64 architecture. Of course, we could try to refine the model,
and in particular its parameters, to obtain even better approximations. However, we
believe we reached a good model, and can move on the application of it in parallel
programs.

It is important to note that we did study the model by means of few, simple
benchmarks. This was intended to put us in very simple and clear situations, to
easily determine the model parameters, and focus only on the definition of the
queueing network. However, at this point the model already seems very “stable”,
and able to capture the wide range of parallel programs: the examples already prove
that the model correctly mimic the behavior of the real architectures.

The main problem is to correctly estimate Tmem, that seems to depend on the
single program behavior. However, the idea of gathering TRmem and TWmem separately

5.8. SUMMARY 149

seems effective, as we used the gathered values on another program, with a different
amount of read and write operations (and thus a different Tmem) with very good
results. We also saw that the characteristics of the streams of requests, and thus the
possibility of exploiting features like the open page policy, have a minimal impact on
a highly parallel architecture, because all the streams mix together at the memory
interface, and thus lose all their locality properties.

For the sake of conciseness, we will not report further studies on different appli-
cations here: we will use the model throughout the following chapters, on different
programs, as a further prove of its efficacy.

5.8 Summary

With this chapter we studied the TilePro64 architecture in order to develop a queue-
ing network model to evaluate the effect of contention on the shared memory system.
We started from the model proposed by Bhandarkar[36], but ended with something
much different. It is notable to notice that our queueing network does not resemble
any of the models available in literature and presented in the previous chapter. This
is due to several aspects, some of which probably related to the single-chip nature
of this multiprocessor, and to the increasing complexity in processor and memory
technology. However, the model is able to approximate the response time of the
loaded system with an average error within ∼ 10%. Given the complexity of the
architecture, we considered this a very good results, that will allow us to compare
different parallel programs with sufficient accuracy.

Yet, some simplifications had to be done to reach this level of accuracy. In par-
ticular, we assumed that the program works with incoherent memory areas, because
of the complexity of modeling the automatic cache coherence mechanisms of the
TilePro64 architecture. At this point we are not able to tell if this will strongly
limit the performance of the architecture, although some works already presented
in the previous chapters ([1] and [104]) suggest that we can manually handle cache
coherence without a lot of overhead. Chapter 7 reports more experiments, on the
TilePro64 architecture, to further confirm the feasibility of using software-based
cache coherence in conjunction with parallel patterns, to obtain good performances,
in some cases even better w.r.t. hardware-based approaches. Even so, the possi-
bility of losing a bit of performance is still is in line with our methodology, and in
particular with the idea of only selecting predictable implementations in order to
compare them.

Finally, with this chapter we also presented EQNSim, the simulation framework
we used to rapidly test and compare modeling ideas based on concepts of queueing
networks.

150 CHAPTER 5. A QUEUEING NETWORK MODEL FOR TILERA TILEPRO64™

Part III

Optimizations

Chapter 6

Exploiting Multiple Memory
Controllers

Historically, one of the most important characteristic of a parallel architecture was
its “memory configuration”: the bandwidth required by a parallel machine cannot
be obtained by a single memory, so multiple interfaces are adopted; in this scenario:

• Each processor may be able to natively access only a single portion of the
global memory; in this case we talk of distributed memory architectures,
such as in clusters.

• Each processor may be able to natively access the whole global memory; in this
case we talk of shared memory architectures, such as in current multi-cores.

In this thesis we are, of course, interested in the second class of architectures. Shared
Memory Architectures are divided in two sub-classes:

• Uniform Memory Architecture (UMA), where the whole memory is used
as a centralized entity, where all the requests are served. In this case, the
access time to the memory is uniform (i.e. it is the same for each memory
address, for all the processors).

• Non-Uniform Memory Architecture (NUMA), in which the whole mem-
ory is sliced in parts, each one working independently, in a way that each slice
offer different access time.

The choice between uniform and non-uniform memory architectures is usually
driven by the size of the parallel architecture; for small-size parallel machines sim-
ple interconnection networks (i.e. buses) between the processors and the memories
favors a uniform memory architecture. As the number of processors grows how-
ever, complex, not-centralized networks are required to effectively connect the large
number of processors; in this case a uniform access to the memory is no longer
feasible, so NUMA configurations are used. Aside from technical limitations, the

154 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

two classes offers different performances (even in comparable configurations) and
requires different programming methodologies.

UMA architectures, because of the uniformity of access times, favor a program-
ming model in which processes are anonymous (i.e. they can be executed on any of
the processors) and indiscriminately access each location of the memory. Parallel
programming models such as OpenMP are quite effective on these machines. These
architectures are also usually called Symmetric Multiprocessing (SMP).

In NUMA architectures, of course, the varying distance from the memory re-
quires a more careful implementation, in which each process (running on a specific
processor) should favor the use of the nearest memory, and limit the traffic towards
other memories just to exchange data with other processes. In fact, NUMA-oriented
applications exploit the same locality concepts required in distributed memory archi-
tectures, resulting in the fact that NUMA-oriented shared-memory programs often
employs the very same parallelization techniques of their corresponding message
passing programs[60] and, in several cases, they actually use message-passing mod-
els implemented on top of the shared memory[60, 95, 78, 147] for portability and
performance reasons.

Original NUMA followed a plain architecture, composed of a variable number of
nodes, each containing a processor, a memory and a network connection. In time,
however, clustered architectures emerged both in the research and in the commercial
world. In a clustered NUMA each node is composed by several processors connected
to the node memory in UMA configuration, while nodes are connected together to
form a large NUMA machine. Commercial examples of clustered NUMA were the
SGI Altix 3700 (two Itanium processors per node, up to 256 nodes)[75] and the
Cray X1 (four MSP processors per node, up to 1024 nodes)[74]. Conceptually this
is, of course, still a NUMA architecture because of the different distances of the
off-node memories. However, the existence of a SMP configuration inside each node
theoretically allowed mixed UMA-NUMA parallel programming models. In fact this
practice has never been really used because of the very limited amount of parallelism
inside each node (2 and 4 in the previous architectures) w.r.t to the total number
of processors (hundreds to thousands), so the whole architecture was normally used
as a flat NUMA.

The multi-core appearance significantly changed the scenario: plain NUMA ar-
chitectures no longer exist, given the multiple cores per chip, and very-large NUMA
solutions (more than 256 cores/processors) were slowly substituted by distributed
memory solutions (as of today one of the few1 large-scale NUMA is the SGI UV,
direct evolution of the Altix series, that supports two 8-core Xeon processors per
node and up to 128 nodes).

However, NUMA architecture are today more popular than ever: the increasing
memory bandwidth requirements of multi-cores drove to the inclusion of the memory

1Probably the only one still commercially available

6.1. PROGRAMMING MULTI-CORES 155

M
e
m

o
ry

Shared Cache

P P
P P

Chip

M
e
m

o
ry

Shared Cache

P P
P P

ChipP
2

P
 C

o
n

n
e
ct

P
2

P
 C

o
n

n
e
ct

Figure 6.1: Generic architecture of a multi-chip machine.

controller inside the processor chip, and later even to the increase of the number
of controllers per chip: the Power7 and the TilePro64 both contain four memory
interfaces on-chip. This evolution trend, if confirmed, will result in a Non-Uniform
memory architecture on-chip, where each core will be physically nearer to one of
the (many) memory controllers. On top of this, the classic use of multiple chips in
a node, that in the past determined uniform architectures, is now producing non
uniform architectures, as each core will be obviously nearer to the slice of memory
controlled by its on-chip interface. Notable examples of machines that exploit this
model are the HP Integrity Superdome 2 that connects 32 Itanium chips, each one
with 8 cores and two memory controllers[145], the IBM Power795 that connects
32 Power7 chips, each one with 8 cores and four memory controllers[102], but also
small servers like HP ProLiant DL987 (8 chips, up to 10 cores per chip) or the
HP ProLiant DL360e (2 chips, up to 8 cores per chip). The generic architecture
of all these machines is depicted in Fig 6.1: on-chip processors shares the memory
controller(s) and possibly a cache level, and are connected to the other chips by
using a set of point-to-point connections.

6.1 Programming multi-cores

In this scenario we can definitely say that basically every parallel architecture im-
plement a non uniform memory. In this thesis we are interested in “small” clustered
NUMAs, with 2 to 8 nodes and from 6 to 16 (currently) cores per node, in which
nodes are tightly coupled, usually exploiting crossbar interconnections and on-board
wiring, making the access times of “remote” memories not much higher w.r.t the
“local” ones. Table 6.1 shows the difference in remote access of the SGI UV w.r.t
the target architectures selected for this thesis: in the first case we have a remote
latency up to 15 times the local one; in the others, less than 2 times.

Finally, we have the TilePro64 processor that gives an insight of a possible future,
when the number of cores per chip will be so high that the non-uniform memory
access will be present even inside the chip. For simplicity reasons in Table 6.1 we
considered 4x4 squares of cores as a NUMA node, because of their common nearest

156 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

Machine
Processors Latency

Cores/node Nodes Local Memory Remote Memory

SGI UV 8 256 65ns up to 1000ns
Opteron 6176 6 5 65ns 120ns
Xeon E7-4820 8 4 130ns 193ns
Xeon E5-2650 8 2 90ns 140ns

TilePro64 16 4 [76, 91]ns [93, 106]ns

Table 6.1: Local and Remote latencies of large, on-node and on-chip NUMA[131,
132, 150].

memory; nevertheless in this architecture each core of the “node” have a different
memory latency (for this reason we report latency intervals). In this architecture
the latency difference between local and remote access is even smaller.

With these access times, is not really clear how much the locality concepts usu-
ally required to exploit NUMA architectures are necessary to design parallel appli-
cations. To give an idea, we consider the performance model presented in Chapter 4,
Section 4.2.5.1:

Tw−calc = Fixed T ime+ Ln misses× Predicted Memory Latency (6.1)

Let us say that the memory is not a bottleneck, so Predicted Memory Latency
is equal to the values in Table 6.1, and that an half of the memory requests goes
to the local memory, while the other half is directed towards the remote memory.
As reported in Table 6.2, the impact of the remote requests result in an increase
of the memory-related part of the performance model that goes from 800% in the
SGI UV to a 19% in the TilePro64. Of course this performance degradation will be
further mitigated, depending on the values of Fixed T ime in Eqn. 6.1. However, if
the application is “memory bound”, i.e. its performance is limited by the memory
latency, maintaining only local accesses should offer improvements up to 20 − 30%
on the two multicore-based architectures.

Nevertheless, a very common approach today is to design (or reuse) SMP-
oriented parallel applications for multi-core architectures. Despite the possible per-
formance improvement we exemplified, no scientific studies exists to quantify the
real improvement in benchmarks or real-life applications. With this chapter we
start addressing the problem, by studying the impact of the Unified/Non-unified
programming model on our set of target architectures, by mean of specific bench-
marks. We address two different, yet strictly correlated, allocation concepts: Mem-
ory Allocation, i.e. how and where allocate memory for the parallel application,
and Process Allocation, i.e. how to place the processes/threads of the application
on the parallel architecture.

6.1. PROGRAMMING MULTI-CORES 157

Machine Memory-related part of the performance model

Local requests only Ln misses× Local Latency

SGI UV

Ln misses
2

× Local Latency + Ln misses
2

×Remote Latency
= Ln misses/2× Local Latency

+15.38× Ln misses/2× Local Latency
= 8.19× Ln misses× Local Latency

HP ProLiant DL360e

Ln misses
2

× Local Latency + Ln misses
2

×Remote Latency
= Ln misses/2× Local Latency

+1.63× Ln misses/2× Local Latency
= 1.31× Ln misses× Local Latency

TilePro64

Ln misses
2

× Local Latency + Ln misses
2

×Remote Latency
= Ln misses/2× Local Latency

+1.39× Ln misses/2× Local Latency
= 1.19× Ln misses× Local Latency

Table 6.2: Performance of a parallel program executed using only local memory or
local and remote memory, on three different NUMA architectures.

6.1.1 Memory allocation models

We start by considering the problem of memory allocation, in presence of multiple
possibilities (i.e. multiple memory interfaces). With the introduction of multiple
interfaces on a single chip, the research community started to tackle the problem at
the operating system level.

The Operating System is responsible, among other things, of handling the schedul-
ing of processes and the virtual-physical memory mapping, so that - from a certain
point of view - it can be considered the right place to address this problem. In
this area several work stem from the original page allocation and migration ideas
for NUMA architectures. The common allocation policy currently used on most
operating systems in NUMA architectures is the first-touch allocation policy, where
memory is allocated on the nearest interface of the processor that generate a page
fault exception (i.e. the first processor that “touch” the page). This way, if the
process running on that processor is the only one using the page, and the process is
not moved onto another processor during its execution, the O.S. is able to offer the
best allocation. However, processes may be moved, and memory can be shared. In
both cases the first-touch provides non-optimal results. Several works addressed the
problem, by proposing profile-guided page allocation for parallel programs[119, 120]
(i.e. the program is initially executed, augmented with profiling code, to obtain an
approximate memory access trace, that is used to select a pseudo-optimal allocation
for the specific program), or by proposing page migration techniques[117, 159, 175]
(where pages are migrated from a memory interface to another, trying to obtain a
trade-off between the remote access latency and the migration overhead).

158 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

The first paper that address the problem specifically for multi-cores is [16], where
the authors propose:

• An improved first-touch policy called “Adaptive First-Touch Page Placement
Policy”, where memory allocation still occur on the “first-touch” event, but
the destination interface is selected by using an objective cost function that
do not consider only the memory distance, but also other factors such as the
average queueing delay at each interface.

• A “Dynamic Page Migration Policy” that moves pages to keep the load bal-
anced among the memory interfaces.

Similar ideas have been then introduced in other recent works[70, 156]. However,
all these works assume that the program has been already designed and compiled;
it does not even need to be parallel: from the o.s. point of view, we just have a
set of processes and threads running concurrently; they may be parts of a parallel
application, or just a set of programs executed in a multiprogrammed environment.

In this thesis we work with a very different perspective: the program is yet to be
compiled/designed, and we want to select the choice that should be, with reasonable
assurance, the best solution.

In this process we can also count on a deep knowledge of the parallel algorithm
implemented: because of the use of parallel patterns, we can assume that we know,
for each process/thread of the parallel program, which memory areas are accessed
locally. In this scenario, we study the two different types of memory allocations
commonly used on SMP-oriented and NUMA-oriented parallel applications.

6.1.1.1 SMP-like memory allocation

This is considered the current state-of-the-art in multi-core parallel programming:
the machine is abstracted as a Uniform Memory Architecture, in which locality is
not required to obtain good performance results.

The main limitation of this approach is that, because of the underlying NUMA
organizations, the physical address space is “sliced” among the memory interfaces,
instead of interleaved as in classic UMA architectures. This difference (shown in
Fig 6.2a and 6.2b) makes it more difficult to exploit the aggregate bandwidth of
the whole memory, and depend on the “first-touch” memory allocation of the O.S.
Interleaving can be still be implemented, but at the “virtual memory page” level: the
programmer (or the operating system) can select the physical address of each page
so that contiguous virtual memory pages resides in different memory interfaces, as
depicted in Fig 6.2c. Of course the two interleaving approaches are not equivalent,
as in the second case the amount of interleaving heavily depends on the memory
access pattern of the parallel application.

6.1. PROGRAMMING MULTI-CORES 159

a) UMA
Memory

Physical Address

Virtual Address

Page Size

Mem1 Mem2

b) NUMA
Memory

Physical Address

Virtual Address

Page Size

Mem1 Mem2

c) Page Interleaving on NUMA
Memory

Physical Address

Virtual Address

Page Size

Mem1 Mem2

Figure 6.2: Different memory allocation policies.

6.1.1.2 NUMA-like memory allocation

A different approach is to consider these architectures as common NUMA machines,
writing parallel programs that exploit the concept of memory locality, in which each
process allocate its working memory on the nearest memory interface. Given the
underlying non uniform architecture, we expect this solution to provide a perfor-
mance level better or, at least, equal w.r.t the SMP-like allocation; surprisingly, this
approach has not yet been studied and compared with the previous one, so we are
not (yet) able to quantify the real advantage of this allocation model.

6.1.2 Process allocation

As previously mentioned, in a pure SMP architecture processors are anonymous,
i.e. each process2 can run indiscriminately on any processor. Nevertheless, in HPC

2As in most part of the thesis, we refer to process and thread as synonyms: for the real
implementation, we select one of them depending on the possible performance improvement

160 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

Linear Round Robin

P1 P2

P3 P4

P5 P6

P7 P8

P13 P14

P15 P16

P9 P10

P11 P12

P1 P5

P9 P13

P2 P6

P10 P14

P4 P8

P12 P16

P3 P7

P11 P15

Figure 6.3: Different process allocation policies.

programs, to favor cache reuse, a common practice is still to fix each process/thread
on a specific processor, so that the O.S. scheduler is guaranteed to not modify the
mapping during the execution. In the presence of a parallel program executed on a
clustered NUMA, it often happen that we do not exploit the overall number of cores,
but we limit the execution to a smaller set of cores. In this case, it is important to
determine if it is more efficient to try to completely fill single clusters of cores (i.e.
fill the first node, then fill the second, and so on) or to balance the utilization among
clusters (i.e. allocate a core per node, then two cores per node, and so on).

The process allocation policy may affect the performance of parallel programs
because of the shared level of cache present in many multi-core chips: sharing a cache
may reduce the performance if the cache working set of all the processes/threads
do not fit the single, shared cache; but may also increase the performance in case
of frequent data exchange among the processes/threads, as it can better exploit
automatic cache coherence.

Process allocation also affect the memory performance, and play an important
role when mixed with the memory allocation policies, because of the different place-
ment of processes w.r.t memories. For this reason we will study two different process
allocation policies:

• Linear, in which we try to fill one NUMA cluster (i.e. chip) at a time, thus
increasing the amount of cache sharing, by allocating processes linearly on the
cores (i.e. with 5 processes we uses cores from 1 to 5, and so on).

• Round-Robin, in which we try to balance the amount of nodes occupied in
each cluster, thus decreasing the amount of cache per process/thread.

6.2 Evaluation by mean of synthetic benchmarks

We start the study of our process and memory allocation policies with a synthetic
benchmark, in which we are able to determine the memory request/computation

6.2. EVALUATION BY MEAN OF SYNTHETIC BENCHMARKS 161

ratio. This way we can easily determine and test the conditions that makes the
memory a bottleneck, and focus our study on those cases.

We developed our synthetic benchmark starting from the code in Listing 6.1.
The code, reported in MIPS-like assembler, consist in a simple loop where:

1. we read an element from an array;

2. we add the element to an accumulator;

3. we increase the address pointer (by 64, assuming 64-byte cache lines);

4. we increase the element counter by 1;

5. we check if we read the whole array, otherwise return to the beginning.

This fairly simple code will probably be enough to stress the memory, as we
perform a memory read every 6 instructions. To control the amount of concurrent
memory requests, we need to put the mfence instruction to stall the processor
until the load is not completed. While this is not needed for the add (i.e. the add
requires the result of the load), it may happen, with highly superscalar and out-
of-order processors, that multiple iterations of the loop are executed concurrently
(i.e. while waiting for instr. 1 to complete, the array indexes are updated and the
processor begin with the next iteration). The mfence instruction ensure that we
wait the completion of the load before continuing the execution.

From the code in Listing 6.1 we can easily derive a benchmark in which multiple
loads and/or multiple adds are executed, allowing us to perform multiple loads
concurrently (but in a controlled environment, in which we specify their number),
and to increase the amount of processor calculation between memory loads. The
result is exemplified in Listing 6.2, with two loads and two adds, and in Listing 6.3
in a generic way.

For portability reasons, the final benchmark is written in C code, so that we do
not need to re-write it for each architecture; of course the compiled code is basically
the same of the one in Listing 6.3.

To simulate a parallel program, the code will be executed in multiple copies, using
threads. We will allocate up to one thread per core, because some architectures do
not support hardware multithreading. Each thread works on a different array, so
that we are able to test the various memory allocation policies on the array (that
represent the local data of each thread on a parallel application). All the threads
synchronize at the beginning of the execution by means of a pthread barrier, so that
we guarantee that they all start working on their arrays more or less at the same
time. The code is executed 100 times to average the results.

Given the possible correlation between memory and process allocation, we stud-
ied all the combinations:

162 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

LOOP: lw $6 ,$7 #R7: Array

address

mfence

add $4 , $4 , $6
addi $7 ,$7 ,64
addi $1 ,$1 ,1 #R1:

Array index

bne $1 , $0 , LOOP #R0:

Array size

Listing 6.1: Base Synthetic Benchmark.

LOOP: lw $6 ,$7
lw $8 ,$9
mfence

add $4 , $4 , $5
add $4 , $4 , $5
addi $7 ,$7 ,64
addi $9 ,$9 ,64
addi $1 ,$1 ,1
bne $1 , $0 , LOOP

Listing 6.2: Multi load-add benchmark.

LOOP: lw $6 ,$7 #R7: Array1 address

Sequence of Load

mfence

add $4 , $4 , $5
Sequence of add

addi $7 ,$7 ,64
Sequence of Address Update

addi $1 ,$1 ,1 #R1: Array index

bne $1 , $0 , LOOP #R0: Array size

Listing 6.3: Generic Skeleton of the Synthetic Benchmark.

• SMP-like, linear: Memory allocated in an SMP-like way, interleaving virtual
pages among the controllers; processes allocated in a linear way, using all the
cores of a chip before using the other chips.

• SMP-like, RR: Memory allocated in an SMP-like way, interleaving virtual
pages among the controllers; processes allocated in a Round-Robin way, bal-
ancing the used cores among the chips.

• NUMA-like, linear: Memory allocated in an NUMA-like way, allocating,
for each thread, the local data on the nearest controller; processes allocated
in a linear way, using all the cores of a chip before using the other chips.

• NUMA-like, RR: Memory allocated in an NUMA-like way, allocating, for
each thread, the local data on the nearest controller; processes allocated in a
Round-Robin way, balancing the used cores among the chips.

These combinations will also be compared w.r.t using a single memory interface
and a linear process allocation. While this is inserted just a baseline, to compare
the gain obtained by using multiple memory controllers, it should be noted that in
many cases parallel applications not specifically designed for this kind of systems
fall in this category.

6.2. EVALUATION BY MEAN OF SYNTHETIC BENCHMARKS 163

6.2.1 Experimental results on the target architectures

Here we report the results obtained by running the benchmark on the four target
architectures listed in Chapter 3, Section 3.7:

• two Intel Xeon® E5-2650, Sandy-Bridge based architectures, composed of 8
cores, 20 MB of shared cache and a memory controller per chip, running at
2.00GHz; we will refer to this machine as SandyBridge.

• four Intel Xeon® E7-4820, Westmere-EX based architectures, composed of 8
cores, 18MB of shared cache and a memory controller per chip, running at
2.00GHz; we will refer to this machine as Nehalem.

• two AMD Opteron™ 6176, for a total of 4 Magny-Cours based chips, composed
of 6 cores, 6MB of shared cache and a memory controller per chip, running at
2.3GHz; we will refer to this machine as AMD.

• a single Tilera TILEPro64™, composed of 64 cores, no shared cache but 4
memory controllers, running at 866MHz, that will be called Tilera.

The first three architectures are all connected by point-to-point connections
among chips, forming crossbar-like interconnection. All the remote memory in-
terfaces are therefore equidistant w.r.t each processor. In the TilePro64 machine
things are slightly different, mainly because of on-chip NUMA: we have a mesh so
each interface have a different distance, but remote latencies are only 20% higher
than the local ones. In the TilePro64 implementation we also use non-coherent
memory spaces for the local arrays, as this allow to avoid the DDC mechanism and
is not a problem for the benchmark semantics because each array is local to a thread.

1 Load, 1 Add per iteration

We start with the simple case of a load and an add per cycle; from this, we will
find if we need to further increase the memory pressure, by adding multiple loads,
or decrease it, by adding multiple adds. Execution times per iteration are depicted
in Figure 6.4, in clock cycles. Given the parameters of the benchmark (1 Load, 1
Add per iteration), we can consider the result an accurate evaluation of the average
memory response time (i.e. the execution time of each iteration is dominated by the
time the processor wait for the load response). The graphs show the behavior as
the number of cores executing the benchmark is increased. Each line represent one
of the combinations previously presented. Single{1-4}-linear, on the other hand,
represent a configuration that uses a single memory interface. The first interface
(corresponding to Single1-linear) belongs to the first chip used, so that it can be
considered a “local” memory for the initial parallelism degrees while, on the other
hand, interfaces 2 to 4 represent the “remote” memories.

We expect an almost constant time as long as the memory is not a bottleneck;
then, a large increase in the times when the memory becomes the bottleneck of the

164 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

system, as its Rq increases. We show the result ordered per maximum number of
cores, starting with the SandyBridge architecture, up to the Tilera. Surprisingly,
results are very different, depending on the architecture.

The first row shows two architectures in which the memory is not a bottleneck
with this benchmark. This is a notable result, as the benchmark code is indeed very
“fine-grained”, in the sense that the amount of register-register operations between
two loads is very small. Yet the memory subsystem is able to handle 16 and 24
cores, respectively, with almost no degradation even with a single memory interface.

On the other hand, the second row shows a completely different behavior, where
a single memory controller is indeed not sufficient to handle all the processors and
the use of multiple controllers, regardless of the policy, offer significant improvements
on the Rq, and therefore the execution time.

While these results are interesting per-se, it is quite difficult to understand how
this increase in the execution time affect the performance of a parallel program. We
therefore used a simple yet effective model to estimate the hypothetical scalability
of a parallel application designed on top of this synthetic benchmark.

We define our application as a program that execute the measured code for a
certain amount of iterations. Its completion time is determined as

T seqc = T seqit ∗Nit (6.2)

while the completion time of a parallel version with n threads that follows a map
paradigm will be

T nc = T nit ∗
Nit

n
(6.3)

where each thread execute a fraction of the total iterations, with its own iteration
time. From this we can calculate a hypothetical speed-up, w.r.t the sequential code:

Sn =
T seqc

T nc
=
T seqit ∗Nit ∗ n
T nit ∗Nit

=
T seqit ∗ n
T nit

(6.4)

The corresponding graph of Sn is depicted in Figure 6.5, taking the time with
1 core of Single1 as T seqit . The results show that, when the memory is not a
bottleneck, the Speed-up of the hypothetical application is good, usually aligned
with the theoretical one. When, on the other hand, the memory is a bottleneck, we
assist to a behavior in which the speed-up grows up to a point, and then remain still.
Depending on the architecture, the overall scalability can be pretty bad, especially
when using a single interface.

SandyBridge A detailed analysis of this architecture show several important be-
haviors. This machine has two memory controllers, so we have only Single1 and
Single2. Yet their performance difference require some considerations: with a single
thread, using the first or the second memory controller gives very different response

6.2. EVALUATION BY MEAN OF SYNTHETIC BENCHMARKS 165

 100

 200

 300

 400

 1 4 8 12 16

E
xe

cu
tio

n
tim

e
pe

r
ite

ra
tio

n
(c

lo
ck

s)

Number of cores

SandyBridge 1Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2

 100

 110

 120

 130

 140

 150

 160

 170

 180

 1 4 8 12 16 20 23

E
xe

cu
tio

n
tim

e
pe

r
ite

ra
tio

n
(c

lo
ck

s)

Number of cores

AMD 1Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 100
 200
 300
 400

 600

 800

 1000

 1200
 1300

 1 4 8 12 16 20 24 28 32

E
xe

cu
tio

n
tim

e
pe

r
ite

ra
tio

n
(c

lo
ck

s)

Number of cores

Nehalem 1Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

E
xe

cu
tio

n
tim

e
pe

r
ite

ra
tio

n
(c

lo
ck

s)

Number of cores

Tilera 1Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

Figure 6.4: Average execution times per iteration, 1Load-1Add per iter.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 4 8 12 16

S
pe

ed
-u

p

Number of cores

SandyBridge 1Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2

 0

 4

 8

 12

 16

 20

 24

 1 4 8 12 16 20 23

S
pe

ed
-u

p

Number of cores

AMD 1Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30

S
pe

ed
-u

p

Number of cores

Nehalem 1Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 0

 5

 10

 15

 20

 25

 30

 35

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

S
pe

ed
-u

p

Number of cores

Tilera 1Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

Figure 6.5: Hypothetical Speed-up of a farm parallelization, 1Load-1Add per iter.

166 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

times. This is indeed expected, as the thread is allocated on the first chip, near
the first memory controller. This difference (reported in numbers in Table 6.3) is
related to the extra time spent through the external interconnection network. The
average time of Single2 suddenly drops at 9 threads, because when we start allo-
cating threads on the second chip, these threads have a smaller Rq that beneficially
affect value averaged among all the threads. The behavior on Single1 is mirrored:
we can easily see a change in the inclination after 8 cores; this can be mistakenly
considered a hint that the memory interface is becoming a bottleneck, but it is more
likely the effect of using threads on the other cores, that have therefore an increased
Rq w.r.t this interface.

The distance of the memory controller also affect the SMP-like allocation, where
data is uniformly distributed between the two interfaces, increasing the average Rq

since the beginning.
Unsurprisingly, a NUMA-like allocation in which each thread always access the

nearest memory offers better results, ending with a time 36% lower than the SMP
policy.

Table 6.3: Synthetic Benchmark results on SandyBridge, 1Load-1Add.

Time per iteration (clock cycles)

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2
1 230.6 218.8 163.6 175.4 192.8 248.4
2 258.6 213.4 220.4 158 206.75 304.8
4 260.6 247.8 214 179.6 217 326
8 281.2 258.6 214.6 166.8 227.8 335.4
9 264 263.4 197.4 167.4 237.2 302.2

15 269.6 271 199.2 178.8 292.2 282.2
16 271.4 273.4 205.6 174.6 300.8 278

AMD Results on this architecture (Table 6.4) seems an anomaly, as basically all
the allocation policies, of both memory and processors, give the same performance:
all the results fall between 114 and 126 cycles of iteration time. We assist a slight
improvement in performance when multiple cores are used, probably because of a
parallel memory controller that is able to (partially) serve some requests concur-
rently. The main result is that in this benchmark the memory is not a bottleneck
as its Rq do not increase for any number of cores used.

Nehalem The execution on this architecture is particularly interesting, as we
are finally able to observe the behavior in a case where the memory system is a
bottleneck. With a small number of cores we observe the very same behavior of

6.2. EVALUATION BY MEAN OF SYNTHETIC BENCHMARKS 167

Table 6.4: Synthetic Benchmark results on AMD, 1Load-1Add.

Time per iteration (clock cycles)

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2 Mem3 Mem4
1 125.6 124.2 124.2 126.4 125 126.2 126.2 124.4
2 120 122.2 119.8 122.4 120.6 123.4 119.6 120.6
6 116.2 119.4 114.8 118.2 115.6 115.2 114.8 116.2

12 116.4 114.4 115.4 114.4 116.4 115.6 115.4 115
22 117.4 117 119.2 117.6 117.6 116.6 117.4 117.6
23 116.8 117.8 118.2 118.4 117.2 117.8 117.6 117.4

the other Intel architecture, with the NUMA allocation providing the best results
when a single core is used. When the number of cores is increased, a single memory
interface is not sufficient, and the iteration time grows almost linearly: with 8 cores
we have an iteration time of 342.8cycles on Single1, that increase of 2.06 times with
16 and of 3.51 times with 32. The behavior of the two NUMA-like policies is highly
influenced by the process allocation: in particular, in the linear case, we observe
peeks at 8, 16 and 24 after which the iteration time slowly decreases. This is to be
expected, as a linear allocation means that with the first 8 threads we completely fill
a chip, and produce the maximum memory pressure for the related controller. An
analysis of Table 6.5 confirm the fact, showing that the iteration time with 8, 16, 24
and 32 is basically the same, around 320 cycles. After that peek, for example with 9
threads, the average time decreases, because there is one single thread on the second
memory controller, that obtain a smaller time w.r.t to the other 8 and decrease the
average. As the second chip is filled, of course, the time increases again, reaching
the very same value with 16 threads. On the other hand, the NUMA-like RR policy
exploit the full aggregate bandwidth of the controllers by allocating processes in a
round-robin fashion, resulting in the best times throughout the whole benchmark.

For the SMP-like policies, process allocation is not really important; their ex-
ecution time is higher a small number of cores but these are able to outperform -
at least in some cases, the NUMA-like linear configuration, as they exploit all the
memory controllers with any amount of cores. At the end, however, their result with
32 cores are 30% and 50% higher w.r.t, respectively, NUMA linear and NUMA RR.

Tilera The results on the TilePro64 (Table 6.6) are qualitatively the same of
the Nehalem machine: a single memory controller is not sufficient and becomes a
bottleneck with more than 8 cores. With a single thread NUMA-like policies offer
the same time of Single1, while the SMP-like ones result in a higher iteration time.
In this case we see more clearly that a NUMA-like linear policy is not really effective
when a limited number of cores is used, as even the SMP-like policies perform well.
At the end of the graph, with 63 nodes, NUMA-like RR is the best configuration,

168 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

Table 6.5: Synthetic Benchmark results on Nehalem, 1Load-1Add.

Time per iteration (clock cycles)

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2 Mem3 Mem4
1 168.8 145.4 133.8 120.8 126.4 185.2 170.8 173
2 172 190 166 130 144.8 197.2 184.8 201.4
4 197.2 210.2 168.8 131.2 176.2 216.2 227.2 227.6
8 267 254.6 335.6 138.4 367.8 342.8 346.6 347.6
9 291.6 279.4 292.6 128.8 413.4 372.2 384.6 375

16 330.8 364.8 324.6 148 708.6 712.8 707 713.8
17 338.8 368.2 307 154.8 761.2 772 759.6 772.2
24 380.8 377.8 320.6 202.2 1045.2 1058.6 1048.8 1070.2
25 378.2 384.8 309 209.8 1082.6 1080 1084.6 1105.6
31 403.2 415 301.6 263.6 1258.8 1260 1264.6 1270.6
32 409.4 415.4 315.4 269 1293 1295.4 1289.4 1297.8

Table 6.6: Synthetic Benchmark results on Tilera, 1Load-1Add.

Time per iteration (clock cycles)

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2 Mem3 Mem4
1 120.8 120.8 109 109 109 116 132 125
4 123.2 122 110.2 114 111.6 118.2 133.2 127
8 125.6 126 118.2 115.2 137 139.4 149 147.8

16 133.2 135 150.6 121.6 202.4 201.8 209 322.2
32 158.2 165.4 202.4 155.2 394.2 393 392.2 392
60 212.8 212.6 202.6 207 796 793 793 791
63 218.4 218 204 210.6 838.4 835.2 835.6 834

but here the SMP-like allocations are not so bad, offering a very slight deterioration
w.r.t NUMA RR. At the end, with 63 threads, NUMA allocations performs only a
3− 6% better than the SMP ones.

10 Load, 1 Add per iteration

Using a single load we found a bottleneck in two of our architectures. We therefore
decided to further increase the memory pressure, to be able to observe the behavior
even in SandyBridge and AMD. We decided to execute 10 Loads before issuing the
mfence instruction. We do not know, precisely, the amount of concurrent memory
requests supported by each architecture, so in general we expect that some of these
ten requests will be serialized. Nevertheless, this will increase as much as possible

6.2. EVALUATION BY MEAN OF SYNTHETIC BENCHMARKS 169

the amount of requests received by the memory subsystem.

The results for the iteration time reported in Figure 6.6 confirm our expectation:
now three of the four architectures show a bottleneck on the memory. With the
AMD architecture the trend remains the same, confirming the singularity of this
architecture. We observe that the undulatory behavior of NUMA-like linear is more
prominent, confirming the problem of this configuration when partially using the
multi-cores. The behavior of SMP-like and NUMA-like RR policies is now more
similar, with the NUMA allocation still outperforming the others, but usually of a
very small factor.

As before, we report in Figure 6.7 the speed-up of a hypothetical parallel program
based on this benchmark. Results definitely show that the NUMA-like RR is the
best configuration, giving the best result throughout the whole graph. We should
notice, however, that no matter which configuration is used, the speed-ups obtained
are generally very small w.r.t the number of used cores, meaning that a different
memory/process allocation policy can increase the performance when the memory is
the bottleneck of the system, but only of a limited degree. What we believe a more
interesting result is that again NUMA-like RR is able to reach the best scalability
much sooner w.r.t. the others, meaning that we can save a significant number of
cores to achieve the same performance.

SandyBridge A detailed analysis of the benchmark on this architecture, using
also numerical values reported in Table 6.7 prompt some important considerations.

The behavior with a single core is still the same, with NUMA-like equivalent
to Single1 and considerably outperforming SMP-like. An interesting (but strange)
behavior is that in this case SMP-like linear and Single2 shows a clear peek with
8 cores. This is a bit unexpected: in the SMP case, as previously said, linear or
RR process allocation policies do not affect the amount of requests per memory
controller. Similarly, it is quite difficult to imagine that Rq of the single memory
controller (Single2 case) with 8 cores is higher than with 16. Our hypothesis is that
in these two cases the bottleneck is not the memory, but the interconnection network
between the two chips or the shared level cache on-chip: a linear allocation means
that we have all the 8 cores allocated on the first chip, and the memory allocated
completely or partially (depending on the case) on the second chip. The iteration
time with 8 workers of NUMA linear and Single1 coincides as expected, because
the two policies provide the very same process/memory configuration. Using all the
cores, the NUMA allocation provides an iteration time 18% smaller than the SMP
allocation.

AMD Results on this architecture remains a real mystery: even performing 10
Loads per iteration, the memory is not a bottleneck. This is really strange, and let
us think that the benchmark is not working as expected on this architecture. We
can, however, definitely say that these 10 requests are partially executed concur-

170 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

 300

 500

 1000

 1500

 2000

 2500

 1 4 8 12 16

E
xe

cu
tio

n
tim

e
pe

r
ite

ra
tio

n
(c

lo
ck

s)

Number of cores

SandyBridge 10Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2

 300

 350

 400

 450

 500

 1 4 8 12 16 20 23

E
xe

cu
tio

n
tim

e
pe

r
ite

ra
tio

n
(c

lo
ck

s)

Number of cores

AMD 10Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 4 8 12 16 20 24 28 32

E
xe

cu
tio

n
tim

e
pe

r
ite

ra
tio

n
(c

lo
ck

s)

Number of cores

Nehalem 10Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

E
xe

cu
tio

n
tim

e
pe

r
ite

ra
tio

n
(c

lo
ck

s)

Number of cores

Tilera 10Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

Figure 6.6: Average execution times per iteration, 10Load-1Add per iter.

 0

 1

 2

 3

 4

 5

 6

 7

 1 4 8 12 16

S
pe

ed
-u

p

Number of cores

SandyBridge 10Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear

NUMA-like RR
Single1
Single2

 0

 4

 8

 12

 16

 20

 24

 1 4 8 12 16 20 23

S
pe

ed
-u

p

Number of cores

AMD 10Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

S
pe

ed
-u

p

Number of cores

Nehalem 10Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 0

 2

 4

 6

 8

 10

 12

 14

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

S
pe

ed
-u

p

Number of cores

Tilera 10Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

Figure 6.7: Hypothetical Speed-up of a farm parallelization, 10Load-1Add per iter.

6.2. EVALUATION BY MEAN OF SYNTHETIC BENCHMARKS 171

Table 6.7: Synthetic Benchmark results on SandyBridge, 10Load-1Add.

Time per iteration (clock cycles)

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2
1 394 393.6 330.4 329.8 328.6 465
2 428 382.2 362 309.2 359 612.8
4 587.2 440.8 493.4 338.6 494 1070.2
8 1060.8 653.2 976.8 487.8 985.8 2061.8
9 891.4 677.6 889.6 551.2 1083.6 1663.6

15 1084 1123.6 913.6 905.6 1791 1839.2
16 1148.4 1175.4 971.4 961.2 1925 1931.6

Table 6.8: Synthetic Benchmark results on AMD, 10Load-1Add.

Time per iteration (clock cycles)

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2 Mem3 Mem4
1 379 377.8 377.6 379.6 376.8 378.6 377.8 378.6
6 380.4 387 386.6 389 387.2 385.2 382.2 382.2

23 396.2 392.8 392.6 390.2 394.6 395.4 395.4 390.4

rently, as the iteration time is only ∼ 3 times higher w.r.t having a single Load.
This architecture definitely requires a deeper study to better understand its mem-
ory subsystem. For the sake of completeness we report some numerical values in
Table 6.8.

Nehalem This test confirm the previous results, especially on the behavior of
the NUMA-like linear policy, that is definitely unusable in this case. The lighter
difference between SMP and NUMA allocations let us introduce another, important
consideration: when the amount of requests enqueued in the memory interface is
very high, the “distance” between the memory and the cores is still present in Rq,
but becomes a really small factor w.r.t the waiting time on the queue. Therefore,
if the memory traffic is really high, the usage of local or remote memories become
a negligible aspect on the final performance. In this case we are talking of a 2%
difference in the final iteration time using 32 cores (Table 6.9). This does not mean,
however, that the two policies are interchangeable: by looking at Figure 6.7 we can
immediately observe that the NUMA-like RR policy allow us to reach the same
speed-up using a smaller number of cores w.r.t the SMP-like polices.

172 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

Table 6.9: Synthetic Benchmark results on Nehalem, 10Load-1Add.

Time per iteration (clock cycles)

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2 Mem3 Mem4
1 696.6 700.6 605.6 603.6 608.2 710.6 725.8 723.8
2 715.6 720.8 866 610.2 853 885 892.4 891.6
4 810.8 828.4 1457.8 610.6 1453.8 1601 1599.2 1615.4
8 1099.2 995.8 2748.4 844.8 2778 3101.8 3114 3130.8
9 1141.6 1036.4 2513 946 3101 3153.8 3173.6 3188.6

16 1542.2 1525.8 2743.6 1435.6 4832.8 4815.8 5365.4 5366.4
17 1609.8 1594.2 2605.4 1528.6 5043.8 5040.6 5560 5556.8
24 2157.6 2140 2733.8 2062.2 7105.6 7098 7096.8 7958.4
25 2225.4 2210.2 2645.4 2152 7339.4 7328.2 7330 8113
31 2700.6 2700.4 2660.6 2636.4 9389 9385.4 9389.8 9442.6
32 2788.8 2778.6 2747 2708.4 9797.6 9795.8 9797.2 9801.2

Tilera As the Nehalem, we assist in an intensification of the phenomenon already
described in the previous results. Again, the time difference between NUMA-like RR
and SMP decreases when using the whole set of cores; in this case we obtain basically
the same results, making the two solutions equivalent when using 64 cores. As with
the other architectures, however, using less cores gives a significant performance
improvement on NUMA w.r.t SMP policies.

Finally, an interesting result here is that the NUMA-like linear policy for some
reasons is able to outperform all the others by a significant factor (∼ 10% faster
than the others). We have no real explanations for that; as with the AMD results,
this should deserve a deeper study to understand the behavior.

Table 6.10: Synthetic Benchmark results on Tilera, 10Load-1Add.

Time per iteration (clock cycles)

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2 Mem3 Mem4
1 320.2 320.2 306.6 306.4 306.4 313.8 336.8 322.4
4 433.6 361.4 401.8 312.6 472.4 784.4 784.8 467.2
8 493.6 490.8 534.4 374.6 911.6 910 900.6 900.8

16 713.8 708.6 1046 522.2 1778.2 1774.2 1754.4 1753.2
32 1120.8 1117 1709.6 1034.4 3699 3681.8 3652.8 3653
60 1965.8 1962.8 1756.2 1963 6869.4 7135.6 7135 6842.4
63 2032 2000.4 1823.8 2021.4 7311.6 7370.8 7376.2 7296.6

6.3. FARM PARALLELIZATION OF THE SOBEL OPERATOR 173

6.2.2 Concluding Remarks

Summarizing all these results and comments, this Synthetic Benchmark allowed us
to study the behavior of many multi-core commercially available w.r.t the Memory
and Process allocation policies introduced in Section 6.1. The three main points
that we understood by this analysis are the following:

• It seems that current architectures are actually well balanced in terms of mem-
ory bandwidth per core, so that we need very fine-grained algorithms, or with
small locality, to be able to observe a performance deterioration related to the
memory subsystem.

• The NUMA-like memory allocation policy delivered the best results through-
out all the tests, but only if paired with a Round-Robin process allocation:
the linear allocation is not feasible because of the not optimum distribution
of requests among the memory interfaces.

• The performance difference between SMP-like and NUMA-like exists, but
in many cases is very small; this difference may not justify a program rewrite
if we already have a SMP-oriented parallel program; however, when writing a
new program (or implementation) the developer should prefer the NUMA-
like memory allocation policy.

6.3 Farm parallelization of the Sobel Operator

We continue the analysis with a more concrete algorithm, that should give us a
better idea of the real behavior w.r.t synthetic benchmarks. We need a code to
stresses the memory, so it should involve a small amount of calculation for each
memory load/store. To this purpose we selected an Edge Detection Filter. This
kind of algorithm, in short, analyze an image to detect object boundaries inside
the picture; this is usually the first step of more complex algorithms to detect, for
example, objects inside images and/or movements in videos.

More formally, an edge detector looks for discontinuities in the image brightness,
that correspond to changes of depths, of materials, or other conditions that usually
represent a border within two different objects inside the image.

To detect these discontinuities, the algorithms works with grey-scale images (as
we are only interested in the brightness of the image, not the colors) and estimate
the gradient of the image intensity function. From this estimation we can easily
identify discontinuities in all those points that have a high gradient value.

The Sobel operator is one of the most simple and common gradient estimator,
able to compute an approximate value for the gradient in each image point in a very
simple yet effective way.

Specifically[182], for each point the operator approximate the derivatives δf
δx

and
δf
δy

by differences, considering a 3× 3 neighboring of the point in the following way:

174 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

δf

δy
= (x6 + 2x7 + x8)− (x0 + 2x1 + x2)

δf

δx
= (x2 + 2x5 + x8)− (x0 + 2x3 + x6)

Image Intensity Gradient

x0 x1x2

x3

x8

x5

x7x6

Figure 6.8: Sobel Operator.

From these derivatives approximations we can compute the gradient value in the
point as

∇f =

∣∣∣∣δfδy
∣∣∣∣+

∣∣∣∣δfδx
∣∣∣∣ (6.5)

The complete calculation for each pixel therefore consist in 4 multiplications, 15
sums and 2 absolute values. The operation and the required dependencies among
pixels is graphically exemplified in Figure 6.8. This is executed once for each pixel of
the image, resulting in a linear memory access pattern. The result of the application
of the Sobel operator to an image is reported in Figure 6.9.

(a) Original Image (b) Preprocessed Image (c) Gradient Estimation

Figure 6.9: Example of the gradient estimation obtained by the Sobel operator.

6.3. FARM PARALLELIZATION OF THE SOBEL OPERATOR 175

6.3.1 Experimental results on the target architectures

To remove other possible sources of degradation we decided to not implement a real
farm module, but develop a simplified, farm-like parallel program. The resulting
parallel code is similar to the previously discussed Synthetic Benchmark, with a
variable number of threads (workers), each one executing, independently, the Sobel
kernel on a local set of images. Threads synchronize at the beginning with a barrier,
to start the computation at the same time. The behavior is the same of a steady-
state farm, in which all the workers are computing the Sobel kernel on a different
element of the input stream. However, removing input streams and the need of
Emitter-Worker and Worker-Collector communications we simplified the code, so
that we were able to isolate the behavior of multiple threads executing the Sobel
code concurrently.

We ran the farm-like parallelization with images of 512× 512 elements, applying
the filter to 100 images on each worker. Figure 6.10 show the average filtering time
for a single image, varying the number of workers. Corresponding numerical results
are in Table 6.11. The behavior of the parallel program as a whole is instead shown
with Figure 6.11, where we draw the Speed-up, calculated on the overall throughput
(i.e. images per time unit) of the program, compared with the sequential version.

Overall, it seems that this kernel is not able to stress the memory system in
three of the four architectures: despite its simplicity, the locality is actually quite
good, as each element of the image is brought in cache only once, so that we are
not able to produce a high enough number of concurrent requests. This lead to
ideal speed-ups on SandyBridge and AMD, and a practically ideal speed-up of
30 on the Nehalem (because of the slight step that occurs on at the beginning of
the graph). There are not many considerations for these three architectures, except
for the fact that, again, NUMA-like RR perform slightly better than the others,
and that in some cases we are still able to notice the step when a different memory
controller is used (especially on SandyBridge with Single and SMP linear.

The time increase on the Nehalem graph is quite interesting because it seems to
happen when more than two workers are allocated on a single chip: all the linear
allocations (including the Single configurations of course) show a step at 3, while
with both the Round-Robin ones it happen with more than 8 workers. It should not
be a memory-interface related problem (because it happen regardless of the memory
allocation) so it is probably related to the shared level of cache (perhaps its size,
or the maximum concurrent requests supported). Anyway, the performance drop is
quite small, and do not require further studies.

What, indeed, deserve a better analysis is the Tilera behavior, as it seems that,
in this case, a single controller is not sufficient and, more interesting, we notice an
increasing difference between SMP and NUMA allocations. This is the opposite of
what we saw on the Synthetic Benchmark, where the difference becomes smaller as
we increase the number of cores.

We executed some more tests with different image sizes. This should not affect

176 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

 5

 5.2

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 1 4 8 12 16

E
xe

cu
tio

n
tim

e
pe

r
im

ag
e

(M
cl

oc
ks

)

Number of cores

SandyBridge - Sobel 512x512

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 1 4 8 12 16 20 23

E
xe

cu
tio

n
tim

e
pe

r
im

ag
e

(M
cl

oc
ks

)

Number of cores

AMD - Sobel 512x512

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 5

 5.2

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 1 4 8 12 16 20 24 28 32

E
xe

cu
tio

n
tim

e
pe

r
im

ag
e

(M
cl

oc
ks

)

Number of cores

Nehalem - Sobel 512x512

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 10

 15

 20

 25

 30

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

E
xe

cu
tio

n
tim

e
pe

r
im

ag
e

(M
cl

oc
ks

)

Number of cores

Tilera - Sobel 512x512

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

Figure 6.10: Average filtering time per image, 512× 512 pixels.

 1

 4

 8

 12

 16

 1 4 8 12 16

S
pe

ed
-u

p

Number of cores

SandyBridge - Sobel 512x512

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2

 1

 4

 8

 12

 16

 20

 23

 1 4 8 12 16 20 23

S
pe

ed
-u

p

Number of cores

AMD - Sobel 512x512

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 1

 4

 8

 12

 16

 20

 24

 28

 32

 1 4 8 12 16 20 24 28 32

S
pe

ed
-u

p

Number of cores

Nehalem - Sobel 512x512

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 1
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44
 48
 52
 56
 60
 64

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

S
pe

ed
-u

p

Number of cores

Tilera - Sobel 512x512

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

Figure 6.11: Speed-up of the farm parallelization, 512× 512 pixels per image.

6.3. FARM PARALLELIZATION OF THE SOBEL OPERATOR 177

Table 6.11: Sobel image filtering times for 512× 512 images. Times in clock cycles.

SandyBridge

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2

1 6.02M 6.03M 5.79M 5.79M 5.79M 6.25M
2 6.02M 5.95M 5.79M 5.76M 5.79M 6.30M
8 6.15M 5.95M 5.81M 5.75M 5.82M 6.28M

16 5.96M 5.96M 5.78M 5.76M 5.95M 5.97M

AMD

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2 Mem3 Mem4

1 7.10M 7.09M 7.01M 7.05M 7.06M 7.07M 7.08M 7.10M
2 7.10M 7.06M 7.09M 7.03M 7.02M 7.08M 7.10M 7.11M
6 7.06M 7.06M 7.02M 7.02M 7.02M 7.08M 7.12M 7.08M

23 7.02M 7.02M 6.98M 6.98M 7.02M 7.02M 7.03M 7.02M

Nehalem

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2 Mem3 Mem4

1 5.61M 5.59M 5.62M 5.61M 5.59M 5.62M 5.59M 5.60M
2 5.67M 5.64M 5.74M 5.66M 5.69M 5.69M 5.70M 5.70M
8 5.96M 5.63M 5.96M 5.62M 5.95M 5.96M 5.96M 5.96M

16 5.95M 5.95M 5.94M 5.94M 5.95M 5.94M 5.95M 5.95M
17 5.92M 5.95M 5.92M 5.94M 5.92M 5.92M 5.93M 5.93M
18 5.91M 5.94M 5.91M 5.94M 5.91M 5.91M 5.91M 5.92M
32 5.94M 5.94M 5.93M 5.93M 5.98M 5.98M 5.98M 5.99M

Tilera

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2 Mem3 Mem4

1 9.57M 9.57M 9.54M 9.52M 9.53M 9.55M 9.68M 9.67M
2 9.58M 9.57M 9.56M 9.52M 9.56M 9.60M 9.71M 9.68M
4 9.64M 9.64M 9.56M 9.58M 9.59M 9.62M 9.72M 9.69M
8 9.67M 9.68M 9.61M 9.61M 9.65M 9.65M 9.75M 9.75M

16 9.72M 9.72M 9.67M 9.64M 9.78M 9.77M 9.84M 9.85M
32 9.90M 9.90M 9.81M 9.70M 14.48M 14.39M 14.74M 14.87M
48 10.49M 10.49M 9.80M 9.76M 22.30M 22.12M 22.45M 22.80M
62 11.55M 11.56M 9.84M 9.84M 28.97M 28.65M 29.11M 29.25M
63 11.64M 11.66M 9.84M 9.84M 29.42M 29.22M 29.46M 29.67M

178 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

 1
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44
 48
 52
 56
 60
 64

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

S
pe

ed
-u

p

Number of cores

Tilera - Sobel 625x512

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

(a) Speedup for 625× 512 images

 20

 30

 40

 50

 60

262K 320K 524K 640K 1M 1.2M 2M 2.5M 4M 5M 8M 10M

S
pe

ed
-u

p

Image Size (pixels)

Tilera - Sobel with different image sizes

SMP-like linear
Numa-like RR

Single1

(b) Speedup with different image sizes, 63 cores

Figure 6.12: Speedup with different image sizes on the TilePro64.

the amount of memory requests, because we execute the very same operation on
each pixel and a pixel is read and wrote only once, so increasing the number of
pixels equally increase the number of requests and the amount of calculation per
image (i.e. the time between two memory requests remain the same).

By increasing the number of pixels of a small quantity (using images of 625 ×
512 pixels) the behavior, as shown in Figure 6.12a, returns aligned to the other
architectures, with a speed-up of ∼ 62 with 63 cores. This for both SMP-like
and NUMA-like allocations, while using a single controller we experience a small
slowdown starting with 40 cores. We tried different sizes and the general behavior
using 63 cores is reported in Figure 6.12b: images composed of a perfect square
number of pixels becomes a problem. This is probably related to the specific memory
access pattern, that may interfere with the caching system and cause a degradation
on the memory response time.

6.3.2 Concluding Remarks

In summary, we can safely say that with this algorithm the ratio of memory requests
and calculation time is not sufficiently high to pose a problem in current and future
architectures.

This can be considered a notable result, given the fact that this is indeed a
fine-grained algorithm that only applies some additions and multiplications for each
element. Moreover, w.r.t other algorithms working with matrices, the amount of
reuse is very low, so the cache subsystem can only exploit locality. Nevertheless,
we have no significant performance problems even with the 32 cores of Nehalem
and the 64 of Tilera. Theoretically the Numa-like allocation policy is a bit better
than the SMP-like, but in practice the difference is very small.

The only significant problem emerged on the TilePro64 architecture, and only
with specific configurations (high parallelism degrees and specific image sizes); unfor-
tunately we were not able to certainly determine the cause of the performance drop,

6.4. FARM PARALLELIZATION OF THE VECTOR ADDITION 179

but can consider the result a singularity, probably related to the specific memory
access pattern.

6.4 Farm parallelization of the Vector Addition

Given the results with the Sobel operator, we selected a further finer grained problem.
We selected what is probably the finest grain problem one can find in mathematical
operations: the addition of two vectors. The pseudo code reported in Listing 6.4
shows the simplicity of the code: for each iteration we execute two loads, one add
and one store. This is also an important benchmark because of its simple loop
structure, that allows modern compiler to produce vectorized code if the architecture
support it. Vectorized code is important in our study, as it is able to increase the
instruction throughput of a processor and thus, in our case, the number of memory
requests per time unit. Of the target architectures, all the x86-based processors
include a vector unit able to execute 4 to 8 (depending on the architecture) integer
operations per clock; the TilePro64 architecture, instead, do not support natively
vector instructions; however its VLIW instruction set allow the execution of two
arithmetic operation per clock, resembling, in some way, a short-vector operation.

for (i =0; i<n ; i++)
y [i] = y [i] + x [i] ;

Listing 6.4: Vector Addition Pseudo code.

6.4.1 Experimental results on the target architectures

Experiments were conducted using the same pseudo-farm parallel program intro-
duced with the Sobel experimentation. We execute the addition over two vectors of
1024000 elements, and each worker execute the addition 100 times. As before, we
report the average calculation time per vector in Figure 6.13 and Table 6.12, and
the parallel speed-up measured w.r.t the sequential version that uses the nearest
memory controller in Figure 6.14.

We consider the results very positive as this application qualitatively mimics the
synthetic benchmark previously studied. We find most of the characteristics already
studied in the previous benchmark, in particular:

• The wavelike behavior of the NUMA-like linear policy, because of the lim-
ited memory bandwidth exploited when we partially use the architecture

• The generally higher latency in SMP-like allocations, that makes the program
slower with small parallelism degrees even w.r.t using a single memory interface

180 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 4 8 12 16

E
xe

cu
tio

n
tim

e
pe

r
ve

ct
or

 (
M

cl
oc

ks
)

Number of cores

SandyBridge - Vector Add 1024000

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2

 0

 10

 20

 30

 40

 50

 60

 70

 1 4 8 12 16 20 23

E
xe

cu
tio

n
tim

e
pe

r
ve

ct
or

 (
M

cl
oc

ks
)

Number of cores

AMD - Vector Add 1024000

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 4 8 12 16 20 24 28 32

E
xe

cu
tio

n
tim

e
pe

r
ve

ct
or

 (
M

cl
oc

ks
)

Number of cores

Nehalem - Vector Add 1024000

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

E
xe

cu
tio

n
tim

e
pe

r
ve

ct
or

 (
M

cl
oc

ks
)

Number of cores

Tilera - Vector Add 1024000

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

Figure 6.13: Average execution times per addition, 1024000 elements per vector.

 0

 1

 2

 3

 4

 5

 6

 7

 1 4 8 12 16

S
pe

ed
-u

p

Number of cores

SandyBridge - Vector Add 1024000

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 4 8 12 16 20 23

S
pe

ed
-u

p

Number of cores

AMD - Vector Add 1024000

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 4 8 12 16 20 24 28 32

S
pe

ed
-u

p

Number of cores

Nehalem - Vector Add 1024000

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

 0

 5

 10

 15

 20

 25

 30

 35

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

S
pe

ed
-u

p

Number of cores

Tilera - Vector Add 1024000

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1
Single2
Single3
Single4

Figure 6.14: Speed-up of the farm parallelization, 1024000 elements per vector.

6.4. FARM PARALLELIZATION OF THE VECTOR ADDITION 181

Table 6.12: Vector addition times for 1024000 elements vector. Times in clock cycles.

SandyBridge

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2

1 1.87M 1.85M 1.68M 1.68M 1.67M 2.08M
2 2.10M 1.81M 1.72M 1.64M 1.72M 2.76M
8 6.60M 3.40M 4.95M 2.32M 4.97M 13.40M

16 6.64M 6.49M 4.95M 5.01M 10.16M 10.19M

AMD

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2 Mem3 Mem4

1 13.33M 13.28M 9.79M 9.85M 9.81M 14.35M 14.44M 15.30M
2 12.76M 13.37M 9.97M 9.77M 9.94M 15.18M 15.01M 16.17M
6 14.15M 14.04M 14.78M 9.84M 14.64M 22.83M 23.95M 27.75M

12 15.73M 15.47M 14.57M 10.92M 31.45M 31.33M 34.13M 34.32M
23 18.55M 18.54M 14.04M 14.11M 61.16M 61.39M 64.61M 61.78M

Nehalem

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2 Mem3 Mem4

1 4.68M 4.72M 4.39M 4.38M 4.37M 5.43M 5.47M 5.53M
2 4.99M 4.91M 5.70M 4.43M 5.84M 6.55M 6.58M 6.70M
4 6.00M 5.45M 12.30M 4.39M 12.33M 13.29M 13.32M 13.39M
8 10.64M 7.97M 27.18M 5.68M 27.16M 28.87M 28.89M 29.04M

16 16.53M 13.66M 27.22M 12.39M 48.35M 48.25M 54.18M 54.33M
24 23.28M 21.48M 27.26M 19.73M 73.47M 73.36M 73.36M 82.19M
32 28.44M 27.96M 27.29M 27.27M 98.96M 98.75M 98.75M 98.75M

Tilera

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2 Mem3 Mem4

1 24.08M 24.10M 22.87M 22.84M 22.85M 23.53M 25.51M 24.67M
2 24.20M 24.16M 23.04M 22.84M 24.13M 24.91M 26.56M 25.47M
4 24.72M 24.61M 24.60M 23.43M 27.05M 28.18M 29.31M 28.34M
8 25.78M 25.87M 27.06M 23.71M 30.90M 30.79M 32.34M 32.36M

16 27.96M 28.27M 31.37M 27.70M 45.71M 45.54M 45.98M 45.70M
32 32.93M 32.88M 46.84M 31.86M 85.81M 85.35M 85.21M 85.08M
48 40.27M 39.88M 42.06M 38.97M 129.83M 128.70M 128.85M 128.34M
63 49.75M 50.50M 46.09M 46.32M 171.94M 169.58M 170.16M 169.85M

182 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

• The performance superiority of the NUMA-like RR policy, that always offer
the best performance, although sometimes the improvement w.r.t SMP-like
policies is limited.

On top of these considerations, we were finally able to verify the existence of a
memory bottleneck on the AMD architecture.

6.5 Data-Parallel parallelization of the FFT

We conclude the study by introducing a complex Data-Parallel application, repre-
senting the other mayor class of parallel programs. Data-Parallel programs differ
from the previously seen stream-parallel programs because workers of the parallel
application work in synergy to compute a single result of the application. This
may lead to data sharing and to more complex data exchange patterns between
the different workers of the parallel program. For this study we selected a classic
algorithm: the Fast Fourier Transform.

A fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier
transform and its inverse, thus converting time (or space) to frequency and vice
versa. As a result, fast Fourier transforms are widely used for many applications in
engineering, science, and mathematics. FFT is also a quite interesting algorithm
in the area of parallel computing because of its data-parallel version that involves
a variable stencil: data dependencies among workers changes on every step of the
algorithm.

The algorithm works with real numbers, and because of this most implementa-
tions are designed to exploit the floating point units of the processors. Nevertheless,
because of its wide use, the algorithm has been deeply studies also for embedded and
DSP processors that, sometimes, are not equipped with floating point units. As a
result fixed-point implementations with a limited error rate exists in literature; this
is quite important in our case because of the absence, on the TilePro64 architecture,
of a floating point unit.

The pseudo code of the original sequential FFT algorithm is shown in Listing 6.5,
while in Figure 6.15 we show the dependency pattern among iterations for an 8-point
transform. The code uses the points array x plus an auxiliary array w that contains
unit radices; the algorithm works in-place, reading and writing completely the array
x in each of the log(N) iterations (N is the size of the input array). This algorithm
is very interesting because the data array x is not read with a linear pattern: xn2
and xn3 are not contiguous points, as depicted in Figure 6.15, and their distance
changes at each iteration (creating the variable stencil). Yet the code, with slight
changes, can be vectorized with a proper optimizing compiler to take advantage of
the vector units of x86 processors. This, coupled with the lightweight calculation
per point, is likely to produce a code that, as the vector sum, stresses the memory,
making the use of multiple controllers important for the overall performance.

6.5. DATA-PARALLEL PARALLELIZATION OF THE FFT 183

void f f t (x , w, N) {
for (q=0;q<l og2 (N) ; q++){

L = 1 ; L <<= (q+1) ;
r = 1 ; r <<= (t−(q+1)) ;
L2 = L>>1; kL = 0 ;
for (k=0; k<r ; k++) {

for (j =0; j<L2 ; j++) {
n3 = kL + j ;
n2 = n3 + L2 ;
n1 = L2 − 1 + j ;
temp = w[n1]∗ x [n2] ;
x [n2]=(x [n3]−temp) /2 ;
x [n3]=(x [n3]+temp) /2 ;

}
kL += L ;

} } }

Listing 6.5: FFT Pseudo code.

It.0 It.1 It.2X1

X2

X3

X4

X5

X6

X7

X8

X1

X2

X3

X4

X5

X6

X7

X8

Figure 6.15: Data dependencies in FFT.

6.5.1 Parallel FFT

For our study we implemented the parallel FFT by using the well-known Binary
Exchange Algorithm. In fact, two main families of parallelizations are known for
the FFT[90]. We selected the Binary Exchange because it is a direct parallelization
of the sequential algorithm in Listing 6.5, while the other family (the Transpose
Algorithm) is derived from a different sequential code. Furthermore, the Binary
Exchange Algorithm is a notable example of a data-parallel with variable stencil,
making it quite interesting to cover an example of this class of algorithms. However,
more complex parallelizations exists in literature. A good review of algorithms for
performing FFT on multicore, and a performance comparison, can be found in [81],
where the authors present Spiral, an automatic code generator for computing Fourier
transforms.

A simple yet effective parallel version can be achieved by a simple (static) par-
titioning of the input array x. At the maximum theoretical parallelism degree each
partition is composed of a single point. We have that, for each iteration, we require
a communication to receive a point, and another communication to send our point.
In particular, given point xh, at iteration i we will require the value of point xk with
k = h + 2i if h < k, k = h − 2i otherwise. This makes the stencil quite interesting
because when point xh requires the value of point xk, we can simply verify that point
xk requires the value of xh; this means that in the maximum theoretical parallelism
the communication is symmetric: we need to receive a point from the worker that
is computing xk, and send our value to the very same worker. When using larger
partitions, with multiple points per worker, if the two corresponding point (i.e. xk
and xh) are owned by the same worker, no communications are required at all for
these two points. Conceptually, we could try to find an algorithm that minimizes

184 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

B4
0

B3
0

B2
0

B1
0

It.0 It.1 It.2

X8

X1

X2

X3

X4

X5

X6

X8

X7

X1

X2

X3

X4

X5

X6

X7

B1
1

B2
2 B1

3

W1

W0

Figure 6.16: Data dependencies and blocks in a statically partitioned parallel FFT.

the communications, by keeping as much as possible xk and xh in the same parti-
tioning. Because of the variable stencil, however, we know that, at some point, the
two elements will reside in different partitions. A good static partitioning consist
in creating partitions of contiguous elements (i.e. slices x), such that, for the first
iterations, all the couples 〈xk, xh〉 are contained inside the same partition. After a
certain number of iterations, however, each element of the partition will require a
value from a different partition, as in Figure 6.16.

Keeping xk and xh in the same partition is also beneficial for the computation,
as the temporary values of the sequential algorithm (Listing 6.5) can be computed
once per couple; otherwise, if xk and xh reside in different workers, each worker
will have to compute the temporary value. This means that in a parallel version,
beside the communication and/or synchronization time required to exchange data
between workers, we also have an increased computation time, that will affect the
performance, and thus the scalability: we cannot really expect an ideal scalability
for this parallel algorithm, as the amount of calculation is increased as the number
of workers grows.

Another important aspect of the sequential code is its vectorization possibilities,
that makes the inner loop of the computation vectorizable by current compilers. For
this reason we wanted to keep (as much as possible) the same sequential structure
inside each worker. For the sake of simplicity, we call the inner loop a Block Cal-
culation. Now, each partition may, of course, contains a variable number of blocks,
depending on the amount of elements per partition and the current iteration (blocks
are selected respecting data dependencies and thus its number and size changes at
each iteration, as shown in Figure 6.16).

6.5. DATA-PARALLEL PARALLELIZATION OF THE FFT 185

A block can be composed of points contained in a single partition (and in this
case we can exploit both the reuse of temporary values and vectorization) or divided
between multiple partitions. In this second case we cannot reuse the temporary
values, but we can still exploit, to a limited degree, the vectorization.

In general, each worker will calculate, at each iteration, a number of blocks ; the
first and the last one may be partial (i.e. divided with other partitions and thus
workers), while the other, inner blocks are, by definition, complete. The pseudo-code
of a worker will therefore adhere to the structure of Listing 6.6: for each iteration we
will compute the first partial block (if existing); then a number of complete blocks
and, at the end, the last, partial, block. After this, a data exchange procedure is
taken to receive and distribute data for the following iteration.

In our case we decided to write a shared-memory implementation of the parallel
algorithm. At each iteration we require the data from the previous one, causing
problems in our in-place algorithm because the data may be overwritten by the owner
worker before being read by the others. We therefore relax the original in-place
semantics of the algorithm, by defining a source array and a destination array. The
source array will contain the values from the previous iteration, while the destination
one is updated with the values computed in the current iteration. At the end
of an iteration, the destination array becomes the source array of the following
iteration; the current source, instead, contains data that will never be used again,
and becomes the next destination array. The resulting pseudo-code of the shared-
memory implementation is described in Listing 6.7. A hypothetical message-passing
version, instead, will require explicit send and receive to exchange data. In this case
the resulting code (reported in Listing 6.8) is a bit more complicate as it requires
sending and receiving the data of the partial blocks to and from the other workers.
Then, if we want to overlap communications with computation, we can begin to
work on the complete blocks (if available); finally, we will wait the missing data of
the partial blocks to compute them.

If we use dynamic partitioning techniques (such as re-partitioning the array at
each iteration, or partition the array dynamically throughout the whole compu-
tation) these problems, of course, can be removed and/or mitigated, at the cost,
however of moving the data during the computation. In this chapter, however, we
are just interested in comparing the same parallelization with different allocation
policies: the fact that the parallelization chosen may not be the best achievable is
not really a concern here.

6.5.2 Experimental results on the target architectures

We implemented a portable version the algorithm in Listing 6.7, so that we were
able to run the program on the four target architectures. However, the FFT code
needed some tuning to efficiently run on the various processors. In particular, the
most important problem of FFT is the use of real numbers, commonly implemented
with a floating point representation. Unfortunately, the TilePro64 does not support

186 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

Worker i :
for (q=0; q<l og2 (N) ; q++) {

Compute F i r s t P a r t i a l Block // i f e x i s t
Compute Complete Blocks
Compute Last P a r t i a l Block // i f e x i s t
Data Exchange/ Synchron izat ion

}

Listing 6.6: Parallel FFT. Generic Worker pseudo code.

Worker i :
for (q=0; q<l og2 (N) ; q++) {

Compute F i r s t P a r t i a l Block
Compute Complete Blocks
Compute Last P a r t i a l Block
Bar r i e r
Src−Dst Buf f e r Exchange

}

Listing 6.7: Shared Memory FFT Worker.

Worker i :
for (q=0; q<l og2 (N) ; q++) {

Send F i r s t P a r t i a l Block
Send Last P a r t i a l Block
Compute Complete Blocks
Receive F i r s t P a r t i a l Block
Compute F i r s t P a r t i a l Block
Receive Last P a r t i a l Block
Compute Last P a r t i a l Block

}

Listing 6.8: Message Passing FFT Worker.

natively floating point operations, that must be emulated in software. In our case
this is a major problem, because we need a fast code if we want to be able to
stress the memory and compare the different policies. Fortunately, the problem of
computing the FFT is very common in digital signal processing (DSP). In most DSP
appliances computations are performed by mean of embedded processors, that (at
least in the past) rarely implement a floating point unit. For this reason several
studies exists on FFT algorithms over fixed point real numbers. The algorithm,
and the resulting approximation error, has been studied and optimized for fixed
point operations, so that currently exists fast FFT algorithms working on 16-bit
fixed point real numbers[137, 161, 179]. Using such version let us keep the parallel
structure uniform and obtain a fast FFT on any architecture.

An important difference in this application is that, because of the data-sharing
among workers, we cannot (easily) use non-coherent memory areas for the compu-
tation; we therefore enabled automatic cache coherence even on the Tilera archi-
tecture.

Differently from the previous code, in this case the amount of calculation per
worker decrease when the parallelism degree grows, so we need a different metric
than the completion time, to better examine the effects of memory contention. We
selected the average calculation time per element.

Each worker has a static partition assigned, at most of size

Psize =

⌈
N

n

⌉
(6.6)

6.5. DATA-PARALLEL PARALLELIZATION OF THE FFT 187

where N is the size of the array x and n the number of workers. Of course if N is
not divisible by n, we need to round values, and some workers will have one element
more than others. Given the partition size, at each iteration of the algorithm the
amount of element processed per worker is exactly Psize. Given number of iterations,
defined as k = log2N , we have that each worker, throughout its computation, will
process

Psize ∗ k '
N ∗ log2N

n
(6.7)

elements. The sequential completion time is, of course, defined as

T seqc = Telem ∗N ∗ log2N (6.8)

So if we assume a balanced computation, in which each worker takes the same time
per iteration, we can estimate the theoretic completion time of the parallelization
as

T nc =
Telem ∗N ∗ log2N

n
(6.9)

meaning that, as expected, in absence of performance degradation, Telem should
remain constant varying the parallelism degree. While the memory contention is
one of the most important sources of performance degradation, here we also expect
a slight increase in the average Telem because of the increased computation given
by having partial blocks. In general, however, a graphical study of the variations
in Telem should allow us to easily notice the degradation induced by the memory
response time. For the sake of clarity, we calculate Telem starting from the completion
time as follows

T nelem =
T nc ∗ n

N ∗ log2N
(6.10)

Of course, to give an idea of the overall parallelization result we will also present
the scalability

Sn =
T seqc

T nc
(6.11)

Given the previous results, for the sake of readability we will present only one
configuration with a single memory controller, plus the four possible allocation poli-
cies.

FFT on 1048576 points

We start analyzing the performance results of the FFT on an array of N = 220 =
1048576 complex elements. Average computation time per element is shown in
Figure 6.17, while the scalability is in Figure 6.18 and some numerical results are
reported in Table 6.13.

As intuitively expected, the execution time per element tend to increase when
using multiple workers. However we can easily notice two different behaviors: in

188 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

 4

 6

 8

 10

 12

 14

 1 4 8 12 16

E
xe

cu
tio

n
tim

e
pe

r
el

em
en

t (
cl

oc
ks

)

Number of cores

SandyBridge - FFT 1048576 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

 10

 15

 20

 25

 30

 1 4 8 12 16 20 23

E
xe

cu
tio

n
tim

e
pe

r
el

em
en

t (
cl

oc
ks

)

Number of cores

AMD - FFT 1048576 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

 5

 10

 15

 20

 25

 30

 35

 1 4 8 12 16 20 24 28 32

E
xe

cu
tio

n
tim

e
pe

r
el

em
en

t (
cl

oc
ks

)

Number of cores

Nehalem - FFT 1048576 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

E
xe

cu
tio

n
tim

e
pe

r
el

em
en

t (
cl

oc
ks

)

Number of cores

Tilera - FFT 1048576 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

Figure 6.17: Average calculation time per element - FFT on 1048576 points.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 4 8 12 16

S
pe

ed
-u

p

Number of cores

SandyBridge - FFT 1048576 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 4 8 12 16 20 23

S
pe

ed
-u

p

Number of cores

AMD - FFT 1048576 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

 0

 2

 4

 6

 8

 10

 12

 1 4 8 12 16 20 24 28 32

S
pe

ed
-u

p

Number of cores

Nehalem - FFT 1048576 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

 0

 5

 10

 15

 20

 25

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

S
pe

ed
-u

p

Number of cores

Tilera - FFT 1048576 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

Figure 6.18: Speed-up of the data-parallel FFT - 1048576 points.

6.5. DATA-PARALLEL PARALLELIZATION OF THE FFT 189

Table 6.13: Calculation time per element - FFT on 1048576 points. Times in cycles.

SandyBridge

Worker
SMP Numa Single

Linear RR Linear RR Mem1

1 5,85 5,87 5,84 5,92 5,91
2 6,73 6,69 6,72 6,80 6,74
3 8,27 8,36 8,46 8,53 8,38
4 7,59 7,65 7,61 7,70 7,56
5 9,12 9,17 9,13 9,21 9,10
8 8,43 8,60 8,49 8,61 8,41

16 9,87 9,84 9,95 9,89 10,03

AMD

Worker
SMP Numa Single

Linear RR Linear RR Mem1

1 15,42 15,26 12,71 12,67 13,06
2 17,07 13,85 14,56 13,09 15,20
3 14,92 13,73 14,07 13,23 14,48
4 18,58 15,59 16,68 15,19 17,34
5 15,68 15,13 14,71 14,18 15,17

16 18,54 18,35 19,28 18,71 20,26
23 18,68 18,82 18,39 18,76 25,59

Nehalem

Worker
SMP Numa Single

Linear RR Linear RR Mem1

1 11,38 7,50 7,44 11,31 7,38
2 12,46 8,06 8,13 8,16 8,15
3 15,66 13,23 15,54 9,48 15,30
4 9,39 10,23 9,37 9,04 14,22
8 10,01 9,66 10,16 9,75 9,93

16 12,10 16,31 16,92 12,25 18,01
32 22,62 23,13 25,15 21,15 27,19

Tilera

Worker
SMP Numa Single

Linear RR Linear RR Mem1

1 34,43 34,29 34,62 34,55 34,61
8 44,15 43,90 44,69 43,49 50,26

16 52,70 52,43 53,66 50,81 77,01
32 65,67 65,75 76,75 67,40 117,45
33 66,98 67,18 81,93 71,40 107,27
63 96,73 99,88 112,22 110,99 201,56

190 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

the case of SandyBridge and Nehalem all the five configurations - including the
single memory controller - show the same increase, while on AMD and Tilera the
time increase using a single memory is much higher w.r.t using multiple interfaces.
The second is the clear sign of a performance degradation related to a memory
bottleneck. In general, as always, the NUMA-like RR perform equal or better
than the other, except in the Tilera case when, for the first time, an SMP-like
allocation offer a slightly better scalability.

The reason of this marked performance difference between architectures is prob-
ably due to size of the data set of the application. With N = 220 we have a memory
occupation (considering the space needed for two copies of x plus a copy of w) of
12MiB, so for the x86 architectures the whole data set should be able to stay in the
cache hierarchy without the need of re-reading data from the memory in the various
iterations. On the contrary, for the TilePro64 this value is larger than the total
amount of L2 caches of the architecture. This explain the difference between Intel-
based processors and the TilePro64, but the AMD architecture show an unexpected
behavior. It could be related to the behavior of the L3 cache, that works as a victim
cache, and to the implementation of the inter-chip cache coherency mechanism.

It is also interesting noticing the sudden changes when the number of workers
is a power of two. This is indeed related to the algorithm, as in this cases the
number of incomplete blocks is reduced. Yet the behavior is strange because, while
in the SandyBridge architecture this result in a performance increase, in the others
(especially AMD and Tilera) the results show a drop in the performance. The
different results are probably related to the efficacy of the cache system, and in
particular the set-associative mechanism, that may produce more conflicts when
addresses are aligned to powers of two.

FFT on 16777216 points

Given the absence of a bottleneck in some architectures, we decided to increase
the number of points of x. We selected a number of points N = 224 = 16777216,
resulting in a data set of 192MiB. In this case none of the proposed architectures
is able to keep the whole data set in cache, so we expect this to be a better test-
bed for our experiments. For the sake of conciseness, given the previous results
of the Tilera machine, we decided to omit this architecture from the test as we
already analyzed the under-load behavior. Instead, we present a comparison between
vectorized and non-vectorized code on the SandyBridge, to show the effectiveness
of vector instructions in presence of a memory-intensive application.

Average computation time per element is shown in Figure 6.19, while the scala-
bility is in Figure 6.20 and some numerical results are reported in Table 6.14.

It important to verify that, as expected, the time per element in the sequen-
tial version is very similar w.r.t the previous configuration of 220 points, because
the memory is not a bottleneck and the amount of calculation per element is not
influenced by the number of points.

6.5. DATA-PARALLEL PARALLELIZATION OF THE FFT 191

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1 4 8 12 16

E
xe

cu
tio

n
tim

e
pe

r
el

em
en

t (
cl

oc
ks

)

Number of cores

SandyBridge - FFT 16777216 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1 4 8 12 16

E
xe

cu
tio

n
tim

e
pe

r
el

em
en

t (
cl

oc
ks

)

Number of cores

SandyBridge Not Vectorized - FFT 16777216 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 4 8 12 16 20 24 28 32

E
xe

cu
tio

n
tim

e
pe

r
ite

ra
tio

n
(c

lo
ck

s)

Number of cores

Nehalem 1Load - 1Add

SMP-like linear
SMP-like RR

NUMA-like linear

NUMA-like RR
Single1

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 4 8 12 16 20 23

E
xe

cu
tio

n
tim

e
pe

r
el

em
en

t (
cl

oc
ks

)

Number of cores

AMD - FFT 16777216 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

Figure 6.19: Average calculation time per element - FFT on 16777216 points.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 4 8 12 16

S
pe

ed
-u

p

Number of cores

SandyBridge - FFT 16777216 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 4 8 12 16

S
pe

ed
-u

p

Number of cores

SandyBridge Not Vectorized - FFT 16777216 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

 0

 2

 4

 6

 8

 10

 12

 1 4 8 12 16 20 24 28 32

S
pe

ed
-u

p

Number of cores

Nehalem - FFT 16777216 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

 0

 2

 4

 6

 8

 10

 12

 14

 1 4 8 12 16 20 23

S
pe

ed
-u

p

Number of cores

AMD - FFT 16777216 points

SMP-like linear
SMP-like RR

NUMA-like linear
NUMA-like RR

Single1

Figure 6.20: Speed-up of the data-parallel FFT - 16777216 points.

192 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

Table 6.14: Calculation time per element - FFT on 16777216 points. Times in cycles.

SandyBridge

Worker
SMP Numa Single

Linear RR Linear RR Mem1

1 5,95 5,96 5,75 5,74 5,74
2 6,76 6,58 6,50 6,42 6,47
4 8,20 7,46 7,46 7,11 7,49
5 9,46 8,69 8,93 8,44 8,77
8 11,56 9,07 10,05 8,11 10,19

16 13,31 13,10 16,67 10,57 18,40

SandyBridge - Not Vectorized

Worker
SMP Numa Single

Linear RR Linear RR Mem1

1 15,95 15,93 15,75 15,75 15,75
2 16,73 16,64 16,53 16,43 16,60
4 18,59 18,48 17,11 16,87 18,42
5 16,35 16,16 16,19 15,99 16,10
8 19,59 19,24 18,03 17,55 19,14

16 20,36 20,26 19,41 17,95 20,97

AMD

Worker
SMP Numa Single

Linear RR Linear RR Mem1

1 14,65 14,54 11,69 11,73 12,16
2 16,62 16,46 13,69 13,60 14,60
3 13,75 13,56 13,70 12,38 13,81
4 19,09 18,91 18,27 15,49 17,58
5 16,93 15,59 16,68 13,99 16,54

16 26,53 25,51 25,26 22,63 48,93
23 26,59 26,54 23,78 23,94 70,23

Nehalem

Worker
SMP Numa Single

Linear RR Linear RR Mem1

1 10,41 10,15 9,83 11,19 9,85
2 11,27 11,42 12,45 10,57 12,50
4 13,65 14,58 18,37 10,70 18,37
5 12,85 12,25 22,78 13,10 22,93
8 24,09 20,40 32,07 15,58 31,99

16 29,94 26,88 55,16 19,97 64,85
32 41,21 40,50 116,07 33,71 123,43

6.6. MODELING POLICIES IN THE ARCHITECTURAL MODEL 193

First of all, using vector instruction set we obtain a ∼ 3× improvement on the
sequential performance; this improvement, however, tend to decrease when using
multiple cores, as the memory becomes the bottleneck. An interesting result is
obtained by using a single memory controller, where the difference tend to disappear
using all the cores: the vectorized code takes ∼ 18 clock cycles per element, while the
non-vectorized one only three cycles more (∼ 21). This also affects the scalability:
we can easily see that the non-vectorized code has an almost-linear scalability (14
with 16 cores), while the vectorized code has a much lower value (9 at most).

In general, now all the architectures highlight the problem of memory band-
width. As in the previous benchmarks, NUMA-like, linear proves to be an in-
effective policy, resulting in this case (especially for the Intel architectures) in a
performance very similar to using a single memory controller throughout the whole
graph. NUMA-like, RR works very well, obtaining, in general, the best results.

6.5.3 Concluding Remarks

To summarize, the differences of this data-parallel benchmark w.r.t the previous
stream-parallel ones affect the memory subsystem in many ways: data sharing and
the use of cache coherence mechanisms on the TilePro64 are some examples. Yet, the
performance results of the various allocation policies are confirmed, showing that the
NUMA-like, RR policy is generally the best when the memory is a bottleneck.
However, the SMP-like policies are, again, very competitive, often offering very
similar results. In particular, for the first time, we experienced a case in which in
fact an SMP-like policy offer better results than the NUMA-like RR, confirming
again that the choice is not so straightforward in many cases.

6.6 Modeling policies in the architectural model

In Part II we studied cost models in order to predict the performance of a parallel
program running on a target architecture. In particular, with Chapter 5 we defined
a Queueing Network model for the TilePro64 architecture. The model, however,
was defined and verified by using a single memory interface of the TilePro64. Mul-
tiple interfaces are handled by specifying routing probabilities for every processor,
according to the program semantic. While this can be difficult for a generic pro-
gram, if the program uses only the memory allocation policies identified in this
chapter, we are able to straightforwardly select the correct probabilities:

• Single: in this case each processor has probability p = 1 of sending the request
to the specific memory interface of the policy, and a probability of 0 for the
other interfaces.

• NUMA-like: each processor has probability p = 1 of sending the request to
the nearest memory interface, and 0 for the other interfaces.

194 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

• SMP-like: each processor has probability p = 0.25 of sending the request
to any interface, as the data is uniformly distributed among all the memory
controllers. While this is obviously correct for real SMP architectures; here,
given the page-base interleaving, this can be considered an approximation. In
fact, the overall probability, throughout the execution, is 0.25, but subsequent
requests of a processor will usually belong to the same virtual page, and thus
reach the same memory. Yet if we consider the system as a whole, it is very
likely that, in a specific moment of the execution, each memory interface will
be used by one fourth of the processors, thus verifying the assumption.

The process allocation policy, on the other hand, is easily obtained by selecting
the correct processor on the QN model, so that the LNet respect the real processor-
memory distance.

We verify the probabilities by taking one of the experimental results on the
TilePro64 and comparing them w.r.t results obtained by simulating the QN model
using EQNSim. For the sake of simplicity we selected the first synthetic benchmark,
with 1Load and 1Add per iteration. In this case we can easily estimate the service
time of the processor queues of our model to Tp = 20τ ; given the presence of the
mfence instruction, the measured iteration time is given by Titer = Tp + Rq, so we
can easily compare the measured Rq with the result of the QN model.

We start with a simple yet effective analysis on the iteration time with a single
worker. In this case we do not need the QN as the memory queue is surely empty.
The first worker is allocated in core 0 that, according to the network latency model
has the following mesh latencies (with Lxnet we indicate the latency for memory x):

L1
net = 2(1 + 1− 1) + 21 + 3− 4 = 22τ (6.12)

L2
net = 2(4 + 1− 1) + 21 + 3− 4 = 28τ

L3
net = 2(4 + 8− 1) + 21 + 3− 4 = 42τ

L4
net = 2(1 + 8− 1) + 21 + 3− 4 = 36τ

The resulting Titer will therefore be composed as follows:

T single1iter = Tp + Ts + Lmc + L1
net (6.13)

T single2iter = Tp + Ts + Lmc + L2
net = T single1iter + 6τ

T single3iter = Tp + Ts + Lmc + L3
net = T single1iter + 20τ

T single4iter = Tp + Ts + Lmc + L4
net = T single1iter + 14τ

T numaiter = Tp + Ts + Lmc + L1
net = T single1iter

T smpiter = Tp + Ts + Lmc +
L1
net + L2

net + L3
net + L3

net

4
= T single1iter + 10τ

6.6. MODELING POLICIES IN THE ARCHITECTURAL MODEL 195

In Table 6.15 we report again the Titer results obtained by the experimentation,
where we can find the same differences that we estimated when using a single worker
(with an error of at most 3 cycles).

Table 6.15: Synthetic Benchmark results on Tilera, 1Load-1Add.

Time per iteration (clock cycles)

Worker
SMP Numa Single

Linear RR Linear RR Mem1 Mem2 Mem3 Mem4
1 120.8 120.8 109 109 109 116 132 125
4 123.2 122 110.2 114 111.6 118.2 133.2 127
8 125.6 126 118.2 115.2 137 139.4 149 147.8

16 133.2 135 150.6 121.6 202.4 201.8 209 322.2
32 158.2 165.4 202.4 155.2 394.2 393 392.2 392
60 212.8 212.6 202.6 207 796 793 793 791
63 218.4 218 204 210.6 838.4 835.2 835.6 834

For the under-load iteration time we used the load-only load dependent queue
studied in the previous chapter. The numerical results for the most important
configurations are reported in Table 6.16, while on Figures 6.22 and 6.21 we can
appreciate a graphical comparison. The estimation is quite good, offering an average
error of ∼ 6% when using a single controller, ∼ 2.2% when using the SMP-like
allocation and ∼ 5.2% when using the NUMA-like one. This confirm the general
applicability of the model, that was obtained with data from a completely different
program on the TilePro64 simulator.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
q

(c
lo

ck
s)

Number of cores

Tilera 1Load - 1Add - Single Memory Controller

Real
Model

Figure 6.21: Graphical comparison of real and estimated Memory Rq, single int.

196 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
q

(c
lo

ck
s)

Number of cores

Tilera 1Load - 1Add - SMP-like linear policy

Real
Model

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
q

(c
lo

ck
s)

Number of cores

Tilera 1Load - 1Add - NUMA-like RR policy

Real
Model

Figure 6.22: Graphical comparison of real and estimated Memory Rq, multiple int.

6.6. MODELING POLICIES IN THE ARCHITECTURAL MODEL 197

Table 6.16: Comparison of real and estimated Memory Rq. Times in cycles.

Worker
Single SMP-like Linear NUMA,RR

Real Model % Err. Real Model % Err. Real Model % Err.

1 89 90,0 1,1 100,8 100,0 0,8 89 90,0 1,1
2 90,2 89,7 0,5 100 99,2 0,8 89 90,0 1,1
3 91 90,6 0,5 100 99,2 0,8 93,2 92,0 1,3
4 91,6 101,0 10,2 103,2 100,2 2,9 94 93,0 1,1
8 117 117,4 0,3 105,6 102,6 2,8 95,2 94,8 0,4

10 146,8 142,4 3,0 109 104,9 3,7 95 95,8 0,8
12 166,8 159,0 4,7 116,6 106,7 8,5 96,2 97,0 0,8
16 182,4 187,4 2,7 113,2 110,9 2,0 101,6 103,6 1,9
18 198 210,6 6,4 127 112,4 11,5 108,8 105,2 3,3
20 216,6 218,7 1,0 128 114,5 10,5 118 107,1 9,2
22 237,2 242,0 2,0 131 117,0 10,7 121,2 108,2 10,7
24 257,8 265,4 2,9 129,4 119,7 7,5 122 108,7 10,9
26 277,2 288,6 4,1 133 123,2 7,4 124,4 110,7 11,0
28 302,2 311,9 3,2 135,8 126,3 7,0 126,2 111,9 11,3
30 338,2 335,4 0,8 138,4 129,5 6,5 129,8 116,3 10,4
32 374,2 359,2 4,0 138,2 133,1 3,7 135,2 119,9 11,3
34 406,4 413,8 1,8 147,2 136,5 7,3 143 126,6 11,5
36 437 439,8 0,6 153 140,8 8,0 152,2 132,5 13,0
38 466 465,0 0,2 156 144,4 7,5 156 138,3 11,4
40 495 490,5 0,9 158,2 148,3 6,3 158,6 143,9 9,2
42 523,6 515,7 1,5 161,6 152,2 5,8 159,4 148,0 7,1
44 551,8 540,9 2,0 165 155,9 5,5 163,8 151,9 7,2
46 580 566,1 2,4 167 159,8 4,3 166,8 155,7 6,7
48 607,8 593,4 2,4 169,8 164,0 3,4 170,8 159,0 6,9
50 636,2 618,7 2,7 174,4 167,1 4,2 172 161,9 5,9
52 663,6 644,0 2,9 178,6 171,3 4,1 175,6 164,6 6,3
54 692,4 669,3 3,3 181,6 175,6 3,3 176,8 167,4 5,3
56 719,8 695,3 3,4 184,4 179,5 2,7 179,8 169,9 5,5
58 748,2 720,6 3,7 188,6 183,5 2,7 182 174,0 4,4
60 776 746,0 3,9 192,8 188,0 2,5 187 177,9 4,9
61 790 758,6 4,0 194,2 190,3 2,0 189 180,5 4,5
62 804 771,6 4,0 196,8 192,7 2,1 190 183,5 3,4
63 818,4 796,8 2,6 198,4 194,1 2,2 190,6 186,2 2,3

198 CHAPTER 6. EXPLOITING MULTIPLE MEMORY CONTROLLERS

6.7 Summary

In this chapter we studied the problem of exploiting the multiple memory con-
trollers available in current multi-core architectures. We introduced different pro-
cess and memory allocation policies and compared the resulting performance of a
set of benchmarks composed of synthetic and real kernels, in stream- and data-
parallel programs. Finally, we provided a way of modeling these policies using the
architecture cost model of the previous chapters.

The results shows a correlation between memory and process allocation: a mem-
ory policy can offer very different results depending on the process allocation chosen.
This is particularly important especially when using the NUMA-like memory al-
location, that requires a specific process allocation to allow the parallel program to
exploit the multiple memory controllers independently of the parallelism degree.

Memory allocation offer significant performance differences when using a small
number of cores. In this case NUMA-like RR is able to offer better response times
because of the distance between processors and memories, that is kept smaller w.r.t
the SMP-like.

As the number of cores grow, the difference between allocation policies tends to
decrease, as the processor-memory distance become a small part of the total Rq,
dominated by the waiting time. In these cases, NUMA-like RR is usually still
better than the other policies, but of a limited amount.

The fact that we were not able to find an all-purpose policy is not really a
problem here: the important point is that, by using the architecture model, we are
able to find the best for the specific characteristics of the parallel program we are
producing.

An important side note of this work, that was not studied in the chapter, is the
cost of allocation: to obtain a fair comparison, in all the cases we allocated the data
before the beginning of the computation. In general, the cost of data organization
should not be much different in the cases, as it usually consist in copying the data in
a new memory area that uses the selected memory policy. Yet, in some cases, some
policies could require more copies than the others. For example, in a stream-parallel
program, data is received from some external entity. At the reception it may be not
clear which process would end using the data, so the NUMA-like policies could
require another copy when the processor is selected. This may be prevented, of
course, in SMP-like policies because, regardless of the destination worker, data is
always distributed among all the memory interfaces. This additional cost may be
important for the overall parallel program, so that the parallel pattern model should
take it into account.

Chapter 7

Software-based Cache Coherence

The cornerstone of shared-memory systems is the possibility of cooperating by us-
ing the shared memory. However, cache hierarchies introduces private, uncontrolled
memory areas between the processor and the memory, leading to the problem of
cache incoherence, in which multiple caches hold different copies of the same mem-
ory location. The mainstream solution consist in preventing incoherence through
the use of hardware mechanisms that ensures that each cache hold the current value
of a memory location. These mechanisms (commonly called cache coherence pro-
tocols) make the handling of cache coherence completely invisible to the software
level.

Hardware cache coherence has come to dominate the market for technical, as
well as for legacy, reasons. When the problem of cache coherence was introduced,
several studies tried to introduce and compare hardware-based and software-based
cache coherency protocols.

Hardware-based cache coherence

A hardware cache coherence protocol is commonly defined by associating, for each
cache line, a state that represent the availability and use of that cache line inside the
system. From a logical point of view, the state is global (i.e. the same for each cache
of the architecture). A read/write operation to a cache line changes its state, and
may prompt some communications between the caches to ensure that none of them
holds a stale value. Most protocols rely on the concept of invalidations: when a
line is modified on a private cache, all the other caches remove (if present) the old
value. The critical point of this approach reside in efficiently maintaining the global
state of each cache line, that can become difficult to implement and inefficient: in
some notable cases the cost of accessing a cache line global state may end coinciding
with the cost of accessing the memory, thus strongly limiting the beneficial effects
of cache hierarchies.

200 CHAPTER 7. SOFTWARE-BASED CACHE COHERENCE

Software-based cache coherence

The other side of the coin is to let the software manage cache coherency. Through-
out the years several approaches were studied; an interesting survey can be found
in [157]. It is important to note that, in general, a software-based protocol may still
require some hardware facility, resulting in a mixed hardware-software approach.
However, at least two important protocols can be completely implemented at soft-
ware.

The initial idea, exploited in the first shared-memory multiprocessors, is quite
simple: on private data and read-only shared data we do not really have the problem
of cache coherence, as the values are either used by a single processor or immutable
throughout the whole execution. Thus, we could use caches only for this kind of
addresses, and disable caching on the others. This approach was exploited, for
example, by the CMU C.mmp computer[186] in the ’70s.

The idea can be generalized considering that a read/write shared memory area is
usually modified by a single processor for a while; then, by means of synchroniza-
tions, all the other processor are informed of the completion of the operation and can
start reading the new value. In this scenario, we can allow the caching of read/write
shared memory: a processor may hold a cache line, to be the only allowed writer,
and in the meantime the other processors cannot access the data; then, when the
holder has finished working on the line, flushes its modifications from the cache to
the memory and release the cache line, transforming it in read-only. This result in
a flexible approach that only require the possibility of flushing a modified line back
to the memory (for the writer) and invalidating a stale cache line (for the reader,
to avoid finding an old value of the updated line in its cache). The use of these two
operations can be delegated to the programmer, or automatically inserted by the
compiler.

In the second case a compiler may not be able to correctly predict the access
pattern and, to ensure correctness, end in producing a number of unnecessary flush
and invalidation operations (up to the point that data is not really cached) that
reduces the performance of the program[57, 157].

Scratchpad memory

A different approach to caches in general, proposed several years ago, is the use of
scratchpad memories. The idea, introduced by Banakar and others [24] is quite
simple and, in many ways, resemble the software cache coherence approach. Firstly
introduced for power consumption problems, the rationale is to employ a fast static
memory but removing all the complex mechanisms used in caches to access data by
content. The idea is that the programmer (or the compiler) handle the scratchpad
space by means of explicit memory transfer requests. Moving the most used data in

201

the scratchpad, a programmer can still exploit locality, with an approach similar to
the one used with general purpose registers. In this scenario, of course, coherence
can be easily handled because we explicitly know the content of each scratchpad, and
thus can decide when data should be moved to the shared memory level to allow
sharing. The operations required to “ensure” the correctness is still the flushing
operation, to “update” the shared memory. Invalidation is not really required, and
substituted with a specific transfer between the memory and the scratchpad, when
needed. A notable example of multi-core that exploit a scratchpad memory is the
IBM Cell [106, 118].

At the time of the introduction of multiprocessors, with the available technology,
the research world came to the conclusion that hardware cache coherency protocols
generally allowed better performances w.r.t software-defined protocols[138]. This
was the result of several aspects:

• The wide use of simple interconnection networks, such as buses, that allowed
a simple, cost-free global cache state implementation by snooping (i.e. each
cache continuously listen to the bus to catch all the memory requests and
change the state of owned lines accordingly)

• The study on generic, shared-memory programs in which the data exchange
pattern on the shared areas was unknown and not predicted by the compiler
in software-based approaches.

However, even at the time some researchers objected this conclusion, noting that
with more complex interconnection networks the snooping approach was not really
feasible, and at that point the implementation of the global state could strongly limit
the performance of a parallel application. In these cases a software-based approach
could outperform the automatic, hardware-based one [1]. Today the increase of
cores per chip made the use of bus or similar interconnections ineffective even inside
the chip. In this scenario, the conventional wisdom is that on-chip cache coherence
will not scale to the large number of cores expected to be found on future processor
chips, and thus new approaches must be taken[58, 79, 104].

In fact, this path has already been taken: some multi-core architectures are
already available with disabled or controllable cache coherence mechanisms: we are
talking of the IBM Cell processor [106, 118], with its scratchpad memories, the Intel
Single-Chip Cloud Computer [59, 93] (SCC) that encapsulate 48 cores, each one
with its private cache, but with no automatic cache coherence mechanisms, and the
Tilera TilePro64 [160] that allow to finely control the cache coherence mechanism
for each virtual memory page.

One of the problems of software-based cache coherence protocols was the inability
of the compiler to correctly identify the sharing patterns, but we believe that a
structured parallel programming approach should avoid that, as the sharing pattern
is intrinsic in the definition of the paradigm.

202 CHAPTER 7. SOFTWARE-BASED CACHE COHERENCE

Moreover, it should be noted that the problem of cache coherence is enormously
mitigated if we use a message-passing programming model: in this case each process
works only in its local memory area, and sharing is only explicitly governed by
send/receive primitives that can easily keep the interesting memory areas coherent
with no overheads at all.

For this reason, with this chapter we start approaching the problem of software
cache coherence targeted at parallel patterns. Because of the limited platform avail-
ability, however, the study must be considered only a seminal work: as of today only
the TilePro64 architecture that allow the finer control required to let the parallel pro-
gram disable the automatic cache coherence mechanisms for specific memory areas,
and compare the results with hardware-based approaches on the same architecture.

In the following section, we will firstly analyze the possible overhead of having
automatic cache coherence in current multi-cores; then, we will study possible imple-
mentations of a farm and a data-parallel with stencil on the TilePro64 architecture.

7.1 The cost of automatic cache coherence

Despite all the claims, automatic cache coherence have a cost, even in snoopy-based
architectures. An interesting study has been reported in [91] where, by means of
specific benchmarks, the authors measured the latency of read operations in two
current multi-core architectures (an Intel Nehalem and an AMD Shangai processor),
showing that in fact load/store latency and bandwidth are affected by the cache
coherence state of the line. We report their latency results in Table 7.1.

Processor Shangai Nehalem
Source State L1 L2 L3 RAM L1 L2 L3 RAM

Local M/E/S 3 15

41 208

4 10
38

191
Core1 (on die)

Modified 119 83 75
Exclusive

179-208
65

Shared 38

Core4 (other die)
Modified

224
319

300-320
311Exclusive

268-313
186

Shared 170

Table 7.1: Memory read latencies for core 0, depending on the cache line state, for
two x86 processors. Times in clock cycles.

We can easily notice that, in general, the access of a cache line in the shared state
cost as much as reading a private data; modified and exclusive states, on the other
hand, increase the access latency. It should also be noted that in this measurements
we always pay the cost of snooping that, although limited, could still be avoided in
an incoherent approach.

7.2. OPTIMIZING CACHE COHERENCE FOR THE FARM PATTERN 203

We decided to adapt the benchmark to the TilePro64 architecture, so that we
could have a first insight of how the latencies are affected by the DDC mechanism.
Of course we expect an increased overhead, as we deal with complex interconnection
networks and protocols: as already explained in Chapter 5, an incoherent requests
goes directly from the cache to the memory; a coherent request, on the other hand,
is sent to the home node, then to the memory. The results are reported in Table 7.2.

L1 L2 Remote L2 (Home) RAM

Incoherent 2 8 120 120
Coherent 2 8 40-70 160-204

Table 7.2: Memory read latencies for core 0, on the TilePro64 architecture, with or
without cache coherence. Times in clock cycles.

In this case we have a limited amount of possibilities: if the DDC is enabled,
because of the write-through mechanism between the L2 and the home node, a cache
line (for the local L2) will always be either shared or invalid. The real difference is
therefore only in having or not the DDC enabled. We can notice that the memory
access time is increased from 120 up to 204 clock cycles. The latency depends on
the distance between the home node and the issuing processor, but we are talking
of an overhead that goes from 33% up to 70% for each memory load.

Of course, even disabling cache coherence have a cost: with DDC, if another
cache have the required value, we pay from 40 to 70 clock cycles, depending on
the distance; with an incoherent mode we have no way of knowing if another cache
has the copy, and always go to the memory paying 120 clock cycles. In fact, the
ability of cache-to-cache transfers is always presented as one of the many benefits
of automatic cache coherence mechanisms; however, it should be noted that cache-
to-cache transfers mostly depend on the program and the cache sizes: for example,
if the working sets of the processor do not fit in cache, the probability of exploiting
cache-to-cache transfers is very limited.

It should also be noted that, on the TilePro64, enabling the automatic cache
coherence in fact lower the amount of L2 cache space available for each core, thus
possibly further increasing performance losses.

7.2 Optimizing cache coherence for the farm pat-

tern

In this section we analyze how to tune a farm implementation to better exploit the
cache coherence mechanisms of the TilePro64. The results of this section have been
already published in [44], as part of our effort in porting of the FastFlow framework
on the TilePro64 architecture.

204 CHAPTER 7. SOFTWARE-BASED CACHE COHERENCE

The farm pattern, as we already saw in the previous chapters, is particularly
suitable for a message passing implementation. Inside the farm each worker is
practically independent, as it only synchronize with the supporting processes to
select the task on which compute the calculation, and to notify the completion of
a task. For this reason, a message-passing implementation of the farm, even of a
shared memory architecture such as a multi-core, is usually very efficient. This is a
first clue, suggesting that a software-based cache coherent protocol could be effective
on this kind of patterns.

The FastFlow framework is not, however, a pure message passing environment. It
does support data sharing by means of pointer passing : send and receive operations
are still used, but just to exchange ownership to memory area (by means of memory
pointers).

In this scenario we can easily think of three different implementation of the farm,
each one with a different use of the cache coherence mechanisms.

7.2.1 Automatic cache coherence with hashed home node

This represent the standard way of using the TilePro64 architecture: when data
is allocated by using the operating system malloc/free operations, for each virtual
memory pages the home node is selected by using an hash function, applied at the
cache line granularity, so that the lines composing the page are uniformly distributed
among all the caches: each L2 cache will work as home for 1�64 of the page.

Being in a farm, each worker will use a different task, and thus different memory
areas. Let us say that worker wx is computing task ty. We have that the number
of sharers for each cache line of ty is approximately 1 (only wx is using it at the
moment); yet, an uniform distribution of the home nodes means that, on average,
the cache lines of ty will be not homed on wx. Given the strongly inclusive rule of
the homing (Chapter 5), we have that each cache line currently allocated in wx will
also be allocated in another L2 cache. Apply this reasoning for each worker, and we
can easily understand that, on average, we will be able to exploit only half of the
cache of each core, negatively affecting the performance of the application.

7.2.2 Automatic cache coherence with fixed home node

An interesting way of avoiding the problems of the hashing mechanism, and still
maintain the automatic cache coherence, is to manually select the home node for
the entire virtual memory page. In general this means that, w.r.t the previous
mechanism, all the cache lines of a specific memory page will be homed on the same
L2 cache, defined by the programmer.

In the case of the farm we can easily identify, for each task, an ideal home node:
the one that will compute the task. So, for each task, once we have selected the
computing worker, we will set the home node correspondingly. This way we expect

7.2. OPTIMIZING CACHE COHERENCE FOR THE FARM PATTERN 205

better results, as we should limit the space overhead of the DDC mechanism, making
the home node overlapping with the cache that is actually using the data.

It should be noted, however, that in the TilePro64, the selection of the home
node cannot be changed once the memory page is allocated. This means that, in a
pointer passing environment such as FastFlow, it is usually necessary to copy the
task on a new memory area after the worker is elected, to select the proper homing
node (thus voiding all the effect of pointer passing).

7.2.3 Disabling automatic cache coherence

The other solution is to completely disable cache coherence. If we are using a message
passing implementation, all the work can be hidden in the send and receive functions;
unfortunately with FastFlow we do not have a pure message passing environment.
However, we can still start from the implementation (where sharing points are well
defined) to easily find the “hot spots”, in which cache coherence must be handled;
in particular

1. When the emitter has selected the destination worker for a specific task: any
cache line related to the task in the cache of the emitter must be flushed back
to memory, so that the worker will be able to gather the correct values.

2. When the worker starts a computation on a new task: any cache line related
to the task must be invalidated, because the cache of the worker may have
stale values for some of these lines from previous computations.

3. When the worker finishes a computation on a task: the result must be correctly
notified to the collector, again, by means of flush operations on the cache lines
related to the result.

4. Finally, when the collector want to receive a result from one of the workers,
all the lines related to the result must be invalidated on the collector cache,
again to avoid stale data.

As previously said, FastFlow is not a message passing environment, yet we can
identify the four points where pointer send and receive happens, and manually apply
flush and invalidate operations on the code.

It should be noted that this approach still represent a form of compiler-driven
cache coherence, as the parallel code of the farm is not written by the programmer,
but by our compiler (or by the library developer in the case of FastFlow). So, it
is not the application programmer that is adding cache coherence operations to its
code.

206 CHAPTER 7. SOFTWARE-BASED CACHE COHERENCE

7.3 Experimental Results

We tested the three implementation using a farm executing the Matrix Multiplica-
tion algorithm. This is an interesting kernel to test cache hierarchies because, as long
as matrices are small enough to stay in cache, data reuse is very high: O(N3) op-
erations are performed over O(N2) memory transfers. When matrices exceed cache
sizes, the number of transfers grows to O(N3), in fact executing one operation per
element. Given the results of the previous chapters we expect, in the latter, that the
memory system will become a bottleneck. We identified in this the perfect example
to test the different cache coherence oriented implementations to check if and how
much a specific cache-coherence policy affects the performance of the application.

We wrote a FastFlow application exploiting the farm skeleton on a stream of
3200 matrices. For this kind of experiments we selected an SMP-like memory
allocation policy, as FastFlow, with its pointer passing mechanism does not allow
to transparently implement the NUMA-like family of allocation policies.

Small matrices

We started with matrices of 64 × 64 integer elements. The results are reported in
Table 7.3 and Figure 7.1. This represent a very interesting example of the space
overhead of DDC.

Each matrix takes 16KB of space, so that the entire working set of each worker
for each task is 48KB (two input matrices plus an output one). This means that the
working set is small enough to fit in the L2 cache of one tile and therefore the number
of memory transfers are minimized. We are expecting an extremely high scalability,
that is in fact verified with the fixed home and incoherent implementations. Instead,
the standard cache coherency protocol works very well up to ∼ 20 nodes, then
suddenly stops scaling. This is because of the L2 halving effects previously described:
with a large parallelism degree, the L2 cache available for each tile is less than the
required 48KB. In this case, the working set of the algorithm does not fit in the
cache and the performance of the sequential code executed by the workers suddenly
decrease. The result is pretty atypical for a farm pattern, in which we usually reach
a point in which the pattern stop to scale, but the performance tend to not decrease
by adding more workers.

This shows that does not exist, even in hardware cache coherency protocol, an
implementation that fits all the cases: with this algorithm the use of a hashed home
is really bad, while just by manually fixing the home on the specific worker we are
able to reach an almost ideal speedup.

On the other hand the incoherent implementation is indeed very good, as it is
able to obtain aligned results with the best option for automatic cache coherence.
There is not really much to say except that a software-based approach for this farm

7.3. EXPERIMENTAL RESULTS 207

Par. Completion Time Speedup
Degree Coherent Incoherent Coherent Incoherent

Hashed Fixed Hashed Fixed

1 14914.31 15051.23 15059.93 1.01 1.00 1.00
2 7469.24 8042.82 7537.49 2.02 1.87 2.00
3 4989.50 5157.98 5027.72 3.02 2.92 3.00
4 3744.65 3926.27 3771.24 4.02 3.84 3.99
5 3001.07 3141.46 3017.11 5.02 4.79 4.99
6 2511.71 2620.16 2517.26 6.00 5.75 5.98
7 2156.59 2252.99 2159.78 6.98 6.69 6.97
8 1891.29 1971.66 1889.20 7.96 7.64 7.97
9 1686.90 1756.56 1680.37 8.93 8.57 8.96

10 1525.30 1578.55 1515.61 9.87 9.54 9.94
11 1386.88 1439.46 1376.10 10.86 10.46 10.94
12 1274.65 1319.38 1261.72 11.82 11.42 11.94
13 1181.85 1218.83 1165.73 12.74 12.36 12.92
14 1104.20 1130.99 1082.33 13.64 13.32 13.92
15 1032.75 1057.63 1010.53 14.58 14.24 14.90
16 1005.66 993.98 949.49 14.98 15.15 15.86
17 916.02 939.20 892.95 16.44 16.04 16.87
18 869.88 886.61 843.87 17.31 16.99 17.85
19 828.16 838.27 799.02 18.19 17.97 18.85
20 789.47 798.35 760.46 19.08 18.87 19.81
22 1230.46 726.24 691.07 12.24 20.74 21.79
24 1525.99 669.26 639.36 9.87 22.50 23.56
26 1538.54 613.18 586.73 9.79 24.56 25.67
28 1486.31 572.16 547.84 10.13 26.32 27.49
30 1517.25 542.00 510.11 9.93 27.79 29.53
32 1408.96 509.53 481.80 10.69 29.56 31.26
34 1450.11 481.71 462.15 10.39 31.27 32.59
36 1344.83 449.19 441.80 11.20 33.53 34.09
38 1437.04 431.75 405.46 10.48 34.88 37.15
40 1374.87 404.91 394.42 10.95 37.20 38.19
42 1328.20 388.17 374.30 11.34 38.80 40.24
44 1822.93 368.54 376.76 8.26 40.87 39.98
46 1294.54 358.26 340.25 11.63 42.04 44.27
48 1216.66 340.75 340.92 12.38 44.20 44.18
50 1199.77 324.73 312.88 12.55 46.38 48.14
52 1182.05 315.84 313.35 12.74 47.69 48.07
54 1474.749 303.72 294.79 10.21 49.59 51.09

Table 7.3: Comparison between cache coherence methods for the matrix multiplica-
tion, 64× 64 elements. Completion Times in milliseconds.

208 CHAPTER 7. SOFTWARE-BASED CACHE COHERENCE

 1
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44
 48
 51
 54

 1 4 8 12 16 20 24 28 32 36 40 44 48 51 54

S
pe

ed
up

Parallelism Degree

Matrix Multiplication Speedup - 64x64 elements

DDC Enabled - Hashed Home
DDC Enabled - Fixed Home
DDC Disabled - Incoherent

Figure 7.1: Comparison between cache coherence methods for the matrix multipli-
cation, 64× 64 elements.

works as good as a manually tuned automatic approach, and much better than the
default one.

Large matrices

By using larger matrices we expect the working set to not fit the caches in any of
the policies. Still, it represent an interesting experiment as we are stressing the
memory, and thus we can actually see if the coherency protocol helps or aggravate
the situation. We use 128×128 matrices, resulting in a working set of 192KB, far
larger than the 64KB of L2 caches. The results, shown in Table 7.4 and Figure 7.2,
highlight some interesting facts.

First of all, it is notable that the version with a single worker is actually much
faster when using the standard cache coherence policy. The reason is to be found in
the values of Table 7.2: when the home is uniformly distributed, we have that 192KB
is, of course, larger than the single cache; yet, the homing nodes have sufficient space
to hold the entire working set remotely. This means that we are in one of that cases
in which automatic cache coherence allow cache-to-cache transfers, that are indeed
faster than memory transfers. Of course, fixing the home node to a single cache
does not exhibit this side effect, as the home coincide with the local node. For this
reason, we observe low speedups with a limited parallelism degree when using the

7.3. EXPERIMENTAL RESULTS 209

Par. Completion Time Speedup
Degree Coherent Incoherent Coherent Incoherent

Hashed Fixed Hashed Fixed

1 132784.78 155219.78 151816.12 1.02 0.87 0.89
2 77401.46 79135.46 76792.41 1.75 1.71 1.76
3 56555.57 54111.38 52874.43 2.39 2.50 2.56
4 44322.29 41502.51 40199.35 3.05 3.26 3.37
5 37458.63 34120.08 31895.36 3.61 3.97 4.24
6 31852.85 29606.95 26705.87 4.25 4.57 5.07
7 28013.07 25071.60 23240.65 4.83 5.40 5.83
8 25036.38 22935.86 20364.07 5.41 5.90 6.65
9 22970.17 20875.99 18220.54 5.89 6.49 7.43

10 21195.02 18928.68 16538.96 6.39 7.15 8.19
11 19775.85 17489.82 15121.06 6.85 7.74 8.95
12 18484.45 16407.90 13863.40 7.32 8.25 9.77
13 17512.43 15523.90 13160.40 7.73 8.72 10.29
14 16749.38 14757.21 11941.64 8.08 9.17 11.34
15 15911.66 13993.66 11288.20 8.51 9.68 11.99
16 15194.49 13358.30 10571.47 8.91 10.14 12.81
17 14647.91 12858.15 9965.87 9.24 10.53 13.59
18 14133.48 12189.85 9455.58 9.58 11.11 14.32
19 13709.81 11788.70 9028.33 9.88 11.49 15.00
20 13249.47 11532.12 8584.54 10.22 11.74 15.77
22 12790.31 10894.88 7823.57 10.59 12.43 17.31
24 12084.48 10613.17 7244.21 11.20 12.76 18.69
26 11529.80 9938.42 6734.66 11.74 13.62 20.10
28 11097.92 9515.11 6268.21 12.20 14.23 21.60
30 10814.82 9185.34 5860.50 12.52 14.74 23.10
32 10876.37 8755.90 5554.63 12.45 15.46 24.37
34 10330.55 8435.27 5247.86 13.11 16.05 25.80
36 10211.39 8077.54 5021.73 13.26 16.76 26.96
38 9949.63 7712.97 4754.31 13.61 17.55 28.48
40 9794.56 7407.29 4527.12 13.82 18.28 29.91
42 9682.01 7054.67 4333.57 13.98 19.19 31.24
44 10258.91 6823.47 4157.72 13.20 19.84 32.56
46 9459.94 6527.04 3999.12 14.31 20.74 33.86
48 9756.67 6352.31 4007.70 13.88 21.31 33.78
50 10217.60 6168.42 3717.81 13.25 21.95 36.42
52 10080.67 5950.94 3677.54 13.43 22.75 36.82
54 10111.63 5756.50 3640.95 13.39 23.52 37.19

Table 7.4: Comparison between cache coherence methods for the matrix multiplica-
tion, 128× 128 elements. Completion Times in milliseconds.

210 CHAPTER 7. SOFTWARE-BASED CACHE COHERENCE

 1
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44
 48
 51
 54

 1 4 8 12 16 20 24 28 32 36 40 44 48 51 54

S
pe

ed
up

Parallelism Degree

Matrix Multiplication Speedup - 128x128 elements

DDC Enabled - Hashed Home
DDC Enabled - Fixed Home
DDC Disabled - Incoherent

Figure 7.2: Comparison between cache coherence methods for the matrix multipli-
cation, 128× 128 elements.

two non-default policies: the sequential code has become slower.

Nevertheless, the hashing is not working well in parallel: starting with a paral-
lelism degree of 2 the speedup of the incoherent version is already better, and with 3
the default implementation has been overtaken even by the fixed home implementa-
tion. This represent a further example of the limited applicability of cache-to-cache
transfers: by just having more than two workers, their effect is completely vanished.
Of course this also depend on the parallel pattern: the farm, in which each worker
is independent, does not offer many possibilities for cache-to-cache transfers.

The incoherent policy works surprisingly good: by removing the cache coherency
protocol we probably reduce the amount of memory requests, or at least the amount
of traffic on the mesh, ending with far better results w.r.t any implementation that
exploit automatic cache coherence.

7.4 Optimizing cache coherence for a data-parallel

pattern

Given the promising results of software-managed cache coherence on the TilePro64
architecture, we decided to try exploiting the same concepts on a data-parallel with

7.4. OPTIMIZING CACHE COHERENCE FOR A DATA-PARALLEL PATTERN 211

stencil pattern. We took the data-parallel FFT implementation presented in Chap-
ter 6 and adapted it to exploit the previously defined approaches. Given the sharing
pattern we also tried another use of the mechanisms offered on the TilePro64, by dis-
abling the local L2 cache and using the group of caches only as a global distributed
cache.

7.4.1 Automatic cache coherence with hashed home node

This represent the standard way of using the TilePro64 architecture. The idea is
very simple: at the end of each iteration a global barrier is performed, the source
and destination buffers are exchanged and the following iteration can start. The
pseudocode is reported in Listing 7.1; further details are given in Chapter 6, Sec-
tion 6.5.1.

Worker i :
for (q=0; q<l og2 (N) ; q++) {

Compute F i r s t P a r t i a l Block
Compute Complete Blocks
Compute Last P a r t i a l Block
Bar r i e r
Src−Dst Buf f e r Exchange

}

Listing 7.1: Shared Memory FFT Worker.

It is important to notice that, like with the previous pattern, the local partition
of each worker can be modified only by the worker itself but will be read by other
workers in the following iteration. Even in this case, however, the use of a hashing
mechanism will probably end in limiting the amount of L2 space available for the
computation.

7.4.2 Automatic cache coherence with fixed home node

Even in this application we can try to avoid the problems of the hashing mechanism
by fixing the home node. In this case, given the owner compute rule, we can identify,
for each worker, its local partition, and fix the home node on the proper workers. It
is interesting to note that the selection of the local partition happen with the same
way in which, in the previous chapter, we selected the memory controller.

In this case the fact that the selection of the home node cannot be changed once
the memory page is allocated is not really a problem, as we are not working on
streams, the memory is allocated before the computation and the partitioning is not
done dynamically, so we just need to ask the programmer to use a properly allocated
area to fill the input data of the parallel pattern.

212 CHAPTER 7. SOFTWARE-BASED CACHE COHERENCE

7.4.3 Disabling local caches

In this pattern, even by using the fixed node implementation, we usually end in
having multiple copies of a cache line in the system: when a worker is reading
another partition, the line will have to stay in the owner node, that works as home,
and in the local node that is reading the line. This may lead to some inefficiency, as
the owner node may not be interested in using the line in that particular moment.
An interesting approach to try to solve the problem is by disabling the local L2
caches. This way we still keep the memory cacheable (at the L1 level and at the
DDC level) but we reserve all the space of the L2 caches for working as home nodes.
This ensure the existence of a single copy of a cache line in the whole set of L2
caches; the problem is that now, on a L1 miss, the request may need to reach a
remote node, possibly distant, increasing the cost of L2 misses. Having the home
nodes enabled, we ensure automatic cache coherence, so no particular modifications
must be made to the code.

7.4.4 Disabling automatic cache coherence

Finally, we study a way of handling cache coherence by means of flush and invalidate
instructions even in this data-parallel pattern.

Let us assume, for the moment, that we are at iteration i, all the caches are
empty and that the results of iteration i− 1 have been written in memory. In this
situation each worker may work independently with its cache, handling everything
as private data: it will read values of other partitions, but belonging to the previous
iteration and thus already saved in memory, and write values of its own partition
that, however, will not be read until the next iteration. At the end of its iteration,
before entering the barrier, the worker can simply flush all its modified lines to
the memory, so that at the beginning of the next iteration the correct values are
stored in memory. Because of the owner compute rule, the modified lines will only
belong to its own partition, so the rest of the data is not affected by this operation.
The worker should also ensure that, at the next iteration, no stale data belonging to
other partitions will be found on its cache. A conservative possibility is to invalidate
all the data belonging to the other partitions; this simplistic solution is reported
in Listing 7.2, where we show the high-level Tilera library call used for the task;
these are translated in a sequence of assembler instruction, one for each cache line
belonging to the requested area. However, in theory, if we know the stencil we can
just invalidate the data really needed in the next iteration. After these operations,
the worker can finally enter the barrier. When all the workers have completed the
iteration, we are in the same condition of the beginning of the iteration: caches does
not contain the remote partitions and the memory contains an updated version of
the whole array. We can safely start the next iteration.

It should be noted that all of this is made possible by exploiting the owner
compute rule, that ensure that each partition (and thus cache line) is modified by a

7.5. EXPERIMENTAL RESULTS 213

Worker i :
for (q=0; q<l og2 (N) ; q++) {

Compute F i r s t P a r t i a l Block
Compute Complete Blocks
Compute Last P a r t i a l Block
fo r each p a r t i t i o n p {

i f isOwned (p)
tmc mem flush (p , s izeof (p))

else
tmc mem inv (p , s izeof (p))

}
Bar r i e r
Src−Dst Buf f e r Exchange

}

Listing 7.2: Shared Memory FFT Worker
with per-partition invalidations.

Worker i :
for (q=0; q<l og2 (N) ; q++) {

Compute F i r s t P a r t i a l Block
Compute Complete Blocks
Compute Last P a r t i a l Block

tmc mem flush l2 ()

Bar r i e r
Src−Dst Buf f e r Exchange

}

Listing 7.3: Shared Memory FFT Worker
with L2 cache flushing.

single worker; otherwise, we would end in writing partial cache lines in the memory,
undermining the correctness of the algorithm.

Finally, in our implementation, we tested several ways of flushing and invalidat-
ing the caches. The TilePro64 allow selective invalidation and flush of single cache
lines; however, in our experiments, if the data structures are far bigger than the
caches, it becomes more convenient to completely empty the local L2 cache than
issuing an invalidation/flush for every line that could possibly be in the cache; this
last solution is exemplified in Listing 7.3, again by using the corresponding Tilera li-
brary call. Of course, we note again that these instructions are not really introduced
by the programmer, but by the compiler that produces the parallel implementation:
again, the use of incoherent memory areas is still transparent to the user.

7.5 Experimental Results

We executed the experiments using the same configuration presented on Chapter 6.
The FFT is calculated over an array of 1048576 fixed-point elements. In this case we
present the results using the two most effective memory allocation polices: NUMA-
like, RR and SMP-like, linear, to also show whether or not the two different
optimizations (memory allocation and software cache coherence) can be mixed to-
gether, and the possible outcomes. In fact, for the SMP-like, linear allocation,
given the interleaved memory allocation, we decided to avoid a fixed homing selec-
tion, that seem an unnatural choice. All the other combinations are presented in
Figure 7.3 and Tables 7.5 and 7.6, showing really promising results for the incoherent
implementation, that is actually able to overcome the other policies.

Thus, even in this case, the overhead of invalidating and flushing data is to be
considered negligible. The final results shows, with the NUMA-like allocation, a

214 CHAPTER 7. SOFTWARE-BASED CACHE COHERENCE

 1

 4

 8

 12

 16

 20

 24

 28

 1 4 8 12 16 20 24 28 32 36 40 44 48 51 54

S
pe

ed
up

Parallelism Degree

Parallel FFT Speedup - 1048576 points - NUMA Allocation

DDC Enabled - Hashed Home
DDC Enabled - Fixed Home
DDC Enabled - Shared L2
DDC Disabled - Incoherent

 1

 4

 8

 12

 16

 20

 24

 28

 1 4 8 12 16 20 24 28 32 36 40 44 48 51 54

S
pe

ed
up

Parallelism Degree

Parallel FFT Speedup - 1048576 points - SMP Allocation

DDC Enabled - Hashed Home
DDC Enabled - Shared L2
DDC Disabled - Incoherent

Figure 7.3: Comparison between cache coherence methods for the FFT, 1048576
points.

7.5. EXPERIMENTAL RESULTS 215

Par. Completion Time Speedup
Deg. Coherent Inc. Coherent Inc.

Hashed Fixed Shared Hash Fix Share

1 724.57M 701.30M 1216.23M 704.01M 1.00 1.03 0.60 1.03
2 387.29M 376.01M 633.95M 373.17M 1.87 1.93 1.14 1.94
3 276.23M 277.64M 435.29M 272.29M 2.62 2.61 1.66 2.66
4 206.51M 209.55M 336.50M 207.64M 3.51 3.46 2.15 3.49
5 177.79M 177.14M 270.29M 173.14M 4.08 4.09 2.68 4.18
6 149.08M 148.05M 227.03M 145.37M 4.86 4.89 3.19 4.98
7 132.63M 127.87M 196.07M 124.67M 5.46 5.67 3.70 5.81
8 114.00M 113.13M 181.87M 112.17M 6.36 6.40 3.98 6.46
9 107.32M 102.66M 158.62M 99.52M 6.75 7.06 4.57 7.28

10 97.01M 95.64M 142.09M 93.25M 7.47 7.58 5.10 7.77
12 83.11M 82.24M 122.05M 80.58M 8.72 8.81 5.94 8.99
14 74.81M 71.30M 106.74M 69.76M 9.69 10.16 6.79 10.39
16 66.60M 63.53M 103.35M 62.73M 10.88 11.40 7.01 11.55
18 62.83M 59.25M 87.96M 57.92M 11.53 12.23 8.24 12.51
20 57.36M 52.89M 82.14M 52.01M 12.63 13.70 8.82 13.93
22 54.44M 50.12M 74.59M 49.31M 13.31 14.46 9.71 14.69
24 51.07M 48.06M 69.76M 47.37M 14.19 15.08 10.39 15.30
26 48.64M 44.81M 64.99M 44.71M 14.90 16.17 11.15 16.21
28 46.52M 43.24M 61.45M 42.68M 15.58 16.76 11.79 16.98
30 44.63M 40.34M 58.56M 40.00M 16.23 17.96 12.37 18.12
32 44.17M 39.85M 61.93M 40.47M 16.40 18.18 11.70 17.90
34 43.48M 38.61M 55.38M 39.29M 16.66 18.77 13.08 18.44
36 43.91M 40.12M 54.35M 40.09M 16.50 18.06 13.33 18.07
38 43.29M 39.29M 52.86M 38.40M 16.74 18.44 13.71 18.87
40 41.00M 36.61M 50.39M 36.93M 17.67 19.79 14.38 19.62
42 41.25M 36.65M 50.07M 37.16M 17.56 19.77 14.47 19.50
44 37.04M 32.19M 46.59M 32.52M 19.56 22.51 15.55 22.28
46 36.53M 31.77M 45.48M 32.09M 19.84 22.80 15.93 22.58
48 36.15M 31.18M 44.36M 32.13M 20.04 23.24 16.33 22.55
50 36.56M 31.09M 44.22M 31.97M 19.82 23.30 16.38 22.66
52 36.39M 30.33M 44.71M 31.11M 19.91 23.89 16.20 23.29
54 36.31M 30.75M 43.52M 31.89M 19.96 23.56 16.65 22.72
56 35.97M 29.17M 42.01M 30.98M 20.14 24.84 17.25 23.39
58 36.32M 30.30M 42.08M 30.64M 19.95 23.91 17.22 23.65
60 36.10M 29.63M 42.00M 30.52M 20.07 24.46 17.25 23.74
62 36.81M 30.11M 41.42M 32.01M 19.68 24.07 17.49 22.64
63 36.95M 30.44M 42.50M 32.59M 19.61 23.80 17.05 22.23

Table 7.5: Comparison between cache coherence methods for the FFT, 1048576
points. NUMA-like allocation policy. Completion Times in clock cycles.

216 CHAPTER 7. SOFTWARE-BASED CACHE COHERENCE

Par. Completion Time Speedup
Degree Coherent Incoherent Coherent Incoherent

Hashed Shared Hashed Shared

1 722.05M 2448.75M 725.48M 1.00 0.29 1.00
2 382.37M 1295.87M 386.48M 1.89 0.56 1.87
3 276.79M 943.83M 275.35M 2.61 0.77 2.62
4 207.05M 686.42M 211.97M 3.49 1.05 3.41
5 178.86M 592.61M 176.21M 4.04 1.22 4.10
6 151.39M 497.78M 150.93M 4.77 1.45 4.78
7 132.15M 435.31M 126.52M 5.46 1.66 5.71
8 115.74M 368.45M 121.22M 6.24 1.96 5.96
9 108.78M 352.16M 102.01M 6.64 2.05 7.08

10 97.97M 319.18M 96.83M 7.37 2.26 7.46
12 85.50M 269.74M 83.89M 8.45 2.68 8.61
14 75.25M 234.06M 71.36M 9.60 3.08 10.12
16 69.08M 198.02M 72.89M 10.45 3.65 9.91
18 62.26M 188.83M 58.07M 11.60 3.82 12.43
20 58.52M 171.85M 53.76M 12.34 4.20 13.43
22 54.24M 157.78M 50.14M 13.31 4.58 14.40
24 51.35M 146.35M 49.45M 14.06 4.93 14.60
26 48.25M 136.73M 45.31M 14.97 5.28 15.94
28 46.68M 128.57M 43.14M 15.47 5.62 16.74
30 44.45M 122.57M 40.56M 16.24 5.89 17.80
32 43.04M 109.75M 43.67M 16.78 6.58 16.53
34 41.34M 111.03M 36.96M 17.47 6.50 19.54
36 40.11M 104.37M 36.73M 18.00 6.92 19.66
38 38.24M 100.27M 34.78M 18.88 7.20 20.76
40 37.66M 95.51M 34.23M 19.17 7.56 21.09
42 36.76M 93.07M 32.75M 19.64 7.76 22.05
44 35.89M 89.72M 32.12M 20.12 8.05 22.48
46 36.18M 85.72M 32.14M 19.96 8.42 22.46
48 34.68M 83.44M 32.97M 20.82 8.65 21.90
50 34.52M 82.07M 31.36M 20.92 8.80 23.02
52 34.39M 79.04M 28.90M 21.00 9.14 24.98
54 33.31M 76.75M 29.06M 21.67 9.41 24.85
56 32.61M 74.66M 29.42M 22.14 9.67 24.54
58 33.95M 73.94M 28.91M 21.27 9.77 24.98
60 31.81M 71.17M 28.43M 22.70 10.15 25.40
62 33.07M 68.71M 28.74M 21.83 10.51 25.13
63 32.20M 70.35M 29.16M 22.42 10.26 24.76

Table 7.6: Comparison between cache coherence methods for the FFT, 1048576
points. SMP-like allocation policy. Completion Times in clock cycles.

7.6. SUMMARY 217

scalability of ∼ 23 for the incoherent implementation, compared to ∼ 19 of the
default one and of ∼ 17 obtained by disabling the local caches. With SMP-like
allocation we have similar results.

It is interesting to notice that, again, the fixed home implementation works
pretty well, resulting in the same performance of the incoherent one: this approach
should be better studied, as it seems that we are able to achieve the improvements of
the incoherent mechanism without the complexity of manually inserting invalidation
and flush operations.

Finally, clearly the idea of disabling the local caches, although interesting, is not
really offering good results: the sequential code is more than three times slower in
the SMP implementation, meaning that we really pay too much the absence of a
local L2 cache: the first level of cache alone is not sufficient to guarantee a reasonable
amount of locality.

7.6 Summary

In this chapter we introduced the reader to the problem of automatic cache coher-
ence, and its cost in current and future multi-core architectures, where the use of a
complex interconnection network introduces major problems in effective implemen-
tations of hardware-based mechanisms. In this scenario, we expect the emergence
of multi-core architectures that, similarly to the TilePro64, will allow the program-
mer to configure the automatic cache coherence to better fit the program. In this
scenario, the possibility of working without automatic mechanisms must be taken
into account. The use of parallel patterns allow the introduction of software-based
protocols only in the support level, making the transition transparent to the user.
With this chapter we presented some preliminary results, implementing two of the
most used parallel patterns: a farm and a data-parallel with stencil. In our experi-
ments, disabling cache coherence really offer performance improvements, motivating
the need of a deeper analysis of this approach.

218 CHAPTER 7. SOFTWARE-BASED CACHE COHERENCE

Part IV

Wrapping Up

Chapter 8

Wrapping up: compiling a parallel
module on TilePro64

With this final chapter we put together the results obtained throughout the thesis,
by taking an example application and its graph of parallel modules. We will focus
our study on a single module, defining possible implementations and evaluating them
with the performance model of the previous chapters to estimate the service time
function T

(n)
s on the TilePro64 architecture. The result of the study will be compared

with the times gathered by running the implementations on the architecture, to
analyze the accuracy of our predictions and, therefore, the degree of fidelity of the
hypothetical parallel compiler in:

• predicting the service time of the parallel version (and thus the parallelism
degree required to sustain the input throughput);

• identifying the best implementation for the selected parallelism degree.

8.1 Example module and its application

For the sake of simplicity, clarity and conciseness, we will reuse some of the studies
from the previous chapters to limit, as much as possible, the introduction of new
concepts and modeling ideas.

For this reason we decided to use one of the algorithms already examined in
Chapter 6, so that the reader is already familiar with the sequential problem and
the expected performance results in term of both the sequential and the parallel
version. Among the set, the Sobel Operator seemed quite interesting, as it is more
complex than simple array operators and its application area (i.e. video analysis)
makes it, by definition, a stream-oriented operator. Because of this, it indeed make
sense to treat it as a module of a parallel application that works with streams.

We imagined a video surveillance application, in which the TilePro64 (together
with other parallel machines, perhaps heterogeneous) receive a stream of multiple

222 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

Sobel

Application

Figure 8.1: Example application graph, with particular focus on the Sobel module.

compressed videos from the network interface and perform a feature extraction al-
gorithm to identify moving targets. An example of such application is bodytrack,
contained in the PARSEC[38] benchmark suite. One of the first steps of this kind
of algorithms is to perform an edge detection to identify objects. Our Sobel Op-
erator is, as such, a good candidate for representing a module of this application.
Without going in further details, we expect a graph composed of several parallel
modules in which, at some point, we have the edge detection phase, executed by our
Sobel Module, as depicted graphically in Figure 8.1.

In particular, we expect the Sobel Module to receive pre-processed images,
already in the greyscale uncompressed format, so that the module is only in charge
of applying the Sobel operator to a stream of images. The result will be, of course,
forwarded to the following modules in the application graph.

It is important to notice that, w.r.t the approach of Chapter 4, we are not trying
to deploy the application, so our intent here is not to find the parallelism degree of
each module to obtain the best service times of the whole application. We are making
a step backward, focusing on a single module and trying to estimate the service time
function T

(n)
s of the module. This is, of course, just a part of the compilation phase

in which we parallelize each module to remove the bottlenecks. Yet, measuring the
accuracy of the single module performance model is a necessary step towards the
realization of the programming environment we aim to, as described in Chapters 3
and 4.

In this scenario we study the parallel module isolated, assuming the inter-arrival
time tA ' 0, so that the module is always a bottleneck, and thus its service time
is never limited by the inter-arrival time of tasks. This is important to study the
behavior of different parallel implementations of the module in a general case.

To keep the study realistic, we imagine that a portion of the TilePro64 will be used
to execute the other parts of the application or, at least, handle the input/output
streams towards other modules if they reside on other architectures. Our study will
therefore use 3�4 of the cores and 3 memory controllers, as depicted in Figure 8.2, for
the Sobel Module. This way we can safely assume that other parts of the application
will be allocated on the TilePro64, but will not affect the performance of our module,

8.2. PARALLEL PATTERN AND ITS IMPLEMENTATIONS 223

Mem

Mem

Mem

Mem

N
etw

ork

I/O Available
Reserved

Figure 8.2: Part of the TilePro64 architecture available for the module.

as they can work with a separate memory interface.

8.2 Parallel pattern and its implementations

Before continuing, we briefly review the algorithm and its data dependencies to
motivate the possible patterns.

The Sobel operator is one of the most simple and common gradient estimator,
able to compute an approximate value for the gradient in each image point in a very
simple yet effective way. Specifically[182], for each pixel of the image the operator
approximate the derivatives δf

δx
and δf

δy
by differences, considering a 3×3 neighboring

of the point in the following way:

δf

δy
= (x6 + 2x7 + x8)− (x0 + 2x1 + x2)

δf

δx
= (x2 + 2x5 + x8)− (x0 + 2x3 + x6)

Image Intensity Gradient

x0 x1x2

x3

x8

x5

x7x6

Figure 8.3: Sobel Operator.

The complete calculation for each pixel therefore consist in 4 multiplications, 15
sums and 2 absolute values. The operation and the required dependencies among
pixels is graphically exemplified in Figure 8.3. This is executed once for each pixel
of the image, resulting in a linear memory access pattern.

224 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

8.2.1 Parallel Patterns

Given the stream-based environment, where the operator must be applied to several
images, we can approach the problem using a stream-parallel pattern such as the
farm.

We can also parallelize the module using a data-pattern pattern, that with this
algorithm is quite interesting: at a first look one may think to a data-parallel with
stencil, as each point require all the neighbors. Yet, a deeper study reveal that the
stencil is required on read-only data (i.e. the input image), so we can rewrite the
stencil by introducing a slight amount of data replication and obtain a map pattern,
following the very same approach described in Chapter 3, Section 3.2.4.

For the sake of simplicity we will study the farm, because we already introduced
a performance model for this pattern in Chapter 4, Section 4.2. The preliminary
model will be extended when needed during the study of the different implementa-
tions.

8.2.2 Farm Implementations

The farm pattern can be considered a cornerstone for high level parallel program-
ming, as it covers one of the most important parallelization method of stream-based
applications.

Despite the ubiquity of this parallel paradigm, that is available in most struc-
tured parallel programming tools, there is a surprisingly scarce amount of work on
efficient farm implementations for multi-core. During the golden age of skeleton
programming a lot of work focused on this topic, but at that time parallel ma-
chines were mainly distributed memory architectures; in the last decade, with the
emergence of multi-cores, we saw a shift towards shared memory architectures that,
however, remained uncovered in these works.

Finally, it is worth noting that most of the widely used high-level parallel libraries
and languages targeted at multi-core or shared memory, like OpenMP[56] and Intel
Threading Building Blocks[144] are mainly data-parallel environments, and therefore
their support for stream-based programs is very limited. In fact, both support data-
parallel implementations using farms (i.e. for maps with dynamic data partitioning
and divide-and-conquer skeletons), but the streaming behavior is missing, so we
cannot easily build an OpenMP or TBB farm working on streams.

We will define three different implementations, each of them derived by refinement
of the previous, starting with the one presented in Chapter 4, and ending with the
implementation used in FastFlow[12], that can be probably considered the current
state of the art for farm implementations on multi-cores.

8.2. PARALLEL PATTERN AND ITS IMPLEMENTATIONS 225

Emitter Collector

Worker1

Workeri

Workern

...
...

Stage 1 Stage 2 Stage 3

Figure 8.4: Emitter-Worker-Collector scheme for the farm pattern.

Initial implementation: Message Passing

We start with the farm scheme already discussed in Chapter 4, Section 4.2. The
farm is composed of an Emitter to distribute tasks, multiple Workers to compute
the Sobel operator and a Collector to gather the results. The scheme is depicted
in Figure 8.4. The program uses a local environment and exploit message passing
to exchange data. The use of a local environment is interesting, as it allow us to:

• Seamlessly inherit the performance model already discussed in Chapter 4.

• Define an implementation that uses incoherent memory areas, as each proces-
sor has its local memory and exchange data by means of send/receive functions,
that can be easily modified to manually handle the cache coherence for the
messages, by explicitly flushing data back to the memory. This approach allow
us to use the hardware cost model presented in Chapter 5, and should provide
the performance benefits shown in Chapter 7.

• Adopt the NUMA-like RR allocation policy for the workers: when the
worker for a specific task is selected by the emitter, this can copy the message
in a memory area explicitly allocated on the memory controller corresponding
to the worker. This allocation policy should provide better performances, as
shown in Chapter 6.

To further improve the performance, we adopt zero-copy communications, where
data transfer requires no additional copy operations neither at the sender nor at the
receiver. On traditional message-passing systems like distributed-memory archi-
tectures, zero-copy communications have been implemented relying on advanced
networking infrastructures and devices (e.g. InfiniBand and Myrinet). On shared-
memory architectures, zero-copy can be implemented by using in-memory copy op-
erations and relying entirely on user-space operations. This idea is considered a
state-of-the-art technique already applied in several research works in the literature,
such as [99].

Zero-copy allow us to implement a send-receive with a single message copy, in-
stead of the two usually required. This already represents a first improvement w.r.t

226 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

the send/receive primitives presented in Chapter 4, Section 4.2.5.2, and even com-
mon shared memory implementations of MPI). To summarize, we expect the follow-
ing service times for each process (assuming the copy is executed by the sender):

TS−E = Tcopy

TS−Wi
= TW−calc + Tcopy

TS−C = ∼ 0

Overlapping communications: Message Passing with Copy on Receive

Although there exist several MPI implementations for shared memory architectures,
using message-passing supports on multi-core is currently a debated practice. The
most common opinion is that it represents a poor choice for parallel programming
([54], [109], [185]), as the copies needed by message-passing communications can be
unnecessary on such architectures.

One of the most important performance problems of the first implementation, is
indeed that the worker, after computing the resulting task, send it to the collector.
This means that we have a service time for each worker as follows:

TS−Wi
= TW−calc + Tcopy

Where Tcopy represent a performance degradation w.r.t the sequential time. In
our case, given the small grain of the computation, we expect Tcopy to be an impor-
tant fraction of TS−Wi

.
A very common way of masking communication latencies is to delegate the send

operation to additional entities, so that we are able to overlap the computation
(executed by the main process) and the communication (executed by this additional
entity). Again, this is a well known concept in distributed-memory architectures,
where the network interfaces are equipped of specific processors (communication
units) able to execute the send/receive operation with almost no interaction with
the main processor running the computation.

When communication inside shared-memory architectures is concerned, commu-
nication units can be concretized using the available architectural facilities:

• a communication unit can be implemented by a core of the architecture, dedi-
cated to execute communication primitives delegated by different parts of the
parallel computation (e.g. Emitter, Workers and Collector). In this case the
core cannot be used to increase the parallelism degree of the application;

• instead of using an entire core, a communication unit can be a hardware context
in the case of Hardware MultiThreaded CPUs;

• communication primitives can be delegated to specialized co-processors if they
are available.

8.2. PARALLEL PATTERN AND ITS IMPLEMENTATIONS 227

During our research we addressed the use of Hardware MultiThreading to overlap
communications and computations[47] on the Intel Phi processor, with remarkable
results: in most cases we were able to completely mask the communication overhead.

In this case, however, the TilePro64 does not offer hardware multithreading, nor
specific co-processors, and we are not willing to use entire cores just to overlap
communications. A different, yet interesting choice specific of the Emitter-Worker-
Collector farm pattern, is to let the Collector execute the memory copy on the receive
primitive. We therefore employ an asymmetric send/receive pattern in which:

• the Emitter copy the message during the send towards the workers.

• the Workers do not copy the message during the receive from the emitter,
nor during the send towards the collector.

• the Collector copy the message during the receive from the workers.

This way, we expect the following service times:

TS−E = Tcopy

TS−Wi
= TW−calc

TS−C = Tcopy

Where the worker now just execute the Sobel filter, while the cost of copying the
data is only in charge of the supporting processes (i.e. Emitter and Collector).

It is important to notice that this approach maintain the semantic of local envi-
ronment with message-passing: the number of memory copies remain the same, but
we move the copy to a different entity of the parallel module.

Removing communications: Pointer Passing

The main problem of a farm implementation with a centralized emitter is that, in
some cases, the emitter may become the bottleneck of the system, if Tcopy ≥ TW−calc/n.
This happen with an higher probability when the amount of workers - and thus of
n - is significant (and with the TilePro64 we expect up to 46 workers). Decreasing
the service time of the emitter helps in avoiding the problem; yet, in our cases, we
cannot remove the Tcopy as long as we work in a message passing environment. An
interesting solution has been successfully used by the FastFlow framework[12], in
which message passing is substituted with pointer passing. The basic idea is that,
instead of copying the message from the sender to the receiver, the sender just pass
the pointer to the message, and allow the receiver to directly work with the original
copy.

Of course, this programming model make sense only under certain conditions.
In particular, the sender must not use the message area once the pointer has been

228 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

forwarded, as that memory area will now be used exclusively by the receiver. In
the case of the farm with an Emitter-Worker-Collector scheme this works quite
well, as the Emitter and the Collector are just forwarding the messages, without
actually modifying it. Other parallel patterns, however, may require a more complex
approach to allow “pointer passing”. An interesting example have been studied by
our group for the parallelization of the Stream Join problem[46], where different
workers share the same data, but a proper, cooperative update mechanism is required
to ensure correctness. With this configuration we expect the following service times:

TS−E = ∼ 0

TS−Wi
= TW−calc

TS−C = ∼ 0

Completely removing the possibility of making the Emitter (or the Collector) a
bottleneck. This approach also have the benefit of removing the copies, thus lowering
the pressure of the memory subsystem.

However, everything comes at a cost. In this case the messages are allocated
once when sent to the emitter by the external module. In that moment, we have
no way of knowing which worker will compute the task, so we cannot adopt the
NUMA-like RR allocation policy. The best we can do is to let the sender spread
the data across all the memory controllers, thus using the SMP-like policy. This
will probably reduce the performance, especially when a small number of workers is
used, because the memory latency is increased.

Fortunately, the use of pointer passing does not create big problems for disabling
cache coherence, as at each moment of the execution only one entity is using a
message.

To summarize, the absence of a local environment makes this implementation
significantly different:

• We adopt the SMP-like linear allocation policy for the workers, as the
NUMA-like RR is not applicable in this case.

• Automatic cache coherence can be still disabled, by inserting in specific points
of the code cache control instructions.

• The Emitter and the Collector becomes very lightweight entities, as shown by
the new implementation cost model, and thus will not become the bottleneck
of the module.

8.3 Study of the message passing implementation

We start by summarizing the concepts already presented in Chapter 4) to evaluate
the service time of this farm implementation. According to the performance model
of the pattern, we have the following service times for each process:

8.3. STUDY OF THE MESSAGE PASSING IMPLEMENTATION 229

TS−E = Tcopy

TS−Wi
= TW−calc + Tcopy

TS−C = ∼ 0

In addition, because of the pipeling effect of the scheme we have that the global
service time of the farm is given by

TS−FARM = max

{
TS−E,

TS−Wi

n
, TS−C

}
(8.1)

Of course, to evaluate Eqn. 8.1 we need to estimate TW−calc and Tcopy.

Estimating TW−calc

For all our test case we selected an image size of 3200× 3200 pixels, resulting in an
image of 10240000 Bytes.

To estimate the calculation time as

Tw−calc = Fixed T ime+ L2 misses× Predicted Memory Latency

we need to extrapolate the two parameters Fixed T ime and L2 misses from the
original, sequential code. While the latter can be easily obtained by profiling the
application, we do not have the same luck for Fixed T ime, so we need apply a reverse
approach: running the sequential application we obtain T sw−calc and L2 misses

s. The
cache misses should be divided in load miss and store miss because, as described in
Chapter 5, only load misses actually stall the processor. From these parameters we
can derive

L2 misses = L2 misses
s
load

Fixed T ime = T sw−calc − (L2 misses
s
load ×Measured Memory Latency)

The execution of the sequential code, over a set of 100 images, resulted in the values
reported in Table 8.1.

Execution Image Estimated

T sw−calc (clocks) 24023521600 240235216 N/A
L2 misses

s
load 16318000 163180 160000

L2 misses
s
store 15995500 159955 160000

Table 8.1: Data from the execution of the sequential Sobel operator.

The first column contain the data directly gathered from the execution. From
this, we calculated the statistics per image. The third column contains an estimation

230 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

of the misses considering the size of the image and of the cache lines, confirming the
quality of the gathered statistics. Another good sign is the fact that the amount of
load miss is approximately equal to the number of store miss : we read an image and
save a new one on a different memory area, so we expected the number of misses on
store and loads to be the same.

For Measured Memory Latency we use the memory access latency of the archi-
tecture that, according to Chapter 5, should have an approximate value of 94 clock
cycles. Using these data, we have that the parallel Tw−calc will be estimated as

L2 misses = 163180

Fixed T ime = 240235216− (163180× 94) = 224896296

Tw−calc = 224896296 + (163180× Predicted Memory Latency)

Estimating Tcopy

For the memory copy execution time we could use the same approach; however,
given the fact that this part of code is not written by the programmer, and can
be considered an immutable part of the support, we decided to perform a different,
more accurate study without the use of profiled execution. We created a specific
copy implementation, that heavily exploit prefetching, loop unfolding and the VLIW
instruction set to overlap the processing time with the memory transfers. The code
is able to copy an entire L2 line in less than 80 clock cycles, and in the meantime
prefetches the next input line. On top of this, thanks to the wh64 instruction, we
preallocate empty lines for the output, so that we do not generate misses on stores.
We report the code that represents the loop over an L2 cache block in Listing 8.1.

Each line contain a bundle of instructions (up to 3) executed concurrently by the
processor. Notice that we unfold the loop over the L1 cache line and we prefetch the
data between L1 and L2. Of course, at the end of the copy we require to flush all the
cache lines that belong to the output message, to guarantee that all the modified
data reaches the memory. As introduced in Chapter 7, on the TilePro64 this can be
done with specific assembler instructions (flush, inv and finv corresponding to the
operations of flush, invalidate and both together) that work on single cache lines.
However, given the relatively large size of the message w.r.t the L2 cache, it is more
convenient to flush the whole L2 cache at the end of the message copy. We consider
this part negligible for the evaluation of Tcopy, as it is composed only of non-blocking
write operations.

With this specific code, we are able to estimate Tcopy as

Tcopy =
10240000

64
× Predicted Memory Latency

Because the computation is completely overlapped to memory transfers, so we have
Fixed T ime = 0. On the other hand, the number of memory transfers to read the
message is exactly the size of the message divided by the L2 cache line size.

8.3. STUDY OF THE MESSAGE PASSING IMPLEMENTATION 231

Put input address in r7 , put output address in r8

{ addi r7 ,%2,0 addi r8 ,%3,0 }

Calc. next input l2 line addr. , alloc. output l2 line

{ addi r5 ,r7 ,64 wh64 r8 }

i=16 , prefetch input l2

{ addi r2 ,zero ,16 lw r5 ,r5 }

Calc. next input l1 line addr.

{ addi r6 ,r7 ,16 }

Loop over L1 lines

.START_INNER:

Prefetch the next L1 line

{ lw r6,r6 }

load in, i = i - 4

{ lw r3, r7 addi r2,r2 ,-4 }

store out , in = in+1

{ sw r8,r3 addi r7,r7 ,4 }

load in,out = out+1

{ lw r3, r7 addi r8,r8 ,4 }

store out in = in+1

{ sw r8,r3 addi r7,r7 ,4 }

load in out = out+1

{ lw r3, r7 addi r8,r8 ,4 }

store out ,in = in+1

{ sw r8,r3 addi r7,r7 ,4 }

load in, out = out+1

{ lw r3, r7 addi r8,r8 ,4 }

store out ,in = in+1,r6=in+16

{ sw r8,r3 addi r7,r7 ,4 addi r6,r7 ,20 }

out = out+1, jump if i>0

{ addi r8,r8 ,4 bnzt r2, .START_INNER }

End Inner Loop

save new in address , save new out address

{addi %2,r7 ,0 addi %3,r8 ,0 }

Listing 8.1: Assembler implementation of message copy - loop over a L2 cache line.

8.3.1 Architecture Model Parameters

The last (but most important) step is to parameterize the architecture model of
Chapter 5 for this application, in order to estimate Predicted Memory Latency
(from now on Rq). The parameters of the model are summarized in Table 8.2. With
these parameters we are able to simulate the queueing network model and obtain
the values of Rq that will be used in evaluating TW−calc and Tcopy.

Given the pipelining of the entities, the module will be limited by the pipeline
stage that represent the bottleneck. Different bottlenecks also means different pa-
rameters for our hardware model. For now on, we will assume that the Emitter and
the Collector are not a bottleneck, and so the whole system will be limited by the
throughput of the Workers, as we consider this the most probable case.

232 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

Parameter Description Multiplicity

n
Number of processors that generate memory

requests
One

Tp Computing time between two memory requests One per core
pmod Probability of replacing a modified cache line One per core
pmc1

Probability of sending a memory request
towards the specified memory interface

One per core
pmc2
pmc3
pmc4

k

Corrective factor to take into account the
exact moment in which the processor enter

and exit the stall (required to correctly
estimate the memory latency)

One per core

pW
Probability of receiving a memory write

request
One per memory

Table 8.2: Summary of the parameters required to use the TilePro64 model.

For a specific parallelism degree m we will have, of course, m processors that
behave as workers. In addition we have the Emitter and the Collector. In this
implementation the Collector is negligible w.r.t the memory subsystem, so we can
safely neglect it in the queueing network. In general, given the homogeneity of the
workers, their parameters will be (mostly) the same, while the Emitter, performing
significantly different, will also have different parameter values.

A different number of processors of the system also means different parameter
values for the hardware model; thus we are studying a family of models, where the
parameters are extracted in a common way but vary for each parallelism degree.

Placement on the mesh

To estimate the latency of each processor, it is important to correctly place the
processors on the mesh, to use the right value for the various Lnet.

Fortunately our Queueing Network model already contains the measured Lnet
parameters for each processor of the system, so we just need, for each core used, to
enable the corresponding processor queue. In order to follow the NUMA-like, RR
policy we will adopt the mapping scheme of Figure 8.5. Notice that we selected two
center places for the Emitter and the Collector, so that their distance is practically
the same w.r.t any memory interface.

Evaluating Tp

The selection of Tp is actually quite easy if we assume that the worker stage represent
the bottleneck of the module.

8.3. STUDY OF THE MESSAGE PASSING IMPLEMENTATION 233

Mem1

Mem3

Mem2

Mem4

N
e
tw

o
rk

I/O To Mem3

Reserved

46

2

3

4 51

6

7 8

9

10 11

12

13 14

15

16 17

18

19 20

C

21

2223

24

2625

27

28 29

30

To Mem1

To Mem2

31 32

33

34

36

35

37

39

384041

42

43 44

45 E

Figure 8.5: Allocation pattern for the processes in the message passing impl.

Workers Each worker will compute tasks continuously, because when a task is
completed, it can immediately start with the next one assigned to him. We are
certain of having assigned tasks because workers are the bottleneck of the module.
Let’s first consider the Tp for just TW−calc; in this case we have that the processor
works for Fixed T ime. In this time it will generate L2 misses

s
load + L2 misses

s
store

read requests. Notice that now we include also the miss generated by store opera-
tions, as they do not concur in the estimation of TW−calc, but are still required to
correctly evaluate the load of the memory interfaces.

Using the previous parameters we have:

Tp−W =
224896296

(163180 + 159955)
= 695.98 (8.2)

Now, for Tcopy, we previously said that the calculation is completely overlapped
with the memory requests; this means that, as soon as a response is received, a
new request is sent out, resulting in a Tp ∼ 0. So, in the overall Tp−W , we consider
the same Fixed T ime, but increase the amount of requests by adding those related
to the memory copy. The memory copy just generate load misses because of the
implementation so we have

Tp−W =
224896296

(163180 + 159955 + 160000)
= 465.49 (8.3)

Emitter The Emitter, on the other hand, will just execute Tcopy over and over
again, really resulting in a Tp ∼ 0. However, if we consider the fact that the workers
are the bottleneck of the farm, we notice an interesting property: when the steady

234 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

state is reached, the emitter will block, after every send, waiting for one of the
workers to complete their current task. When this happen the Emitter is free to
send another message, then stops again and so on.

Let us make an example with a single worker. At steady state, the (single) worker
is computing a task and the emitter is stopped. When the worker complete the task
a space in the message channel is freed: the emitter execute a send and then stop
again, waiting or another task to be completed. In fact, the Emitter will send a
message every TS−W . We can easily generalize the behavior by saying that in a

parallel version the Emitter will send a message every TS−W�n, that correspond to
the service time of the whole farm: for each task computed, the Emitter will send a
new message to a worker.

Now, we do not have the explicit TS−W at this moment because we need the Rq

of the model to estimate it. We believe that, at this point, Fixed T ime may be a
good approximation. In this time we produce the memory read request of the copy
routine, so we have

T
(n)
p−E =

224896296

n
× 1

160000
=

1405.60

n
(8.4)

Notice that the Tp of the Emitter is now parameterized with the number of workers,

and tend to rapidly decrease: with n = 10 we have a T
(10)
p−E = 140.56, with n = 20

T
(20)
p−E = 73.97 and so on, ending with T

(46)
p−E = 30.55 clocks

Evaluating pmod

Again, we study pmod depending on the code to be executed. For Tw−calc we have
that the program reads an image and store the result in another image (memory
area). The two images are read linearly, so we expect that, at steady state, about
half of the cache is occupied by the input image, and the other half by the output
one. This means that, on a cache miss, the replaced block will have a probability of
being in a modified state of pmod = 0.5.

For Tcopy the situation is slightly different: while at steady state the behavior
seems very similar (we practically have an input and an output array again), we do
not produce read requests for the stores and, because of the software cache coherence
we will, at the end of the copy, flush the entire cache, producing new write requests.
Approaching the problem from a different point of view we have that, during the
copy, we will generate 160000 read requests for the input array and 160000 write
requests for the output array. Put this in probabilities, we have pmod = 1.

Workers The worker execute both the Sobel operator and the copy, so we need
to average the two probabilities to model its behavior; we use a weighted average
considering the amount of requests per operation ending with:

pmod−W =
((163180 + 159955) ∗ 0.5) + (160000 ∗ 1)

163180 + 159955 + 160000
= 0.666 (8.5)

8.3. STUDY OF THE MESSAGE PASSING IMPLEMENTATION 235

Emitter On the other hand, the pmod for the Emitter is very simple as it is com-
posed only by the pmod of the copy, so we have

pmod−E = 1 (8.6)

Evaluating pmc

To estimate pmc we first need to decide where we will allocate the buffers to hold
the messages and the local copies of the workers. Given the choice of using the
NUMA-like allocation policy, each buffer should be allocated near to the core that
uses it. So, the local buffer of the worker (containing the filtered image) and the
channel buffer for the Emitter-Worker communication (containing the input images)
will be allocated in the “local memory” of the worker. We decided to do the same
for the channel buffer for the Worker-Collector communication, so that we reduce
as much as possible TS−Wi

.
For the Emitter, we already set the channels towards the Workers on their mem-

ories. We still need to decide for the allocation of the input channel of the Emitter.
Given its equal distance to the various memory controllers, we decided to use the
third.

Workers Given the selected allocation, each worker will access only to its “local”
memory, so we have pmcx = 1 for the single memory interface used by the specific
worker. In particular, given the round-robin process allocation, we have (using the
notation pmcx−Wy to indicate the probability of controller x for the worker y):

pmc1−W1 = 1, pmc2−W1 = 0, pmc3−W1 = 0, pmc4−W1 = 0

pmc1−W2 = 0, pmc2−W2 = 1, pmc3−W2 = 0, pmc4−W2 = 0

pmc1−W3 = 0, pmc2−W3 = 0, pmc3−W3 = 1, pmc4−W3 = 0

pmc1−W4 = 1, pmc2−W4 = 0, pmc3−W4 = 0, pmc4−W4 = 0

and so on for each worker. Clearly pmc4 is always 0 because we decided to reserve it
for other parts of the application

Emitter The pattern for the Emitter is a bit more complicate, as the input data
will always reside on mc3, while the output data will be sent to the three controllers,
depending on the number of workers.

In particular, with a single worker, we have that the output data will reside only
on mc1, and the input data on mc3, thus (using the notation pmcx−E(y) to indicate
the probability of controller x for the Emitter with y workers):

pmc1−E(1) = 0.5, pmc2−E(1) = 0, pmc3−E(1) = 0.5, pmc4−E(1) = 0

In general, half of the accesses will be directed to mc3 for reading the input array; the
other half will be distributed to the three interfaces, depending on how many workers

236 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

uses that interface. For example, with two workers, we have one output array in
mc1 and the other in mc2; with three workers one output array per interface. With
four workers, two of them will use mc1, one mc2, and one mc3, ending with:

pmc1−E(2) = 0.25, pmc2−E(2) = 0.25, pmc3−E(2) = 0.5, pmc4−E(2) = 0

pmc1−E(3) = 0.16, pmc2−E(3) = 0.16, pmc3−E(3) = 0.66, pmc4−E(3) = 0

pmc1−E(4) = 0.25, pmc2−E(4) = 0.125, pmc3−E(4) = 0.625, pmc4−E(4) = 0

And so on. With this pattern we can easily notice an asymmetry of the requests,
that could unbalance of the memory system, ending with mc3 more loaded than
the others. In fact, a more wisely decision could have been to uniformly distribute
the input data of the Emitter on the three interfaces, using a mixed SMP-like and
NUMA-like allocation, to balance better the memory load.

Evaluating k

A proper value of k is required to correctly estimate Rq. To evaluate k we should
need a proper methodology by analyzing the source code; unfortunately, at the
moment this is missing, so to obtain k we just run the parallel code with a single
worker and calculate k as the difference between the modeled system with k = 0 and
the measured Rq. In particular we have, independently of the parallelism degree,
the following values:

kE = 18

kWi = 23

Evaluating pW

Lastly, we need to evaluate the pW values for each memory controller, depending on
the percent of read and write requests received.

We start the reasoning with a single worker, and then try to generalize it. With
a single worker we have that, for each image, the worker will generate 163180 +
159955 + 160000 requests for the calculation, plus 2 ∗ 160000 requests for the copy,
all directed to the first memory controller. Of these, 2 ∗ 160000 correspond to write
operations. On the very same controller, the Emitter will produce the requests for
filling the message buffer, that correspond to other 160000 write requests. On the
contrary, on the third controller, we have only the read requests produced by the
Emitter:

pW1−1 =
3 ∗ 160000

3 ∗ 160000 + 163180 + 159955 + 160000
= 0.499, pW3−1 = 0

With two workers the situation is quite similar: the requests for the first memory
controller are the same as before (produced by the first worker and the emitter),
the second memory controller host a different worker, so we apply the previous

8.3. STUDY OF THE MESSAGE PASSING IMPLEMENTATION 237

approach (and we end with the very same result), while the third is still having only
read requests.

pW1−2 = 0.499, pW2−2 = 0.499, pW3−2 = 0, pW4−2 = 0

With three workers things become a little more complex: the first two controllers
maintain the same values, but for the third we now have a worker and the emitter
read requests. For each image we produce, as before, 3∗160000+163180+159955+
160000 requests, of which 3 ∗ 160000 write ops. During an image filtering, however,
the farm produces three results (its service time), so emitter will also read three
messages, producing other 3 ∗ 160000 read requests. Thus

pW1−2 = 0.499, pW2−2 = 0.499, pW3−2 =
3 ∗ 160000

7 ∗ 160000 + 163180 + 159955
= 0.33

A different, more general approach can be obtained by using Tp and pmod for each
processor to evaluate the amount of read and write requests generate by each core
per clock. Multiplying them by pmcx we obtain the requests per memory controllers
and finally, summing the data of all the processors, calculate the global pW1, pW2

and pW3, for each parallelism degree.

Parameter Summary

For convenience, here we report all the parameters in a concise form: Table 8.3
collect the values dependent on the number of workers while the other, parallelism-
independent parameters are:

Tp−W = 465.49

pmod−W = 0.666

kE = 18

kW = 23

238 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

T
ab

le
8.

3:
M

o
d
el

p
ar

am
et

er
s

fo
r

th
e

M
es

sa
ge

P
as

si
n
g

Im
p
le

m
en

ta
ti

on
,

p
er

p
ar

al
le

li
sm

d
eg

re
e.

P
ar

.
E

m
it

te
r

M
em

or
y

In
te

rf
ac

es
P

ar
.

E
m

it
te

r
M

em
or

y
In

te
rf

ac
es

D
eg

re
e

T
p

p m
c1

p m
c2

p m
c3

p W
1

p W
2

p W
3

D
eg

re
e

T
p

p m
c1

p m
c2

p m
c3

p W
1

p W
2

p W
3

1
14

05
,6

0
0,

50
0

0,
50

0,
50

0
0

24
58

,5
7

0,
17

0,
17

0,
67

0,
50

0,
50

0,
33

2
70

2,
80

0,
25

0,
25

0,
50

0,
50

0,
50

0
25

56
,2

2
0,

18
0,

16
0,

66
0,

50
0,

50
0,

33
3

46
8,

53
0,

17
0,

17
0,

67
0,

50
0,

50
0,

33
26

54
,0

6
0,

17
0,

17
0,

65
0,

50
0,

50
0,

32
4

35
1,

40
0,

25
0,

13
0,

63
0,

50
0,

50
0,

30
27

52
,0

6
0,

17
0,

17
0,

67
0,

50
0,

50
0,

33
5

28
1,

12
0,

20
0,

20
0,

60
0,

50
0,

50
0,

27
28

50
,2

0
0,

18
0,

16
0,

66
0,

50
0,

50
0,

33
6

23
4,

27
0,

17
0,

17
0,

67
0,

50
0,

50
0,

33
29

48
,4

7
0,

17
0,

17
0,

66
0,

50
0,

50
0,

33
7

20
0,

80
0,

21
0,

14
0,

64
0,

50
0,

50
0,

32
30

46
,8

5
0,

17
0,

17
0,

67
0,

50
0,

50
0,

33
8

17
5,

70
0,

19
0,

19
0,

63
0,

50
0,

50
0,

30
31

45
,3

4
0,

18
0,

16
0,

66
0,

50
0,

50
0,

33
9

15
6,

18
0,

17
0,

17
0,

67
0,

50
0,

50
0,

33
32

43
,9

3
0,

17
0,

17
0,

66
0,

50
0,

50
0,

33
10

14
0,

56
0,

20
0,

15
0,

65
0,

50
0,

50
0,

32
33

42
,5

9
0,

17
0,

17
0,

67
0,

50
0,

50
0,

33
11

12
7,

78
0,

18
0,

18
0,

64
0,

50
0,

50
0,

31
34

41
,3

4
0,

18
0,

16
0,

66
0,

50
0,

50
0,

33
12

11
7,

13
0,

17
0,

17
0,

67
0,

50
0,

50
0,

33
35

40
,1

6
0,

17
0,

17
0,

66
0,

50
0,

50
0,

33
13

10
8,

12
0,

19
0,

15
0,

65
0,

50
0,

50
0,

32
36

39
,0

4
0,

17
0,

17
0,

67
0,

50
0,

50
0,

33
14

10
0,

40
0,

18
0,

18
0,

64
0,

50
0,

50
0,

32
37

37
,9

9
0,

18
0,

16
0,

66
0,

50
0,

50
0,

33
15

93
,7

1
0,

17
0,

17
0,

67
0,

50
0,

50
0,

33
38

36
,9

9
0,

17
0,

17
0,

66
0,

50
0,

50
0,

33
16

87
,8

5
0,

19
0,

16
0,

66
0,

50
0,

50
0,

33
39

36
,0

4
0,

17
0,

17
0,

67
0,

50
0,

50
0,

33
17

82
,6

8
0,

18
0,

18
0,

65
0,

50
0,

50
0,

32
40

35
,1

4
0,

18
0,

16
0,

66
0,

50
0,

50
0,

33
18

78
,0

9
0,

17
0,

17
0,

67
0,

50
0,

50
0,

33
41

34
,2

8
0,

17
0,

17
0,

66
0,

50
0,

50
0,

33
19

73
,9

8
0,

18
0,

16
0,

66
0,

50
0,

50
0,

33
42

33
,4

7
0,

17
0,

17
0,

67
0,

50
0,

50
0,

33
20

70
,2

8
0,

18
0,

18
0,

65
0,

50
0,

50
0,

32
43

32
,6

9
0,

17
0,

16
0,

66
0,

50
0,

50
0,

33
21

66
,9

3
0,

17
0,

17
0,

67
0,

50
0,

50
0,

33
44

31
,9

5
0,

17
0,

17
0,

66
0,

50
0,

50
0,

33
22

63
,8

9
0,

18
0,

16
0,

66
0,

50
0,

50
0,

33
45

31
,2

4
0,

17
0,

17
0,

67
0,

50
0,

50
0,

33
23

61
,1

1
0,

17
0,

17
0,

65
0,

50
0,

50
0,

32
46

30
,5

6
0,

17
0,

16
0,

66
0,

50
0,

50
0,

33

8.3. STUDY OF THE MESSAGE PASSING IMPLEMENTATION 239

8.3.2 Predicted Service Times

Now we can solve the queueing network system by using EQNSim and obtain
the Rq values of interest. In particular, we decided to evaluate the specific Rq of
the Emitter and the average Rq of all the Workers. These two values, reported in
Table 8.4, are used to obtain the predicted values of TS−E, TS−Wi

and TS. These
are reported in Table 8.5, with the comparison w.r.t. the times obtained by the real
execution.

Par. Rq Par. Rq

Degree Worker Emitter Degree Worker Emitter

1 115,00 123,92 24 149,87 162,00
2 115,66 123,97 25 152,18 163,59
3 116,21 124,21 26 154,04 164,53
4 116,86 125,71 27 157,69 169,73
5 117,27 127,31 28 160,17 172,27
6 117,55 128,71 29 162,13 171,68
7 120,01 130,01 30 166,17 179,72
8 120,25 130,19 31 168,83 181,86
9 122,20 132,44 32 171,69 183,75

10 123,76 133,40 33 176,06 193,48
11 125,15 133,41 34 179,79 194,88
12 126,92 136,97 35 182,51 194,59
13 128,51 137,83 36 187,21 202,75
14 128,98 139,17 37 190,58 204,33
15 131,55 141,93 38 194,57 210,43
16 133,37 143,28 39 199,73 215,75
17 134,86 144,18 40 204,25 219,19
18 137,28 148,15 41 207,70 221,03
19 139,19 149,33 42 214,73 234,21
20 140,86 149,97 43 219,45 237,81
21 143,18 153,45 44 224,46 239,42
22 145,23 155,78 45 230,47 251,32
23 147,02 157,18 46 236,30 255,14

Table 8.4: Rq values obtained by solving the Queueing Network model parameterized
for the message passing implementation. Times in clock cycles.

240 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64
T

ab
le

8.
5:

M
o
d
el

va
lu

es
of
T
S
−
E

,
T
S
−
W

i
an

d
T
S

fo
r

th
e

m
es

sa
ge

p
as

si
n
g

im
p
.,

w
.r

.t
th

e
ex

ec
u
ti

on
.

T
im

es
in

cl
o
ck

cy
cl

es
.

P
ar

.
T
S
−
E

T
S
−
W

i
T
S

D
eg

re
e

E
x
p

ec
te

d
M

ea
su

re
d

%
E

rr
or

E
x
p

ec
te

d
M

ea
su

re
d

%
E

rr
or

E
x
p

ec
te

d
M

ea
su

re
d

%
E

rr
or

1
19

,8
3M

19
,8

5M
0,

12
26

2,
06

M
26

2,
10

M
0,

01
26

2,
06

M
26

2,
34

M
0,

11
2

19
,8

4M
19

,8
2M

0,
08

26
2,

27
M

26
2,

17
M

0,
04

13
1,

14
M

13
1,

27
M

0,
10

3
19

,8
7M

20
,8

1M
4,

51
26

2,
45

M
26

2,
53

M
0,

03
87

,4
8M

88
,0

3M
0,

62
4

20
,1

1M
20

,8
5M

3,
54

26
2,

66
M

26
3,

08
M

0,
16

65
,6

7M
66

,0
5M

0,
59

5
20

,3
7M

20
,7

0M
1,

59
26

2,
80

M
26

3,
33

M
0,

20
52

,5
6M

52
,8

8M
0,

60
6

20
,5

9M
21

,3
9M

3,
73

26
2,

88
M

26
3,

77
M

0,
34

43
,8

1M
44

,3
3M

1,
16

7
20

,8
0M

21
,4

3M
2,

92
26

3,
68

M
26

4,
52

M
0,

32
37

,6
7M

38
,0

6M
1,

02
8

20
,8

3M
21

,3
1M

2,
24

26
3,

76
M

26
5,

14
M

0,
52

32
,9

7M
33

,3
7M

1,
21

9
21

,1
9M

21
,7

9M
2,

73
26

4,
39

M
26

5,
75

M
0,

51
29

,3
8M

29
,7

9M
1,

39
10

21
,3

4M
21

,7
5M

1,
88

26
4,

89
M

26
6,

34
M

0,
54

26
,4

9M
26

,8
8M

1,
45

11
21

,3
5M

21
,6

7M
1,

49
26

5,
34

M
26

6,
87

M
0,

57
24

,1
2M

24
,5

0M
1,

54
12

21
,9

2M
22

,2
1M

1,
33

26
5,

91
M

26
7,

83
M

0,
71

22
,1

6M
22

,5
9M

1,
89

13
22

,0
5M

22
,1

3M
0,

34
26

6,
43

M
26

7,
61

M
0,

44
22

,0
5M

22
,3

6M
1,

38
14

22
,2

7M
21

,9
8M

1,
31

26
6,

58
M

26
7,

71
M

0,
42

22
,2

7M
22

,2
0M

0,
31

15
22

,7
1M

22
,2

1M
2,

26
26

7,
41

M
26

7,
97

M
0,

21
22

,7
1M

22
,4

1M
1,

32
16

22
,9

3M
22

,1
8M

3,
35

26
8,

00
M

26
8,

03
M

0,
01

22
,9

3M
22

,3
8M

2,
45

17
23

,0
7M

22
,0

3M
4,

71
26

8,
48

M
26

7,
95

M
0,

20
23

,0
7M

22
,2

1M
3,

84
18

23
,7

0M
22

,3
0M

6,
28

26
9,

26
M

26
8,

12
M

0,
43

23
,7

0M
22

,4
8M

5,
46

19
23

,8
9M

22
,2

3M
7,

48
26

9,
88

M
26

8,
01

M
0,

70
23

,8
9M

22
,4

0M
6,

65
20

24
,0

0M
22

,1
7M

8,
24

27
0,

42
M

26
8,

09
M

0,
87

24
,0

0M
22

,3
3M

7,
45

25
26

,1
7M

22
,3

7M
17

,0
1

27
4,

08
M

26
8,

37
M

2,
13

26
,1

7M
22

,5
1M

16
,2

6
30

28
,7

6M
22

,4
1M

28
,3

1
27

8,
60

M
26

8,
41

M
3,

80
28

,7
6M

22
,5

4M
27

,5
9

35
31

,1
3M

22
,3

3M
39

,4
1

28
3,

88
M

26
8,

33
M

5,
79

31
,1

3M
22

,4
5M

38
,6

9
40

35
,0

7M
22

,2
9M

57
,3

3
29

0,
91

M
26

8,
12

M
8,

50
35

,0
7M

22
,4

0M
56

,5
9

46
40

,8
2M

22
,3

9M
82

,3
7

30
1,

27
M

26
8,

51
M

12
,2

0
40

,8
2M

22
,4

9M
81

,5
2

8.3. STUDY OF THE MESSAGE PASSING IMPLEMENTATION 241

The results are indeed excellent in the first values, up to about 13− 14 workers
where the error on TS is always lower than ∼ 2%; however, when the number of
processing cores is higher, the error start to increase, reaching a (virtually) unac-
ceptable error of ∼ 81%. This behavior, however, was expected: with more than
12 workers, the bottleneck moves from the worker to the emitter stage. In this
new scenario the parameters selected for our hardware model are no longer valid,
as we made the assumption that the emitter was not the bottleneck; this
produces wrong predictions of Rq that affect the cost model.

In the real execution the service time of the emitter is not further increased when
it becomes the bottleneck: intuitively the Rq of the system is not growing anymore
by adding more workers because they are slowed down by the emitter: we have more
workers, but with an increased Tp. To handle the emitter bottleneck problem we
could, of course, re-parameterize the system from scratch; however, a faster and still
quite accurate solution consist in cutting the service time values to the first one in
which the Emitter is the bottleneck. In this point the estimated Rq is quite good
(as we are not having an excess of requests because the Emitter has just become
the limiting stage of the pipeline), and thus we expect a good approximation for the
TS. For any parallelism degree greater than this point, we always use the threshold
TS value. This way we obtain the model predictions of Table 8.6 that improve
the overall prediction, ending with an error always lower than ∼ 2.3%. We thus
consider this model accurate enough for our purposes. A graphical comparison of
the modeled and measured TS is also showed in Figure 8.6.

10M

20M

40M

60M

100M

200M

300M

 1 4 8 12 16 20 24 28 32 36 40 43 46

S
er

vi
ce

 T
im

e
(c

lo
ck

s)

Parallelism Degree

Sobel Module Service Times - Message Passing Implementation

Measured
Model

Model With Cutoff

Figure 8.6: Comparison between architecture and model values of TS for the message
passing implementation of the Sobel Module. Times in clock cycles.

242 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

Table 8.6: Comparison between architecture and final model values of TS for the
message passing implementation of the Sobel Module. Times in clock cycles.

Par. TS % Par. TS %
Degree Expected Measured Error Degree Expected Measured Error

1 262,06M 262,34M 0,11 24 22,05M 22,57M 2,29
2 131,14M 131,27M 0,10 25 22,05M 22,51M 2,05
3 87,48M 88,03M 0,62 26 22,05M 22,45M 1,76
4 65,67M 66,05M 0,59 27 22,05M 22,51M 2,05
5 52,56M 52,88M 0,60 28 22,05M 22,47M 1,86
6 43,81M 44,33M 1,16 29 22,05M 22,39M 1,52
7 37,67M 38,06M 1,02 30 22,05M 22,54M 2,16
8 32,97M 33,37M 1,21 31 22,05M 22,44M 1,71
9 29,38M 29,79M 1,39 32 22,05M 22,40M 1,54

10 26,49M 26,88M 1,45 33 22,05M 22,53M 2,13
11 24,12M 24,50M 1,54 34 22,05M 22,51M 2,04
12 22,16M 22,59M 1,89 35 22,05M 22,45M 1,77
13 22,05M 22,36M 1,38 36 22,05M 22,40M 1,56
14 22,05M 22,20M 0,66 37 22,05M 22,36M 1,39
15 22,05M 22,41M 1,61 38 22,05M 22,31M 1,17
16 22,05M 22,38M 1,45 39 22,05M 22,41M 1,60
17 22,05M 22,21M 0,73 40 22,05M 22,40M 1,53
18 22,05M 22,48M 1,89 41 22,05M 22,34M 1,27
19 22,05M 22,40M 1,57 42 22,05M 22,45M 1,77
20 22,05M 22,33M 1,25 43 22,05M 22,38M 1,45
21 22,05M 22,51M 2,03 44 22,05M 22,34M 1,30
22 22,05M 22,41M 1,60 45 22,05M 22,44M 1,73
23 22,05M 22,36M 1,39 46 22,05M 22,49M 1,94

8.4. STUDY OF THE MESSAGE PASSING IMPL. WITH COPY ON RECEIVE 243

8.4 Study of the message passing implementation

with copy on receive

With this implementation we maintain most of the characteristics of the previous
one, but try to reduce the service time of the workers by delegating the message
copy to the receiver, so that we are able to overlap TW−calc and Tcopy. According to
the performance model of the pattern, we now have the following service times for
each process:

TS−E = Tcopy

TS−Wi
= TW−calc

TS−C = Tcopy

In addition, because of the pipeling effect of the scheme we have that the global
service time of the farm is still given by

TS−FARM = max

{
TS−E,

TS−Wi

n
, TS−C

}
The previous estimations of TW−calc and Tcopy still holds, because the sequential

parts of the code are exactly the same:

Tw−calc = 224896296 + (163180× Predicted Memory Latency)

Tcopy =
10240000

64
× Predicted Memory Latency

8.4.1 Architecture Model Parameters

The change in the implementation require us to verify all the model parameters,
and eventually change them to match the new behavior. We will therefore review
each points.

We still assume that the Emitter and the Collector are not a bottleneck, so
that the whole system will be limited by the throughput of the Workers. Now we
know that this represent a good approach for the whole model, as it allow us to find
the point in which the emitter or the collector becomes the bottleneck; from that
point we can approximate the service time of the farm by using the cutoff method
previously described.

In this version for a specific parallelism degree m we will have m processors that
behave as workers, plus the Emitter and the Collector. In this implementation we
cannot consider the Collector negligible, as it plays an active role in the computation;
this means that, w.r.t. the previous case, we enable an additional processor in the
model and, of course, we will need to evaluate its parameters.

244 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

Placement on the mesh

With this implementation we are just interested in overlapping the communications,
so we keep exactly the same process allocation policy, where the Emitter and the
Collector are kept at the center of the mesh.

Evaluating Tp

In the selection of Tp important differences start to emerge w.r.t the previous im-
plementation.

Workers In this case the workers just compute the tasks, without paying the cost
of copying the message. Thus, w.r.t the previous implementation, we do not consider
the memory requests to copy the message and we have

Tp−W =
224896296

(163180 + 159955)
= 695.98

Emitter The Emitter, on the other hand, will just execute Tcopy over and over
again as in the previous implementation; we apply the same considerations about
the behavior with the bottleneck on the workers and we end with the same values
as before:

T
(n)
p−E =

224896296

n
× 1

160000
=

1405.60

n

Collector With this implementation we also need to evaluate the Tp of the Col-
lector. Here we can apply the same approach of the Emitter: in theory, a Collector
is able to copy messages continuously, resulting in a Tp−C ' 0. However, as the
Emitter, its throughput is limited by the one of the Workers and, as the Emitter,
will perform a copy every TS−W . We can use the very same approximation used for
the Emitter and have

T
(n)
p−C =

224896296

n
× 1

160000
= T

(n)
p−E =

1405.60

n

Evaluating pmod

The values for pmod of Tw−calc and Tcopy are the same (because inherited from the
sequential code):

pcalcmod = 0.5

pcopymod = 1

Workers With this implementation the worker just execute the Sobel operator,
so we do not need to average the probabilities and just have

pmod−W = 0.5

8.4. STUDY OF THE MESSAGE PASSING IMPL. WITH COPY ON RECEIVE 245

Emitter The pmod for the Emitter still the same, as its behavior has not changed:

pmod−E = 1

Collector The pmod for the Collector can be evaluated by considering that, as the
Emitter, it just execute the copy of messages, so

pmod−C = 1

Evaluating pmc

For the estimation of pmc we consider the fact that the memory areas are allocated
exactly as in the previous case

Workers Again, each worker will access only to its “local” memory, so we have
pmcx = 1 for the single memory interface used by the specific worker and, given the
round-robin process allocation, we have:

pmc1−W1 = 1, pmc2−W1 = 0, pmc3−W1 = 0, pmc4−W1 = 0

pmc1−W2 = 0, pmc2−W2 = 1, pmc3−W2 = 0, pmc4−W2 = 0

pmc1−W3 = 0, pmc2−W3 = 0, pmc3−W3 = 1, pmc4−W3 = 0

pmc1−W4 = 1, pmc2−W4 = 0, pmc3−W4 = 0, pmc4−W4 = 0

and so on for each worker.

Emitter The pattern for the Emitter still the same: read the input data on mc3,
store the output data on the three controllers, depending on the number of workers:

pmc1−E(1) = 0.5, pmc2−E(1) = 0, pmc3−E(1) = 0.5, pmc4−E(1) = 0

pmc1−E(2) = 0.25, pmc2−E(2) = 0.25, pmc3−E(2) = 0.5, pmc4−E(2) = 0

pmc1−E(3) = 0.16, pmc2−E(3) = 0.16, pmc3−E(3) = 0.66, pmc4−E(3) = 0

pmc1−E(4) = 0.25, pmc2−E(4) = 0.125, pmc3−E(4) = 0.625, pmc4−E(4) = 0

and so on.

Collector The pattern of the Collector is new and needs to be studied. If we keep
the very same memory allocation, we have that, for each message to be copied, both
the input and the output buffer are allocated near to the worker that logically sent
the message. So, with one worker we have:

pmc1−C(1) = 1, pmc2−C(1) = 0, pmc3−C(1) = 0, pmc4−C(1) = 0

246 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

because the only worker is allocated next to the first memory controller. With two
workers we have to handle half of the messages allocated on mc1, the other half on
mc2; we generalize the reasoning and have

pmc1−C(2) = 0.5, pmc2−C(2) = 0.5, pmc3−C(2) = 0, pmc4−C(2) = 0

pmc1−C(3) = 0.33, pmc2−C(3) = 0.33, pmc3−C(3) = 0.33, pmc4−C(3) = 0

pmc1−C(4) = 0.5, pmc2−C(4) = 0.25, pmc3−C(4) = 0.25, pmc4−C(4) = 0

It should be noted that, w.r.t. the Emitter, the Collector does balance better the
requests and, when using the same number of worker per controller, is able to
uniformly distribute them.

Evaluating k

The values for k, still obtained by executing the parallel implementation with par-
allelism degree of one, are:

kE = 18

kC = 27

kWi = 3

Evaluating pW

Lastly, we need to evaluate the pW values for each memory controller, depending on
the percent of read and write requests received. W.r.t the simple message passing
implementation we just moved the copy operation, but kept the same memory lo-
cations and access pattern. Therefore we expect the very same number of read and
write requests and thus the same values of pW of the previous implementation.

Parameter Summary

For convenience, here we report all the parameters in a concise form: Table 8.7
collect the values dependent on the number of workers1 while the other, parallelism-
independent parameters are

Tp−W = 695.98

pmod−W = 0.5

kE = 18

kC = 27

kWi = 3

1We omitted the pwx values as they are exactly the same of the previous implementation

8.4. STUDY OF THE MESSAGE PASSING IMPL. WITH COPY ON RECEIVE 247

T
ab

le
8.

7:
M

o
d
el

p
ar

am
et

er
s

fo
r

th
e

C
op

y
on

R
ec

ei
ve

M
es

sa
ge

P
as

si
n
g

Im
p
le

m
en

ta
ti

on
,

p
er

p
ar

al
le

li
sm

d
eg

re
e.

P
ar

.
T
p
−
E

E
m

it
te

r
C

ol
le

ct
or

P
ar

.
T
p
−
E

E
m

it
te

r
C

ol
le

ct
or

D
eg

re
e

T
p
−
C

p m
c1

p m
c2

p m
c3

p m
c1

p m
c2

p m
c3

D
eg

re
e

T
p
−
C

p m
c1

p m
c2

p m
c3

p m
c1

p m
c2

p m
c3

1
14

05
.6

0
0.

5
0

0.
5

1
0

0
24

58
.5

7
0.

17
0.

17
0.

67
0.

33
0.

33
0.

33
2

70
2.

80
0.

25
0.

25
0.

5
0.

5
0.

5
0

25
56

.2
2

0.
18

0.
16

0.
66

0.
36

0.
32

0.
32

3
46

8.
53

0.
17

0.
17

0.
67

0.
33

0.
33

0.
33

26
54

.0
6

0.
17

0.
17

0.
65

0.
35

0.
35

0.
31

4
35

1.
40

0.
25

0.
13

0.
63

0.
50

0.
25

0.
25

27
52

.0
6

0.
17

0.
17

0.
67

0.
33

0.
33

0.
33

5
28

1.
12

0.
20

0.
20

0.
60

0.
40

0.
40

0.
20

28
50

.2
0

0.
18

0.
16

0.
66

0.
36

0.
32

0.
32

6
23

4.
27

0.
17

0.
17

0.
67

0.
33

0.
33

0.
33

29
48

.4
7

0.
17

0.
17

0.
66

0.
34

0.
34

0.
31

7
20

0.
80

0.
21

0.
14

0.
64

0.
43

0.
29

0.
29

30
46

.8
5

0.
17

0.
17

0.
67

0.
33

0.
33

0.
33

8
17

5.
70

0.
19

0.
19

0.
63

0.
38

0.
38

0.
25

31
45

.3
4

0.
18

0.
16

0.
66

0.
35

0.
32

0.
32

9
15

6.
18

0.
17

0.
17

0.
67

0.
33

0.
33

0.
33

32
43

.9
3

0.
17

0.
17

0.
66

0.
34

0.
34

0.
31

10
14

0.
56

0.
20

0.
15

0.
65

0.
40

0.
30

0.
30

33
42

.5
9

0.
17

0.
17

0.
67

0.
33

0.
33

0.
33

11
12

7.
78

0.
18

0.
18

0.
64

0.
36

0.
36

0.
27

34
41

.3
4

0.
18

0.
16

0.
66

0.
35

0.
32

0.
32

12
11

7.
13

0.
17

0.
17

0.
67

0.
33

0.
33

0.
33

35
40

.1
6

0.
17

0.
17

0.
66

0.
34

0.
34

0.
31

13
10

8.
12

0.
19

0.
15

0.
65

0.
38

0.
31

0.
31

36
39

.0
4

0.
17

0.
17

0.
67

0.
33

0.
33

0.
33

14
10

0.
40

0.
18

0.
18

0.
64

0.
36

0.
36

0.
29

37
37

.9
9

0.
18

0.
16

0.
66

0.
35

0.
32

0.
32

15
93

.7
1

0.
17

0.
17

0.
67

0.
33

0.
33

0.
33

38
36

.9
9

0.
17

0.
17

0.
66

0.
34

0.
34

0.
32

16
87

.8
5

0.
19

0.
16

0.
66

0.
38

0.
31

0.
31

39
36

.0
4

0.
17

0.
17

0.
67

0.
33

0.
33

0.
33

17
82

.6
8

0.
18

0.
18

0.
65

0.
35

0.
35

0.
29

40
35

.1
4

0.
18

0.
16

0.
66

0.
35

0.
33

0.
33

18
78

.0
9

0.
17

0.
17

0.
67

0.
33

0.
33

0.
33

41
34

.2
8

0.
17

0.
17

0.
66

0.
34

0.
34

0.
32

19
73

.9
8

0.
18

0.
16

0.
66

0.
37

0.
32

0.
32

42
33

.4
7

0.
17

0.
17

0.
67

0.
33

0.
33

0.
33

20
70

.2
8

0.
18

0.
18

0.
65

0.
35

0.
35

0.
30

43
32

.6
9

0.
17

0.
16

0.
66

0.
35

0.
33

0.
33

21
66

.9
3

0.
17

0.
17

0.
67

0.
33

0.
33

0.
33

44
31

.9
5

0.
17

0.
17

0.
66

0.
34

0.
34

0.
32

22
63

.8
9

0.
18

0.
16

0.
66

0.
36

0.
32

0.
32

45
31

.2
4

0.
17

0.
17

0.
67

0.
33

0.
33

0.
33

23
61

.1
1

0.
17

0.
17

0.
65

0.
35

0.
35

0.
30

46
30

.5
6

0.
17

0.
16

0.
66

0.
35

0.
33

0.
33

248 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

8.4.2 Predicted Service Times

Now we can solve the queueing network system by using EQNSim and obtain the
Rq values of interest. In particular, we decided to evaluate the specific Rq of the
Emitter and the Collector, and the average Rq of all the Workers. These values,
reported in Table 8.8, are used to obtain the prediction of TS−E, TS−C , TS−Wi

and
TS in Table 8.9.

Par. Rq Par. Rq

Degree Worker Emitter Collector Degree Worker Emitter Collector

1 96 124.385 130 24 122.851 150.372 161.043
2 96.9063 124.134 130.821 25 124.359 150.607 162.1
3 97.4375 124.52 134.982 26 125.774 151.885 162.899
4 99.9455 125.758 135.369 27 127.732 155.421 173.791
5 99.8705 126.481 134.527 28 128.982 155.75 170.483
6 99.5967 127.387 137.247 29 130.088 156.18 167.764
7 101.798 128.415 138.974 30 132.439 159.68 172.028
8 102.165 127.649 139.712 31 134.094 162.452 171.903
9 102.734 130.785 141.21 32 135.14 161.612 173.296

10 105.117 131.488 142.551 33 137.73 165.48 176.797
11 105.614 132.069 142.999 34 139.464 167.887 176.683
12 106.833 134.002 144.501 35 140.69 167.71 178.008
13 107.489 134.739 145.247 36 143.415 172.111 181.087
14 109.589 135.384 146.628 37 145.237 172.613 183.647
15 111.067 137.878 148.457 38 146.736 174.39 184.153
16 112.125 138.424 149.348 39 149.969 181.776 188.02
17 113.056 138.991 150.255 40 151.729 180.485 190.886
18 114.491 141.953 152.123 41 153.293 182.824 189.161
19 115.726 142.623 153.283 42 156.308 187.659 192.734
20 116.932 144.812 154.468 43 158.931 184.493 194.991
21 119.219 146.435 155.835 44 160.329 187.635 196.773
22 119.831 146.602 157.66 45 164.389 193.504 202.239
23 121.226 147.089 159.215 46 166.221 195.61 199.166

Table 8.8: Rq values obtained by solving the Queueing Network model parameterized
for the copy on receive message passing implementation. Times in clock cycles.

8.4. STUDY OF THE MESSAGE PASSING IMPL. WITH COPY ON RECEIVE 249

T
ab

le
8.

9:
M

o
d
el

va
lu

es
of
T
S
−
E

,
T
S
−
W

i
an

d
T
S

fo
r

th
e

co
p
y

on
re

cv
.

m
p

im
p
.,

w
.r

.t
th

e
ex

ec
u
ti

on
.

T
im

es
in

cl
o
ck

cy
cl

es
.

P
ar

.
T
S
−
E

T
S
−
C

T
S
−
W

i
T
S

D
eg

re
e

E
x
p
.

M
ea

s.
%

E
.

E
x
p
.

M
ea

s.
%

E
.

E
x
p
.

M
ea

s.
%

E
.r

E
x
p
.

M
ea

s.
%

E
.

1
19

.9
0M

19
.8

6M
0.

21
20

.8
0M

20
.7

6M
0.

19
24

0.
56

M
24

0.
40

M
0.

07
24

0.
56

M
24

0.
87

M
0.

13
2

19
.8

6M
19

.8
3M

0.
16

20
.9

3M
20

.8
3M

0.
50

24
0.

71
M

24
0.

38
M

0.
14

12
0.

35
M

12
0.

56
M

0.
17

3
19

.9
2M

21
.1

3M
5.

71
21

.6
0M

21
.5

1M
0.

40
24

0.
80

M
24

1.
26

M
0.

19
80

.2
7M

81
.0

9M
1.

01
4

20
.1

2M
20

.8
7M

3.
59

21
.6

6M
21

.5
2M

0.
65

24
1.

21
M

24
1.

76
M

0.
23

60
.3

0M
60

.8
7M

0.
94

5
20

.2
4M

20
.8

5M
2.

93
21

.5
2M

21
.9

1M
1.

77
24

1.
19

M
24

2.
15

M
0.

40
48

.2
4M

48
.8

1M
1.

18
6

20
.3

8M
21

.3
7M

4.
63

21
.9

6M
22

.2
5M

1.
29

24
1.

15
M

24
2.

68
M

0.
63

40
.1

9M
40

.8
3M

1.
57

7
20

.5
5M

21
.2

5M
3.

29
22

.2
4M

22
.4

3M
0.

88
24

1.
51

M
24

3.
38

M
0.

77
34

.5
0M

35
.1

3M
1.

78
8

20
.4

2M
21

.1
3M

3.
32

22
.3

5M
22

.5
5M

0.
88

24
1.

57
M

24
3.

78
M

0.
91

30
.2

0M
30

.8
1M

1.
98

9
20

.9
3M

21
.6

9M
3.

52
22

.5
9M

22
.8

1M
0.

97
24

1.
66

M
24

4.
54

M
1.

18
26

.8
5M

27
.5

2M
2.

45
10

21
.0

4M
21

.6
2M

2.
71

22
.8

1M
23

.0
1M

0.
86

24
2.

05
M

24
5.

18
M

1.
28

24
.2

0M
24

.8
4M

2.
57

11
21

.1
3M

21
.6

5M
2.

42
22

.8
8M

23
.1

4M
1.

13
24

2.
13

M
24

5.
58

M
1.

40
22

.8
8M

23
.4

2M
2.

31
12

21
.4

4M
22

.1
1M

3.
01

23
.1

2M
23

.3
1M

0.
82

24
2.

33
M

24
5.

76
M

1.
40

23
.1

2M
23

.6
1M

2.
06

13
21

.5
6M

21
.8

6M
1.

39
23

.2
4M

23
.4

3M
0.

80
24

2.
44

M
24

5.
89

M
1.

41
23

.2
4M

23
.6

9M
1.

91
14

21
.6

6M
21

.7
9M

0.
59

23
.4

6M
23

.3
6M

0.
44

24
2.

78
M

24
5.

83
M

1.
24

23
.4

6M
23

.6
1M

0.
64

15
22

.0
6M

22
.1

7M
0.

48
23

.7
5M

23
.4

4M
1.

32
24

3.
02

M
24

6.
08

M
1.

24
23

.7
5M

23
.6

8M
0.

31
16

22
.1

5M
22

.0
9M

0.
26

23
.9

0M
23

.4
1M

2.
09

24
3.

19
M

24
6.

01
M

1.
14

23
.9

0M
23

.6
0M

1.
26

17
22

.2
4M

22
.0

0M
1.

07
24

.0
4M

23
.4

3M
2.

62
24

3.
34

M
24

6.
10

M
1.

12
24

.0
4M

23
.6

2M
1.

76
18

22
.7

1M
22

.3
1M

1.
79

24
.3

4M
23

.3
9M

4.
05

24
3.

58
M

24
6.

19
M

1.
06

24
.3

4M
23

.5
8M

3.
22

19
22

.8
2M

22
.2

7M
2.

48
24

.5
3M

23
.4

1M
4.

79
24

3.
78

M
24

6.
15

M
0.

96
24

.5
3M

23
.5

9M
3.

95
20

23
.1

7M
22

.1
8M

4.
45

24
.7

1M
23

.3
6M

5.
79

24
3.

98
M

24
6.

04
M

0.
84

24
.7

1M
23

.6
5M

4.
50

25
24

.1
0M

22
.4

0M
7.

59
25

.9
4M

23
.3

6M
11

.0
3

24
5.

19
M

24
6.

05
M

0.
35

25
.9

4M
23

.5
8M

10
.0

1
30

25
.5

5M
22

.5
2M

13
.4

6
27

.5
2M

23
.3

6M
17

.8
1

24
6.

51
M

24
6.

34
M

0.
07

27
.5

2M
23

.5
4M

16
.9

1
35

26
.8

3M
22

.4
1M

19
.7

4
28

.4
8M

23
.4

5M
21

.4
6

24
7.

85
M

24
6.

77
M

0.
44

28
.4

8M
23

.7
6M

19
.8

8
40

28
.8

8M
22

.3
5M

29
.2

3
30

.5
4M

23
.6

1M
29

.3
5

24
9.

66
M

24
6.

62
M

1.
23

30
.5

4M
23

.8
8M

27
.8

9
46

31
.3

0M
22

.2
9M

40
.3

9
31

.8
7M

23
.5

2M
35

.5
1

25
2.

02
M

24
6.

83
M

2.
10

31
.8

7M
23

.7
6M

34
.1

1

250 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

The qualitative behavior of the model is exactly as the previous: very low errors
up to 11 workers, when the Collector becomes the bottleneck. It is interesting to
notice that the Collector is slightly slower than the Emitter. This is partially due
to a higher value of k, but also because of the fact that the Collector read and write
to the same memory interface. However, from the model point of view the only
difference is that they have different values of Rq and thus different TS times.

It is already interesting to note that this version perform better with slow paral-
lelism degrees: the service time of each worker is ∼ 240M clocks w.r.t the ∼ 260M
clocks of the previous one; the difference is, of course, approximately Tcopy. So, the
overlapping mechanism works well in this program, and is correctly approached in
the Queueing Network model. As before, we apply the cutoff method to evaluate
the service time when the bottleneck is moved. This way we obtain the model
predictions of Table 8.10 and Figure 8.7.

Here the error is slightly higher, but still lower than ∼ 2.5% in the pre-cutoff
interval, and at most ∼ 4.35% in general. This error, however, is not fully related
to the estimation of Rq but, partially, also to some unexpected overheads in the
parallel implementation: when the Collector is the bottleneck the service time of
the farm TS is not exactly TS−C as expected, but is slightly higher. Thus, the overall
error w.r.t our model (that is already underestimating TS−C) is further increased.
For example, if we consider the case with 11 workers, the error of TS−C is ∼ 1.13%,
while the error of TS grows to ∼ 2.3%. Nevertheless, we consider the estimation
quite accurate and sufficient for our purpose.

As an interesting side note, while the implementation is faster w.r.t the message
passing in the first phase, when the Collector becomes the bottleneck, this version
becomes slightly slower, because this Collector is slower than the Emitter of the
other version.

10M

20M

40M

60M

100M

200M

300M

 1 4 8 12 16 20 24 28 32 36 40 43 46

S
er

vi
ce

 T
im

e
(c

lo
ck

s)

Parallelism Degree

Sobel Module Service Times - Copy On Receive Implementation

Measured
Model

Model With Cutoff

Figure 8.7: Comparison between architecture and model values of TS for the copy
on receive message passing imp. of the Sobel Module. Times in clock cycles.

8.4. STUDY OF THE MESSAGE PASSING IMPL. WITH COPY ON RECEIVE 251

Table 8.10: Comparison between architecture and final model values of TS for the
message passing implementation of the Sobel Module. Times in clock cycles.

Par. TS % Par. TS %
Degree Expected Measured Error Degree Expected Measured Error

1 240.56M 240.87M 0.13 24 22.88M 23.65M 3.27
2 120.35M 120.56M 0.17 25 22.88M 23.58M 2.95
3 80.27M 81.09M 1.01 26 22.88M 23.59M 3.02
4 60.30M 60.87M 0.94 27 22.88M 23.59M 2.99
5 48.24M 48.81M 1.18 28 22.88M 23.59M 3.02
6 40.19M 40.83M 1.57 29 22.88M 23.58M 2.99
7 34.50M 35.13M 1.78 30 22.88M 23.54M 2.82
8 30.20M 30.81M 1.98 31 22.88M 23.55M 2.83
9 26.85M 27.52M 2.45 32 22.88M 23.59M 3.01

10 24.20M 24.84M 2.57 33 22.88M 23.55M 2.85
11 22.88M 23.42M 2.31 34 22.88M 23.58M 2.95
12 22.88M 23.61M 3.08 35 22.88M 23.76M 3.69
13 22.88M 23.69M 3.43 36 22.88M 23.73M 3.57
14 22.88M 23.61M 3.10 37 22.88M 23.78M 3.80
15 22.88M 23.68M 3.38 38 22.88M 23.71M 3.50
16 22.88M 23.60M 3.05 39 22.88M 23.92M 4.35
17 22.88M 23.62M 3.15 40 22.88M 23.88M 4.19
18 22.88M 23.58M 2.97 41 22.88M 23.64M 3.23
19 22.88M 23.59M 3.03 42 22.88M 23.68M 3.38
20 22.88M 23.65M 3.26 43 22.88M 23.66M 3.29
21 22.88M 23.76M 3.69 44 22.88M 23.76M 3.71
22 22.88M 23.71M 3.52 45 22.88M 23.76M 3.71
23 22.88M 23.60M 3.06 46 22.88M 23.76M 3.71

252 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

8.5 Study of the pointer passing implementation

In this last implementation we completely remove the copies, as we exploit the
shared memory architecture to exchange pointers between the pipeline stages that
compose the farm. The performance model is now even simpler, as the Emitter and
the Collector have a negligible service time:

TS−E = ∼ 0

TS−Wi
= TW−calc

TS−C = ∼ 0

In addition, because of the pipeling effect of the scheme we have that the global
service time of the farm can still be approximated as

TS−FARM = max

{
TS−E,

TS−Wi

n
, TS−C

}
The previous estimations of TW−calc still holds, and we do not need Tcopy anymore.

Tw−calc = 224896296 + (163180× Predicted Memory Latency)

However, as previously explained, we cannot use the NUMA-like allocation
policy in this implementation because in the moment the input images are received
by the Emitter, we cannot identify the correct worker. The most reasonable ap-
proach is to use an SMP-like allocation policy that, however, is known to perform
worse, according to the study of Chapter 6, especially with a limited number of
workers, because of the increased value of Lnet.

8.5.1 Architecture Model Parameters

With this implementation we expect most of the parameters to be different, as we
are introducing several novelties.

We still assume that the Emitter and the Collector are not a bottleneck, so
that the whole system will be limited by the throughput of the Workers. In this
implementation, however, this is a much more feasible assumption, as we have
TS−E = TS−C ' 0: it is practically impossible for them to become the bottle-
neck of the farm. So we expect to not need to use the cutoff method to approximate
the TS, that will always be represented by the service time of the workers:

TS−FARM = max

{
TS−E,

TS−Wi

n
, TS−C

}
=
TS−Wi

n

8.5. STUDY OF THE POINTER PASSING IMPLEMENTATION 253

Mem1

Mem3

Mem2

Mem4

N
e
tw

o
rk

I/O

Reserved

46

2 3 4 51 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20

C

21 22 23 24

2625 27 28 29 30 31

32 33 34

3635 37

39

38

40 41 42

43 44 45

E

Figure 8.8: Allocation pattern for the processes in the pointer passing impl.

In this version, for a specific parallelism degree n we will have n processors that
behave as workers, plus the Emitter and the Collector. The work of both the Emitter
and the Collector, however, is negligible w.r.t the memory subsystem, so they will
not be considered in the model.

Placement on the mesh

Given the use of the SMP-like memory policy, we also need to change the process
allocation on the mesh. The study in Chapter 6 showed no real advantages in
using a specific process allocation, so we selected the linear, that is simpler to be
implemented. The new mapping scheme is depicted in Figure 8.8. Notice that the
Emitter and the Collector are still at the center of the mesh, even if this is not
required in this case.

Evaluating Tp

Given the absence (in the model) of the Emitter and the Collector, we just need to
evaluate the Tp for the Workers. They just compute the tasks, without paying any
additional costs, so we can estimate their service time as the one with the copy on
receive implementation:

Tp−W =
224896296

(163180 + 159955)
= 695.98

254 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

Evaluating pmod

The value for pmod of Tw−calc, inherited from the sequential code, is still the same:
pcalcmod = 0.5 so, as in the copy on receive implementation, we have

pmod−W = 0.5

Evaluating pmc

For the estimation of pmc we need to consider the fact that now the memory areas
are allocated differently, with each buffer uniformly distributed among the three
available memory controllers. This means that each worker will uniformly distribute
its requests:

pmc1−W = 0.33, pmc2−W = 0.33, pmc3−W = 0.33, pmc4−W = 0

for every processor enabled in the model.

Evaluating k

The values for k, still obtained by executing the parallel implementation with par-
allelism degree of one, are:

kWi = 3

that is the same of the copy on receive implementation. This is not a case, as the
two worker implementations are quite similar: another confirmation that k depends
on the code to be executed.

Evaluating pW

Given the new access pattern, we expect a different family of values for PW .
We start with the reasoning of before, using a single worker: we have that, for

each image, the worker will generate 163180 + 159955 + 160000 requests for the
calculation, of which 160000 correspond to write operations. The Emitter and the
Collector are considered negligible. The requests will be uniformly distributed on
the three memory controllers, so we have:

pW1 =
160000

3
× 3

(163180 + 159955 + 160000)
= 0.33

pW2 =
160000

3
× 3

(163180 + 159955 + 160000)
= 0.33

pW3 =
160000

3
× 3

(163180 + 159955 + 160000)
= 0.33

pW4 = 0

When adding multiple workers, the amount of requests is increased, but the ratio
is kept the same (i.e. with 2 workers we have 2× read and 2× write requests; with
3 workers 3× and so on).

8.5. STUDY OF THE POINTER PASSING IMPLEMENTATION 255

Parameter Summary

For convenience, here we report all the parameters in a concise form. A notable
aspect of this implementation is that, given the absence of the Emitter and the Col-
lector, the parameters are the same for any parallelism degree. The only difference
is given by the number of processes and their allocation on the processors.

Tp−W = 695.98

pmod−W = 0.5

pmc1−W = 0.33

pmc2−W = 0.33

pmc3−W = 0.33

pmc4−W = 0

kW = 3

pW1 = 0.33

pW2 = 0.33

pW3 = 0.33

pW4 = 0

8.5.2 Predicted Service Times

Now we can solve the queueing network system by using EQNSim and obtain the
Rq values of interest. In particular, just need the average Rq of all the Workers,
reported in Table 8.11. We used these values to obtain the prediction of TS−Wi

and
TS in Table 8.12.

W Rq # W Rq # W Rq # W Rq # W Rq

1 111.00 11 114.09 21 121.28 31 132.08 41 147.41
2 109.50 12 113.90 22 121.77 32 133.35 42 149.00
3 109.47 13 115.17 23 123.18 33 134.75 43 150.67
4 109.57 14 114.91 24 124.34 34 136.01 44 152.81
5 110.43 15 115.23 25 125.37 35 137.50 45 154.52
6 110.63 16 117.77 26 126.35 36 139.03 46 156.80
7 110.03 17 118.13 27 127.72 37 140.25
8 111.28 18 119.08 28 128.71 38 141.80
9 112.61 19 119.55 29 129.70 39 143.43

10 113.01 20 120.88 30 130.73 40 145.48

Table 8.11: Rq values obtained by solving the Queueing Network model parameter-
ized for the pointer passing implementation. Times in clock cycles.

256 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

T
ab

le
8.

12
:

M
o
d
el

va
lu

es
of
T
S
−
W

i
an

d
T
S

fo
r

th
e

p
oi

n
te

r
p
as

si
n
g

im
p
.,

w
.r

.t
th

e
ex

ec
u
ti

on
.

T
im

es
in

cl
o
ck

cy
cl

es
.

#
T
S
−
W

i
T
S

#
T
S
−
W

i
T
S

W
E

x
p
.

M
ea

s.
%

E
.

E
x
p
.

M
ea

s.
%

E
.

W
E

x
p
.

M
ea

s.
%

E
.r

E
x
p
.

M
ea

s.
%

E
.

1
24

3.
01

M
24

2.
38

M
0.

26
24

3.
01

M
24

2.
47

M
0.

22
24

24
5.

19
M

24
8.

57
M

1.
36

10
.2

2M
10

.3
9M

1.
70

2
24

2.
76

M
24

2.
52

M
0.

10
12

1.
38

M
12

1.
35

M
0.

03
25

24
5.

35
M

24
8.

44
M

1.
24

9.
81

M
9.

96
M

1.
47

3
24

2.
76

M
24

2.
57

M
0.

08
80

.9
2M

81
.0

5M
0.

16
26

24
5.

51
M

24
9.

22
M

1.
49

9.
44

M
9.

63
M

1.
92

4
24

2.
78

M
24

2.
75

M
0.

01
60

.6
9M

60
.7

4M
0.

07
27

24
5.

74
M

24
9.

49
M

1.
50

9.
10

M
9.

28
M

1.
93

5
24

2.
92

M
24

3.
14

M
0.

09
48

.5
8M

48
.7

1M
0.

25
28

24
5.

90
M

24
9.

63
M

1.
49

8.
78

M
8.

95
M

1.
91

6
24

2.
95

M
24

3.
33

M
0.

16
40

.4
9M

40
.6

5M
0.

39
29

24
6.

06
M

24
9.

87
M

1.
53

8.
48

M
8.

66
M

2.
00

7
24

2.
85

M
24

3.
61

M
0.

31
34

.6
9M

34
.9

1M
0.

61
30

24
6.

23
M

24
9.

87
M

1.
46

8.
21

M
8.

36
M

1.
85

8
24

3.
06

M
24

3.
80

M
0.

30
30

.3
8M

30
.5

2M
0.

46
31

24
6.

45
M

25
0.

50
M

1.
62

7.
95

M
8.

12
M

2.
11

9
24

3.
27

M
24

4.
37

M
0.

45
27

.0
3M

27
.2

4M
0.

79
32

24
6.

66
M

25
0.

72
M

1.
62

7.
71

M
7.

87
M

2.
12

10
24

3.
34

M
24

4.
33

M
0.

41
24

.3
3M

24
.4

9M
0.

63
33

24
6.

89
M

25
0.

79
M

1.
56

7.
48

M
7.

64
M

2.
12

11
24

3.
51

M
24

4.
94

M
0.

58
22

.1
4M

22
.3

2M
0.

81
34

24
7.

09
M

25
1.

18
M

1.
63

7.
27

M
7.

43
M

2.
15

12
24

3.
48

M
24

5.
23

M
0.

71
20

.2
9M

20
.4

7M
0.

89
35

24
7.

33
M

25
1.

38
M

1.
61

7.
07

M
7.

23
M

2.
19

13
24

3.
69

M
24

5.
73

M
0.

83
18

.7
5M

18
.9

4M
1.

00
36

24
7.

58
M

25
1.

74
M

1.
65

6.
88

M
7.

03
M

2.
23

14
24

3.
65

M
24

5.
85

M
0.

90
17

.4
0M

17
.6

1M
1.

19
37

24
7.

78
M

25
1.

99
M

1.
67

6.
70

M
6.

85
M

2.
24

15
24

3.
70

M
24

6.
03

M
0.

95
16

.2
5M

16
.4

3M
1.

14
38

24
8.

03
M

25
2.

23
M

1.
66

6.
53

M
6.

68
M

2.
23

16
24

4.
11

M
24

6.
43

M
0.

94
15

.2
6M

15
.4

4M
1.

20
39

24
8.

30
M

25
2.

59
M

1.
70

6.
37

M
6.

52
M

2.
35

17
24

4.
17

M
24

6.
84

M
1.

08
14

.3
6M

14
.5

7M
1.

43
40

24
8.

64
M

25
2.

30
M

1.
45

6.
22

M
6.

34
M

1.
97

18
24

4.
33

M
24

7.
07

M
1.

11
13

.5
7M

13
.7

8M
1.

49
41

24
8.

95
M

25
3.

03
M

1.
61

6.
07

M
6.

21
M

2.
19

19
24

4.
41

M
24

7.
42

M
1.

22
12

.8
6M

13
.0

7M
1.

58
42

24
9.

21
M

25
3.

31
M

1.
62

5.
93

M
6.

07
M

2.
19

20
24

4.
62

M
24

7.
25

M
1.

06
12

.2
3M

12
.4

1M
1.

41
43

24
9.

48
M

25
3.

46
M

1.
57

5.
80

M
5.

93
M

2.
15

21
24

4.
69

M
24

7.
92

M
1.

31
11

.6
5M

11
.8

5M
1.

67
44

24
9.

83
M

25
3.

86
M

1.
59

5.
68

M
5.

80
M

2.
13

22
24

4.
77

M
24

8.
12

M
1.

35
11

.1
3M

11
.3

3M
1.

79
45

25
0.

11
M

25
4.

04
M

1.
55

5.
56

M
5.

68
M

2.
11

23
24

5.
00

M
24

8.
29

M
1.

33
10

.6
5M

10
.8

5M
1.

80
46

25
0.

48
M

25
4.

46
M

1.
56

5.
45

M
5.

56
M

2.
14

8.6. SELECTION OF THE BEST IMPLEMENTATION 257

In this case the model already approximate the behavior for the whole range
of parallelism degrees. Without having the problem of Emitters and Collectors,
now the farm is able to further improve the service times, that continue to decrease
throughout the whole curve (as depicted in Figure 8.9).

This version is surely performing better than the others with a large number
of cores, being able to achieve a TS with 46 workers ∼ 4× lower than the previ-
ous ones. However, with a limited number of workers, the times of the message
passing with copy on receive seems to be slightly better. This is motivated by the
different memory allocation policy, that causes lower Rq in the message passing im-
plementations: with Copy on Receive the single worker run have an Rq of only
96 clocks, compared with the 111 of this version. However, this difference decrease
when the number of workers grows, because in the pointer passing implementation
we completely avoid the copies that, of course, increase the pressure on the mem-
ory subsystem. Thus, having these two adverse effects, it is not straightforward
to decide whether implementation will perform better: only the application of the
Queueing Network model allow us to estimate the Rq and thus select the best farm.

The overall error on TS is actually very low, always under∼ 2.35%, so even in this
case our model was able to predict the performance of the parallel implementation.

5M

10M

20M

40M

60M

100M

200M

300M

 1 4 8 12 16 20 24 28 32 36 40 43 46

S
er

vi
ce

 T
im

e
(c

lo
ck

s)

Parallelism Degree

Sobel Module Service Times - Pointer Passing Implementation

Measured
Model

Figure 8.9: Comparison between architecture and model values of TS for pointer
passing implementation of the Sobel Module. Times in clock cycles.

8.6 Selection of the best implementation

Now that we have modeled the three implementations, and verified experimentally
the accuracy of the modeled TS for each of them, we can obtain the service time
function T

(n)
s of the module in which, for each parallelism degree, we select the best

implementation. This is the function that will be used by the compiler in solving
the parallel application graph to select, for each module, the correct parallelism

258 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

degree (and mapping on the architectures), as discussed in Chapter 4. Given the
accuracy of the single service times, we expect very good results here. In Table 8.13
we summarize the service times for each version, and show the T

(n)
s of the pattern,

along with the selected implementation for each parallelism degree.
The results are graphically shown in Figure 8.10. For the sake of readability we

do not plot the service times directly, but the speedup of the parallel version w.r.t
the sequential code, defined as follows:

S(n) =
TS−seq

T
(n)
S−par

The results clearly shows that the simple message passing implementation is not
very effective, as it is never faster than the others. In fact, requiring the worker
to execute the message copy increase its service times; the other implementations
avoid this problem without adding notable overheads, so they are always faster.

The comparison between message passing with copy on receive and pointer pass-
ing basically shows the behavior that we expected, but in a very limited scale: with
a small number of cores message passing perform better because of the NUMA-
like allocation. In fact, according to the model, it performs better as long as
the Collector is not the bottleneck: this would be indeed an interesting result
if confirmed with other applications. However, if we analyze the performance im-
provement of the copy on receive w.r.t the pointer passing with the same parallelism
degree, we see that we are talking of a very limited difference, within the 1%. This
is due to the limited distance of the memory controllers in the TilePro64 architec-
ture: as already explained at the beginning of Chapter 6, in this architecture the lnet
difference between a “local” and a “remote” memory is just of ∼ 19%, because they
are all inside the same chip. Using the same implementations on other multi-core
architectures, such as the Intel or AMD multi-chip configurations, will probably
produce a much more interesting gain, because the “remote” memory have a lnet
almost doubled w.r.t the local one.

Nevertheless, in this case, the advantage of the message passing implementation
with proper memory allocation is very small. Considering that our model predict
the service time with an approximation within ∼ 2− 4%, higher than the difference
of the two implementation in the [1, 10] area, we could have made the wrong decision
(i.e. maybe the pointer passing implementation was better). On the other hand.
we have no doubts in the [11, 48] area because the pointer passing implementation
is always better of at least ∼ 4%.

8.6. SELECTION OF THE BEST IMPLEMENTATION 259

T
ab

le
8.

13
:

C
om

p
ar

is
on

of
th

e
va

ri
ou

s
im

p
le

m
en

ta
ti

on
se

rv
ic

e
ti

m
es

,
ac

co
rd

in
g

to
th

e
m

o
d
el

.
T
S

fo
r

th
e

b
es

t
ch

oi
ce

an
d

im
p
ro

ve
m

en
t

w
.r

.t
th

e
2n
d
.

T
im

es
in

cl
o
ck

cy
cl

es
.

P
T

R
:

P
oi

n
te

r
P

as
si

n
g,

M
S
G

:
M

es
sa

ge
P

as
si

n
g,

C
O

R
:

C
op

y
on

R
ec

ei
ve

.

#
P

T
R

M
S
G

C
O

R
B

es
t

S
el

.
%

Im
p
r.

#
P

T
R

M
S
G

C
O

R
B

es
t

S
el

.
%

Im
p
r.

1
24

3,
01

M
26

2,
06

M
24

0,
56

M
24

0,
56

M
C

O
R

1,
02

24
10

,2
2M

22
,0

5M
22

,8
8M

10
,2

2M
P

T
R

12
3,

96
2

12
1,

38
M

13
1,

14
M

12
0,

35
M

12
0,

35
M

C
O

R
0,

85
25

9,
81

M
22

,0
5M

22
,8

8M
9,

81
M

P
T

R
13

3,
13

3
80

,9
2M

87
,4

8M
80

,2
7M

80
,2

7M
C

O
R

0,
82

26
9,

44
M

22
,0

5M
22

,8
8M

9,
44

M
P

T
R

14
2,

30
4

60
,6

9M
65

,6
7M

60
,3

0M
60

,3
0M

C
O

R
0,

65
27

9,
10

M
22

,0
5M

22
,8

8M
9,

10
M

P
T

R
15

1,
39

5
48

,5
8M

52
,5

6M
48

,2
4M

48
,2

4M
C

O
R

0,
71

28
8,

78
M

22
,0

5M
22

,8
8M

8,
78

M
P

T
R

16
0,

53
6

40
,4

9M
43

,8
1M

40
,1

9M
40

,1
9M

C
O

R
0,

75
29

8,
48

M
22

,0
5M

22
,8

8M
8,

48
M

P
T

R
16

9,
66

7
34

,6
9M

37
,6

7M
34

,5
0M

34
,5

0M
C

O
R

0,
56

30
8,

21
M

22
,0

5M
22

,8
8M

8,
21

M
P

T
R

17
8,

76
8

30
,3

8M
32

,9
7M

30
,2

0M
30

,2
0M

C
O

R
0,

62
31

7,
95

M
22

,0
5M

22
,8

8M
7,

95
M

P
T

R
18

7,
80

9
27

,0
3M

29
,3

8M
26

,8
5M

26
,8

5M
C

O
R

0,
67

32
7,

71
M

22
,0

5M
22

,8
8M

7,
71

M
P

T
R

19
6,

83
10

24
,3

3M
26

,4
9M

24
,2

0M
24

,2
0M

C
O

R
0,

53
33

7,
48

M
22

,0
5M

22
,8

8M
7,

48
M

P
T

R
20

5,
82

11
22

,1
4M

24
,1

2M
22

,8
8M

22
,1

4M
P

T
R

3,
35

34
7,

27
M

22
,0

5M
22

,8
8M

7,
27

M
P

T
R

21
4,

83
12

20
,2

9M
22

,1
6M

22
,8

8M
20

,2
9M

P
T

R
12

,7
6

35
7,

07
M

22
,0

5M
22

,8
8M

7,
07

M
P

T
R

22
3,

77
13

18
,7

5M
22

,0
5M

22
,8

8M
18

,7
5M

P
T

R
22

,0
6

36
6,

88
M

22
,0

5M
22

,8
8M

6,
88

M
P

T
R

23
2,

68
14

17
,4

0M
22

,0
5M

22
,8

8M
17

,4
0M

P
T

R
31

,4
7

37
6,

70
M

22
,0

5M
22

,8
8M

6,
70

M
P

T
R

24
1,

65
15

16
,2

5M
22

,0
5M

22
,8

8M
16

,2
5M

P
T

R
40

,8
3

38
6,

53
M

22
,0

5M
22

,8
8M

6,
53

M
P

T
R

25
0,

53
16

15
,2

6M
22

,0
5M

22
,8

8M
15

,2
6M

P
T

R
49

,9
6

39
6,

37
M

22
,0

5M
22

,8
8M

6,
37

M
P

T
R

25
9,

37
17

14
,3

6M
22

,0
5M

22
,8

8M
14

,3
6M

P
T

R
59

,3
0

40
6,

22
M

22
,0

5M
22

,8
8M

6,
22

M
P

T
R

26
8,

09
18

13
,5

7M
22

,0
5M

22
,8

8M
13

,5
7M

P
T

R
68

,5
6

41
6,

07
M

22
,0

5M
22

,8
8M

6,
07

M
P

T
R

27
6,

81
19

12
,8

6M
22

,0
5M

22
,8

8M
12

,8
6M

P
T

R
77

,8
7

42
5,

93
M

22
,0

5M
22

,8
8M

5,
93

M
P

T
R

28
5,

60
20

12
,2

3M
22

,0
5M

22
,8

8M
12

,2
3M

P
T

R
87

,0
6

43
5,

80
M

22
,0

5M
22

,8
8M

5,
80

M
P

T
R

29
4,

35
21

11
,6

5M
22

,0
5M

22
,8

8M
11

,6
5M

P
T

R
96

,3
6

44
5,

68
M

22
,0

5M
22

,8
8M

5,
68

M
P

T
R

30
2,

96
22

11
,1

3M
22

,0
5M

22
,8

8M
11

,1
3M

P
T

R
10

5,
65

45
5,

56
M

22
,0

5M
22

,8
8M

5,
56

M
P

T
R

31
1,

65
23

10
,6

5M
22

,0
5M

22
,8

8M
10

,6
5M

P
T

R
11

4,
79

46
5,

45
M

22
,0

5M
22

,8
8M

5,
45

M
P

T
R

32
0,

18

260 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

 1
 4

 8

 12

 16

 20

 24

 28

 32

 36

 40
 43
 46

 1 4 8 12 16 20 24 28 32 36 40 43 46

S
pe

ed
up

Parallelism Degree

Sobel Module Speedup - Compiler Estimations

Pointer Passing
Message Passing
Copy on Receive

Figure 8.10: Comparison between measured values of the speedup of the module.

We compare the modeled T
(n)
s with the real implementations in Table 8.14 (and

in Figure 8.11 using the speedup metric). As expected, the error in the estimation of

T
(n)
s is very good, always within the ∼ 2.4%. Thus, our estimation of the service time

can be considered sufficiently good to let the compiler select the proper parallelism
degree to remove the bottleneck on the graph of modules.

Table 8.14 also show that the compiler was not able to correctly predict the
best implementation for the [3, 10] range: we selected the copy on receive message
passing implementation, while the “numerical” best is the pointer passing one. So,
in this cases, the compiler would have (in theory) chosen the wrong implementation,
but in practice the performance loss can be considered negligible: for the sake of
completeness we report in Table 8.15 the differences in the service times of the
implementations run on the TilePro64 architecture by using the best choice for the
model and the real best implementation. We see that the performance loss is lower
than 1.5%, thus we consider the compiler choice very good.

8.6. SELECTION OF THE BEST IMPLEMENTATION 261

 1
 4

 8

 12

 16

 20

 24

 28

 32

 36

 40
 43
 46

 1 4 8 12 16 20 24 28 32 36 40 43 46

S
pe

ed
up

Parallelism Degree

Sobel Module Speedup - Compiler Estimation vs Measurements

Pointer Passing Measured
Message Passing Measured
Copy on Receive Measured

Pointer Passing
Message Passing
Copy on Receive

Figure 8.11: Comparison between measured and model values of the speedup of the
Sobel parallel module.

262 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

T
ab

le
8.

14
:

C
om

p
ar

is
on

of
th

e
p
re

d
ic

te
d

se
rv

ic
e

ti
m

e
fu

n
ct

io
n

w
.r

.t
th

e
m

ea
su

re
d

on
e,

h
ig

h
li
gh

ti
n
g

th
e

im
p
le

m
en

ta
ti

on
ch

os
en

in
b

ot
h

ca
se

s.
T

im
es

in
cl

o
ck

cy
cl

es
.

P
T

R
:

P
oi

n
te

r
P

as
si

n
g,

C
O

R
:

C
op

y
on

R
ec

ei
ve

.

#
M

o
d
el

ed
M

ea
su

re
d

%
#

M
o
d
el

ed
M

ea
su

re
d

%
W

T
S

Im
p
l.

T
S

Im
p
l.

E
rr

or
W

T
S

Im
p
l.

T
S

Im
p
l.

E
rr

or

1
24

0,
56

M
C

O
R

24
0,

87
M

C
O

R
0,

12
75

18
24

10
,2

2M
P

T
R

10
,3

9M
P

T
R

1,
73

29
16

2
12

0,
35

M
C

O
R

12
0,

56
M

C
O

R
0,

16
76

44
25

9,
81

M
P

T
R

9,
96

M
P

T
R

1,
49

41
95

3
80

,2
7M

C
O

R
81

,0
5M

P
T

R
0,

97
71

31
26

9,
44

M
P

T
R

9,
63

M
P

T
R

1,
95

73
47

4
60

,3
0M

C
O

R
60

,7
4M

P
T

R
0,

72
32

49
27

9,
10

M
P

T
R

9,
28

M
P

T
R

1,
97

21
3

5
48

,2
4M

C
O

R
48

,7
1M

P
T

R
0,

97
06

66
28

8,
78

M
P

T
R

8,
95

M
P

T
R

1,
94

47
4

6
40

,1
9M

C
O

R
40

,6
5M

P
T

R
1,

13
67

08
29

8,
48

M
P

T
R

8,
66

M
P

T
R

2,
04

21
5

7
34

,5
0M

C
O

R
34

,9
1M

P
T

R
1,

17
38

15
30

8,
21

M
P

T
R

8,
36

M
P

T
R

1,
88

40
04

8
30

,2
0M

C
O

R
30

,5
2M

P
T

R
1,

08
15

06
31

7,
95

M
P

T
R

8,
12

M
P

T
R

2,
15

95
33

9
26

,8
5M

C
O

R
27

,2
4M

P
T

R
1,

46
52

57
32

7,
71

M
P

T
R

7,
87

M
P

T
R

2,
16

14
41

10
24

,2
0M

C
O

R
24

,4
9M

P
T

R
1,

17
17

3
33

7,
48

M
P

T
R

7,
64

M
P

T
R

2,
16

35
88

11
22

,1
4M

P
T

R
22

,3
2M

P
T

R
0,

81
33

88
34

7,
27

M
P

T
R

7,
43

M
P

T
R

2,
19

57
64

12
20

,2
9M

P
T

R
20

,4
7M

P
T

R
0,

89
36

07
35

7,
07

M
P

T
R

7,
23

M
P

T
R

2,
24

12
63

13
18

,7
5M

P
T

R
18

,9
4M

P
T

R
1,

01
47

83
36

6,
88

M
P

T
R

7,
03

M
P

T
R

2,
28

17
28

14
17

,4
0M

P
T

R
17

,6
1M

P
T

R
1,

20
57

68
37

6,
70

M
P

T
R

6,
85

M
P

T
R

2,
28

67
99

15
16

,2
5M

P
T

R
16

,4
3M

P
T

R
1,

15
71

03
38

6,
53

M
P

T
R

6,
68

M
P

T
R

2,
27

75
81

16
15

,2
6M

P
T

R
15

,4
4M

P
T

R
1,

21
96

8
39

6,
37

M
P

T
R

6,
52

M
P

T
R

2,
40

66
86

17
14

,3
6M

P
T

R
14

,5
7M

P
T

R
1,

45
20

16
40

6,
22

M
P

T
R

6,
34

M
P

T
R

2,
01

10
89

18
13

,5
7M

P
T

R
13

,7
8M

P
T

R
1,

51
67

64
41

6,
07

M
P

T
R

6,
21

M
P

T
R

2,
24

38
48

19
12

,8
6M

P
T

R
13

,0
7M

P
T

R
1,

60
42

09
42

5,
93

M
P

T
R

6,
07

M
P

T
R

2,
23

96
72

20
12

,2
3M

P
T

R
12

,4
1M

P
T

R
1,

43
36

9
43

5,
80

M
P

T
R

5,
93

M
P

T
R

2,
19

34
59

21
11

,6
5M

P
T

R
11

,8
5M

P
T

R
1,

69
78

99
44

5,
68

M
P

T
R

5,
80

M
P

T
R

2,
18

11
81

22
11

,1
3M

P
T

R
11

,3
3M

P
T

R
1,

82
44

9
45

5,
56

M
P

T
R

5,
68

M
P

T
R

2,
15

40
3

23
10

,6
5M

P
T

R
10

,8
5M

P
T

R
1,

83
61

07
46

5,
45

M
P

T
R

5,
56

M
P

T
R

2,
18

51
11

8.6. SELECTION OF THE BEST IMPLEMENTATION 263

T
ab

le
8.

15
:

C
om

p
ar

is
on

th
e

se
rv

ic
e

ti
m

e
fu

n
ct

io
n

u
si

n
g

th
e

re
al

b
es

t
im

p
le

m
en

ta
ti

on
w

.r
.t

th
e

b
es

t
ac

co
rd

in
g

to
th

e
m

o
d
el

.
T

im
es

in
cl

o
ck

cy
cl

es
.

P
T

R
:

P
oi

n
te

r
P

as
si

n
g,

C
O

R
:

C
op

y
on

R
ec

ei
ve

.

#
B

es
t

fo
r

M
o
d
el

B
es

t
Im

p
l.

%
#

B
es

t
fo

r
M

o
d
el

B
es

t
Im

p
l.

%
W

T
S

Im
p
l.

T
S

Im
p
l.

E
rr

or
W

T
S

Im
p
l.

T
S

Im
p
l.

E
rr

or

1
24

0.
87

M
C

O
R

24
0.

87
M

C
O

R
0

24
10

.3
9M

P
T

R
10

.3
9M

P
T

R
0

2
12

0.
56

M
C

O
R

12
0.

56
M

C
O

R
0

25
9.

96
M

P
T

R
9.

96
M

P
T

R
0

3
81

.0
9M

C
O

R
81

.0
5M

P
T

R
0.

04
77

53
26

9.
63

M
P

T
R

9.
63

M
P

T
R

0
4

60
.8

7M
C

O
R

60
.7

4M
P

T
R

0.
22

52
05

27
9.

28
M

P
T

R
9.

28
M

P
T

R
0

5
48

.8
1M

C
O

R
48

.7
1M

P
T

R
0.

22
06

75
28

8.
95

M
P

T
R

8.
95

M
P

T
R

0
6

40
.8

3M
C

O
R

40
.6

5M
P

T
R

0.
45

57
34

29
8.

66
M

P
T

R
8.

66
M

P
T

R
0

7
35

.1
3M

C
O

R
34

.9
1M

P
T

R
0.

63
02

4
30

8.
36

M
P

T
R

8.
36

M
P

T
R

0
8

30
.8

1M
C

O
R

30
.5

2M
P

T
R

0.
93

24
13

31
8.

12
M

P
T

R
8.

12
M

P
T

R
0

9
27

.5
2M

C
O

R
27

.2
4M

P
T

R
1.

02
66

77
32

7.
87

M
P

T
R

7.
87

M
P

T
R

0
10

24
.8

4M
C

O
R

24
.4

9M
P

T
R

1.
44

92
9

33
7.

64
M

P
T

R
7.

64
M

P
T

R
0

11
22

.3
2M

P
T

R
22

.3
2M

P
T

R
0

34
7.

43
M

P
T

R
7.

43
M

P
T

R
0

12
20

.4
7M

P
T

R
20

.4
7M

P
T

R
0

35
7.

23
M

P
T

R
7.

23
M

P
T

R
0

13
18

.9
4M

P
T

R
18

.9
4M

P
T

R
0

36
7.

03
M

P
T

R
7.

03
M

P
T

R
0

14
17

.6
1M

P
T

R
17

.6
1M

P
T

R
0

37
6.

85
M

P
T

R
6.

85
M

P
T

R
0

15
16

.4
3M

P
T

R
16

.4
3M

P
T

R
0

38
6.

68
M

P
T

R
6.

68
M

P
T

R
0

16
15

.4
4M

P
T

R
15

.4
4M

P
T

R
0

39
6.

52
M

P
T

R
6.

52
M

P
T

R
0

17
14

.5
7M

P
T

R
14

.5
7M

P
T

R
0

40
6.

34
M

P
T

R
6.

34
M

P
T

R
0

18
13

.7
8M

P
T

R
13

.7
8M

P
T

R
0

41
6.

21
M

P
T

R
6.

21
M

P
T

R
0

19
13

.0
7M

P
T

R
13

.0
7M

P
T

R
0

42
6.

07
M

P
T

R
6.

07
M

P
T

R
0

20
12

.4
1M

P
T

R
12

.4
1M

P
T

R
0

43
5.

93
M

P
T

R
5.

93
M

P
T

R
0

21
11

.8
5M

P
T

R
11

.8
5M

P
T

R
0

44
5.

80
M

P
T

R
5.

80
M

P
T

R
0

22
11

.3
3M

P
T

R
11

.3
3M

P
T

R
0

45
5.

68
M

P
T

R
5.

68
M

P
T

R
0

23
10

.8
5M

P
T

R
10

.8
5M

P
T

R
0

46
5.

56
M

P
T

R
5.

56
M

P
T

R
0

264 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

8.7 Impact of a multi-chip configuration

The study of the three implementations showed an extremely good estimation on
the service times, proving that it is feasible to use the methodology presented in
this thesis to compare and select different implementations of a parallel module.
However, from a qualitative point of view, the application of the model showed
that, in practice, the pointer passing implementation perform always better or as
good as the others.

This result is mainly because of the limited advantage provided by the NUMA-
like RR allocation policy w.r.t the SMP-like policy used with pointer passing. This
is related to the target architecture, specifically because all the memory controllers
are on the same chip, and thus the cost of accessing a “remote” memory is only
slightly higher than accessing the “local” one. As discussed at the beginning of
Chapter 6, the difference between local and remote memories is much more evident
in the case of multi-chip configurations, that constitute the majority of commercial
parallel machines.

Unfortunately, our architecture model has been developed for the Tilera TilePro64
architecture, that does not allow this configuration. Yet, we can “imagine” a multi-
chip TilePro64 server and use the model - adequately extended - to study the be-
havior of our Sobel module on a hypothetical multi-chip configuration.

8.7.1 A multi-chip TilePro64 configuration

The Tilera TilePro64 processor does in fact allow multi-chip configurations; however,
this can be done by connecting different TilePro64 using the PCIe connection (the
same used to connect the processor to a host system when used as accelerator).
Unfortunately this does not allow the use of a unified physical address space, and
thus result in a very different approach w.r.t the other commercial solutions. We
therefore imagine a specific version of the TilePro64 in which multiple chip can
be connected and share the physical address space. Technically, this would require
a different routing policy on the mesh, to forward “off-chip” request to/from the
external connection interface. To preserve the bandwidth requirements, we use
multiple mesh switch to connect the two chips, as depicted in Figure 8.12. By
connecting an entire row of switch we are able to ensure a bandwidth of

27Gbps ∗ 8 ' 216Gbps (8.7)

compared with the nominal maximum bandwidth of the remote memory subsystem
of

MaxBWMemCtl ∗ 4 ' 52Gbps ∗ 4 = 208Gpbs (8.8)

We assume our chip-to-chip connection to be able to provide this bandwidth; while
this seems relatively high, we mention that the IBM Power7 chip, according to the
specification[102], uses a chip-to-chip connection with a bandwidth of ∼ 360GB/s =

8.7. IMPACT OF A MULTI-CHIP CONFIGURATION 265

Mem

Mem

Mem

Mem

Inter-C
hip netw

ork

Inter-C
hip netw

ork

Mem

Mem

Mem

Mem
Inter-C

hip netw
ork

Inter-C
hip netw

ork

Figure 8.12: The multi-chip TilePro64 configuration we imagined for this evaluation.

2880Gbps, about an order of magnitude higher than the one we are requiring. For the
latency values of the connection, we use the one measured in [131] for the QuickPath
interconnection of the current Intel Xeon processors.

Lchip−to−chip = LQPI = 41ns = 48clocks (8.9)

Using this configuration, we are sure that the chip-to-chip connection will not
become a bottleneck, and thus we can simply adapt our model by increasing the
values of Lnet correspondingly. We are aware that the end result is still a hypothetical
architecture; yet, by using concepts and performance data already exploited in other
architectures, we believe we imagined a realistic architecture.

8.7.2 Network Latencies

The Architectural model is unchanged, apart from the fact that we have doubled
the processors and the memory interfaces. The only difference reside in the values
of Lnet. Routing on the mesh can be easily modified by considering a “larger” 16x8
mesh, in such way that the XY routing protocol is maintained and that on-chip
memories inherit the previous latencies. An off-chip request will just reach a border
switch, will be forwarded to the other chip and then will continue its path towards
the memory.

In Figure 8.13 we exemplify the forward/backward path for an off-chip memory
request. For the sake of conciseness we just report the example Lnet for core < 0, 0 >;
the others are calculated accordingly.

266 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

Mem

Mem

Mem

Mem

Inter-C
hip netw

ork

Inter-C
hip netw

ork

Mem

Mem

Mem

Mem
Inter-C

hip netw
ork

Inter-C
hip netw

ork

Request
Response

Figure 8.13: The path for a memory request on the multi-chip TilePro64 config.

L1
net = 22clocks

L2
net = 28clocks

L3
net = 36clocks

L4
net = 42clocks

L5
net = 86clocks

L6
net = 92clocks

L7
net = 100clocks

L8
net = 106clocks

Lavgnet = 64clocks

We can easily see the increase in the latency related to the change of chip, that
produces Lnet more than doubled when changing chip. Of course, on the overall
Rq the increase is lower because the memory access time is kept constant (Rq =
Lnet + Lmem).

8.7.3 Core reservation and placement on the mesh

We adopt the same concept of the previous experiment, and reserve a part of the
chip for other modules of the applications. In this case we decided to reserve one
fourth of each chip. In this scenario we need to find two cores to act as Emitter
and Collector. For the message passing implementation we should select the two in
such a way that Lavgnet , i.e. the average distance to the memories, is minimized, given
the impact of these entities in the parallel implementation. On the other hand, for
the pointer passing implementation, because of their negligible effect, we select two

8.7. IMPACT OF A MULTI-CHIP CONFIGURATION 267

Mem

Mem

Mem

Mem

Inter-C
hip netw

ork

Inter-C
hip netw

ork

Mem

Mem

Mem

Mem
Inter-C

hip netw
ork

Inter-C
hip netw

ork

Reserved

1

6

7 54

3

2

8

9

10

11

12

13 14

15

16 17

18

19

20

21

22

23

24

25 26

27

28 29

30

31

32

33

34

35

36

37 38

39

40 41

42

43

44

45

46

47

48

49

51

52 53

54

55

56

57

58

59

60

50

61 62

63

64 65

66

67

68

69

70

71

72

73 74

75

76 77

78

79

80

81

82

83

84

85 86

87

88 89

90

91

92

93

94

E C

Figure 8.14: Process allocation in the multi-chip message passing implementation.

Mem

Mem

Mem

Mem

Inter-C
hip netw

ork

Inter-C
hip netw

ork

Mem

Mem

Mem

Mem

Inter-C
hip netw

ork

Inter-C
hip netw

ork

Reserved

1

6

7

5

43 28

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35 36

37 38

39 40

41 42

43 44

45 46

47 48

49

51 52

53 54

55 56

57 58

59 60

50

61 62

63 64

65 66

67 68

69 70

71 72

73 74

75 76

77 78

79 80

81 82

83 84

85 86

87 88

89 90

91 92

93 94

E C

Figure 8.15: Process allocation in the multi-chip pointer passing implementation.

locations that maximize Lavgnet , so that the “fastest” cores are used for the workers.
The final allocation is depicted in Figure 8.14 for message passing and Figure 8.15
for pointer passing.

8.7.4 Implementations and model parameters

For this study we neglect the original “message passing” implementation as we saw
that it is always outperformed by the others. The comparison is therefore limited
on two cases:

• Pointer Passing, that is usually the best choice of the studied implementa-
tions.

268 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

• Message Passing with Copy on Receive that, as we already saw, is able
to compete, and in some cases outperform, the other because of its Numa-like
memory allocation.

Pointer passing

In this case the model parameters are mostly the same as before, except for the fact
that the memory requests are uniformly distributed among six memory interfaces:

pmc1−W = 0.166, pmc2−W = 0.166, pmc3−W = 0, pmc4−W = 0.166

pmc5−W = 0.166, pmc6−W = 0.166, pmc7−W = 0.166, pmc8−W = 0

for every processor enabled in the model.

Message Passing with Copy on Receive

With the message passing implementation all the memory-related parameters must
be re-evaluated, using the same concepts as before. We just show the case of using
6 workers, as an example:

pmc1−E(6) = 0.0833, pmc2−E(6) = 0.5833, pmc3−E(6) = 0, pmc4−E(6) = 0.0833

pmc5−E(6) = 0.0833, pmc6−E(6) = 0.0833, pmc7−E(6) = 0.0833, pmc8−E(6) = 0

pmc1−C(6) = 0.1666, pmc2−C(6) = 0.1666, pmc3−C(6) = 0, pmc4−C(6) = 0.1666

pmc5−C(6) = 0.1666, pmc6−C(6) = 0.1666, pmc7−C(6) = 0.1666, pmc8−C(6) = 0

pW1(6) = pW4(6) = pW5(6) = pW6(6) = pW7(6) = 0.499

pW2(6) = 0.2502

The second memory controller have significantly different values because, being
the “local” memory of the Emitter, receives all the read memory requests of the
Emitter copy.

8.7.5 Performance study

We evaluated the Queueing Network models of the two implementations and ob-
tained the values of Rq reported in Table 8.16, for the Pointer Passing one, and 8.17
for the other. The results already shows a sensibly different Rq for the workers in
the two cases, that should translate in a better service time for the Copy On Receive
implementation, as long as the Emitter or the Collector are not bottlenecks.

8.7. IMPACT OF A MULTI-CHIP CONFIGURATION 269

#W Rq #W Rq #W Rq #W Rq

1 130.00 25 136.80 49 147.04 73 162.35
2 130.00 26 136.72 50 147.86 74 163.02
3 130.00 27 138.29 51 148.39 75 163.90
4 130.48 28 137.60 52 148.77 76 164.56
5 130.70 29 138.30 53 149.41 77 165.54
6 130.83 30 138.26 54 149.90 78 166.16
7 131.79 31 139.04 55 150.53 79 167.00
8 130.98 32 139.03 56 151.19 80 167.80
9 131.50 33 139.40 57 151.78 81 168.66

10 131.57 34 140.22 58 152.20 82 169.61
11 132.86 35 141.01 59 152.91 83 162.45
12 132.78 36 140.96 60 153.73 84 171.49
13 133.02 37 141.07 61 154.20 85 172.33
14 132.85 38 141.97 62 154.74 86 173.30
15 133.28 39 142.24 63 155.43 87 174.31
16 133.69 40 142.74 64 156.03 88 175.08
17 134.38 41 143.78 65 156.61 89 176.53
18 134.56 42 143.75 66 157.26 90 177.22
19 134.43 43 144.31 67 158.01 91 178.42
20 134.84 44 144.60 68 158.42 92 179.38
21 135.22 45 145.50 69 159.32 93 179.94
22 135.56 46 145.79 70 160.20 94 181.47
23 136.75 47 146.08 71 160.76
24 136.49 48 146.49 72 161.57

Table 8.16: Rq values obtained by solving the multi-chip Queueing Network model
parameterized for the pointer passing implementation. Times in clock cycles.

270 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64
#

R
q

#
R
q

#
R
q

#
R
q

W
W

or
k
.

E
m

.
C

ol
l.

W
W

or
k
.

E
m

.
C

ol
l.

W
W

or
k
.

E
m

.
C

ol
l.

W
W

or
k
.

E
m

.
C

ol
l.

1
97

.9
4

14
7.

65
16

0.
62

25
10

7.
11

15
6.

90
16

5.
28

49
11

7.
35

17
1.

78
17

9.
42

73
10

9.
28

18
6.

71
19

1.
35

2
98

.1
7

14
8.

85
15

6.
96

26
10

8.
34

15
8.

93
16

6.
18

50
11

7.
18

17
3.

07
18

0.
60

74
10

9.
69

18
8.

89
19

3.
68

3
99

.2
4

14
8.

60
15

7.
72

27
10

9.
25

15
9.

26
16

7.
14

51
11

6.
30

17
3.

97
18

0.
54

75
10

9.
87

18
8.

55
19

4.
55

4
97

.9
0

14
8.

42
15

7.
41

28
10

9.
69

15
9.

62
16

7.
74

52
11

5.
70

17
4.

36
18

1.
60

76
10

9.
80

18
8.

16
19

4.
92

5
98

.5
8

14
8.

76
15

7.
39

29
10

9.
78

15
9.

38
16

6.
72

53
11

4.
84

17
4.

50
18

1.
13

77
10

9.
80

18
8.

97
19

4.
71

6
98

.3
7

14
8.

61
15

7.
01

30
10

9.
84

16
0.

13
16

7.
94

54
11

4.
13

17
5.

06
18

2.
45

78
10

9.
50

18
9.

59
19

5.
69

7
97

.8
6

14
9.

18
15

7.
06

31
11

0.
24

16
0.

42
16

8.
52

55
11

3.
40

17
4.

77
18

1.
38

79
10

9.
97

18
9.

59
19

6.
01

8
99

.2
6

14
9.

86
15

8.
86

32
11

1.
81

16
2.

39
16

9.
70

56
11

3.
31

17
6.

97
18

3.
49

80
11

0.
13

19
2.

33
19

8.
10

9
10

0.
35

14
9.

97
15

8.
82

33
11

2.
61

16
2.

89
17

0.
38

57
11

3.
28

17
7.

56
18

4.
21

81
11

0.
71

19
3.

83
19

8.
94

10
10

0.
67

15
0.

85
15

9.
10

34
11

2.
96

16
3.

14
17

0.
60

58
11

2.
76

17
7.

11
18

3.
36

82
11

0.
19

19
1.

11
19

8.
23

11
10

0.
06

15
0.

74
15

8.
58

35
11

3.
19

16
3.

59
17

1.
28

59
11

1.
92

17
8.

13
18

4.
45

83
11

0.
62

19
5.

81
19

9.
08

12
10

1.
27

15
1.

01
15

9.
07

36
11

3.
62

16
3.

40
17

1.
52

60
11

1.
39

17
7.

81
18

5.
13

84
11

0.
50

19
2.

81
20

1.
35

13
10

0.
70

15
0.

21
15

9.
94

37
11

4.
01

16
3.

57
17

1.
78

61
11

0.
89

17
7.

94
18

5.
92

85
11

0.
57

19
3.

63
19

9.
69

14
10

2.
16

15
2.

14
16

0.
76

38
11

5.
29

16
6.

27
17

2.
83

62
11

1.
23

18
0.

32
18

6.
59

86
11

1.
09

19
6.

74
20

1.
37

15
10

3.
48

15
2.

99
16

2.
02

39
11

5.
42

16
6.

83
17

4.
20

63
11

1.
16

18
1.

27
18

7.
46

87
11

1.
69

19
9.

32
20

1.
94

16
10

2.
98

15
3.

51
16

1.
44

40
11

6.
56

16
6.

80
17

5.
02

64
11

0.
99

17
3.

50
18

8.
23

88
11

1.
54

19
7.

95
20

3.
17

17
10

3.
26

15
3.

51
16

2.
12

41
11

7.
09

16
7.

24
17

5.
00

65
11

0.
42

18
1.

34
18

6.
39

89
11

1.
90

19
8.

39
20

2.
64

18
10

3.
10

15
3.

61
16

1.
58

42
11

7.
32

16
7.

42
17

5.
19

66
11

0.
04

18
2.

03
18

8.
32

90
11

1.
71

19
8.

49
20

3.
17

19
10

4.
49

15
3.

70
16

2.
24

43
11

8.
35

16
7.

81
17

5.
88

67
10

9.
76

18
2.

71
18

8.
41

91
11

1.
87

19
7.

48
20

3.
24

20
10

5.
53

15
5.

51
16

3.
35

44
11

9.
06

16
9.

07
17

8.
02

68
10

9.
92

18
4.

16
18

9.
66

92
11

2.
97

20
1.

26
20

6.
20

21
10

6.
58

15
6.

07
16

4.
22

45
12

0.
30

17
1.

17
17

8.
17

69
11

0.
40

18
1.

09
19

0.
42

93
11

3.
68

20
2.

88
20

7.
22

22
10

5.
34

15
6.

25
16

4.
16

46
12

0.
40

17
1.

70
17

8.
30

70
10

9.
84

18
4.

77
19

1.
05

94
11

3.
61

20
1.

52
20

7.
07

23
10

7.
05

15
6.

27
16

4.
75

47
11

9.
45

17
1.

88
17

9.
08

71
10

9.
85

18
6.

13
19

0.
61

24
10

6.
53

15
6.

42
16

4.
72

48
11

8.
30

17
1.

50
17

8.
84

72
10

9.
41

18
5.

83
19

0.
13

T
ab

le
8.

17
:
R
q

va
lu

es
ob

ta
in

ed
b
y

so
lv

in
g

th
e

m
u
lt

i-
ch

ip
Q

u
eu

ei
n
g

N
et

w
or

k
m

o
d
el

p
ar

am
et

er
iz

ed
fo

r
th

e
co

p
y

on
re

ce
iv

e
m

es
sa

ge
p
as

si
n
g

im
p
le

m
en

ta
ti

on
.

T
im

es
in

cl
o
ck

cy
cl

es
.

8.7. IMPACT OF A MULTI-CHIP CONFIGURATION 271

Using these response times we are able to predict the average service times
of the module. In Table 8.18 and Figure 8.16 we summarize the results. The
behavior is much clearer this time: up to 10 workers the Message Passing with
Copy on Receive outperform the other implementation of a fixed ∼ 2.1%. It is also
interesting to note that in this part the service time is basically the same of the single-
chip configuration: by using the NUMA allocation policy, we are not paying the
cost of inter-chip communications. With more than 10 workers, as seen before, the
Emitter/Collector become bottleneck, and of course increasing the parallelism degree
does not improve the performances. In this area the pointer passing (characterized
by the absence of heavyweight tasks in Emitter and Collector) is still providing
the best result. However, the advantage in the first part is clear, and suggest that
further optimized message-passing implementations may be interesting and provide
even better results. For example, as demonstrated in one of our paper using the Intel
Xeon PHI multiprocessor[47], it is possible to exploit hardware multithreading or
multiple cores to improve the throughput of Emitter/Collectors. This way we could,
for example, try to effectively overcome the 10-workers limitation and provide the
∼ 2.1% performance improvement to a broader set of parallelism degrees.

 1
 8

 16

 24

 32

 40

 48

 56

 64

 72

 80

 88
 94

 1 8 16 24 32 40 48 56 64 72 80 88 94

S
pe

ed
up

Parallelism Degree

Sobel Module Speedup - Multi-Chip Compiler Estimations

Pointer Passing
Copy on Receive

Figure 8.16: Comparison between estimated values of the speedup of the module in
a multi-chip configuration.

272 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

T
ab

le
8.

18
:

C
om

p
ar

is
on

of
th

e
im

p
le

m
en

ta
ti

on
s,

ac
co

rd
in

g
to

th
e

m
u
lt

i-
ch

ip
m

o
d
el

.
T
S

fo
r

th
e

b
es

t
ch

oi
ce

an
d

im
p
ro

ve
m

en
t

w
.r

.t
th

e
P

oi
n
te

r
P

as
si

n
g

im
p
le

m
en

ta
ti

on
.

T
im

es
in

cl
o
ck

cy
cl

es
.

P
T

R
:

P
oi

n
te

r
P

as
si

n
g,

C
O

R
:

C
op

y
on

R
ec

ei
ve

.

#
B

es
t

S
el

.
%

Im
p
r.

#
B

es
t

S
el

.
%

Im
p
r.

#
B

es
t

S
el

.
%

Im
p
r.

#
B

es
t

S
el

.
%

Im
p
r.

1
24

0.
88

M
C

O
R

2.
13

25
9.

89
M

P
T

R

-

49
5.

08
M

P
T

R

-

73
3.

44
M

P
T

R

-

2
12

0.
46

M
C

O
R

2.
11

26
9.

51
M

P
T

R
50

4.
98

M
P

T
R

74
3.

40
M

P
T

R
3

80
.3

6M
C

O
R

2.
04

27
9.

17
M

P
T

R
51

4.
88

M
P

T
R

75
3.

36
M

P
T

R
4

60
.2

2M
C

O
R

2.
16

28
8.

83
M

P
T

R
52

4.
79

M
P

T
R

76
3.

31
M

P
T

R
5

48
.2

0M
C

O
R

2.
13

29
8.

53
M

P
T

R
53

4.
70

M
P

T
R

77
3.

27
M

P
T

R
6

40
.1

6M
C

O
R

2.
15

30
8.

25
M

P
T

R
54

4.
62

M
P

T
R

78
3.

23
M

P
T

R
7

34
.4

1M
C

O
R

2.
25

31
7.

99
M

P
T

R
55

4.
54

M
P

T
R

79
3.

19
M

P
T

R
8

30
.1

4M
C

O
R

2.
10

32
7.

74
M

P
T

R
56

4.
46

M
P

T
R

80
3.

15
M

P
T

R
9

26
.8

1M
C

O
R

2.
06

33
7.

50
M

P
T

R
57

4.
38

M
P

T
R

81
3.

12
M

P
T

R
10

24
.6

4M
P

T
R

-

34
7.

29
M

P
T

R
58

4.
31

M
P

T
R

82
3.

08
M

P
T

R
11

22
.4

2M
P

T
R

35
7.

08
M

P
T

R
59

4.
23

M
P

T
R

83
3.

03
M

P
T

R
12

20
.5

5M
P

T
R

36
6.

89
M

P
T

R
60

4.
17

M
P

T
R

84
3.

01
M

P
T

R
13

18
.9

7M
P

T
R

37
6.

70
M

P
T

R
61

4.
10

M
P

T
R

85
2.

98
M

P
T

R
14

17
.6

1M
P

T
R

38
6.

53
M

P
T

R
62

4.
03

M
P

T
R

86
2.

94
M

P
T

R
15

16
.4

4M
P

T
R

39
6.

36
M

P
T

R
63

3.
97

M
P

T
R

87
2.

91
M

P
T

R
16

15
.4

2M
P

T
R

40
6.

20
M

P
T

R
64

3.
91

M
P

T
R

88
2.

88
M

P
T

R
17

14
.5

2M
P

T
R

41
6.

06
M

P
T

R
65

3.
85

M
P

T
R

89
2.

85
M

P
T

R
18

13
.7

1M
P

T
R

42
5.

91
M

P
T

R
66

3.
80

M
P

T
R

90
2.

82
M

P
T

R
19

12
.9

9M
P

T
R

43
5.

78
M

P
T

R
67

3.
74

M
P

T
R

91
2.

79
M

P
T

R
20

12
.3

5M
P

T
R

44
5.

65
M

P
T

R
68

3.
69

M
P

T
R

92
2.

76
M

P
T

R
21

11
.7

6M
P

T
R

45
5.

53
M

P
T

R
69

3.
64

M
P

T
R

93
2.

73
M

P
T

R
22

11
.2

3M
P

T
R

46
5.

41
M

P
T

R
70

3.
59

M
P

T
R

94
2.

71
M

P
T

R
23

10
.7

5M
P

T
R

47
5.

29
M

P
T

R
71

3.
54

M
P

T
R

24
10

.3
0M

P
T

R
48

5.
18

M
P

T
R

72
3.

49
M

P
T

R

8.8. SUMMARY 273

8.8 Summary

With this chapter we conclude the work of the thesis, by merging together the
experience on the architecture model for the TilePro64 and the study on different
memory allocation policies.

We implemented several versions of a parallel module for a video processing
application, using the farm parallel pattern. Keeping the same pattern allowed us
to test different implementations and compare them, as the parallel compiler of our
programming framework would do.

For each implementation we estimated the service time with a variable number
of workers. This allowed us to apply the architecture model to a real application
(more complex w.r.t the benchmarks of Chapter 5) to:

• exemplify the selection of the architecture model parameters for a real parallel
pattern implementation, in which we need to extract some values from the
profiling of a sequential application, and we have supporting processes that
behave differently w.r.t the set of workers;

• verify the approximation error of the architecture model with a more complex
behavior

A low approximation error is fundamental in our approach, as we use the model
to derive the service time function T

(n)
s of the module, to let the compiler

• select the best implementation for each parallelism degree, and

• predict the service time of the module to select a parallelism degree sufficient
to remove the bottleneck in the graph of modules composing the application.

We showed that, by using the model, the compiler usually select the correct
implementation (i.e. the faster); there were, however, some cases in which the service
times of the different implementations were very similar, and the compiler ended
selecting a different, but still good, implementation that resulted in performance
loss below the 1.5% w.r.t the best. Even our prediction on the service times of the
module is acceptable, with errors within the 2.5% and thus extremely valid to let
the compiler select the proper parallelism degree to remove the bottleneck in the
graph of modules.

Given the good approximations obtained, we were able to use the model to esti-
mate the behavior of the implementations on a multi-chip TilePro64 configuration.
This allowed us to evaluate the possible performance impact of the different imple-
mentations in a more complex environment, in which remote memory latencies are
increased because of inter-chip communications. This scenario makes indeed a lot
more sense for the implementations provided, because of a more interesting behavior
of the message-passing based parallelization, which is able to outperform the others
when emitter and collector are not bottlenecks.

274 CHAPTER 8. WRAPPING UP: COMPILING A PARALLEL MODULE ON TILEPRO64

Chapter 9

Conclusions

With this thesis we studied performance models and optimizations for multi-core
architectures, as an initial an effort inside the long-term project of ASSISTANT.

In particular, we focused on the performance prediction of parallel patterns, ex-
tending the approach already presented in [125] to consider multiple implementa-
tions for each module. To achieve this result, we developed an architecture model
for a specific commercial architecture: the Tilera TilePro64. This architecture con-
stitute an interesting insight of the future evolution of chip multiprocessor, given its
64 cores and the use of innovative solutions to handle the interconnection network
and cache coherence problems. The model, based on queueing networks, can be
considered an extension of the original approach of Bhandarkar [36] to evaluate the
effects of contentions on the memory subsystem of a shared-memory parallel ma-
chine. By applying this model we are able to estimate the average Response Time of
the memory, a fundamental parameter required to estimate the performance of the
parallel code. While maintaining the original ideas, our model strongly differ from
the ones previously presented in literature because of the intrinsic characteristics of
the TilePro64 architecture. This model (that is able to estimate the response time
with an average error below ∼ 10%, constitute, in our opinion, a very important
research outcome because, as of today, no other models are able to estimate this
parameter, with this accuracy, on commercially available architectures.

Following a different path, we also studied specific multicore-oriented optimiza-
tions for parallel patterns. We still focused on the impact of the memory subsystem,
and in particular studied efficient uses of:

• Multiple Memory Controllers

• Hardware Cache Coherence Mechanisms

For the first aspect, we deeply analyzed the problem of having multiple memory
interfaces on the same parallel machine. This represent an old problem, as already

276 CHAPTER 9. CONCLUSIONS

present on off-chip multiprocessors. However, in this area multi-cores differs from
both SMP and NUMA architecture; how to exploit them at best has not yet ap-
proached systematically by the research world. Currently, the limited number of
works available is focusing on the problem from the operating-system point of view,
i.e. how to automatically allocate and/or move virtual memory pages to optimize
the global performance of the machine, in terms of completion times and/or power
consumption. We approached the problem from the parallel-pattern point of view,
i.e. how to structure a parallel module to better exploit the multiple memory con-
trollers available. Our results shows that, in general, handling the multi-core as a
NUMA machine help improving the performances, especially with a limited number
of workers, because we are able to reduce the average memory request latency.

For the second aspect, given the increased complexity of multi-core architectures,
an efficient use of the hardware cache coherency mechanisms allowed us to obtain
significant performance improvements for both a stream- and a data-pattern on the
TilePro64 processor. We also demonstrated that, by using a structured parallel
programming approach, we are able to completely disable the hardware mechanisms
and implement efficient software-based protocols in a transparent way to the pro-
grammer. Moreover, these protocols perform as good as or even better than the
automatic approaches.

Finally, in the last part, we merged the two paths by demonstrating the use of
the performance model and the optimizations introduced in the thesis to produce
different implementations of a farm pattern, and compare them analytically to:

• estimate the service time of the module with an approximation ≤ 2.5%;

• select, for each parallelism degree, the best implementation.

The path towards ASSISTANT

As previously stated, this thesis has to be considered a small, yet very important, tile
in our long-term project. In particular, the use of performance models is pervasive
in our approach, as they are used both at compile and at run time: first to select the
best implementation (using the available data), and then to drive the adaptation
policies[128] of the dynamic run-time system.

Yet the road is still long: with this thesis we demonstrated the possibility of pro-
ducing architecture-oriented performance models; however, each target architecture
will need a new, especially made, model to capture the specific characteristics of the
processor.

Even from the optimization point of view, many other aspects may be addressed
in the future. In particular we believe that a further study of cache coherence
mechanisms is required, because of the promisingly results obtained in this thesis.

Bibliography

[1] S. V. Adve, V. S. Adve, M. D. Hill, and M. K. Vernon. Comparison of hardware and software
cache coherence schemes. SIGARCH Comput. Archit. News, 19:298–308, April 1991.

[2] V. S. Adve and M. K. Vernon. Parallel program performance prediction using deterministic
task graph analysis. ACM Trans. Comput. Syst., 22(1):94–136, Feb. 2004.

[3] M. Ajmone Marsan, G. Balbo, G. Conte, and F. Gregoretti. Modeling bus contention
and memory interference in a multiprocessor system. Computers, IEEE Transactions on,
C-32(1):60–72, 1983.

[4] M. Aldinucci. Automatic program transformation: The Meta tool for skeleton-based lan-
guages. In S. Gorlatch and C. Lengauer, editors, Constructive Methods for Parallel Pro-
gramming, Advances in Computation: Theory and Practice, chapter 5, pages 59–78. Nova
Science Publishers, NY, USA, 2002.

[5] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati. Targeting dis-
tributed systems in fastflow. In I. Caragiannis, M. Alexander, R. Badia, M. Cannataro,
A. Costan, M. Danelutto, F. Desprez, B. Krammer, J. Sahuquillo, S. Scott, and J. Wei-
dendorfer, editors, Euro-Par 2012: Parallel Processing Workshops, volume 7640 of Lecture
Notes in Computer Science, pages 47–56. Springer Berlin Heidelberg, 2013.

[6] M. Aldinucci, M. Coppola, and M. Danelutto. Rewriting skeleton programs: How to evaluate
the data-parallel stream-parallel tradeoff. In S. Gorlatch, editor, Proc of CMPP: Intl.
Workshop on Constructive Methods for Parallel Programming, pages 44–58. Fakultät für
mathematik und informatik, Uni. Passau, Germany, May 1998.

[7] M. Aldinucci, M. Coppola, M. Vanneschi, C. Zoccolo, and M. Danelutto. Assist as a
research framework for high-performance grid programming environments. In J. Cunha
and O. Rana, editors, Grid Computing: Software Environments and Tools, pages 230–256.
Springer London, 2006.

[8] M. Aldinucci, M. Danelutto, and P. Kilpatrick. Skeletons for multi/many-core systems.
In Parallel Computing: From Multicores and GPU’s to Petascale (Proc. of PARCO 2009,
Lyon, France), 2010.

[9] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and M. Torquati. An efficient
unbounded lock-free queue for multi-core systems. In Proc. of 18th Intl. Euro-Par 2012
Parallel Processing, LNCS, Rhodes Island, Greece, Aug. 2012. Springer. To appear.

[10] M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment supporting struc-
tured parallel programming in java. Future Generation Computer Systems, 19(5):611 – 626,
2003. ¡ce:title¿Tools for Program Development and Analysis. Best papers from two Tech-
nical Sessions, at ICCS2001, San Francisco, CA, USA, and ICCS2002, Amsterdam, The
Netherlands¡/ce:title¿.

278 BIBLIOGRAPHY

[11] M. Aldinucci, S. Gorlatch, C. Lengauer, and S. Pelagatti. Towards parallel programming by
transformation: The fan skeleton framework. Parallel Algorithms and Applications, 16(2–
3):87–122, Mar. 2001.

[12] M. Aldinucci, M. Meneghin, and M. Torquati. Efficient smith-waterman on multi-core with
fastflow. In M. Danelutto, T. Gross, and J. Bourgeois, editors, Proc. of Intl. Euromicro
PDP 2010: Parallel Distributed and network-based Processing, Pisa, Italy, Feb. 2010. IEEE.

[13] J. Ansel. Autotuning Programs with Algorithmic Choice. Ph.d. thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, February 2014.

[14] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amarasinghe.
Petabricks: A language and compiler for algorithmic choice. SIGPLAN Not., 44(6):38–49,
June 2009.

[15] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,
D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A view of the parallel
computing landscape. Commun. ACM, 52:56–67, October 2009.

[16] M. Awasthi, D. W. Nellans, K. Sudan, R. Balasubramonian, and A. Davis. Handling the
problems and opportunities posed by multiple on-chip memory controllers. In Proceedings
of the 19th International Conference on Parallel Architectures and Compilation Techniques,
PACT ’10, pages 319–330, New York, NY, USA, 2010. ACM.

[17] E. Ayguad, R. Badia, F. Igual, J. Labarta, R. Mayo, and E. Quintana-Ort. An extension
of the starss programming model for platforms with multiple gpus. In H. Sips, D. Epema,
and H.-X. Lin, editors, Euro-Par 2009 Parallel Processing, volume 5704 of Lecture Notes in
Computer Science, pages 851–862. Springer Berlin Heidelberg, 2009.

[18] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3l: A structured high-
level parallel language, and its structured support. Concurrency: Practice and Experience,
7(3):225–255, 1995.

[19] B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. Skie: A heterogeneous environment
for {HPC} applications. Parallel Computing, 25(1314):1827 – 1852, 1999.

[20] F. Baiardi, L. Ricci, and M. Vanneschi. Static checking of interprocess communication in
ecsp. SIGPLAN Not., 19(6):290–299, June 1984.

[21] D. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. Simon, V. VenkataKrishnan, and
S. Weeratunga. The nas parallel benchmarks summary and preliminary results. In Super-
computing, 1991. Supercomputing ’91. Proceedings of the 1991 ACM/IEEE Conference on,
pages 158–165, 1991.

[22] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Handley, A. Helmy, J. Hei-
demann, P. Huang, S. Kumar, S. McCanne, R. Rejaie, P. Sharma, K. Varadhan, Y. Xu,
H. Yu, and D. Zappala. Improving simulation for network research. Technical Report 99-
702b, University of Southern California, March 1999. revised September 1999, to appear in
IEEE Computer.

[23] S. Balsamo, V. D. N. Person, and P. Inverardi. A review on queueing network models
with finite capacity queues for software architectures performance prediction. Performance
Evaluation, 51(24):269 – 288, 2003. ¡ce:title¿Queueing Networks with Blocking¡/ce:title¿.

[24] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad memory:
a design alternative for cache on-chip memory in embedded systems. In Hardware/Software
Codesign, 2002. CODES 2002. Proceedings of the Tenth International Symposium on, pages
73–78, 2002.

BIBLIOGRAPHY 279

[25] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed, and mixed
networks of queues with different classes of customers. J. ACM, 22(2):248–260, Apr. 1975.

[26] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, L. Bao,
J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff, W. Anderson, E. Berger,
N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook. Tile64 - processor: A
64-core soc with mesh interconnect. In Solid-State Circuits Conference, 2008. ISSCC 2008.
Digest of Technical Papers. IEEE International, pages 88 –598, feb. 2008.

[27] Y. Ben-Itzhak, E. Zahavi, I. Cidon, and A. Kolodny. Hnocs: Modular open-source simulator
for heterogeneous nocs. In Embedded Computer Systems (SAMOS), 2012 International
Conference on, pages 51–57, 2012.

[28] J. Berthold, M. Dieterle, R. Loogen, and S. Priebe. Hierarchical master-worker skeletons. In
P. Hudak and D. Warren, editors, Practical Aspects of Declarative Languages, volume 4902
of Lecture Notes in Computer Science, pages 248–264. Springer Berlin Heidelberg, 2008.

[29] M. Bertoli, G. Casale, and G. Serazzi. Jmt: performance engineering tools for system
modeling. SIGMETRICS Perform. Eval. Rev., 36(4):10–15, 2009.

[30] C. Bertolli, D. Buono, S. Lametti, G. Mencagli, M. Meneghin, A. Pascucci, and M. Van-
neschi. A programming model for high-performance adaptive applications on pervasive
mobile grids. In Proceeding of the 21st IASTED International Conference on Parallel and
Distributed Computing and Systems, 2009.

[31] C. Bertolli, D. Buono, G. Mencagli, M. Mordacchini, F. M. Nardini, M. Torquati, and
M. Vanneschi. Resource discovery support for time-critical adaptive applications. In The
6th International Wireless Communications and Mobile Computing Conference. Workshop
on Emergency Management: Communication and Computing Platforms, 2010.

[32] C. Bertolli, D. Buono, G. Mencagli, and M. Vanneschi. Expressing adaptivity and context-
awareness in the assistant programming model. In Proceedings of the Third International
ICST Conference on Autonomic Computing and Communication Systems, 2009.

[33] C. Bertolli, D. Buono, G. Mencagli, and M. Vanneschi. Expressing adaptivity and context-
awareness in the assistant programming model. In Proceedings of the Third International
ICST Conference on Autonomic Computing and Communication Systems, 2009.

[34] C. Bertolli, D. Buono, G. Mencagli, and M. Vanneschi. An approach to mobile grid plat-
forms for the development and support of complex ubiquitous applications. In Handbook of
Research on Mobility and Computing: Evolving Technologies and Ubiquitous Impacts, 2011.

[35] C. Bertolli and M. Vanneschi. Fault tolerance for data parallel programs. Concurrency and
Computation: Practice and Experience, 23(6):595–632, 2011.

[36] D. Bhandarkar. Analysis of memory interference in multiprocessors. Computers, IEEE
Transactions on, C-24(9):897–908, 1975.

[37] L. Bhuyan, Q. Yang, and D. Agrawal. Performance of multiprocessor interconnection net-
works. Computer, 22(2):25–37, 1989.

[38] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite: Characterization
and architectural implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’08, pages 72–81, New York,
NY, USA, 2008. ACM.

[39] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova. A case for numa-aware contention
management on multicore systems. In Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference, USENIXATC’11, pages 1–1, Berkeley, CA, USA,
2011. USENIX Association.

280 BIBLIOGRAPHY

[40] F. Blagojevic, P. Hargrove, C. Iancu, and K. Yelick. Hybrid pgas runtime support for
multicore nodes. In Fourth Conference on Partitioned Global Address Space Programming
Model (PGAS10), Oct 2010, 2010.

[41] D. Buono, M. Danelutto, T. De Matteis, G. Mencagli, and M. Torquati. A lightweight
run-time support for fast dense linear algebra on multi-core. In Proceedings of the 12th
IASTED International Conference on Parallel Distributed Computing and Networks, 2014.

[42] D. Buono, M. Danelutto, and S. Lametti. Map, reduce and mapreduce, the skeleton way.
Procedia Computer Science, 1(1):2095 – 2103, 2010.

[43] D. Buono, M. Danelutto, S. Lametti, and M. Torquati. Parallel patterns for general pur-
pose many-core. In Proceeding of the 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, 2013.

[44] D. Buono, M. Danelutto, S. Lametti, and M. Torquati. Parallel patterns for general pur-
pose many-core. In Parallel, Distributed and Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on, pages 131–139, 2013.

[45] D. Buono, T. De Matteis, and G. Mencagli. A high-throughput and low-latency paralleliza-
tion of window-based stream joins on multicores. In Parallel and Distributed Processing
with Applications (ISPA), 2014 IEEE 12th International Symposium on, 2014. To Appear.

[46] D. Buono, T. De Matteis, G. Mencagli, and M. Vanneschi. Towards a methodology for paral-
lel data stream processing: application to parallel stream join. Technical report, University
of Pisa, 2013.

[47] D. Buono, T. D. Matteis, G. Mencagli, and M. Vanneschi. Optimizing message-passing
on multicore architectures using hardware multi-threading. In Parallel, Distributed and
Network-Based Processing (PDP), 2014 22nd Euromicro International Conference on, pages
262–270, Feb 2014.

[48] D. Buono and G. Mencagli. Run-time Mechanisms for Fine-Grained Parallelism on Network
Processors: the TILEPro64 Experience. In High Performance Computing and Simulation
(HPCS), 2014 International Conference on, 2014. To Appear.

[49] D. Buono, G. Mencagli, A. Pascucci, and M. Vanneschi. Performance analysis and structured
parallelisation of the spacetime adaptive processing computational kernel on multi-core
architectures. International Journal of Parallel, Emergent and Distributed Systems, 0(0):1–
39, 0.

[50] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1997.

[51] M. Butler, L. Barnes, D. Sarma, and B. Gelinas. Bulldozer: An approach to multithreaded
compute performance. Micro, IEEE, 31(2):6–15, March 2011.

[52] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and D. Brooks. Helix:
Automatic parallelization of irregular programs for chip multiprocessing. In Proceedings of
the Tenth International Symposium on Code Generation and Optimization, CGO ’12, pages
84–93, New York, NY, USA, 2012. ACM.

[53] B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability and the chapel lan-
guage. Int. J. High Perform. Comput. Appl., 21:291–312, August 2007.

[54] M. K. Chan and L. Yang. Comparative analysis of openmp and mpi on multi-core archi-
tecture. In Proceedings of the 44th Annual Simulation Symposium, ANSS ’11, pages 18–25,
San Diego, CA, USA, 2011. Society for Computer Simulation International.

BIBLIOGRAPHY 281

[55] X. Chang. Network simulations with OPNET. In Simulation Conference Proceedings, 1999
Winter, volume 1, pages 307–314 vol.1, 1999.

[56] B. Chapman, G. Jost, and R. v. d. Pas. Using OpenMP: Portable Shared Memory Parallel
Programming (Scientific and Engineering Computation). The MIT Press, 2007.

[57] H. Cheong and A. Veidenbaum. Compiler-directed cache management in multiprocessors.
Computer, 23(6):39–47, 1990.

[58] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S. Adve,
N. P. Carter, and C.-T. Chou. Denovo: Rethinking the memory hierarchy for disciplined
parallelism. In Proceedings of the 2011 International Conference on Parallel Architectures
and Compilation Techniques, PACT ’11, pages 155–166, Washington, DC, USA, 2011. IEEE
Computer Society.

[59] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. Evaluation and improvements of program-
ming models for the intel scc many-core processor. In High Performance Computing and
Simulation (HPCS), 2011 International Conference on, pages 525–532, 2011.

[60] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Cantonnet, T. El-Ghazawi, A. Mohanti,
Y. Yao, and D. Chavarŕıa-Miranda. An evaluation of global address space languages: co-
array fortran and unified parallel c. In Proceedings of the tenth ACM SIGPLAN symposium
on Principles and practice of parallel programming, PPoPP ’05, pages 36–47, New York,
NY, USA, 2005. ACM.

[61] M. Cole. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel
programming. Parallel Comput., 30(3):389–406, 2004.

[62] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. Cache hierarchy
and memory subsystem of the amd opteron processor. IEEE Micro, 30:16–29, 2010.

[63] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian,
and T. von Eicken. Logp: towards a realistic model of parallel computation. SIGPLAN
Not., 28:1–12, July 1993.

[64] D. Culler, J. Singh, and A. Gupta. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann, 1st edition, 1998. The Morgan Kaufmann Series in Computer
Architecture and Design.

[65] T. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner, D. Neto, J. Wong,
P. Yiannacouras, and D. Singh. From opencl to high-performance hardware on fpgas. In
Field Programmable Logic and Applications (FPL), 2012 22nd International Conference on,
pages 531–534, Aug 2012.

[66] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory program-
ming. IEEE Computational Science and Engineering, 5(1):46–55, 1998.

[67] M. Danelutto. Efficient support for skeletons on workstation clusters. Parallel Processing
Letters, 11(01):41–56, 2001.

[68] M. Danelutto and M. Stigliani. Skelib: Parallel programming with skeletons in c. In A. Bode,
T. Ludwig, W. Karl, and R. Wismller, editors, Euro-Par 2000 Parallel Processing, volume
1900 of Lecture Notes in Computer Science, pages 1175–1184. Springer Berlin Heidelberg,
2000.

[69] J. Darlington, Y.-k. Guo, H. W. To, and J. Yang. Parallel skeletons for structured compo-
sition. SIGPLAN Not., 30(8):19–28, Aug. 1995.

282 BIBLIOGRAPHY

[70] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V. Quema, and
M. Roth. Traffic management: A holistic approach to memory placement on numa systems.
SIGARCH Comput. Archit. News, 41(1):381–394, Mar. 2013.

[71] T. De Matteis, F. Luporini, G. Mencagli, and M. Vanneschi. Evaluation of architectural
supports for fine-grained synchronization mechanisms. In Proceedings of the 11th IASTED
International Conference on Parallel and Distributed Computing and Networks, Innsbruck,
Austria, 2013.

[72] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Com-
mun. ACM, 51(1):107–113, Jan. 2008.

[73] M. Dubois and F. A. Briggs. Effects of cache coherency in multiprocessors. Computers,
IEEE Transactions on, C-31(11):1083–1099, 1982.

[74] J. Dunigan, T.H., J. Vetter, I. White, J.B., and P. Worley. Performance evaluation of the
cray x1 distributed shared-memory architecture. Micro, IEEE, 25(1):30–40, 2005.

[75] J. Dunigan, T.H., J. Vetter, and P. Worley. Performance evaluation of the sgi altix 3700. In
Parallel Processing, 2005. ICPP 2005. International Conference on, pages 231–240, 2005.

[76] A. DURAN, E. AYGUAD, R. M. BADIA, J. LABARTA, L. MARTINELL, X. MAR-
TORELL, and J. PLANAS. Ompss: A proposal for programming heterogeneous multi-core
architectures. Parallel Processing Letters, 21(02):173–193, 2011.

[77] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC: Distributed Shared-Memory
Programming. Wiley-Interscience, 2003.

[78] R. Fatoohi. Performance evaluation of the dual-core based sgi altix 4700. In Computer
Architecture and High Performance Computing, 2007. SBAC-PAD 2007. 19th International
Symposium on, pages 97–104, 2007.

[79] C. Fensch and M. Cintra. An os-based alternative to full hardware coherence on tiled cmps.
In High Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th International
Symposium on, pages 355–366, 2008.

[80] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of the
tenth annual ACM symposium on Theory of computing, STOC ’78, pages 114–118, New
York, NY, USA, 1978. ACM.

[81] F. Franchetti, M. Püschel, Y. Voronenko, S. Chellappa, and J. M. F. Moura. Discrete
Fourier transform on multicore. IEEE Signal Processing Magazine, special issue on “Signal
Processing on Platforms with Multiple Cores”, 26(6):90–102, 2009.

[82] B. Franke and M. O’Boyle. A complete compiler approach to auto-parallelizing c programs
for multi-dsp systems. Parallel and Distributed Systems, IEEE Transactions on, 16(3):234–
245, 2005.

[83] H. Franke, J. Xenidis, C. Basso, B. M. Bass, S. S. Woodward, J. D. Brown, and C. L.
Johnson. Introduction to the wire-speed processor and architecture. IBM J. Res. Dev.,
54:27–37, January 2010.

[84] M. Frigo and S. Johnson. Fftw: an adaptive software architecture for the fft. In Acoustics,
Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference
on, volume 3, pages 1381–1384 vol.3, May 1998.

[85] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the cilk-5 multi-
threaded language. SIGPLAN Not., 33(5):212–223, May 1998.

BIBLIOGRAPHY 283

[86] Golang.org Community. The Go Programming Language WebSite, 2014. http://golang.
org.

[87] S. Gorlatch and S. Pelagatti. A transformational framework for skeletal programs: Overview
and case study. In J. Rohlim, editor, Proc. of Parallel and Distributed Processing. Workshops
held in Conjunction with IPPS/SPDP’99, volume 1586 of LNCS, pages 123–137, Berlin,
1999. Springer.

[88] S. Gorlatch, C. Wedler, and C. Lengauer. Optimization rules for programming with collec-
tive operations. In Parallel Processing, 1999. 13th International and 10th Symposium on
Parallel and Distributed Processing, 1999. 1999 IPPS/SPDP. Proceedings, pages 492–499,
1999.

[89] Y. Guo, V. Vlassov, R. Ashok, R. Weiss, and C. A. Moritz. Synchronization coherence:
A transparent hardware mechanism for cache coherence and fine-grained synchronization.
Journal of Parallel and Distributed Computing, 68(2):165 – 181, 2008.

[90] A. Gupta and V. Kumar. The scalability of fft on parallel computers. Parallel and Dis-
tributed Systems, IEEE Transactions on, 4(8):922–932, 1993.

[91] D. Hackenberg, D. Molka, and W. E. Nagel. Comparing cache architectures and coherency
protocols on x86-64 multicore smp systems. In Proceedings of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 42, pages 413–422, New York, NY,
USA, 2009. ACM.

[92] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fourth Edition: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

[93] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson,
N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam,
V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Hen-
riss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van der Wijngaart, and T. Mattson.
A 48-core ia-32 message-passing processor with dvfs in 45nm cmos. In Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, pages 108–109,
2010.

[94] R. Iakymchuk and P. Bientinesi. Modeling performance through memory-stalls. SIGMET-
RICS Perform. Eval. Rev., 40(2):86–91, Oct. 2012.

[95] K. ichi Nomura, R. K. Kalia, A. Nakano, and P. Vashishta. A scalable parallel algorithm
for large-scale reactive force-field molecular dynamics simulations. Computer Physics Com-
munications, 178(2):73 – 87, 2008.

[96] E. Ipek, B. Supinski, M. Schulz, and S. McKee. An approach to performance prediction
for parallel applications. In J. Cunha and P. Medeiros, editors, Euro-Par 2005 Parallel
Processing, volume 3648 of Lecture Notes in Computer Science, pages 196–205. Springer
Berlin Heidelberg, 2005.

[97] K. Irani and I. Onyuksel. A closed-form solution for the perfornance analysis of multiple-bus
multiprocessor systems. Computers, IEEE Transactions on, C-33(11):1004–1012, 1984.

[98] J. Jeffers and J. Reinders. Intel Xeon Phi Coprocessor High Performance Programming.
Newnes, 2013.

[99] F. Jiao, N. Mahajan, J. Willcock, A. Chauhan, and A. Lumsdaine. Partial globalization
of partitioned address spaces for zero-copy communication with shared memory. In HiPC,
pages 1–10. IEEE, 2011.

[100] C. F. Joerg. The cilk system for parallel multithreaded computing. PhD thesis, Cambridge,
MA, USA, 1995.

http://golang.org
http://golang.org

284 BIBLIOGRAPHY

[101] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. A predictive performance model
for superscalar processors. In Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 39, pages 161–170, Washington, DC, USA, 2006.
IEEE Computer Society.

[102] R. Kalla, B. Sinharoy, W. Starke, and M. Floyd. Power7: Ibm’s next-generation server
processor. Micro, IEEE, 30(2):7–15, 2010.

[103] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. Power7: Ibm’s next-generation server
processor. IEEE Micro, 30:7–15, 2010.

[104] J. Kelm, D. Johnson, W. Tuohy, S. S. Lumetta, and S. Patel. Cohesion: An adaptive hybrid
memory model for accelerators. Micro, IEEE, 31(1):42–55, 2011.

[105] Khronos Group. OpenCL - The Open Standard for Parallel Programming of Heterogeneous
Systems, 2014. https://www.khronos.org/opencl.

[106] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communication network: Built
for speed. Micro, IEEE, 26(3):10–23, May 2006.

[107] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded sparc
processor. IEEE Micro, 25:21–29, 2005.

[108] H. Koziolek. Performance evaluation of component-based software systems: A survey. Per-
formance Evaluation, 67(8):634 – 658, 2010. ¡ce:title¿Special Issue on Software and Perfor-
mance¡/ce:title¿.

[109] G. Krawezik. Performance comparison of mpi and three openmp programming styles on
shared memory multiprocessors. In Proceedings of the Fifteenth Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA ’03, pages 118–127, New York, NY, USA,
2003. ACM.

[110] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. C. Kimerling, and A. Agar-
wal. Atac: a 1000-core cache-coherent processor with on-chip optical network. In Proceedings
of PACT ’10, New York, 2010.

[111] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative system per-
formance: computer system analysis using queueing network models. Prentice-Hall, Inc.,
1984.

[112] K. K. Leung. Load-dependent service queues with application to congestion control in
broadband networks. Performance Evaluation, 50(1):27 – 40, 2002.

[113] M. Leyton and J. Piquer. Skandium: Multi-core programming with algorithmic skeletons.
In Parallel, Distributed and Network-Based Processing (PDP), 2010 18th Euromicro Inter-
national Conference on, pages 289–296, 2010.

[114] M. Leyton and J. M. Piquer. Skandium: Multi-core programming with algorithmic skeletons.
In Proceedings of PDP ’10, 2010.

[115] J.-J. Li, C.-B. Kuan, T.-Y. Wu, and J. K. Lee. Enabling an opencl compiler for embedded
multicore dsp systems. In Parallel Processing Workshops (ICPPW), 2012 41st International
Conference on, pages 545–552, Sept 2012.

[116] F. Liu. Analytically modeling the memory hierarchy performance of modern processor sys-
tems. PhD thesis, North Carolina State University, 2011. AAI3463793.

[117] J. A. Lorenzo-Castillo, J. C. Pichel, F. F. Rivera, T. F. Pena, and J. C. Cabaleiro. A flexible
and dynamic page migration infrastructure based on hardware counters. The Journal of
Supercomputing, 65(2):930–948, 2013.

https://www.khronos.org/opencl

BIBLIOGRAPHY 285

[118] T. Maeurer and D. Shippy. Introduction to the cell multiprocessor. IBM journal of Research
and Development, 49(4):589–604, 2005.

[119] J. Marathe and F. Mueller. Hardware profile-guided automatic page placement for ccnuma
systems. In Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’06, pages 90–99, New York, NY, USA, 2006.
ACM.

[120] J. Marathe, V. Thakkar, and F. Mueller. Feedback-directed page placement for ccnuma
via hardware-generated memory traces. Journal of Parallel and Distributed Computing,
70(12):1204 – 1219, 2010.

[121] G. Marin and J. Mellor-Crummey. Cross-architecture performance predictions for scientific
applications using parameterized models. SIGMETRICS Perform. Eval. Rev., 32(1):2–13,
June 2004.

[122] M. Marsan and M. Gerla. Markov models for multiple bus multiprocessor systems. Com-
puters, IEEE Transactions on, C-31(3):239–248, 1982.

[123] M. Marzolla. The qnetworks toolbox: A software package for queueing networks analysis. In
K. Al-Begain, D. Fiems, and W. J. Knottenbelt, editors, Analytical and Stochastic Modeling
Techniques and Applications, 17th International Conference, ASMTA 2010, Cardiff, UK,
Proceedings, volume 6148 of Lecture Notes in Computer Science, pages 102–116. Springer,
June14–16 2010.

[124] C. McNairy and D. Soltis. Itanium 2 processor microarchitecture. IEEE Micro, 23:44–55,
March 2003.

[125] G. Mencagli. A Control-Theoretic Methodology for Adaptive Structured Parallel Computa-
tions. PhD thesis, University of Pisa, 2012.

[126] G. Mencagli and M. Vanneschi. Analysis of control-theoretic predictive strategies for the
adaptation of distributed parallel computations. In Proceedings of the First ACM Workshop
on Optimization Techniques for Resources Management in Clouds, ORMaCloud ’13, pages
33–40, New York, NY, USA, 2013. ACM.

[127] G. Mencagli, M. Vanneschi, and E. Vespa. Control-theoretic adaptation strategies for au-
tonomic reconfigurable parallel applications on cloud environments. In High Performance
Computing and Simulation (HPCS), 2013 International Conference on, pages 11–18, 2013.

[128] G. Mencagli, M. Vanneschi, and E. Vespa. Reconfiguration stability of adaptive distributed
parallel applications through a cooperative predictive control approach. In Proceedings of the
19th International Conference on Parallel Processing, Euro-Par’13, pages 329–340, Berlin,
Heidelberg, 2013. Springer-Verlag.

[129] M. Meneghin. An Optimization Theory for Structured Stencil-based Parallel Applications.
Ph.d. thesis, University of Pisa, Cambridge, MA, Feb 2010.

[130] M. Moadeli, A. Shahrabi, W. Vanderbauwhede, and P. Maji. An analytical performance
model for the spidergon noc with virtual channels. J. Syst. Archit., 56(1):16–26, Jan. 2010.

[131] D. Molka, D. Hackenberg, R. Schone, and M. Muller. Memory performance and cache
coherency effects on an intel nehalem multiprocessor system. In Parallel Architectures and
Compilation Techniques, 2009. PACT ’09. 18th International Conference on, pages 261–270,
2009.

[132] D. Molka, R. Schne, D. Hackenberg, and M. Mller. Memory performance and spec openmp
scalability on quad-socket x86 64 systems. In Y. Xiang, A. Cuzzocrea, M. Hobbs, and
W. Zhou, editors, Algorithms and Architectures for Parallel Processing, volume 7016 of
Lecture Notes in Computer Science, pages 170–181. Springer Berlin Heidelberg, 2011.

286 BIBLIOGRAPHY

[133] Y. Nishikawa, M. Koibuchi, M. Yoshimi, K. Miura, and H. Amano. An analytical network
performance model for simd processor csx600 interconnects. J. Syst. Archit., 57(1):146–159,
Jan. 2011.

[134] R. Nishtala and K. A. Yelick. Optimizing collective communication on multicores. In
Proceedings of HotPar’09, 2009.

[135] S. Oaks and H. Wong. Java Threads. O’Reilly, Sebastopol, CA, 3 edition, 2004.

[136] J. Odom, J. K. Hollingsworth, L. DeRose, K. Ekanadham, and S. Sbaraglia. Using dynamic
tracing sampling to measure long running programs. In Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, SC ’05, pages 59–, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[137] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice Hall Press,
Upper Saddle River, NJ, USA, 3rd edition, 2009.

[138] S. Owicki and A. Agarwal. Evaluating the performance of software cache coherence.
SIGARCH Comput. Archit. News, 17:230–242, April 1989.

[139] S. Pelagatti. A methodology for the development and the support of massively parallel pro-
grams. PhD thesis, 1993.

[140] S. Pelagatti. Patterns and skeletons for parallel and distributed computing. chapter Task
and data parallelism in P3L, pages 155–186. Springer-Verlag, London, UK, UK, 2003.

[141] J. Perez, R. Badia, and J. Labarta. A dependency-aware task-based programming en-
vironment for multi-core architectures. In Cluster Computing, 2008 IEEE International
Conference on, pages 142–151, Sept 2008.

[142] C. Pheatt. Intel threading building blocks. J. Comput. Small Coll., 23:298–298, April 2008.

[143] M. Poldner and H. Kuchen. On implementing the farm skeleton. Parallel Processing Letters,
18(1):117–131, 2008.

[144] J. Reinders. Intel threading building blocks. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, first edition, 2007.

[145] R. Riedlinger, R. Bhatia, L. Biro, B. Bowhill, E. Fetzer, P. Gronowski, and T. Grutkowski.
A 32nm 3.1 billion transistor 12-wide-issue itanium processor for mission-critical servers. In
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE Interna-
tional, pages 84–86, 2011.

[146] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A cycle accurate memory system
simulator. Computer Architecture Letters, 10(1):16 –19, jan.-june 2011.

[147] S. Saini, D. Jespersen, D. Talcott, J. Djomehri, and T. Sandstrom. Performance comparison
of sgi altix 4700 and sgi altix 3700 bx2. In Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on, pages 1–8, 2008.

[148] D. Sanchez, G. Michelogiannakis, and C. Kozyrakis. An analysis of on-chip interconnection
networks for large-scale chip multiprocessors. ACM Trans. Archit. Code Optim., 7:4:1–4:28,
May 2010.

[149] F. Schmager, N. Cameron, and J. Noble. Gohotdraw: Evaluating the go programming
language with design patterns. In Evaluation and Usability of Programming Languages and
Tools, PLATEAU ’10, pages 10:1–10:6, New York, NY, USA, 2010. ACM.

[150] Silicon Graphics International Corp. Performance and productivity breakthroughs with
very large coherent shared memory: The sgi uv architecture. Technical report, 2012.

BIBLIOGRAPHY 287

[151] D. B. Skillicorn and W. Cai. A cost calculus for parallel functional programming. J. Parallel
Distrib. Comput., 28(1):65–83, July 1995.

[152] D. B. Skillicorn and D. Talia. Models and languages for parallel computation. ACM Comput.
Surv., 30(2):123–169, June 1998.

[153] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman. MPI: The Complete
Reference. MIT Press, Cambridge, MA, USA, 1995.

[154] M. Steuwer, P. Kegel, and S. Gorlatch. Skelcl - a portable skeleton library for high-
level gpu programming. In Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on, pages 1176–1182, May 2011.

[155] J. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming standard for heteroge-
neous computing systems. Computing in Science Engineering, 12(3):66–73, May 2010.

[156] C. Su, D. Li, D. S. Nikolopoulos, M. Grove, K. Cameron, and B. R. de Supinski. Criti-
cal path-based thread placement for numa systems. SIGMETRICS Perform. Eval. Rev.,
40(2):106–112, Oct. 2012.

[157] I. Tartalja and V. Milutinovic. Classifying software-based cache coherence solutions. Soft-
ware, IEEE, 14(3):90–101, 1997.

[158] E. Tejedor, M. Farreras, D. Grove, R. M. Badia, G. Almasi, and J. Labarta. Clusterss:
A task-based programming model for clusters. In Proceedings of the 20th International
Symposium on High Performance Distributed Computing, HPDC ’11, pages 267–268, New
York, NY, USA, 2011. ACM.

[159] M. M. Tikir and J. K. Hollingsworth. Hardware monitors for dynamic page migration.
Journal of Parallel and Distributed Computing, 68(9):1186 – 1200, 2008.

[160] Tilera Corp. Tile Processor User Architecture Manual.

[161] Tilera Corp. One-dimensional radix-2 fft on the tile processor. Technical report, Tilera
Corp., 2011.

[162] Tilera Corp. TilePro Processor Family, 2012. http://www.tilera.com/products/
processors/TILEPro_Family.

[163] Tilera Corp. TILE-Gx8072™ Processor White Paper. Technical report, Tilera Corp., 2013.
Available on www.tilera.com.

[164] D. Towsley. Approximate models of multiple bus multiprocessor systems. Computers, IEEE
Transactions on, C-35(3):220–228, 1986.

[165] T.-F. Tsuei and M. Vernon. A multiprocessor bus design model validated by system mea-
surement. Parallel and Distributed Systems, IEEE Transactions on, 3(6):712–727, 1992.

[166] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: maximizing
on-chip parallelism. In 25 years of the international symposia on Computer architecture
(selected papers), ISCA ’98, pages 533–544, New York, NY, USA, 1998. ACM.

[167] D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M. Levy. Supporting fine-grained synchroniza-
tion on a simultaneous multithreading processor. In Proceedings of HPCA ’99, 1999.

[168] T. Ungerer, B. Robič, and J. Šilc. A survey of processors with explicit multithreading. ACM
Comput. Surv., 35(1):29–63, Mar. 2003.

[169] L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 33:103–111,
August 1990.

http://www.tilera.com/products/processors/TILEPro_Family
http://www.tilera.com/products/processors/TILEPro_Family
www.tilera.com

288 BIBLIOGRAPHY

[170] L. G. Valiant. A bridging model for multi-core computing. In Proceedings of the 16th
Annual European Symposium on Algorithms, ESA ’08, pages 13–28, Berlin, Heidelberg,
2008. Springer-Verlag.

[171] M. Vanneschi. Heterogeneous hpc environments. In D. Pritchard and J. Reeve, editors,
Euro-Par98 Parallel Processing, volume 1470 of Lecture Notes in Computer Science, pages
21–34. Springer Berlin Heidelberg, 1998.

[172] M. Vanneschi. The programming model of assist, an environment for parallel and distributed
portable applications. Parallel Comput., 28(12):1709–1732, 2002.

[173] M. Vanneschi. Architettura degli Elaboratori. Pisa University Press, 2013.

[174] A. Varga and R. Hornig. An overview of the omnet++ simulation environment. In Proceed-
ings of the 1st International Conference on Simulation Tools and Techniques for Communi-
cations, Networks and Systems & Workshops, Simutools ’08, pages 60:1–60:10, ICST, Brus-
sels, Belgium, Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[175] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating system support for
improving data locality on cc-numa compute servers. SIGOPS Oper. Syst. Rev., 30(5):279–
289, Sept. 1996.

[176] M. K. Vernon and M. A. Holliday. Performance analysis of multiprocessor cache consistency
protocols using generalized timed petri nets. SIGMETRICS Perform. Eval. Rev., 14(1):9–
17, May 1986.

[177] R. Virding, C. Wikström, and M. Williams. Concurrent programming in ERLANG (2nd
ed.). Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 1996.

[178] D. T. Wang. Modern Dram Memory Systems: Performance Analysis and Scheduling Algo-
rithm. PhD thesis, College Park, MD, USA, 2005. AAI3178628.

[179] P. D. Welch. A fixed-point fast fourier transform error analysis. Audio and Electroacoustics,
IEEE Transactions on, 17(2):151–157, 1969.

[180] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C.-C.
Miao, J. Brown, and A. Agarwal. On-chip interconnection architecture of the tile processor.
Micro, IEEE, 27(5):15 –31, sept.-oct. 2007.

[181] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software. In Proceed-
ings of the 1998 ACM/IEEE Conference on Supercomputing, SC ’98, pages 1–27, Washing-
ton, DC, USA, 1998. IEEE Computer Society.

[182] B. Wilkinson and M. Allen. Parallel Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1999.

[183] D. L. Willick and D. L. Eager. An analytic model of multistage interconnection networks.
SIGMETRICS Perform. Eval. Rev., 18(1):192–202, Apr. 1990.

[184] M. Woodacre, D. Robb, D. Roe, and K. Feind. The sgi altixtm 3000 global shared-memory
architecture - white paper. Technical report, Silicon Graphics, Inc, 2003.

[185] X. Wu and V. Taylor. Performance characteristics of hybrid mpi/openmp implementations
of nas parallel benchmarks sp and bt on large-scale multicore supercomputers. SIGMET-
RICS Perform. Eval. Rev., 38(4):56–62, Mar. 2011.

BIBLIOGRAPHY 289

[186] W. A. Wulf and C. G. Bell. C.mmp: A multi-mini-processor. In Proceedings of the December
5-7, 1972, Fall Joint Computer Conference, Part II, AFIPS ’72 (Fall, part II), pages 765–
777, New York, NY, USA, 1972. ACM.

[187] L. Yang, X. Ma, and F. Mueller. Cross-platform performance prediction of parallel applica-
tions using partial execution. In Supercomputing, 2005. Proceedings of the ACM/IEEE SC
2005 Conference, pages 40–40, 2005.

[188] Q. Yang, L. Bhuyan, and B.-C. Liu. Analysis and comparison of cache coherence protocols
for a packet-switched multiprocessor. Computers, IEEE Transactions on, 38(8):1143–1153,
1989.

[189] A. Zavanella. Skel-bsp: Performance portability for skeletal programming. In M. Bubak,
H. Afsarmanesh, B. Hertzberger, and R. Williams, editors, High Performance Comput-
ing and Networking, volume 1823 of Lecture Notes in Computer Science, pages 290–299.
Springer Berlin Heidelberg, 2000.

[190] J. Zhang. Characterizing the Scalability of Erlang VM on Many-core Processors. Master
Thesis, 2011.

	I Introduction
	Introduction
	Structured parallel programming
	Parallel patterns and their optimizations
	Multiple memory interfaces
	Automatic Cache Coherence

	Introducing a performance model
	Towards a parallel programming environment
	List of Contributions of the Thesis
	Outline of the Thesis
	Current publications by the author

	Background
	Chip MultiProcessor architectures
	Processor architecture
	Interconnection network
	Memory bandwidth and organization
	Atomic operations and synchronizations
	Cache coherence
	Number of cores

	Parallel programming on Chip MultiProcessors
	Programming Languages
	Libraries
	Our vision of parallel programming

	Performance model for multiprocessors
	Algorithm oriented performance models for multiprocessors
	Hardware-oriented performance cost models

	Summary

	Structured parallel programming for multi-core
	The need for high level parallel programming
	Structured parallel programming
	Parallel Paradigms
	Stream Parallelism
	Task-Farm
	Pipeline

	Data Parallelism
	Map
	Reduce
	Map + Reduce, a notable composition
	Data-Parallel with Stencil

	Stencil Transformations

	Expressing Parallel Paradigms
	Skeletons
	ASSIST: Beyond the classical skeleton approach
	The Virtual Processors approach

	Parallel patterns and their (many) implementations
	Mastering the possibilities, one piece at a time
	Towards a novel parallel programming environment
	Target architectures

	II Cost Models
	A hardware-dependent model based on QNs
	A general approach to parallel performance prediction
	The case of single-element streams

	Performance prediction of a parallel module
	An example: cost model for a trivial task-farm implementation
	Sequential code analysis
	Latency Model
	Service Time Model
	Evaluating the model parameters
	Evaluating the sequential time
	Modeling communications latencies

	The final model for the task-farm example

	Performance degradation on shared memory architectures
	Extensions to the original queueing network
	Modeling caches
	Bus interconnections
	Multiple Requests per processor
	Complex interconnection networks
	Cache coherency

	Adapting the model to a concrete parallel architecture

	Summary

	A Queueing Network Model for Tilera TILEPro64™
	EQNSim: a testing environment for queueing network models
	Architecture overview of Tilera TILEPro64™
	Processors
	Cache Hierarchy and Coherency
	Hash-for-Home
	Single-Home
	No-Home
	Restriction on the model

	Interconnection Network
	Under Load Latency

	Memory Subsystem
	Memory Read Service Time
	Memory Write Service Time
	Working with Caches

	Model Validation
	Evaluation of Rq for store_linear
	Evaluation of Rq for store_linear with a different store rate
	Considerations on the accuracy of the model

	Summary

	III Optimizations
	Exploiting Multiple Memory Controllers
	Programming multi-cores
	Memory allocation models
	SMP-like memory allocation
	NUMA-like memory allocation

	Process allocation

	Evaluation by mean of synthetic benchmarks
	Experimental results on the target architectures
	Concluding Remarks

	Farm parallelization of the Sobel Operator
	Experimental results on the target architectures
	Concluding Remarks

	Farm parallelization of the Vector Addition
	Experimental results on the target architectures

	Data-Parallel parallelization of the FFT
	Parallel FFT
	Experimental results on the target architectures
	Concluding Remarks

	Modeling policies in the architectural model
	Summary

	Software-based Cache Coherence
	The cost of automatic cache coherence
	Optimizing cache coherence for the farm pattern
	Automatic cache coherence with hashed home node
	Automatic cache coherence with fixed home node
	Disabling automatic cache coherence

	Experimental Results
	Optimizing cache coherence for a data-parallel pattern
	Automatic cache coherence with hashed home node
	Automatic cache coherence with fixed home node
	Disabling local caches
	Disabling automatic cache coherence

	Experimental Results
	Summary

	IV Wrapping Up
	Wrapping up: compiling a parallel module on TilePro64
	Example module and its application
	Parallel pattern and its implementations
	Parallel Patterns
	Farm Implementations

	Study of the message passing implementation
	Architecture Model Parameters
	Predicted Service Times

	Study of the message passing impl. with copy on receive
	Architecture Model Parameters
	Predicted Service Times

	Study of the pointer passing implementation
	Architecture Model Parameters
	Predicted Service Times

	Selection of the best implementation
	Impact of a multi-chip configuration
	A multi-chip TilePro64 configuration
	Network Latencies
	Core reservation and placement on the mesh
	Implementations and model parameters
	Performance study

	Summary

	Conclusions
	Bibliography

