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Sommario

Al giorno d’oggi esiste una forte domanda di sistemi informatici per l’analisi automa-

tica dei dati testuali. Le grandi industrie e organizzazioni hanno bisogno di elaborare

enormi quantità di dati testuali, un’attività che non può essere eseguita con il solo

lavoro umano. La Text Classification (TC) è l’attività di etichettare automaticamente

i documenti testuali di un insieme D con le categorie tematiche di un insieme predefi-

nito C. I sistemi di text classification lavorano con un’alta efficienza, ma non possono

garantire un’accuratezza impeccabile dell’etichettatura.

La Semi-Automated Text Classification (SATC) consiste nell’attività di ordinare

un insieme di documenti testuali etichettati automaticamente D in modo che, se un

annotatore umano validasse (i.e., ispezionasse e correggesse dove appropriato) una

porzione dei primi documenti dell’ordinamento con l’obiettivo di incrementare l’accu-

ratezza dell’etichettatura di D, l’incremento atteso venga massimizzato. Una strategia

ovvia è quella di ordinare D in modo che i documenti che il classificatore ha etichettato

con confidenza più bassa siano i primi dell’ordinamento. In questa tesi dimostriamo

che questa strategia è subottimale. Sviluppiamo nuovi metodi di ordinamento basati

sulla teoria dell’utilità e sul concetto di guadagno della validazione, definito come il

miglioramento dell’efficacia di classificazione che deriverebbe validando un dato do-

cumento etichettato automaticamente. Proponiamo inoltre nuove misure di efficacia

per i metodi di ordinamento orientati alla SATC, basati sulla riduzione attesa del-

l’errore di classificazione, riduzione ottenuta dalla validazione di parte della lista do

documenti generata da un dato metodo di ordinamento.

Riportiamo i risultati degli esperimenti che dimostrano che, in confronto al metodo

di base di cui sopra, e secondo le misure proposte, i nostri metodi di ordinamento

basati sulla teoria dell’utilità sono in grado di ottenere una riduzione attesa dell’errore

di classificazione sostanzialmente maggiore. Esploriamo quindi l’attività della SATC

e il potenziale dei nostri metodi, in molteplici contesti della text classification. Questa

tesi è, al meglio delle nostre conoscenze, la prima ad affrontare l’attività della semi-

automated text classification.
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Abstract

Nowadays there is a high demand of information systems for the automatic analysis

of textual data. Large industries and organizations need to process huge amounts

of textual data, an activity that cannot be performed with human work only. Text

Classification (TC) is the task of automatically labelling textual documents from a

set D with thematic categories from a predefined set C. Text classification systems

work with high efficiency, but they cannot guarantee impeccable labelling accuracy.

Semi-Automated Text Classification (SATC) is the task of ranking a set D of

automatically labelled textual documents in such a way that, if a human annotator

validates (i.e., inspects and corrects where appropriate) the documents in a top-ranked

portion of D with the goal of increasing the overall labelling accuracy of D, the

expected such increase is maximized. An obvious strategy is to rank D so that the

documents that the classifier has labelled with the lowest confidence are top-ranked.

In this dissertation we show that this strategy is suboptimal. We develop new utility-

theoretic ranking methods based on the notion of validation gain, defined as the

improvement in classification effectiveness that would derive by validating a given

automatically labelled document. We also propose new effectiveness measures for

SATC-oriented ranking methods, based on the expected reduction in classification

error brought about by partially validating a list generated by a given ranking method.

We report the results of experiments showing that, with respect to the baseline

method above, and according to the proposed measures, our utility-theoretic ranking

methods can achieve substantially higher expected reductions in classification error.

We therefore explore the task of SATC and the potential of our methods, in multiple

text classification contexts. This dissertation is, to the best of our knowledge, the first

to address the task of semi-automated text classification.
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Introduction

Textual data is present in our everyday activities, e.g., when we read the news on the

Web, when we fill out paperwork, etc. Analyzing textual data is an important activity

in many scenarios of our society, but it sometimes involves difficult challenges that we

can barely manage with human effort only. One of the main problems in text analysis

is that texts are now generated at high rates, thus it is often the case that the size of

the data forces us to entrust this analysis to computing systems.

There is a high demand of automatic systems for extracting information and un-

derstanding the content of textual data. The need of structuring knowledge from texts

can be tackled computationally, so in the last years many research studies in informa-

tion technology have pushed forward the state of the art of text mining technologies.

Several tasks make up the text mining field, and for each task different approaches

have been proposed to solve them. Applications of text mining usually have to follow

specific requirements, which are imposed by the need of extracting or accessing partic-

ular types of information. The challenge for a researcher is to find and apply the right

methods, in order to optimize the effectiveness and the efficiency of the applications.

Modern search engines are a popular application for automatic access to textual

data. Search engines are a solution to the activity of information retrieval (IR) [54, 78].

A retrieval application has to answer the information need of a user, by exploring and

identifying the relevant data. Information retrieval embraces a wide area of the text

mining research and the impact of IR research is huge in our society. Sometimes a text

mining application has to meet more specific requirements, which do not respond to a

generic need as in the case of search engines. Some applications answer the demand of

a single customer, or they are applied on particular textual data, publicly accessible or

private. This scenario is more common for today’s large organizations and industries,

which are faced with the need of processing large amounts of textual data in order to

understand the satisfaction of their clients or to manage their own knowledge bases.
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1.1 Text classification

Suppose an organization needs to classify a set D of textual documents under a classi-

fication scheme C, that consists of a set of labels cj ∈ C, each of which can be assigned

or not to any of the documents di ∈ D. Suppose that D is too large to be classified

manually, so that resorting to some form of automated text classification (TC) [2, 73]

is the only viable option. TC is the activity of automatically labelling natural lan-

guage texts with thematic classes (or categories or labels) from this predefined set

C.
In this task the knowledge we can access is in the form of textual documents, and

no other information is available. The categories are just symbolic labels, and they

identify a set of documents according to some predefined criteria. One could group

documents by topic, by opinion, or according to other aspects, depending of the TC

application; some examples of applications are:

• the categorization of news articles, where documents are classified according to

the topic they deal with (e.g., politics, sport, etc.), or are filtered according to the

profile of the user [42];

• spam filtering [15], in which the TC application is integrated in the e-mail client,

so that the e-mails automatically labelled as spam are filtered out by the client;

• sentiment classification [52], in which TC is used together with computational lin-

guistic technologies, in order to label documents (e.g., product reviews or political

debates) according to the opinions they contain.

Typical applications of TC are in scenarios where a large quantity of documents has

to be analyzed, and the human cost needed to manually perform the annotation is,

most of the times, prohibitive. TC applications may be not as accurate as human

labellers, but they are cheaper and surely more efficient.

The TC task can be further characterized depending on the desired application.

For example, one might accept that any number of categories can be assigned to a

document; this is the multi-label case of TC. Alternatively, or one could restrict this

number to one, so that exactly one category from the set must be assigned to a doc-

ument (the single-label case). In general these characteristics are parameters of a TC

framework. The modern and effective approach to TC is through supervised learning.

A TC framework built on supervised learning algorithms works in two phases: (i) it

receives in input the set C and a set of documents, labelled with the categories in C
(the so-called training data); it learns from the data, understanding the characteristics

which link the documents to the categories, and it models the learned information into

a classifier ; (ii) the classifier performs the automatic classification of the documents

in D, according to the categories in C.
The effectiveness of a classifier is dependent of the information on which it is

built. The quality of the training data, that is usually generated manually, and the

choice of the algorithm and its parameters determine the accuracy of the classifier.
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But what if, as a consequence, the customer is not satisfied by the accuracy of the

automatic classification? What if the customer is willing to do, or pay for, a part of the

classification manually? We answer these questions by introducing a novel scenario

for text classification.

1.2 Semi-automated text classification

Suppose that an organization which needs to classify documents has strict accuracy

standards, so that the level of effectiveness obtainable via state-of-the-art TC tech-

nology is not sufficient. In this case, the most plausible strategy to follow is to classify

the set D of documents by means of an automatic classifier (which we assume here to

be generated by a supervised learning algorithm), and then to have a human editor

validate (i.e., inspect and correct where appropriate) the results of the automatic clas-

sification. The human annotator will obviously validate only a subset D′ ⊂ D (since

it would not otherwise make sense to have an initial automated classification phase),

e.g., until she is confident that the overall level of accuracy of D is sufficient, or until

she has time. We call this scenario semi-automated text classification (SATC).

An automatic TC system may support this task by ranking, after the classification

phase has ended and before the validation begins, the classified documents in such a

way that, if the human annotator validates the documents starting from the top of

the ranking, the expected increase in classification effectiveness that derives from this

validation is maximized.

In this dissertation we will devise effective ranking strategies for this task, and

we will explore the feasibility of SATC applications and their integration into TC

systems.

Anyone already familiar with TC technologies might ask: why not just use active

learning? In active learning (AL) [74] the human effort is spent for annotating new

documents (typically from the set of automatically labelled documents), which are

added to the training data in order to learn from a richer set of documents. The

goal of SATC is not improving classifier quality, but directly improving the accuracy

of the set of automatically classified documents. The human validation typical of

SATC comes after the automatic classification phase, guarantees a positive gain in

effectiveness, which is a strict requirement.In this dissertation we will investigate the

relationship between SATC and AL.

Another question can come to mind: is there a real need for SATC applications?

The answer is yes, there are multiple scenarios in which automatic classification and

human intervention both play a role, and we will discuss them in this dissertation.

An example task in which human validation is a critical phase is e-discovery [29, 63].

E-discovery is a process, in a legal case, where one party has to make available to

the other the digital material in its possession that is pertinent with the case. This

material is often in the form of textual data, and the size of these data makes this

task difficult to process by means of manual work only. The process of reviewing
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the documents is often technology-assisted, and split in several steps: in a first phase

a subset of documents is retrieved and annotated according to its relevance to the

case, then a classifier is built so as to find the maximum possible number of relevant

documents. The final goal is to produce an accurate classification of relevant and non-

relevant documents, with a continuous interaction of human reviewers throughout

the process. Documents are usually ranked, for presentation to the reviewers, by

means of their relevance (computed from the classification output scores), so as to

optimize the reviewers’ work. In this scenario SATC seems to be the right solution for

optimizing the manual, expensive work of human labelling. In fact, ranking documents

by relevance is suboptimal (as we will show in this dissertation), if the objective is

validating the classification process. We can thus realize that SATC is applicable in

any process that involves the automatic analysis of data with the support of human

validators.

1.3 Our contribution

An obvious strategy for a SATC method is to rank the documents in ascending order of

the confidence scores returned by the classifier. In fact, classifiers based on supervised

learning algorithms usually output a real value along with the classification decision,

which is proportional to their confidence in the decision. By employing this strategy,

the top-ranked documents are the ones that the classifier has labelled with the lowest

confidence. We call this strategy “obvious” because of the evident similarities between

SATC and active learning, where this strategy is an often used baseline. However, to

the best of our knowledge, the application of this ranking method (or of any other

ranking method, for that matter) to SATC has never actually been discussed in the

literature. The rationale for this method is that an increase in effectiveness can derive

only by validating misclassified documents, and that a good ranking method is simply

the one that top-ranks the documents with the highest probability of misclassification,

which (in the absence of other information) we may take to be the documents which

the classifier has categorized with the lowest confidence.

In this work we show that this strategy is, in general, suboptimal. Simply stated,

the reason is that the improvements in effectiveness that derive from correcting a

false positive (an erroneous assignment of a class) or a false negative (an erroneous

non-assignment of a class) may not be the same, depending on which evaluation

function we take to represent our notion of “effectiveness”. Additionally, the ratio

between these improvements may vary during the validation process. In other words,

an optimal ranking strategy must take into account the above improvements and how

these impact on the evaluation function; we will thus look at ranking methods based

on explicit loss minimization, i.e., optimized for the specific effectiveness measures

used.

The contributions of this dissertation are the following:
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• we develop new utility-theoretic ranking methods for SATC based on the notion

of validation gain, i.e., the improvement in effectiveness that would derive by

correcting a given type of mistake (i.e., false positive or false negative);

• we introduce a further ranking method, which is based on the notion of “dynamic”

adjustment of validation gains;

• we formulate the above ranking methods for two different methods of averaging

classification accuracy across different classes;

• we propose a new evaluation measure for SATC, and use it to evaluate our exper-

iments on standard datasets;

• we perform a number of analyses and extensions of the methods above and the

evaluation measures above, and we apply our SATC methods in different applica-

tion contexts.

The results of all the experiments in this dissertation show that, with respect to the

confidence-based baseline method above, our ranking methods are substantially more

effective.

This dissertation presents, to the best of our knowledge, the first systematic work

on the task of semi-automated text classification. This work has resulted in the fol-

lowing scientific publications:

I) A utility-theoretic ranking method for semi-automated text classification. Gia-

como Berardi, Andrea Esuli, and Fabrizio Sebastiani. In Proceedings of the 35th

International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval (SIGIR 2012), Portland, US. This is The first technical paper

we have published on the topic.

II) Optimising Human Inspection Work in Automated Verbatim Coding. Giacomo

Berardi, Andrea Esuli, and Fabrizio Sebastiani. International Journal of Mar-

ket Research. To appear. This is a paper which introduces SATC in easy-to-

understand terms to a non-specialized audience (market researchers) of potential

users of this technology.

III) Utility-Theoretic Ranking for Semi-Automated Text Classification. Giacomo Be-

rardi, Andrea Esuli, and Fabrizio Sebastiani. ERCIM News, 2013(92). This is an

extended abstract of I), published in an international computer science bulletin.

IV) Utility-Theoretic Ranking for Semi-Automated Text Classification. Giacomo Be-

rardi, Andrea Esuli, and Fabrizio Sebastiani. Submitted to ACM Transactions

on Information Systems. This is a substantially revised and extended version of

I), submitted to the top information retrieval journal.

1.4 Structure of the thesis

The dissertation is organized as follows.

In Chapter 2 we describe how automated text classification is actually achieved.

We introduce preliminary definitions, notations, and the approach to TC by means
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of supervised learning. We thus describe algorithms, evaluation measures, and data

collections that we use as the core in the development of SATC methods.

In Chapter 3 we introduce our approach to SATC. We describe our basic utility-

theoretic strategy for ranking the automatically labelled documents. Furthermore, we

propose a novel effectiveness measure for this task based on a probabilistic user model.

We report the results of our experiments in which we test the effectiveness of ranking

strategies by simulating the work of a human annotator who validates variable-sized

portions of the labelled test set. Finally, we propose some further readings about the

discussed subjects.

In Chapter 4 we address a potential problem deriving from the “static” nature

of our strategy, by describing a “dynamic” (albeit computationally more expensive)

version of the same strategy, and draw an experimental comparison between the two.

Then we acknowledge the existence of two different ways (“micro” and “macro”)

of averaging effectiveness results across classes, and show that the methods we have

developed so far are optimized for macro-averaging; we thus develop and test methods

optimized for micro-averaged effectiveness.

In Chapter 5 we investigate the task of active learning and its relationships with

SATC. We look at the common aspects and the differences of the two tasks. We

compare methods specific to AL or SATC in two steps: first we test our SATC ranking

methods in an AL scenario, then we apply AL methods to a SATC setting.

In Chapter 6 we further explore the potential of our SATC methods, facing a

number of subtasks: first we try to determine if we can dynamically estimate the

achieved level of accuracy of the classification, which is a central aspect of a SATC

application. We then study other classification accuracy measures, and a new variant

of our evaluation function for SATC. We finally we apply SATC ranking methods in

the context of automatic classification of market research surveys.

In Chapter 7 we conclude by charting avenues for future research.
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2

Text Classification

In this chapter we describe the basic notions and the methods for performing auto-

matic text classification [2, 73]. Along the chapter we introduce the notation used in

this dissertation.

Given a set of textual documents D and a predefined set of classes (or categories)

C = {c1, . . . , cm}, multi-class multi-label TC is usually defined as the task of estimat-

ing an unknown target function Φ : D×C → {−1,+1}, that describes how documents

ought to be classified, by means of a function Φ̂ : D × C → {−1,+1} called the clas-

sifier1; +1 and −1 represent membership and non-membership of the document in

the class. Here, “multi-class” means that there are m ≥ 2 classes, while “multi-label”

refers to the fact that each document may belong to zero, one, or several classes at

the same time. Multi-class multi-label TC is usually accomplished by generating m

independent binary classifiers Φ̂j , one for each cj ∈ C, each entrusted with deciding

whether a document belongs or not to a class cj .

In this dissertation we will actually restrict our attention to classifiers Φ̂j that,

aside from taking a binary decision Dij ∈ {−1,+1} on a given document di, also

return a confidence estimate Cij , i.e., a numerical value representing the strength

of their belief in the fact that Dij is correct (the higher the value, the higher the

confidence). We formalize this by taking a binary classifier to be a function Φ̂j : D → R
in which the sign of the returned value Dij ≡ sgn(Φ̂j(di)) ∈ {−1,+1} indicates the

binary decision of the classifier, and the absolute value Cij ≡ |Φ̂j(di)| represents its

confidence in the decision.

2.1 Supervised learning

In order to obtain the classifier Φ̂ we use a Machine Learning (ML) approach to TC.

In ML a classifier is estimated through an automatic process of learning. The learner

builds a classifier by observing the documents that a human annotator, who is an

1 Consistently with most mathematical literature we use the caret symbol (ˆ) to indicate
estimation.
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expert in the domain of the considered textual data, has classified. For a category cj
the learner analyzes the characteristics of the documents labelled with both cj and

c̄j . This inductive process models the characteristics that a new, unseen, document

should have in order to be classified under cj . This solution to classification is also

known as supervised learning, that is the activity of learning under the supervision

of the knowledge extracted from the set of training documents. The key aspect for

building an effective classifier is in the available resources, these are the documents in

D and the categories in C, which are assigned to the documents. The data resources

are usually provided by the customer of the classification service, an organization

or a company, that owns a knowledge base and wants to automate the activity of

extending this knowledge.

In supervised learning we need an initial, classified, set of documents D =

{d1, . . . , d|D|} ⊂ D. Documents in D are classified under C, so the values of Φ are

known for each pair 〈di, cj〉 ∈ D × C. This set is used for two fundamental goals:

(i) building the classifier, that is eventually used on new documents; (ii) tuning and

evaluating the classification model.

In a common experimental setting, D is divided in two subsets:

• The training set Tr = {d1, . . . , d|Tr|} ⊂ D, that is used in the learning process,

namely the construction of the classification model;

• The test set Te = {d|Tr|+1, . . . , d|D|} ⊂ D, that is used for evaluating the classifier

Φ̂ built on Tr. The evaluation of the effectiveness of the classifier is performed

comparing the values of sgn(Φ̂(di)) against the values of sgn(Φ(di)), for each

di ∈ Te.

The key aspect of this experimental setting is that the classification model is built

working exclusively on Tr. The purpose is to simulate a real scenario in which we do

not know anything about the documents to be classified, as those belonging to Te.

The effectiveness of a classifier can be estimated on Tr through a k-fold cross-

validation. In this approach Tr is divided in k partitions, so k experiments are con-

ducted using the training/test approach. The validation is composed of k learning/-

classification stages, i.e. k classifiers are built and evaluated on the training and test

set pairs 〈Tri = D − Tei, T ei〉, ∀i ∈ [1, k]. The final evaluation is computed as the

average of the k evaluations performed on every Tei. In some learning algorithms it

is possible to set parameters in order to adjust the specific behaviors of the learners.

The k-fold cross-validation is a solid tool for exploring and selecting the parameter

values: a validation is performed for each value, the best parameter values are the

ones for which the k classifiers have the best average effectiveness.

In the next sections we introduce in detail the techniques for analyzing and repre-

senting textual data; two ML algorithms are discussed: SVMs and Boosting. Finally

the reference evaluation measures are presented. All these elements, with the ex-

perimental methodology discussed above, are the basis of SATC methods and their

evaluation.
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2.1.1 Text representation

Text semantics have to be represented in a form that can be interpreted by the ML

algorithms. Documents are passed under a process of indexing, that is performed

uniformly for all the documents in D. In this process the meaningful units of the

texts are identified and each document is converted to a numerical representation. In

TC each sample of the data is a document, and it is represented by a vector; each

component of a document vector is a feature, and its value defines the feature weight;

features are units, characteristics, which describe a document. The most common

features for texts are the terms of the documents; a term can be identified as a word,

so a term weight can be defined as the importance of the word for a document.

In the learning phase we identify the features from the available data, represented

by the training set. In the vector space of documents each dimension is a term of the

dictionary drawn from Tr, so the representation of di is di = 〈w1i, . . . , w|T |i〉 where

T is the dictionary, namely the set of terms that occur at least once in at least one

document of Tr. If the dictionary is made of words, we call this approach Bag of

Words (BOW). Word weights can be binary (i.e. 0 or 1 is the word is respectively

present or not in the document) or real values: wki ∈ [0, 1]. The higher the weight,

the greater is its contribution to the semantics of a document. With this approach

words are taken as independent units, discarding the semantic dependencies of the

language, which are not employed by the learners.

In order to obtain document vectors, a function for computing weights is necessary.

In the case of binary weights we simply set wki to 1 if the term tk occurs in the

document di. A richer semantic could be the number of occurrences of the term,

this measure is usually called term frequency, defined by the function tf(tk, di). The

intuition behind the term frequency is that the representativeness of a term for a

document is directly proportional with its frequency in that document. The problem

with term frequency is that the most common terms of a language, like prepositions,

conjunctions, etc., have high tf in every document. The same is true for the most

common terms of a specific domain, e.g. the word “game” is very frequent in a training

set about the subject “sport”. In order to mitigate this problem, we can weight the

term frequency by the inverse of the document frequency. The importance of a term

is then a combination of its occurrences in the documents and its occurrences in the

whole training set. The function tfidf [70] is defined as

tfidf(tk, di) = tf(tk, di) · log
|Tr|
df(tk)

where df(tk) is the number of documents in Tr in which tk occurs. An alternative

weighting function is the normalized tfidf , which returns values that fall in [0, 1]

interval. We can normalize the document vectors through the cosine normalization:

wki =
tfidf(tk, di)√∑|T |
s=1(tfidf(ts, di))2
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In the BOW approach some preprocessing steps are usually performed before the

vectorization of documents. Textual data is cleaned in order to keep only the useful

semantics and discards useless units of text, the standard process consists in filtering

out punctuation and stop words. Stop words are the elements of a language that

are used for the construction of the syntax, which do not carry useful semantics:

articles, prepositions, conjunctions, “to be”, “to have”, etc. A successive common

preprocessing step is stemming, in which words are reduced to their stem, base or root

form. Multiple words can be related to the same stem (e.g. “logically” and “logics”

are related to “logic”), by using stems we obtain a more compact and meaningful

representation of the document semantics.

2.1.2 Support vector machines

Support vector machines (SVMs) [16] are supervised learning algorithms that learn

from the training data by separating the space of the samples according to their

classes. A SVMs learner builds a hyperplane in the multi-dimensional space of features,

which better separates the samples that belong to a class from the others (binary

classification case). The optimal separation is the one that brings about the largest

margin between the hyperplane and the samples of both sides. The closest samples

to the hyperplane are called the support vectors, as they alone define the decision

boundary between the two sides.

One big advantage of SVMs is their modularity, that allows to train the model on

samples that are not linearly separable. In TC it is common to explore only linear

solutions (linear SVMs), as they have proven to be effective [17]. SVMs have been

adopted in TC [36, 37] for their favorable characteristics: they behave efficiently for

high dimension space inputs; they can handle irrelevant features and very sparse

vectors, two aspects that are very common in textual data; it is possible to easily

tune a SVM learner in order to overcome the problem of overfitting. However, SVMs

are generally effective in TC with the standard setting of their parameters.

Multi-class multi-label TC with SVMs can be achieved employing the binary clas-

sification approach, so we build an independent classifier for each class cj . In the

vector space of documents we can define any hyperplane h as

w · d− b = 0

For each category cj , and any document di in D, we want to find a hyperplane such

as
wj · di − bj ≥ +1 if Dij = +1
wj · di − bj ≤ −1 if Dij = −1

This can be rewritten as:

Dij(wj · di − bj)− 1 ≥ 0

The points that intersect the planes h+1 : wj ·di−bj = +1 and h−1 : wj ·di−bj = +1

are the support vectors, they are marked in red in Figure 2.1.
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Figure 2.1: An example of a hyperplane which brings the largest separation margin
of documents for class cj . The vector space has two dimensions for terms t1 and t2.

In order to find the best hyperplane, i.e. the one for which the distance between

it and the support vectors is maximum, we solve an optimization problem. We search

for the vector wj that maximizes the distance from h+1 to the hyperplane h, that is

equivalent to the distance between h−1 and h:

wj · di − bj
‖wj‖

=
1

‖wj‖

The problem to be solved is a minimization problem, with the constraints defined by

the samples of the training set:

min
(wj,bj)

‖wj‖ s.t. :

Dij(wj · di − bj)− 1 ≥ 0 ∀di ∈ Tr

We can alter the initial function min
(wj,bj)

‖wj‖ into min
(wj,bj)

1
2‖wj‖2, thus the optimization

problem is transformed in a quadratic programming problem, which can be solved

with the method of Lagrange multipliers [16].

After the optimal separation is found, we can classify new documents according to

their relative position to the hyperplane. In the learning phase we obtain the param-

eters of the function Φ̂j(di) = wbest
j ·di− bbestj , that returns strictly positive values if

the document di is classified with the class cj , strictly negative values otherwise. The
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function returns 0 if the document lies on the hyperplane. The confidence of classifi-

cation is then proportional to the distance of the document point from the decision

boundary defined by the optimal hyperplane.

In [16] the authors introduce a further parameter into the learning algorithm, in

order to manage noisy points - outliers that can negatively affect the decision bound-

ary. The C parameter plays a role of regularization of the function to be minimized; it

controls the relative importance of minimizing ‖wj‖, that is equivalent to controlling

the size of the margin. When we assign to C values close to 0, we allow samples near

the decision boundary to violate the constraints of the minimization problem, so the

learner excludes points that can easily overfit the model on the training data. The

opposite happens when we set C to values close to∞, the constraints imposed on the

training samples are strictly followed in the solution of the optimization problem.

2.1.3 Boosted decision trees

The family of ML algorithms called boosting algorithms is based on the principle of

combining several learners, in order to produce one effective classifier. The typical

boosting method starts by creating weak classifiers, models whose classification effec-

tiveness is low. Weak classifiers are usually built learning only a few (limited) aspects

of the training data, consequently their classification accuracy is limited. In boosting

several weak classifiers are built with the final goal of combining them in a global

strong classifier, that is able to deal with all the characteristics of the data.

One popular variant of boosting is AdaBoost, its name stands for Adaptive Boost-

ing. In AdaBoost weak classifiers are built iteratively, each one is tuned in order to

perform better on the data that the previous weak classifier has misclassified, the

algorithm adapts itself to the training data.

A variant of AdaBoost is MP-Boost [19], that is an improved version of Ad-

aBoost.MH [72]. These two variants are optimized for multi-label classification, the

weak classifiers they create are decision trees, trained on specific terms. Each weak

classifier is built around a pivot term and sets up its classification on the presence or

the absence of the term in the document (binary feature weights). The improvement

of MP-Boost, compared to AdaBoost.MH, is in how pivot terms are chosen. At

each iteration, more pivot terms are selected, one for each class. The algorithm then

constructs a set of weak classifiers at each iteration, each of them is optimized for a

specific class.

MP-Boost algorithm

In MP-Boost weak classifiers are generated iteratively, so if S is the number of

iterations, we have Φ̂1 . . . Φ̂S weak classifiers. At the end of each iteration the final

classifier is obtained summing up the weak classifiers Φ̂ =
∑S
s=1 Φ̂

s, so both the

12



2.1. SUPERVISED LEARNING

Input :
a training set Tr, the number of iterations S

Output :
the classifier Φ̂(di, cj) =

∑S
s=1 Φ̂

s(di, cj)
Body :

set P1(di, cj) = 1
|Tr|·|C|

for s = 1, . . . , S do:
1. pass distribution Ps to the weak learner;
2. get the weak classifier Φ̂s from the weak learner;

3. set Ps+1(di, cj) =
Ps(di,cj)·exp(−Φ(di,cj)·Φ̂s

j)

Zs
j

where Zsj =
∑|Tr|
i=1 Ps(di, cj) ·exp(−Φ(di, cj) · Φ̂sj) is a normalization factor

chosen so that
∑|Tr|
i=1

∑|C|
j=1 Ps+1(di, cj) = 1

Figure 2.2: The MP-Boost algorithm

confidence estimates and the classification decisions of Φ̂ are obtained from the sum

of the values of the single weak classifiers.

The algorithm (Figure 2.2) creates a weak classifier for each class at each iteration,

then we have |C| weak classifiers at each iteration. For class cj , at iteration s, the

classifier Φ̂sj is built. MP-Boost updates a distribution of weights on the training set

pairs 〈di, cj〉 at each iteration s. We define Ps+1 as the distribution that is used by the

algorithm at iteration s+ 1. The value of Ps+1(di, cj) is updated in order to capture

the effectiveness of the classifiers Φ̂1
j . . . Φ̂

s
j in assigning class cj to the document di.

The weights are proportional to the ability of the classifiers of correctly assigning

the class, the higher the weight, the more difficult the assignment. The weak classifier

Φ̂s+1
j , in order to better classify documents with higher weights, concentrates on those

features that allows to better discriminate the class cj . Every weak learner at iteration

s+ 1 takes in input the training set and the distribution Ps+1.

The initial distribution P1 is uniform; at iteration s weights are updated according

to:

Ps+1(di, cj) =
Ps(di, cj) · exp(−Φ(di, cj) · Φ̂sj)

Zsj

where

Zsj =

|Tr|∑
i=1

Ps(di, cj) · exp(−Φ(di, cj) · Φ̂sj)

is a normalization factor, so Ps+1(di, cj) is a distribution, the sum of all the weight

values is 1.

A weight is updated proportionally to its previous value, it is increased if the

document is wrongly classified with class cj , decreased otherwise. The product

13



CHAPTER 2. TEXT CLASSIFICATION

−Φ(di, cj) · Φ̂sj is positive if the target function and the weak classifier have differ-

ent sign, in this case the exponential function exp is ≥ 1.

MP-Boost weak classifiers

Text is represented with binary feature weights. The weight wki of a document vector

di is equal to 1 if the term tk is contained in the document, 0 otherwise. A weak

classifier Φ̂sj is a decision tree, with only one root and two leaves. It returns a specific

real value if a term is present in the document and a different value if it is not. The

term is called pivot term, thus we have |C| pivot terms at each iteration s. The weak

classifier is defined as

Φ̂sj(di) =

{
aj0 if wjki = 0

aj1 if wjki = 1

Creating a weak classifier means choosing a term tjk and the values aj0 and aj1. These

three parameters are obtained during the learning phase, that consists in minimizing

the error of the weak classifier. This error can be measured by the normalization

factor Zsj .

In order to obtain Φ̂sj these two steps are executed (at iteration s):

1. Select among all Φ̂sj that have a specific term as pivot term, the one which mini-

mizes Zsj . In this step we create |T | weak classifiers, and for each one we choose

the values aj0 and aj1.

2. Select among all the best weak classifiers previously created, the one which mini-

mize Zsj . In this step we choose the unique pivot term tjk for the current iteration.

The first step is critical, since we can not enumerate all the possible values of aj0 and

aj1. MP-Boost deals with this step using the same approach of AdaBoost.MH; this

approach is argued in [71], where the authors have proven that:

Φ̂
best(k)
j (di) =


1
2 log

W 0jk
+1

W 0jk
−1

if wjki = 0

1
2 log

W 1jk
+1

W 1jk
−1

if wjki = 1

where best(k) denotes the best weak classifier for term tjk, selected at the first step,

and where

W xjk
b =

|tr|∑
i=1

Ps(di, cj) · Jwjki = xK · JΦ(di, cj) = bK

for b ∈ {−1,+1}, x ∈ {0, 1}, and where JπK is the characteristic function of predicate

π, so if π is true the function returns 1, 0 otherwise. The values W xjk
b are equivalent

to the weight, with respect to the distribution Ps, of the documents that contain (or

does not contain) the term tjk, which are classified (or are not) with cj .

Reminding that Φ̂s(di, cj) ≡ Φ̂sj(di), the final classifier is Φ̂(di, cj) =
∑S
s=1 Φ̂

s(di, cj),

where S is the number of iterations (the only free parameter of MP-Boost algo-

rithm). The classification values are thus a combination of the values aj0 and aj1 of the

pivot terms of each iteration.

14



2.2. EVALUATING TEXT CLASSIFICATION

2.2 Evaluating text classification

Several measures exist for evaluating the accuracy of text classifiers. It is possible to

estimate the accuracy of a classifier during the learning phase, performing a validation

step (e.g. k-fold cross-validation). While these operations are performed on Tr, the

final evaluation is executed on Te. We use Te in order to simulate a “production”

phase, in which the classifier is applied on new, unseen and unlabelled documents. The

evaluation scores we obtain on Te are used for comparing the classifier effectiveness.

We implicitly refer to the evaluation on Te hereafter.

In a classification task, for each assignment of a class to a document, we can define

four possible events, according to the true label of the document. We can obtain a true

positive, a true negative, a false positive or a false negative. The terms “positive” and

“negative” refer to the predicted assignment made by the classifier, while “true” and

“false” refer to the correctness of the prediction with respect to the real assignment of

the document. We use TP (ij) to indicate that Φ̂j(di) is a true positive, and use FP (ij)

(false positive), FN(ij) (false negative), and TN(ij) (true negative) with analogous

meanings; e.g. if TN(ij) is true, then the classifier has correctly not assigned the class

cj to the document di.

With TPj , FPj , FNj , and TNj we indicate the numbers of true positives, false

positives, false negatives and true negatives in the test set Te for category cj . The

four values can be formulated in a contingency table as in Figure 2.3, each value is

represented in a contingency cell.

predicted
Y N

true
Y TP = 4 FP = 3
N FN = 4 TN = 9

Figure 2.3: An example of a contingency table of a single-label classification of TP +
TN + FP + FN = 20 documents.

2.2.1 Evaluation measures

The well known notions of precision and recall in Information Retrieval, can be de-

signed as evaluation measures in TC. The two measure can be formulated on the

contingency table:

precisionj(Φ̂j(Te)) =
TPj

TPj + FPj

recallj(Φ̂j(Te)) =
TPj

TPj + FNj

15
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For a class cj , precisionj is the fraction of correct positive predictions on all the

positive predictions, while recallj is the fraction of correct positive predictions on

the number of documents in Te belonging to cj . The values of both functions range

between 0 (worst) and 1 (best).

Precision and recall can have different priority in the evaluation of a TC system,

according to the type of application we evaluate. An example of application that gives

precedence to precision is the classification of medical reports, where the category set

is made of diagnosable diseases. Assigning the right classes is critical for choosing

the right treatment. An example of application that requires high recall is the e-mail

spam filter, where e-mails are classified as positive if they are not spam. In this case

high recall means low probability that good e-mails are wasted in the spam folder.

A measure that combines precision and recall is the F -measure. The harmonic

mean of precision and recall is defined as the F1 measure:

F1(Φ̂j(Te)) =
2 · precisionj · recallj
precisionj + recallj

=

=
2 · TPj

2 · TPj + FPj + FNj

F1 is a specific instance of the generic Fβ measure [78]. The parameter β is used to

weight the importance of precision over recall, with positive values lower than 1 we

put emphasis on precision while with values grater than 1 we put emphasis on recall.

With β = 1 we have the F1 defined above.

Fβ(Φ̂j(Te)) = (1 + β2) · precisionj · recallj
(β2 · precisionj) + recallj

=

=
(1 + β2) · TPj

(1 + β2) · TPj + FPj + (1 + β2) · FNj
Note that F1 is undefined when TPj = FPj = FNj = 0; in this case we take

F1(Φ̂j(Te)) = 1, since Φ̂j has correctly classified all documents as negative exam-

ples. Note also that in the evaluation based on F1 the correct negative classifications

are excluded, in fact the function does not embrace the true negative. We will con-

centrate on the F1 measure in this dissertation, but it will be successively evident

that any kind of measure computed on the contingency table can be used in SATC

methods.

We have restricted the discussion of evaluation measures on binary classification. In

order to evaluate the effectiveness of multi-class multi-label TC we use two approaches

for averaging on the classes:

• macro-averaged F1 (noted FM1 or macro F1), which is obtained by computing the

class-specific F1 values and averaging them across all the cj ∈ C.

FM1 (Te) =

∑|C|
j=1 F1(Φ̂j(Te))

|C|

16



2.2. EVALUATING TEXT CLASSIFICATION

• micro-averaged F1 (noted Fµ1 or micro F1), which is obtained by computing the

F1 on a global contingency table, where each contingency cell is the sum of the

respective class-specific contingency cells.

Fµ1 (Te) =
2
∑|C|
j=1 TPj

2
∑|C|
j=1 TPj +

∑|C|
j=1 FPj +

∑|C|
j=1 FNj

The two methods of averaging can be applied to any measure, they differ in the im-

portance given to the frequency of assigned classes. Macro-averaging weights equally

each class; with a macro-averaged measure the evaluation of infrequent classes, which

are more likely to produce errors, has the same importance of the evaluation of the

most frequent ones. Micro-averaging gives the same importance to each binary clas-

sification, so it is independent of the distribution of the classes.

Many evaluation measures exist for classification, in this dissertation we will often

use “accuracy of classification” concerning to any measure of effectiveness. We will

quantify this definition mostly with the F1 measure.

2.2.2 Datasets for text classification benchmarks

Text collections are set of documents and categories made for benchmarking purposes.

These collections are publicly available and they come with the true labels assigned

to documents, in order to use the entire set of samples for evaluation. They also come

with configurations of dataset splitting, in order to define common training and test

sets across experiments. TC evaluations are performed choosing datasets together

with specific splitting configurations.

Our first dataset is the Reuters-21578 [45] corpus. It consists of a set of 12,902

news stories, partitioned (according to the standard “ModApté” split we adopt) into

a training set of 9603 documents and a test set of 3299 documents. The documents

are labelled by 118 categories; the average number of categories per document is 1.08,

ranging from a minimum of 0 to a maximum of 16; the number of positive examples

per class ranges from a minimum of 1 to a maximum of 3964. In our experiments we

restrict our attention to the 115 categories with at least one positive training example.

This dataset is publicly available2 and it is probably the most widely used benchmark

in TC research; this fact allows other researchers to easily replicate the results of our

experiments.

Another dataset we use is OHSUMED [31], a test collection consisting of a set

of 348,566 MEDLINE references spanning the years from 1987 to 1991. Each entry

consists of summary information relative to a paper published on one of 270 med-

ical journals. The available fields are title, abstract, MeSH indexing terms, author,

source, and publication type. Not all the entries contain abstract and MeSH indexing

terms. In our experiments we scrupulously follow the experimental setup presented in

2 http://www.daviddlewis.com/resources/testcollections/~reuters21578/
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[48]. In particular, (i) we use for our experiments only the 233,445 entries with both

abstract and MeSH indexing terms; (ii) we use the entries relative to years 1987 to

1990 (183,229 documents) as the training set and those relative to year 1991 (50,216

documents) as the test set; (iii) as the categories on which to perform our experiments

we use the main heading MeSH index terms assigned to the entries. Concerning this

latter point, we restrict our experiments to the 97 MeSH index terms that belong to

the Heart Disease (HD) subtree of the MeSH tree, and that have at least one pos-

itive training example. This is the only point in which we deviate from [48], which

experiments only on the 77 most frequent MeSH index terms of the HD subtree.

There are two main reasons why we have chosen exactly these datasets:

1. All of them are publicly available and very widely used in TC research, which

allows other researchers to easily replicate the results of our experiments.

2. OHSUMED is one of the largest datasets used to date in TC research, which

lends robustness to our results.

The main characteristics of our datasets are conveniently summarized in Table 2.1.

The evaluations on the two collections’ test sets point out the effectiveness of the two

learners. It is clear the OHSUMED collection is a more difficult benchmark dataset

for TC. The learners get different effectiveness on both collections, while MP-Boost

is stronger on FM1 , SVMs is better on Fµ1 ; this means that SVMs is less effective on

the infrequent classes (assigned to very few documents), so the accuracy averaged

on all classes is negatively affected by the rare ones, but it is more effective on the

few very frequent categories. Datasets such as Reuters21578 have a large number

of infrequent categories in the test set, which predominate in the computation of

macro-averaged classification accuracy. For example in Reuters21578 we have 54

categories with frequency ≤ 10, 45 with frequency ≤ 100, 14 with frequency ≤ 1000,

and two categories with frequency 1650 and 2877.

Dataset |Tr| |Te| |C| ACD
FM1 Fµ1

MP-B SVMs MP-B SVMs

OHSUMED 183229 50216 97 0.132 .447 .423 .611 .676

Reuters-21578 9603 3299 115 1.135 .608 .527 .848 .860

Table 2.1: Characteristics of the test collections used. From left to right we report
the number of training documents (2), the number of test documents (3), the number
of classes (4), and the average number of classes per test document (5). Columns
6-9 report the initial accuracy (both FM1 and Fµ1 ) generated by the MP-Boost and
SVMs classifiers.

18



2.3. CONCLUSIONS

Another interesting analysis is on the confidence scores of classifiers, that is useful

for understanding some intrinsic processes of the learners. The values returned by the

classifiers range in [−∞,+∞], so the confidence values range in [0,+∞], but they

are distributed differently, according to the machine learning algorithm. In Figure 2.4

we show the histograms of the distributions of the confidence estimates returned by

the two classifiers, applied on the test set of Reuters21578. We notice that SVMs

produces values more uniformly distributed, in a narrow range, while MP-Boost

confidence values are concentrated on a discrete set of values. This ensues different

confidence estimates of the two learners, an aspect that influences the development

of SATC methods presented in Chapter 3.
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(a) MP-Boost confidences distribution.
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(b) SVMs confidences distribution.

Figure 2.4: Cumulative distributions of confidence estimates for MP-Boost (Figure
a) and SVMs (Figure b) on the Reuters21578 test set. The total number of classi-
fications is |Te| · |C|, that for Reuters21578 is equivalent to 3299 · 115 = 379385

2.3 Conclusions

In this chapter we have introduced the basis for understanding text classification and

its technical aspects. The notions described have been studied in depth in the last

years, in the machine learning community. We have limited this dissertation to few of

the many techniques for achieving automatic classification of texts, and in the next

chapters we apply these techniques to a new task connected to TC.

Semi-automated text classification originates with the idea of improving the cur-

rent standard methods for text classification. In an established TC framework we

can plug in SATC methods and evaluation functions, without modifying the solid

approaches defined in this chapter. This allow us to extend any classification system,

bringing new tools into the TC ecosystem.
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3

A Ranking Method for Semi-Automated Text
Classification

Semi-Automated Text Classification (SATC) is the task of improving the final accu-

racy of an automatic TC process via human inspection of the classified documents.

We introduced the importance of this task in a scenario in which accuracy of classifi-

cation is critical. If we can rely on the support of human work we can aim to maximize

the improvement in classification accuracy. In SATC we have to deal with the cost

of human effort, with the goal of minimizing it and making the best of the limited

availability of human validators. For this reason the principal objective is to develop

methods for ranking the documents to be validated. We want to rank Te in order to

maximize the expected increase in classification effectiveness, obtained by a human

annotator that inspects a subset of Te by working down from the top of the list.

In this chapter we are going to present a ranking method based on an “utility

function”. The method and the solutions for its implementation are discussed in detail.

We introduce the chapter with a worked-out example of SATC (Section 3.1). Sections

3.2 and 3.3 describe our basic utility-theoretic strategy for ranking the automatically

labelled documents, while in Section 3.4 we propose a novel effectiveness measure for

this task based on a probabilistic user model. Section 3.5 reports the results of our

experiments, in which we test the effectiveness of our utility-theoretic ranking strategy,

by simulating the work of a human annotator that inspects variable portions of the

labelled test set.

3.1 A worked-out example

In order to see how human annotators may be effectively supported in their post-

editing work, let us look at a specific example. Let us assume that the classifying task

consists in deciding whether a given class applies or not to any of a set of unlabelled

documents (binary case). Let us also assume that a set of unlabelled documents

have been automatically classified; for simplicity of illustration we here assume that

this set consists of 20 documents only. We can measure the accuracy obtained in

this automatic classification job by (a) choosing an accuracy measure, (b) filling out a
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predicted

Y N

true
Y TP = 4 FP = 3

N FN = 4 TN = 9

F1 =
2TP

2TP + FP + FN
= 0.533

Figure 3.1: A worked-out example, representing a contingency table (upper left part
of the figure) deriving from the automatically labelled examples (lower part) and from
which accuracy is computed (upper right part).

contingency table, and (c) evaluating the chosen measure on this table. For illustration

purposes we assume that our accuracy measure is the well-known F1, described in

Chapter 2. Figure 3.1 depicts a situation in which the automatic classification process

has returned 4 true positives, 3 false positives, 4 false negatives, and 9 true negatives,

resulting in a value of F1 = 2·4
(2·4)+3+4 = 0.533. The 20 documents are represented in

the two rows at the bottom via green and red cards; the upper row represents the

classification decisions of the system (“predictions”), while the lower row represents

the correct decisions that an ideal system would have taken. A green card represents

a “yes” (the documents has the category), while a red card represents a “no” (the

documents does not have the category); a correct decision is thus represented by the

upper and lower card in the same column having the same colour.

Let us imagine a scenario in which the customer insists that the data must be clas-

sified with an accuracy level of at least F1 = 0.800. In this case, after checking that the

value of F1 that the automatic classifier has obtained is 0.533, the human annotator

decides to validate some of the documents until the desired level of accuracy has been

obtained1. Let us assume that the coder examines the documents at the bottom of

Figure 3.1 in left-to-right order. The first document that the annotator examines is a

true positive; no correction needs to be done, the value of F1 is unmodified, and the

annotator moves on to the second document. This is a false negative, and correct-

ing it decreases FN by 1 and increases FP by 1, which means that F1 now becomes

F1 = 2·5
(2·5)+3+3 = 0.625. The third is a false positive, and correcting it decreases FP by

1 and increases TN by 1, which means that F1 now becomes F1 = 2·5
(2·5)+2+3 = 0.667.

1 Actually, the human annotator does not know the level of accuracy that the automatic
classifier has obtained, since she does not know the true classification of documents. How-
ever, this level of accuracy can be at least estimated via a k-fold cross-validation.
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The fourth is a false negative, which brings about F1 = 2·6
(2·6)+2+2 = 0.750, and the fifth

is a false positive, which yields F1 = 2·6
(2·6)+1+2 = 0.800. At this point, having reached

the minimum level of accuracy required by the customer, the human annotator’s task

is over.

Bringing F1 from 0.533 up to 0.800 has required the validation of 5 documents, i.e.,

25% of the entire set. Could the human annotator have achieved the same improved

in accuracy with a smaller effort (i.e., by validation fewer documents)? Could she, by

putting in the same effort, have reached a level of accuracy higher than F1 = 0.800?

The answer to both questions is yes, and the key to doing better is the order in which

the documents are validated.

For instance, the fact that the first validated document was a true positive was

suboptimal. Validating documents that have been classified correctly is, for the hu-

man annotator, wasted time, since no correction is performed and F1 remains thus

unmodified. Of course, there is no way to know in advance if the document has been

classified incorrectly or not. However, it would at least be desirable to know how

likely it is that the document has been classified incorrectly, i.e., to know its probabil-

ity of misclassification; in this case, the system might rank the automatically classified

documents in such a way as to top-rank the documents that have the highest such

probability.

A second fact that jumps to the eye is that the increase in accuracy (i.e., the

gain) determined by the correction of a false negative is higher (sometimes much

higher) than the gain determined by the correction of a false positive. For instance,

in correcting the second document (a false negative) F1 jumped from 0.533 to 0.625

(a +17.1% relative increase), while in correcting the third document (a false positive)

F1 only moved from 0.625 to 0.667 (a mere +6.6% relative increase). This is not an

idiosyncrasy of the F1 measure, since for many accuracy measures the gain deriving

from the correction of a false positive is different than the one deriving from the

correction of a false negative2. So, the fact that two false positives were inspected and

corrected while two false negatives were left uninspected and uncorrected (in 11th and

20th position, respectively) was also suboptimal. This means that the system should,

other things being equal, rank higher those documents (the false negatives, in our

case) that bring about a higher gain when corrected. In the example of the previous

section, had we ranked the four false negatives at the top four rank positions and

a false positive at the fifth, the same amount of human validation work would have

brought about an increase in F1 from 0.533 to 0.889 (instead of 0.800); had we instead

been happy with reaching F1 = 0.800, the human annotator would have reached it

2 Note that this asymmetry holds despite the fact that F1 pays equal attention to the ability
of the system to avoid false positives (i.e. precision) and to the ability of the system to
avoid false negatives (i.e. recall). In other measures that pay, e.g., more attention to recall
than to precision, the difference between the gain obtained by correcting a false positive
and the gain obtained by correcting a false negative is amplified.
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by inspecting and correcting only the four top-ranked documents (actually, by doing

this she would have reached F1 = 0.842).

In sum, we have learnt two key facts.

The first fact is that the order in which the human annotator validates the auto-

matically classified documents is what determines the cost-effectiveness of her work.

This fact should come as no surprise: the task of ranking a set of digital objects in

terms of perceived usefulness to a given task is of paramount importance in nowadays’

computer science as a whole, as perfectly exemplified by todays’ search engines.

The second fact we have learnt is that, if we want to order these documents so

as to maximise the cost-effectiveness of the human annotator’s work, we should take

two main factors into account, i.e., (a) the probability of misclassification of a given

document, and (b) the gain in classification accuracy that the document brings about

once inspected and corrected.

3.2 Ranking by probability of misclassificaton

We have seen in Chapter 2 how the scores Cij are generated by the different classifica-

tion algorithms. The confidence returned by the classifier, on a predicted classification,

could be directly used for estimating the probability of a wrong decision. A ranking

method based on the classifier confidence puts in the first positions the documents

for which the confidence is lower. We use a probabilistic approach to this method, in

order to define a ground ranking model, which we will “evolve” during the definition

of the successive ranking methods.

For the moment being, let us concentrate on the binary case, i.e., let us assume

there is a single class cj that needs to be separated from its complement cj . We define

two possible disjoint events after a positive prediction and other two for negative pre-

dictions, each event corresponds to an outcome in the contingency table. We have then

a set of mutually disjoint events Ω = {tpj , fpj , fnj , tnj}, each of these events implic-

itly refers to the document di under scrutiny (e.g., tpj denotes the event “document

di is a true positive for class cj”). We can define the following probabilities:

• P (tpj |Dij = +1) the probability of a correct positive prediction;

• P (fpj |Dij = +1) the probability of a wrong positive prediction;

• P (tnj |Dij = −1) the probability of a correct negative prediction;

• P (fnj |Dij = −1) the probability of a wrong negative prediction.

We have that P (fpj |Dij = +1) = 1 − P (tpj |Dij = +1) so we only need to compute

P (fpj |Dij = +1), similarly for negative predictions we have P (fnj |Dij = −1) =

1− P (tnj |Dij = −1) so we are left with computing P (fnj |Dij = −1). We derive the

probabilities P (·) by assuming that the confidence scores Cij generated by Φ̂j can be

trusted (i.e., that the higher Cij , the higher the probability that Dij is correct), and

by applying to Cij a generalized logistic function f(z) = eσz/(eσz + 1). This results

in
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Figure 3.2: The generalized logistic function.

P (fpj |Dij = +1) = 1− eσCij

eσCij + 1

P (fnj |Dij = −1) = 1− eσCij

eσCij + 1

(3.1)

The generalized logistic function (see Figure 3.2) has the effect of monotonically con-

verting scores ranging on (−∞,+∞) into real values in the [0.0, 1.0] range. When

Cij = 0 (this happens when Φ̂j has no confidence at all in its own decision Dij), then

P (tpj)|Dij = +1) = P (fpj |Dij = +1) = 0.5

P (fnj |Dij = −1) = P (tnj |Dij = −1) = 0.5

i.e., the probability of correct classification and the probability of misclassification are

identical. Conversely, we have

lim
Cij→+∞

P (fpj |Dij = +1) = 0

lim
Cij→+∞

P (fnj |Dij = −1) = 0

i.e., when Φ̂j has a very high confidence in its own decision Dij , the probability that

Dij is wrong is taken to be close to 0.

25



CHAPTER 3. A RANKING METHOD FOR SATC

The reason why we use a generalized version of the logistic function instead of

the standard version (which corresponds to the case σ = 1) is that using this latter

within Equation 3.1 would give rise to a very high number of zero probabilities of

misclassification, since the standard logistic function converts every positive number

above a certain threshold (≈ 36) to a number that standard implementations round

up to 1 even by working in double precision. By tuning the σ parameter (the growth

rate) we can tune the speed at which the right-hand side of the sigmoid asymptotically

approaches 1, and we can thus tune how evenly Equation 3.1 distributes the confidence

values across the [0.0, 0.5] interval.

The process of optimizing σ within Equation 3.1 is usually called probability cali-

bration. How we actually optimize σ is discussed in Section 3.5.1.

3.3 Utility theory

In the worked-out example we have discussed the need of taking into account for

probabilities and gains. This immediately evokes utility theory, an extension of prob-

ability theory that incorporates the notion of gain (or loss) that accrues from a given

course of action [4, 79]. Utility theory is a general theory of rational action under

uncertainty, and as such is used in many fields of human activity. For instance, utility

theory is of paramount importance in betting, since in placing a certain bet we take

into account (a) the probabilities of occurrence that we subjectively attribute to a set

of outcomes (say, to the possible outcomes of the Arsenal FC vs. Chelsea FC game),

and (b) the gains or losses that we obtain, having bet on one of them, if the various

outcomes materialise.

In order to explain our method let us introduce some basics of utility theory.

Given a set of possible courses of action A = {α1, ..., αm} and a set Ω = {ω1, ..., ωn}
of mutually disjoint events, the expected utility U(αj , Ω) deriving from choosing course

of action αj given that any of the events in Ω may occur, is defined as

U(αj , Ω) =
∑
ωi∈Ω

P (ωi)G(αj , ωi) (3.2)

where P (ωi) is the probability of occurrence of event ωi, and G(αj , ωi) is the gain

obtained if, given that αj has been chosen, event ωi occurs. For instance, αj may be

the course of action “betting on Arsenal FC’s win” and Ω may be the set of mutually

disjoint events Ω = {ω1, ω2, ω3}, where ω1=“Arsenal FC wins”, ω2=“Arsenal FC and

Chelsea FC tie”, and ω3=“Chelsea FC wins”; in this case,

• P (ω1), P (ω2), and P (ω3) are the probabilities of occurrence that we subjectively

attribute to the three events ω1, ω2, and ω3;

• G(αj , ω1), G(αj , ω2), and G(αj , ω3) are the economic rewards we obtain, given

that we have chosen course of action αj (i.e., given that we have bet on the win of

Arsenal FC), if the respective event occurs. Of course, our economic reward will

be positive if ω1 occurs and negative if either ω2 or ω3 occur.
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When we face alternative courses of action, acting rationally means choosing the

course of action that maximises our expected utility. For instance, given the alternative

courses of action α1=“betting on Arsenal FC’s win”, α2=“betting on Arsenal FC’s

and Chelsea FC’s tie”, α3=“betting on Chelsea FC’s win”, we should pick among

{α1, α2, α3} the course of action that maximises U(αj , Ω).

How does this translate into a method for ranking automatically labelled docu-

ments? Assume we have a set D = {d1, ..., dn} of such documents that we want to

rank, and that cj is the class we deal with. For instantiating Equation 3.2 concretely

we need

1. to decide what our set A = {α1, α2, . . .} of alternative courses of action is;

2. to decide what the set Ω = {ω1, ω2, . . .} of mutually disjoint events is;

3. to define the gains G(αi, ωk);

4. to specify how we compute the probabilities of occurrence P (ωk).

Let us discuss each of these steps in turn.

Concerning Step 1, we will take the action of validating document di as course of

action αi. In this way we will evaluate the expected utility Uj(di, Ω) (i.e., the expected

increase in the overall classification accuracy of Te) that derives to the classification

accuracy of class cj from validating each document di, and we will be able to rank

the documents by their Uj(di, Ω) value, so as to top-rank the ones with the highest

expected utility.

Concerning Step 2, we have discussed in Section 3.1 that the increase in accuracy

that derives from validating a document depends on whether the document is a true

positive, a false positive, a false negative, or a true negative; as a consequence, we

will take Ω = {tpj , fpj , fnj , tnj}, which is equivalent to the homonym set defined in

Section 3.2. Our utility function has thus the form

Uj(di, Ω) =
∑

ωk∈{tpj ,fpj ,fnj ,tnj}

P (ωk)G(di, ωk) (3.3)

We will define the utility function in detail in the next section. How to address Step

3 (defining the gains) will be the subject of Sections 3.3.2 and 3.3.3, while Step 4

(computing the probabilities of occurrence) follows the approach discussed in Section

3.2.

3.3.1 Ranking by utility

The policy we propose for ranking the automatically labelled documents in Φ̂j(Te)

makes use of a function Uj(di, Ω) that estimates the utility, for the aims of increasing

F1(Φ̂j(Te)), of manually inspecting the label Dij attributed to di by Φ̂j .

Upon submitting document di to classifier Φ̂j , a positive or a negative decision

can be returned. If a positive decision is returned (i.e. Dij = +1) then the mutually

disjoint events tpj and fpj can occur, while if this decision is negative (i.e. Dij = −1)
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then the mutually disjoint events fnj and tnj can occur. We thus naturally define

the two utility functions

Uj(di, Ω
+) = P (tpj |Dij = +1) ·G(di, tpj) +

P (fpj |Dij = +1) ·G(di, fpj)

Uj(di, Ω
−) = P (fnj |Dij = −1) ·G(di, fnj) +

P (tnj |Dij = −1) ·G(di, tnj)

(3.4)

with Uj(di, Ω
+) addressing the case of a positive decision and Uj(di, Ω

−) the case of

a negative decision, so Ω+ = {tpj , fpj} and Ω− = {fnj , tnj}. We define

Uj(di, Ω) =

Uj(di, Ω
+) if Dij = +1

Uj(di, Ω
−) if Dij = −1

as the utility function, embracing both positive and negative decisions.

3.3.2 Validation gains

We equate G(di, fpj) in Equation 3.4 with the average increase in F1(Φ̂j(Te)) that

would derive by manually validating the label attributed by Φ̂j to a document di in

FPj . We call this the validation gain of a document in FPj . Note that validations

gains are independent of a particular document, i.e., G(d′, fpj) = G(d′′, fpj) for all

d′, d′′ ∈ Te. Analogous arguments apply to G(di, tpj), G(di, fnj), and G(di, tnj).

Quite evidently, G(di, tpj) = G(di, tnj) = 0, since when the human annotator

validates the label attributed to di by Φ̂j and finds out it is correct, she will not

modify it, and the value of F1(Φ̂j(Te)) will thus remain unchanged. This means that

Equation 3.4 simplifies to

Uj(di, Ω
+) = P (fpj |Dij = +1) ·G(di, fpj)

Uj(di, Ω
−) = P (tnj |Dij = −1) ·G(di, tnj)

Concerning misclassified documents, it is easy to see that, in general, G(di, fpj) 6=
G(di, fnj). In fact, if a false positive is corrected, the increase in F1 is the one deriving

from removing a false positive and adding a true negative, i.e.,

G(di, fpj) =
1

FPj
(FFP1 (Φ̂j(Te))− F1(Φ̂j(Te))) =

=
1

FPj
(

2TPj
2TPj + FNj

− 2TPj
2TPj + FPj + FNj

)

(3.5)

where by FFP1 (Φ̂j) we indicate the value of F1 that would derive by correcting all

false positives of Φ̂j(Te), i.e., turning all of them into true negatives. Conversely, if

a false negative is corrected, the increase in F1 is the one deriving from removing a

false negative and adding a true positive, i.e.,
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G(di, fnj) =
1

FNj
(FFN1 (Φ̂j(Te))− F1(Φ̂j(Te))) =

=
1

FNj
(

2(TPj + FNj)

2(TPj + FNj) + FPj
− 2TPj

2TPj + FPj + FNj
)

(3.6)

where by FFN1 (Φ̂j) we indicate the value of F1 that would derive by turning all the

false negatives of Φ̂j(Te) into true positives.

3.3.3 Smoothing contingency cell estimates

One problem that needs to be tackled in order to compute G(di, fpj) and G(di, fnj) is

that the contingency cell counts TPj , FPj , FNj are not known (since in operational

settings we do not know which test documents have been classified correctly and

which have been instead misclassified), and thus need to be estimated3. In order to

estimate them we make the assumption that the training set and the test set are

independent and identically distributed. We then perform a k-fold cross-validation

on the training set: if by TPTrj we denote the number of true positives for class cj
resulting from the k-fold cross-validation on Tr, the maximum-likelihood estimate of

TPj is ˆTP
ML

j = TPTrj · |Te|/|Tr|; same for F̂P
ML

j and ˆFN
ML

j .

However, these maximum-likelihood cell count estimates need to be smoothed, so

as to avoid zero counts. In fact, if ˆTP
ML

j = 0 it would derive from Equation 3.5 that

there is nothing to be gained by correcting a false positive, which is counterintuitive.

Similarly, if F̂P
ML

j = 0 the very notion of FFP1 (Φ̂j) would be meaningless, since it

does not make sense to speak of “removing a false positive” when there are no false

positives; and the same goes for ˆFN
ML

j .

A second reason why ˆTP
ML

j , F̂P
ML

j , ˆFN
ML

j need to be smoothed is that, when

|Te|/|Tr| < 1, they may give rise to negative values for G(di, fpj) and G(di, fnj),

which is obviously counterintuitive. To see this, note that ˆTP
ML

j , F̂P
ML

j , ˆFN
ML

j

may not be integers (which is not bad per se, since the notions of precision, recall,

and their harmonic mean intuitively make sense also when we allow the contingency

cell counts to be nonnegative reals instead of the usual integers), and may be smaller

than 1 (this happens when |Te|/|Tr| < 1). This latter fact is problematic, both in

theory (since it is meaningless to speak of, say, removing a false positive from Te

when “there are less than 1 false positives in Te”) and in practice (since it is easy to

verify that negative values for G(di, fpj) and G(di, fnj) may derive).

Smoothing has extensively been studied in language modelling for speech pro-

cessing [14] and for ad hoc search in IR [87]. However, the present context is slightly

different, in that we need to smooth contingency tables, and not (as in the cases above)

language models. In particular, while the ˆTP
ML

j , F̂P
ML

j , and ˆFN
ML

j are the obvious

counterparts of the document model resulting from maximum-likelihood estimation,

3 We will disregard the estimation of TNj since it is unnecessary for our purposes, given
that F1(Φ̂j(Te)) does not depend on TNj .
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there is no obvious counterpart to the “collection model”, thus making the use of, e.g.,

Jelinek-Mercer smoothing problematic. A further difference is that we here require

the smoothed counts not only to be nonzero, but also to be ≥ 1 (a requirement not

to be found in language modelling).

Smoothing has also been studied specifically for the purpose of smoothing con-

tingency cell estimates [10, 76]. However, these methods are inapplicable to our case,

since they were originally conceived for contingency tables characterized by a small

(i.e., ≤ 1) ratio between the number of observations (which in our case is |Te|) and

the number of cells (which in our case is 4); our case is quite the opposite. Addition-

ally, these smoothing methods do not operate under the constraint that the smoothed

counts should all be ≥ 1, which is a hard constraint for us.

For all these reasons, rather than adopting more sophisticated forms of smoothing,

we adopt simple additive smoothing (also known as Laplace smoothing), a special case

of Bayesian smoothing using Dirichlet priors [87] which is obtained by adding a fixed

quantity to each of ˆTP
ML

j , F̂P
ML

j , ˆFN
ML

j . As a fixed quantity we add 1, since it is

the quantity that all our cell counts need to be greater or equal to for Equations 3.5

and 3.6 to make sense. We denote the resulting estimates by ˆTP
La

j , F̂P
La

j , ˆFN
La

j .

As it will be clear in Section 3.5 and following, this simple form of smoothing

proves almost optimal, which seems to indicate that there is not much to be gained

by applying more sophisticated smoothing methods to our problem context.

Note that we apply smoothing in an “on demand” fashion, i.e., we check if the

contingency table needs smoothing at all (i.e., if any of ˆTP
ML

j , F̂P
ML

j , ˆFN
ML

j is < 1)

and we smooth it only if this is the case. The reason why we adopt this “on-demand”

policy will be especially apparent in Chapter 4.

3.3.4 Ranking by total utility

Our function Uj(di, Ω) of Section 3.3 is thus obtained by plugging Equations 3.5

and 3.6 into Equation 3.3. Therefore, we are now in a position to compute, given

an automatically classified document di and a class cj , the utility, for the aims of

increasing F1(Φ̂j(Te)), of manually validating the label Dij attributed to di by Φ̂j .

Now, let us recall from Chapter 2 that our goal is addressing not just the binary,

but the multi-class multi-label TC case, in which binary classification must be accom-

plished simultaneously for |C| ≥ 2 different classes. It might seem sensible to propose

ranking, for each cj ∈ C, all the automatically labelled documents in Te in decreasing

order of their Uj(di, Ω) value. Unfortunately, this would generate |C| different rank-

ings, and in an operational context it seems implausible to ask a human annotator

to scan |C| different rankings of the same document set (this would mean reading the

same document |C| times in order to validate its labels). As suggested in [20] for active

learning, it seems instead more plausible to generate a single ranking, according to a

score U(di, Ω) that is a function of the |C| different Uj(di, Ω) scores. In such a way,

the human annotator will scan this single ranking from the top, validating all the
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|C| different labels for di before moving on to another document. As the criterion for

generating the overall utility score U(di, Ω) we use total utility, corresponding to the

simple sum

U(di, Ω) =
∑
cj∈C

Uj(di, Ω) (3.7)

Our final ranking is thus generated by sorting the test documents in descending order

of their U(di, Ω) score.

From the standpoint of computational cost, this technique is O(|Te| · (|C| +

log |Te|)), since the cost of sorting the test documents by their U(·, Ω) score is

O(|Te| log |Te|), and the cost of computing the U(·, Ω) score for |Te| documents and

|C| classes is O(|Te| · |C|).

3.4 Expected normalized error reduction

No measures are known from literature for evaluating the effectiveness of a SATC-

oriented ranking method ρ. We here propose such a measure, which we call expected

normalized error reduction (noted ENERρ). In this section we will introduce ENERρ
in a stepwise fashion.

3.4.1 Error reduction at rank

Let us first introduce the notion of residual error at rank n (noted Eρ(n)), defined as

the error that is still present in the document set Te after the human annotator has

validated the documents at the first n rank positions in the ranking generated by ρ.

The value of Eρ(0) is the initial error generated by the automated classifier, and the

value of Eρ(|Te|) is obviously 0. We assume our measure of error to range on [0, 1]; if

so, Eρ(n) obviously ranges on [0, 1] too. We will hereafter call n the validation depth

(or inspection depth).

We next define error reduction at rank n to be

ERρ(n) =
Eρ(0)− Eρ(n)

Eρ(0)
(3.8)

i.e., a value in [0,1] that indicates the error reduction obtained by a human annotator

who has validated the documents at the first n rank positions in the ranking generated

by ρ; 0 stands for no reduction, 1 stands for total elimination of error. Note that

ERρ(n) is undefined when Eρ(0) = 0, i.e., when the automatic classifier does a perfect

job in classifying the test set; this is not a problem, since in this case human validation

is not needed, and it makes no sense to speak of “error reduction”.

Example plots of the ERρ(n) measure are displayed in Figure 3.3, where different

curves represent different ranking methods ρ′, ρ′′, ..., and where, for better conve-

nience, the x axis indicates the fraction n/|Te| of the test set that has been validated

rather than the number n of validated documents. By definition all curves start at the
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Figure 3.3: Error reduction, measured as ERMρ , as a function of validation depth. The
dataset is Reuters-21578, the learner is MP-Boost. The Random curve indicates
the results of our estimation of the expected ER of the random ranker via a Monte
Carlo method with 100 random trials. Higher curves are better.

origin of the axes (i.e, if the annotator validates 0 test documents, no error reduction

is obtained) and end at the upper right corner of the graph (i.e., if the annotator

validates all the |Te| test documents, a complete elimination of error is obtained).

More convex (i.e., higher) curves represent better strategies, since they indicate that

a higher error reduction is achieved for the same amount of manual validation effort.

The reason why we focus on error reduction, instead of the complementary concept

of “increase in accuracy”, is that error reduction has always the same upper bound

(i.e., 100% reduction), independently of the initial error. In contrast, the increase in

accuracy that derives from validating the documents does not always have the same

upper bound. For instance, if the initial accuracy is 0.5, if we assume that accuracy

values range on [0, 1] then an increase in accuracy of 100% is indeed possible, while

this increase is not possible if the initial accuracy is 0.9. This makes the notion of

increase in accuracy problematic, since different datasets and/or different classifiers

give rise to different initial levels of accuracy. So, using error reduction instead of
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increase in accuracy “normalizes” our curves, i.e., allows a meaningful comparison of

curves obtained on different datasets and after different classifiers have been used.

Since (as stated in Chapter 2) we use F1 for measuring effectiveness, as a measure of

classification error we use E1 ≡ (1− F1), which indeed (as assumed at the beginning

of this section) ranges on [0, 1]. In order to measure the overall effectiveness of a

ranking method across the entire set C of classes, we compute macro-averaged E1

(noted EM1 ), obtained by computing the class-specific E1 values and averaging them

across the cj ’s; from this it derives that EM1 = 1− FM1 . By ERMρ (n) we will indicate

macro-averaged ERρ(n), also obtained by computing the class-specific ERρ(n) values

and averaging them across the cj ’s.

Note that, while it might be the case that Eρ(0) = 0 (and ERρ(n) is undefined as

a consequence) for some classes, it is highly unlikely that this is so for all classes. This

means that there is essentially no risk that ERµρ (n) and ERMρ (n) might be themselves

undefined.

3.4.2 Normalized error reduction at rank ...

One problem with ERρ(n), though, is that the expected ERρ(n) value of the random

ranker is fairly high4, since it amounts to n
|Te| . The difference between the ERρ(n)

value of a genuinely engineered ranking method ρ and the expected ERρ(n) value of

the random ranker is particularly small for high values of n, and is null for n = |Te|.
This means that it makes sense to factor out the random factor from ERρ(n). This

leads us to define the normalized error reduction of ranking method ρ as NERρ(n) =

ERρ(n) − n
|Te| , with macro-averaged NERρ(n) obtained as usual and denoted, as

usual, by NERMρ (n).

3.4.3 ... and its expected value

However, NERρ(n) is still unsatisfactory as a measure, since it depends on a specific

value of n (which is undesirable, since our human annotator may decide to work down

the ranked list as far as she deems suitable). Following [66] we assume that the human

annotator stops validating the ranked list at exactly rank n with probability Ps(n)

(the index s stands for “stoppage”). We can then define the expected normalized error

reduction of ranking method ρ on a given document set Te as the expected value of

NERρ(n) according to probability distribution Ps(n), i.e.,

ENERρ =

|Te|∑
n=1

Ps(n)NERρ(n) (3.9)

4 That the expected ERρ(n) value of the random ranker is n
|Te| is something that we

have not tried to formally prove. However, that this holds is supported by intuition and
is unequivocally shown by Monte Carlo experiments we have run on our datasets; see
Figures 3.3 to 3.6 for a graphical representation.
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with macro-averaged ENERρ indicated, as usual, as ENERMρ .

Different probability distributions Ps(n) can be assumed, but in this task it is not

immediately clear how to best model Ps(n), since ranking for SATC is actually quite

different from ranking for ad hoc search, or similar other contexts which have been

studied before. This task seems a bit akin to a recall-oriented search task, since in our

case it is clear that the higher the validation depth, the higher the benefit, which also

seems the case in recall-oriented search tasks. But here we have to consider the fact

that the validation depth a user chooses might be influenced by the initial error as

estimated via k-fold cross-validation (the higher the error, the higher the validation

depth is likely to be), by the desired level of effectiveness (the higher this level, the

higher the validation depth is likely to be), and by the sheer size of the test set (it

is conceivable to scan large portions of the test set if this is small, while it is not

conceivable to do so if the test set is large)

In order to base the definition of such a distribution on a plausible model of user

behaviour, we here make the assumption (along with [58]) that a human annotator,

after validating a document, goes on to validate the next document with probability

(or persistence [58]) p or stops validating with probability (1− p), so that

Ps(n) =

pn−1(1− p) if n ∈ {1, . . . , |Te| − 1}

pn−1 if n = |Te|
(3.10)

It can be shown that, for a sufficiently large value of |Te|,
∑|Te|
n=1 n·Ps(n) (the expected

number of documents that the human annotator will validate as a function of p)

asymptotically tends to 1
1−p . The value ξ = 1

|Te|(1−p) thus denotes the expected

fraction of the test set that the human annotator will validate as a function of p.

Using this distribution in practice entails the need of determining a realistic value

for p. A value p = 0 corresponds to a situation in which the human annotator only

validates the top-ranked document, while p = 1 indicates a human annotator who

validates each document in the ranked list. Unlike in ad hoc search, we think that

in a SATC context it would be unrealistic to take a value for p as given irrespective

of the size of Te. In fact, given a desired level of error reduction, when |Te| is large

the human annotators need to be more persistent (i.e., characterized by higher p)

than when |Te| is small. Therefore, instead of assuming a predetermined value of p

we assume a predetermined value of ξ, and derive the value of p from the equation

ξ = 1
|Te|(1−p) . For example, in a certain application we might assume ξ = .20 (i.e.,

assume that the average human annotator validates 20% of the test set). In this

case, if |Te| = 1000, then p = 1 − 1
.20·1000 = .9950, while if |Te| = 10, 000, then

p = 1 − 1
.20·10000 = .9995. In the experiments of Section 3.5 we will test all values of

p corresponding to values of ξ in {.05, .10, .20}.
Note that the values of ENERρ are bound above by 1, but a value of 1 is not

attainable. In fact, even the “perfect ranker” (i.e., the ranking method that top-

ranks all misclassified documents, noted Perf ) cannot attain an ENERρ value of 1,
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since in order to achieve total error elimination all the misclassified documents need

to be validated anyway, one by one, which means that the only condition in which

ENERPerf might equal 1 is when there is just 1 misclassified document. We do not

try to normalize ENERρ by the value of ENERPerf since ENERPerf cannot be

characterized analytically, and depends on the actual labels in the test set.

3.5 Experiments

We have now fully specified (Section 3.3) a method for performing SATC-oriented

ranking and (Section 3.4) a measure for evaluating the quality of the produced rank-

ings, so we are now in a position to test the effectiveness of our proposed method.

In Sections 3.5.1 to 3.5.4 we will describe our experimental setting, while in Section

3.5.5 we will report and discuss the actual results of these experiments.

3.5.1 Experimental protocol

Any dataset is partitioned into a training set Tr and a test set Te. In each experiment

on SATC ranking methods we adopt the following experimental protocol:

1. For each cj ∈ C
a) Train classifier Φ̂j on Tr and classify Te by means of Φ̂j ;

b) Run k-fold cross-validation on Tr, thereby

i. computing TPTrj , FPTrj , and FNTr
j ;

ii. optimizing the σ parameter of Equation 3.1 (see Section 3.5.2 below for

the actual optimization method used);

2. For every ranking policy ρ tested

a) Rank Te according to ρ;

b) Scan the ranked list from the top, correcting possible misclassifications and

computing the resulting values of ENERMρ for different values of ξ.

For Step 1b we have used k = 10.

The above protocol simulates the activity of a human annotator who, after a

classifier Φ̂ has been generated from Tr and has been used to automatically label the

documents in Te and to rank them, manually validates the top-ranked automatically

labeled documents.

3.5.2 Probability calibration

We optimize the σ parameter by picking the value of σ that minimizes the average

(across the cj ∈ C) absolute value of the difference between PosTrj , the number of

positive training examples of class cj , and E[PosTrj ], the expected number of such

examples as resulting from the probabilities of membership in cj computed in the
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k-fold cross-validation. That is, we pool together all the training documents classified

in the k-fold cross-validation phase, and then we pick

arg min
σ

1

|C|
∑
cj∈C
|PosTrj − E[PosTrj ]| =

arg min
σ

1

|C|
∑
cj∈C
|PosTrj −

∑
di∈Tr

P (cj |di)| =

arg min
σ

1

|C|
∑
cj∈C
|PosTrj −

∑
di∈Tr

eσΦ̂j(di)

eσΦ̂j(di) + 1
|

(3.11)

This method (which [60] attributes to [64] and calls Platt calibration) is a much faster

calibration method than the traditional method of picking the value of σ that has

performed best in k-fold cross-validation. In fact, unlike the latter, it does not depend

on the ranking method ρ. Therefore, this method spares us from the need of ranking

the training set several times, i.e., once for each combination of a tested value of σ

and a ranking method ρ.

3.5.3 Learning algorithms

As our first learning algorithm for generating our classifiers Φ̂j we use the boosting-

based learner MP-Boost [19]. In all our experiments we set the S parameter of

MP-Boost (representing the number of boosting iterations) to 1000.

As the second learning algorithm we use support vector machines (SVMs). We use

the implementation from the freely available LibSvm library5, with a linear kernel and

parameters at their default values.

In all the experiments discussed in this dissertation stop words have been removed,

punctuation has been removed, all letters have been converted to lowercase, numbers

have been removed, and stemming has been performed by means of Porter’s stemmer.

Word stems are thus our indexing units. Since MP-Boost requires binary input, only

their presence/absence in the document is recorded, and no weighting is performed.

Documents are instead weighted (by standard cosine-normalized tfidf) for the SVMs

experiments.

3.5.4 Lower bounds and upper bounds

As the baseline for our experiments we use the confidence-based strategy discussed

in Section 3.2, which corresponds to using our utility-theoretic method with both

G(fp) and G(fn) set to 1. While this strategy has not (to the best of our knowledge)

explicitly been proposed before, it seems a reasonable, common-sense strategy anyway.

While the confidence-based method will act as our lower bound, we have also run

“oracle-based” methods aimed at identifying upper bounds for the effectiveness of

5 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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our utility-theoretic method, i.e., at assessing the effectiveness of “idealized” (albeit

non-realistic) systems at our task.

The first such method (dubbed Oracle1) works by “peeking” at the actual values

of TPj , FPj , FNj in Te, using them in the computation of G(di, fpj) and G(di, fnj),

and applying our utility-theoretic method as usual. Oracle1 thus indicates how our

method would behave were it able to “perfectly” estimate TPj , FPj , and FNj . The

difference in effectiveness between Oracle1 and our method will thus be due to (i)

the performance of the method adopted for smoothing contingency tables, and (ii)

possible differences between the distribution of the documents across the contingency

table cells in the training and in the test set.

In the second such method (Oracle2) we instead peek at the true labels of the

documents in Te, which means that we will be able to (a) use the actual values of

TPj , FPj , FNj in the computation of G(di, fpj) and G(di, fnj) (as in Oracle1), and

(b) replace the probabilities in Equation 3.3 with the true binary values (i.e., replacing

P (x) with 1 if x is true and 0 if x is false), after which we apply our utility-based

ranking method as usual. The difference in effectiveness between Oracle2 and our

method will be due to factors (i) and (ii) already mentioned for Oracle1 and to our

method’s (obvious) inability to perfectly predict whether a document was classified

correctly or not.

3.5.5 Results and discussion

The results of our experiments are given in Tables 3.1 and 3.2, where we present

the results of running, for each of two learners (MP-Boost and SVMs respectively)

and five datasets (Reuters-21578, OHSUMED, and three variants of them – called

Reuters-21578/10, Reuters-21578/100, OHSUMED-S – that we will introduce

in Sections 3.5.5, 3.5.5, 3.5.5), our utility-theoretic method against the three methods

discussed in Section 3.5.4. In Tables 3.1 and 3.2 our method, Oracle1 and Oracle2 are

actually indicated as U-Theoretic(s), Oracle1(s) and Oracle2(s), to distinguish them

from the “dynamic” methods that will be described in Chapter 4. Tables 3.1 and 3.2

presents ENERMρ (ξ) values for three representative values of ξ, i.e., 0.05, 0.10, and

0.20.

Mid-sized test sets

Figure 3.3 plots the results, in terms of ERMρ (n), of our experiments with the MP-

Boost learner on the Reuters-21578 dataset, while 3.4 does the same for the SVM

learner. The results of these experiments in terms of ENERMρ as a function of the

chosen value of ξ are instead reported in Tables 3.1 and 3.2. The optimal value of

σ returned by the k-fold cross-validation phase is .554 for MP-Boost and 7.096 for

SVMs; these values, sharply different from 1 and from each other, clearly show the
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MP-Boost

ξ = 0.05 ξ = 0.10 ξ = 0.20

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline .071 .108 .152

U-Theoretic(s) .163 (+128%) .226 (+109%) .280 (+84%)

Oracle1(s) .155 (+117%) .222 (+106%) .280 (+84%)

Oracle2(s) .693 (+869%) .738 (+583%) .707 (+365%)

R
-2
1
5
7
8
/
1
0 Baseline .063 .097 .135

U-Theoretic(s) .145 (+131%) .203 (+110%) .245 (+81%)

Oracle1(s) .159 (+153%) .205 (+112%) .243 (+80%)

Oracle2(s) .555 (+784%) .643 (+566%) .648 (+380%)

R
-2
1
5
7
8
/
1
0
0 Baseline .069 .121 .164

U-Theoretic(s) .118 (+71%) .172 (+42%) .215 (+31%)

Oracle1(s) .192 (+178%) .247 (+104%) .281 (+71%)

Oracle2(s) .429 (+521%) .537 (+344%) .575 (+251%)

O
H
S
U
M
E
D Baseline .385 .479 .512

U-Theoretic(s) .442 (+15%) .529 (+10%) .549 (+7%)

Oracle1(s) .445 (+16%) .530 (+11%) .549 (+7%)

Oracle2(s) .838 (+118%) .839 (+75%) .769 (+50%)

O
H
S
U
M
E
D
-S Baseline .021 .025 .026

U-Theoretic(s) .087 (+323%) .118 (+374%) .132 (+402%)

Oracle1(s) .091 (+343%) .117 (+370%) .125 (+375%)

Oracle2(s) .481 (+2246%) .554 (+2125%) .572 (+2075%)

Table 3.1: Results of various ranking methods, applied to MP-Boost and several
test collections, in terms of ENERMρ (ξ), for ξ ∈ {0.05, 0.10, 0.20}. Improvements
listed for the various methods are relative to the baseline. Reuters-21578/10 and
Reuters-21578/100 are respectively named as R-21578/10 and R-21578/100

advantage of converting confidence scores into probabilities via a generalized logistic

function.

The first insight we can draw from these results is that our U-Theoretic(s) method

outperforms Baseline in a very substantial way. This can be appreciated both from the

plots of Figures 3.3 and 3.4, in which the red curve (corresponding to U-Theoretic(s))

is markedly higher than the green curve (corresponding to Baseline), and from Tables

3.1 and 3.2. In this latter, for ξ = .10 (corresponding to p = .996) our method obtains

relative improvements over Baseline of +109% (MP-Boost) and +51% (SVMs); for
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SVMs

ξ = 0.05 ξ = 0.10 ξ = 0.20

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline .262 .352 .420

U-Theoretic(s) .442 (+69%) .531 (+51%) .562 (+34%)

Oracle1(s) .477 (+82%) .563 (+60%) .586 (+40%)

Oracle2(s) .719 (+174%) .760 (+116%) .723 (+72%)

R
-2
1
5
7
8
/
1
0 Baseline .243 .322 .383

U-Theoretic(s) .330 (+36%) .415 (+29%) .465 (+21%)

Oracle1(s) .392 (+61%) .482 (+50%) .522 (+36%)

Oracle2(s) .596 (+145%) .676 (+110%) .672 (+75%)

R
-2
1
5
7
8
/
1
0
0 Baseline .226 .302 .364

U-Theoretic(s) .291 (+29%) .365 (+21%) .416 (+14%)

Oracle1(s) .318 (+41%) .422 (+40%) .479 (+32%)

Oracle2(s) .458 (+103%) .568 (+88%) .600 (+65%)

O
H
S
U
M
E
D Baseline .526 .630 .644

U-Theoretic(s) .623 (+18%) .685 (+9%) .666 (+3%)

Oracle1(s) .639 (+21%) .687 (+9%) .657 (+2%)

Oracle2(s) .864 (+64%) .854 (+36%) .778 (+21%)

O
H
S
U
M
E
D
-S Baseline .075 .124 .164

U-Theoretic(s) .212 (+184%) .282 (+127%) .323 (+97%)

Oracle1(s) .272 (+265%) .334 (+169%) .352 (+115%)

Oracle2(s) .511 (+585%) .589 (+375%) .603 (+268%)

Table 3.2: Results of various ranking methods, applied to SVMs and several test
collections, in terms of ENERMρ (ξ), for ξ ∈ {0.05, 0.10, 0.20}. Improvements listed for
the various methods are relative to the baseline. Reuters-21578/10 and Reuters-
21578/100 are respectively named as R-21578/10 and R-21578/100

ξ = .20 the improvements, while not as high as for ξ = .10, are still sizeable (+84%

for MP-Boost and +34% for SVMs), while for ξ = .05 the improvements are even

higher than for ξ = .10 (+128% for MP-Boost and +69% for SVMs).

A second insight is that, surprisingly, our method hardly differs in terms of perfor-

mance from Oracle1(s). The two curves can be barely distinguished in Figure 3.3, and

in terms of ENERMρ Oracle1(s) is even slightly outperformed, in the MP-Boost ex-

periments, by U-Theoretic(s) (e.g., .226 vs. .222 for ξ = .10). This shows that (at least

judging from these experiments) Laplace smoothing is nearly optimal, and there is
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Figure 3.4: Same as Figure 3.3, but with the SVM learner in place of MP-Boost.

likely not much we can gain from applying alternative, more sophisticated smoothing

methods. This is sharply different from what happens in language modelling, where

Laplace smoothing has been shown to be an underperformer [27]. The fact that with

MP-Boost our method slightly (and strangely) outperforms Oracle1(s) is probably

due to accidental, “serendipitous” interactions between the probability estimation

component (Equation 3.1) and the contingency cell estimation component of Section

3.3.3.

A third interesting fact is that error reduction is markedly better in the SVM

experiments than in the MP-Boost experiments. This is evident from the fact that

the Figure 3.3 curves for SVMs are much more convex (i.e., are higher) and are closer

to the optimum (i.e., closer to the Oracle2(s) curve) than the corresponding Figure 3.3

curves for MP-Boost. This fact is also evident from the numerical results reported

in Tables 3.1 and 3.2 where, with U-Theoretic(s), SVMs obtain ENERMρ (.10) = .531,

which is +134% better than the ENERMρ (.10) = .226 result obtained by MP-Boost

(similar improvements can be observed for the other methods and for the other values

of ξ). This provides a striking contrast with the classification accuracy results reported

in Table 3.3 where, on the same dataset, MP-Boost (EM1 = .392) substantially
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Dataset |P| |Tr| |Te| |C| ACD
EM1 Eµ1

MP-B SVMs MP-B SVMs

OHSUMED 1 183229 50216 97 0.132 .553 .577 .389 .324

OHSUMED-S 1 12358 3584 97 1.851 .520 .522 .286 .244

Reuters-21578 1 9603 3299 115 1.135 .392 .473 .152 .140

Reuters-21578/10 10 9603 330 115 1.135 .194 .199 .151 .130

Reuters-21578/100 100 9603 33 115 1.135 .050 .049 .149 .140

Table 3.3: Characteristics of the test collections used. From left to right we report
the number of test sets (Column 2) and, for each test set, the number of training
documents (3), the number of test documents (4), the number of classes (5), and the
average number of classes per test document (6). Columns 7-10 report the initial error
(both EM1 and Eµ1 ) generated by the MP-Boost and SVMs classifiers.

outperformed SVMs (EM1 = .473). It is easy to conjecture that, while MP-Boost

yields higher classification accuracy, it generates less reliable (calibrated) confidence

scores, i.e., it generates confidence scores that correlate with the ground truth worse

than the SVM-generated scores.

The improvements of U-Theoretic(s) over the baseline are instead much higher for

MP-Boost than for SVMs (e.g., for ξ = .10 these are +109% and +51%, respec-

tively). (The same goes for the improvements of Oracle1(s) over the baseline.) This

is likely due to the fact that, as observed above, the absolute values of ENERMρ (ξ)

obtained by the baseline are much higher for SVMs than for MP-Boost for all meth-

ods, so the margins of improvement with respect to the baseline are smaller for SVMs

than for MP-Boost.

As a final note we remark that, while in a standard text classification context

Reuters-21578 would probably qualify as a small dataset, it probably qualifies at

least as a mid-sized one in a semi-automatic text classification context. The reason

is that, in this context, we need to think of the test set not just as a set of unla-

beled documents the classifier is being tested on (the bigger this set, the more reliable

the conclusions that can be drawn from it), but as a set of automatically classified

documents that a human editor partially validates. Drastically larger test sets would

inevitably raise the question whether they realistically simulate an operational SATC

context, i.e., whether for unlabeled sets of that size it makes sense at all, in an op-

erational condition, to attempt improving the overall quality of the classification via

human validation. E.g., in the well-known RCV1-v2 dataset [49] the test set con-

sists of 781,265 documents, and even validating 10% of it (which might seem seem a

sensible percentage if we want to improve accuracy to some degree) means validating

78,126 documents, which requires a lot of manpower.
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Small test sets

We have also run a batch of experiments aimed at assessing how the methods fare when

ranking test sets much smaller than Reuters-21578. This may be more challenging

than ranking larger sets since, when the test set is small, Laplace smoothing (i) can

seriously perturb the relative proportions among the cell counts, which can generate

poor estimates of G(di, fpj) and G(di, fnj), and (ii) is performed for more classes,

since (as discussed at the end of Section 3.3.3) we smooth “on demand” only, and

since the likelihood that ˆTP
ML

j , F̂P
ML

j , ˆFN
ML

j are smaller than 1 is higher with

small test sets. This is also a realistic setting since, if a set of unlabeled documents

is small, it is likely that validating a portion of it that can lead to sizeable enough

effectiveness improvements is feasible from an economic point of view.

Rather than choosing a completely different dataset, we generate 10 new test sets

by randomly splitting the Reuters-21578 test set in 10 equally-sized parts (about

330 documents each), details are given in Table 3.3. In our experiments we run each

ranking method on each such part individually and average the results across the

10 parts. We call this experimental scenario Reuters-21578/10. This allows us to

study the effects of test set size on our methods in a more controlled way than if we

had picked a completely different dataset, since test set size is the only difference with

respect to the previous Reuters-21578 experiments.

The results displayed in Figure 3.5 allow us to visually appreciate that U-

Theoretic(s) substantially outperforms Baseline also in this context. This can be seen

also from Tables 3.1 and 3.2: for ξ = .10 the relative improvement over Baseline is

+110% for MP-Boost and +30% for SVMs, and similarly substantial improvements

are obtained for the two other values of ξ tested.

Incidentally, note that the Reuters-21578/10 experiments model an application

scenario in which a set of automatically labelled documents is split (e.g., to achieve

faster throughput) among 10 human annotators, each one entrusted with validating

a part of the set. In this case, each annotator is presented with a ranking of her own

document subset, and works exclusively on it6.

Tiny test sets

In further experiments that we have run, we have split the Reuters-21578 test set

even further, i.e., into 100 equally-sized parts of about 33 documents each (see Table

3.3 for dataset details), so as to test the performance of Laplace smoothing methods

6 Actually, if we did have k annotators available, the best strategy would be to generate
the k rankings in a “round robin” fashion, i.e., by allotting to annotator i the documents
ranked (in the global ranking) at the positions r such that (r mod k) = i. This splitting
method would guarantee that only the most promising documents are validated by the
annotators.
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(a) MP-Boost results.
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(b) SVMs results.

Figure 3.5: Results obtained by (i) splitting the Reuters-21578 test set into 10
random, equally-sized parts, (ii) running the analogous experiments of Figure 3.3
independently on each part, and (iii) averaging the results across the 10 parts. 43
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in even more challenging conditions. We call this experimental scenario Reuters-

21578/100. From an application point of view this is a less interesting scenario than

the two previously discussed ones, since applying a ranking method to a set of 33

documents only is of debatable utility, given that a human annotator confronted with

the task of validating just 33 documents can arguably check them all without any

need for ranking. The goal of these experiments is thus checking whether our method

can perform well even in extreme, albeit scarcely realistic, conditions.

The detailed ERMρ (n) plots for this Reuters-21578/100 scenario are presented

in Figure 3.6, while the ENERMρ results are reported in Tables 3.1 and 3.2. U-

Theoretic(s) still outperforms Baseline, with a relative improvement of +42% with MP-

Boost and +21% with SVMs with ξ = .10, corresponding to p = .696; qualitatively

similar improvements are obtained with the other tested values of ξ.

Note that in these experiments, unlike in those performed on the full Reuters-

21578, the Oracle1 method proves to be markedly superior to U-Theoretic(s) (e.g., .247

vs. .172 in terms of ENERMρ (.10) with MP-Boost, and similarly for other values

of ξ and for the SVM learner). The obvious reason is that, for a smaller test set, (a)

distribution drift is higher, (b) “smoothing on demand” is invoked more frequently

(because the likelihood that contingency table cells have a value ≤ 1 is higher), and (c)

when smoothing is indeed applied the distribution across the cells of the contingency

table is perturbed more strongly.

Note also that the ERMρ (n) curves are smoother than the analogous curves for the

full Reuters-21578 and, although to a lesser extent, those for Reuters-21578/10.

This is due to the fact that the curves in Figure 3.6 result from averages across 100

different experiments, and the increase brought about at rank n is actually the average

of the increases brought about at rank n in the 100 experiments.

Large test sets

While in the previous sections we have discussed experiments on mid-sized to small

(or very small) datasets, we now look at larger datasets such as OHSUMED. The

OHSUMED results in Tables 3.1 and 3.2 confirm the quality of U-Theoretic(s), which

outperforms the purely confidence-based baseline by +10% (MP-Boost) and +9%

(SVMs) in terms of ENERMρ (.10); qualitatively similar improvements are obtained

for the other two values of ξ studied.

The OHSUMED collection is characterized by the presence of an unusually large

number (93.1% of the entire lot) of unlabeled documents (i.e., documents, that are

negative examples for all cj ∈ C) that originally belonged to other subtrees of the

MeSH tree. Since such a large percentage is innatural, we have generated (and also

used in our experiments) a variant of OHSUMED (called OHSUMED-S) by re-

moving all the unlabeled documents from both the training set and the test set; the

datasets are illustrated in Table 3.3.
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(a) MP-Boost results.
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(b) SVMs results.

Figure 3.6: Same as Figure 3.5 but with Reuters-21578/100 in place of Reuters-
21578/10.
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As illustrated in Table 3.1 and 3.2, on OHSUMED-S U-Theoretic(s) outperforms

the confidence-based baseline by a very large margin (+374% with MP-Boost and

+127% with SVMs for ξ = .10, with qualitatively similar results for the other two

tested values of ξ).

Discussion

In sum, the results discussed from Section 3.5.5 to the present one have unequivocally

shown that U-Theoretic(s) outperforms the confidence-based baseline, usually by a

large or very large margin, for all the five tested datasets and for both the two tested

learners.

Note that, for all five datasets and for both learners, the improvements of the

utility-theoretic methods over Baseline are larger for smaller values of ξ. This indicates

that the difference between the two methods is larger for smaller validation depths,

i.e., where using the utility-theoretic method pays off the most is at the very top of the

ranking. This is an important feature of this method, since it means that all human

annotators, be they persistent or not (i.e., independently of the depth at which they

validate), are going to benefit from this approach.

3.6 Further readings

Many researchers have tackled the problem of how to use automated TC technologies

in application contexts in which the required accuracy levels are unattainable by the

generated automatic classifiers.

A standard response to this problem is to adopt active learning (AL – see e.g.,

[32, 77]), i.e., use algorithms that optimize the informativeness of additional training

examples provided by a human annotator. Still, providing additional training exam-

ples, no matter how carefully chosen, may be insufficient, since in many applicative

contexts high enough accuracy levels cannot be attained, irrespectively of the quantity

and quality of the available training data. Similar considerations apply when active

learning is carried out at the term level, rather than at the document level [28, 65]. In

Chapter 5 we will investigate on the differences and similarities between SATC and

AL.

A related response to the same problem is to adopt training data cleaning (TDC –

see e.g., [22, 25, 59]), i.e., use algorithms that optimize the human annotator’s efforts

at correcting possible labelling mistakes in the training set. Similarly to the case of

AL, in many applicative contexts high enough accuracy levels cannot be attained even

at the price of carefully validating the entire training set for labelling mistakes. TDC

is usually employed by ranking mislabeled examples according to the confidence of

the classifiers applied on Tr; other strategies analyze anomalies in the distribution of

the training samples, or exploit information specific to the chosen learners [22].
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Both AL and TDC are different from the task we deal with, since we are not

concerned with improving the quality of the training set. We are instead concerned

with improving the quality of the automatically classified test set, typically after all

attempts at injecting quality in the automatic classifier (and in the training set) have

proved insufficient; in particular, no retraining / reclassification phase is involved in

SATC.

Few published works deal with the task of SATC. Recently a paper has been

published [56], where the authors study a family of methods for exploiting the “docu-

ment certainty”, taking into account the confidence scores computed by the classifiers.

They compare their methods on several learners and datasets, using Fµ1 as evaluation

measure; the U-Theoretic(s) method is compared on the Reuters-21578 collection,

results are evaluated with the ENERρ measure. The authors claim to obtain a slight

improvement over U-Theoretic(s), using their best method, but the methodology of

comparison is not licit. They use a SVM learner, and compare its results with our

results with MP-Boost, so both the initial accuracy on the test set, the estimated

contingency table and the misclassification probability estimations, are different. If we

instead compare our results obtained with the SVM learner, our initial classification

accuracy is slightly better, and the improvements in terms of ENERρ are substantial.

Furthermore they compare the macro-averaged rankings with micro evaluation, while

in Chapter 4 we present a new class of micro-averaged methods, specific for micro

evaluation.

Bianchi et al. [7] apply semi-automated classification to the case in which a desired

level of accuracy needs to be reached as stated in a Service Level Agreement between

suppliers and customers. The authors propose a method for selecting documents to

be validated, based on ranges of confidence. Their approach is exclusively based on

probability values of the confidence of classification, but the method for calibrating

probabilities is not discussed. They argue that SVMs return best confidence esti-

mates in order to select the documents which, once validated, bring about the best

improvement in precision.

While AL (and, to a much lesser degree, TDC) have been investigated extensively

in a TC context, semi-automated TC has been almost neglected by the research com-

munity. While a number of papers (e.g., [43, 73, 83]) have evoked the existence of this

scenario, we are aware of only these two published papers, which either discuss rank-

ing policies for supporting the human annotator’s effort, or that attempt to quantify

the effort needed for reaching a desired level of accuracy. For instance, while dis-

cussing a system for the automatic assignment of ICD9 classes to patients’ discharge

summaries, Larkey and Croft [43] say “We envision these classifiers being used in an

interactive system which would display the 20 or so top ranking [classes] and their

scores to an expert user. The user could choose among these candidates (...)”, but do

not present experiments that quantify the accuracy that the validation activity brings

about, or methods aimed at optimizing the cost-effectiveness of this activity.

47



CHAPTER 3. A RANKING METHOD FOR SATC

3.6.1 Probability estimates of classification

The problem of returning probability outputs from classifiers has been tackled with

some different approaches in ML. The function for transforming confidence scores

into probabilities is usually achieved by cross-validation on the training set, so the

effectiveness of the function is determined by the goodness of the estimation of its

parameters.

Our calibration method is directly inspired to the Platt calibration [64], which mo-

tivates the choice of the function by empirical evaluations on SVMs outputs, which

follow a sigmoidal distribution. Niculescu et al. [60, 61] study three calibration meth-

ods applied to popular ML algorithms. They principally show how boosting algorithms

with full decision trees can be calibrated in order to produce optimum probabilistic

outputs. They examine Platt calibration along with other two methods; the exper-

imental study exploits the effectiveness of the Platt’s method, especially against a

method based on isotonic regression. The calibration based on isotonic regression

[85, 86] creates a function which splits the range of classifier’s outputs on the training

set, into subranges; this operation is performed on the training set, each subrange is

mapped into a value in [0, 1], so that the probability outputs follow the distribution

of the classifier outputs.

An interesting work in [6] explores calibration methods which convert confidence

scores into asymmetric distributions. The authors analyze the asymmetric versions of

two distributions: Laplace and Gaussian. They apply methods for finding the maxi-

mum likelihood estimates of the distribution parameters, and they compute the dis-

tributions on each class, distinguishing the ones relative to positive prediction confi-

dences from the negative ones. The empirical evaluation of the methods indicate an

effectiveness comparable the calibrations based on logistic functions. The use of logis-

tic functions for classification is developed in [47]. In this work a similar approach to

probability calibration is used in order to create a classifier, so the outputs returned

by the calibrated function are used to predict class assignments; the learning pro-

cess is thus performed through an estimator on the training set, comparable to the

parametric calibration method of Platt.

3.6.2 Evaluating rankings by modelling user behavior

In information retrieval the evaluation is performed on an ordered list of documents,

which are presented to the user, ranked by expected relevance. Several approaches

to the evaluation of retrieval effectiveness have been proposed in literature; some

approaches take into account the user searching behaviour, in fact the relevance of

a document is potentially affected by the user actions and satisfaction (e.g., opening

only the first result, reading the first page of results, etc.).

With the ENERρ measure we model the “patience” of the annotator as with the

rank-biased precision (RBP) [58]. Other popular measures are discontinued cumulative

gain (DCG) [35] or expected reciprocal rank (ERR) [13]. DCG has been one of the first
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measure in IR which weights the relevance of a document by a function of its rank.

ERR considers, for each document, the relevance of the documents at the previous

ranks; a user is less likely to continue scanning the ranking if the documents she finds

satisfy her “information need”.

These evaluation measures in IR can be supported by the information of real user

usage of the retrieval systems, for example page clicks, or query logs, in web search.

In [12] the authors study a selection of values for the RBP free parameter, which

is the already mentioned persistence p. They generate a distribution of values for p,

given a distribution of user behaviours generated from “click data”; in this way it is

possible to adapt the evaluation of an IR system to observed user actions. In [84] a

new measure is developed, namely expected browsing utility, which is specific for web

search; it integrates parameters which can be easily trained on web usage data.

In Chapter 7 we will discuss some intuitions about extending our evaluation met-

rics in order to asses the human validation process.

3.6.3 Human interaction in learning systems

Several applications for the automatic analysis of textual documents can require hu-

man interaction, in order to improve their effectiveness (for example e-discovery, de-

scribed in the Introduction). A well known scenario is relevance feedback in informa-

tion retrieval [54, 68], where the user marks the documents returned by a retrieval

system, in order to enrich her information need and formulate a new and more ac-

curate search. In [38] a modern approach to relevance feedback is discussed, which

recalls our principle of maximizing a measure of utility. The authors develop a ML

algorithm for the diversification of the results, in order to optimize the utility of the

results in terms of user satisfaction. On the retrieved documents, the system balances

values of relevance (for meeting the user needs) and informativeness (for improving

the model with feedback).

Crowdsourcing applications are widely used from both the scientific community

and the industry (e.g., Amazon Mechanical Turk 7) in order to obtain labelled data

and building robust datasets. The problem of combining the collaborations of several

annotator has been studied with the purpose of understanding the quality of the

human work [3, 34, 39]. In SATC we assume that the validation is correct, discarding

problematics as inter-agreement or expertise of the annotators. The human cost is

one critical aspect in crowdsourcing, in our methods we have assumed that the cost

is linearly proportional with the number of documents to be validated.

In machine learning different scenarios exist, in which automatic processes and

human interactions are combined; they are not limited to active learning or training

data cleaning. The following are some examples of applications.

A software for form filling is presented in [41]. The described system allows the

users to fill forms (e.g. web forms), supporting this operation with automatic filling

7 http://www.mturk.com
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of the empty form fields, employing constrained conditional random fields. The effec-

tiveness of the system is measured in terms of expected user actions, so the better

solution is the one which minimizes the user writings, and the corrections of wrong

information. The software can also highlight the form fields which it has automatic

filled, and on which is less confident, thus reducing the ratio between user actions and

filling accuracy.

In [26], a particular software architecture for building training data is described, it

produces a sort of automatic annotation of the unlabelled data. The goal of the appli-

cation is learning from a training set with few positive samples and many unlabelled

samples, so to reduce the human effort in annotating documents. After sampling po-

tential negative samples, a method for selecting samples to be corrected is applied,

and an AL strategy is used in order to assign the correct classes. Uncertain samples

are extracted through the recomputation of a separation margin, learned with SVMs.

Weeber et al. [81] examine the assessor disagreement in annotating training and

test data. They evaluate different cases, and for each case they compare the accuracy of

classification between different scenarios of annotation, e.g.: different or same assessors

for training and test set, two groups of assessors for training set, etc. One interesting

outcome of this study is in the measurement of the human effort necessary for the

annotation, when a specific level of recall is requested, but different assessors are

used. The problem is approached by ranking documents according to the probabilistic

outputs of a classifier.

Coactive learning [75] is a model of interaction between a learning system and

its user. The authors start from the conjecture that the user feedback gives an im-

provement of the prediction but not necessarily the optimal. The system integrates

a measure of the utility of the results, the goal of the learning process is minimizing

the difference between the utility of the results annotated after user feedback and

the utility of the true labels. Given the assumption that human annotation may not

imply total improvement of accuracy, the algorithms learn from the annotated data

in order to maximize the utility of the user feedbacks of successive annotations.

3.7 Conclusions

We have presented a method for ranking the documents labelled by an automatic

classifier. The documents are ranked in such a way as to maximize the expected

reduction in classification error brought about by a human annotator who validates

a subset of the ranked list and corrects the labels when appropriate. First we have

introduced a probabilistic approach to the task of semi-automated TC, then we have

defined our method, based on the concept of utility in validating a ranked document.

We have also proposed an evaluation measure for such ranking method, based on

the notion of expected normalized error reduction. We have introduced this measure in

three steps, starting from the concept of error reduction, then defining a normalized

error reduction, finally formalizing the expected error reduction. This measure is
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designed with the aim of modelling the behaviour of the user who validates the ranked

documents.

We have pointed out the details of the implementation and the experimental set-

ting. Experiments carried out on standard datasets show that our method substan-

tially outperforms a state-of-the-art baseline method.

It should be remarked that the very fact of using a utility function, i.e., a function

in which different events are characterized by different gains, makes sense here since

we have adopted an evaluation function, such as F1, in which correcting a false positive

or a false negative brings about different benefits to the final effectiveness score. If

we instead adopted standard accuracy (i.e., the percentage of binary classification

decisions that are correct) as the evaluation measure, utility would default to the

probability of misclassification, and our method would coincide with the baseline,

since correcting a false positive or a false negative would bring about the same benefit.

The methods we have presented are justified by the fact that, in text classification

and in other classification contexts in which imbalance is the rule, F1 is the standard

evaluation function, while standard accuracy is a deprecated measure because of its

lack of robustness to class imbalance (see e.g., [73, Section 7.1.2] for a discussion of

this point).

In the next chapters we will extend the method exploring new intuitions about the

ranking function and its applications. A task of SATC can be investigated through

its different dimensions, we will follow some of the most interesting ramifications of

the problem.
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4

Additional Ranking Methods for Semi-Automated
Text Classification

In this Chapter we extend the development of utility-theoretic ranking methods for

SATC. In Chapter 3 we defined a SATC method that has a “static” nature, i.e.,

utility gains are computed only once at the beginning of the SATC process.. We now

come up with new insights, expanding our work in two directions: (a) we present a

new “dynamic” ranking method, in which the gains are computed after each step of

the manual validation, with the aim of obtaining a more accurate estimate of the

improvement in accuracy, iteratively (Section 4.1); (b) we switch to another way of

evaluating the classification accuracy, we reformulate our ranking methods for the

micro-averaged effectiveness (Section 4.2).

We present the two ranking methods based on the already discussed concepts

of utility and gain, we show how these functions can be modified in order to meet

our needs. For each method we reproduce the experimental protocol of Chapter 3,

expressly modified for our purposes, and we discuss the effectiveness of the new SATC

methods.

4.1 An improved, “dynamic” ranking function

The utility-theoretic method discussed in Section 3.3.1 is reasonable but, in principle,

suboptimal, and its suboptimality derives from its “static” nature. To see this, assume

that the system has ranked the test documents according to the strategy above, that

the human annotator has started from the top of the list and validated the labels

of document di, that she has found out that its label assignment for class cj is a

false negative, and that she has corrected it, thus bringing about an increase in F1

equivalent to

2(TPj + 1)

2(TPj + 1) + FPj + (FNj − 1)
− 2TPj

2TPj + FPj + FNj
(4.1)

Following this correction, the value of FNj is decreased by 1 and the value of TPj
is increased by 1. This means that, when another false negative for cj is found and
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corrected, the value of (4.1) has changed, i.e., the increase in F1 that derives from

correcting a false negative is not the same any more.

Suppose that, before the validation process begins, TPj = 5, FPj = 2,

FNj = 3, TNj = 20, which means that F1 = 2·5
2·5+2+3 = 0.666. Suppose

the first document that gets validated is a false negative; F1 then becomes

F1 = 2·6
2·6+2+2 = 0.750, with an improvement of (0.750− 0.666) = 0.084. Sup-

pose the second document to be validated is also a false negative; F1 then

becomes F1 = 2·7
2·7+2+1 = 0.823, which means that the improvement is now

only (0.823− 0.750) = 0.073. ut

This example shows that the improvement in F1 due to the validation of a false neg-

ative is not constant through the validation process. Of course, similar considerations

apply for false positives. This fact is the reason why in Equation 3.6 we had defined

G(di, fnj) as the average improvement in F1 deriving from the correction of a false

negative, where the average is taken across all the false negatives in the contingency

table. This means that, at any specific point in the validation process, validation gains

as defined in Equations 3.5 and 3.6 are an imprecise measure of the improvement in

F1 deriving from doing validation at that precise point.

This suggests redefining the validation gains defined in Equations 3.5 and 3.6 as

G(di, fpj) =
2TPj

2TPj + (FPj − 1) + FNj
− 2TPj

2TPj + FPj + FNj

G(di, fnj) =
2(TPj + 1)

2(TPj + 1) + FPj + (FNj − 1)
− 2TPj

2TPj + FPj + FNj

(4.2)

To see the novelty introduced with respect to Equation 4.2, in the following we will

discuss the case of false negatives; the case of false positives is completely analogous.

The difference between Equation 3.6 and Equation 4.2 is that the former equates

G(di, fnj) with the increase in F1(Φ̂j(Te)) that would derive by correcting all of the

documents in FNj divided by their number, while the latter equates G(di, fnj) with

the increase in F1(Φ̂j(Te)) that would derive by correcting the next document in FNj .

In other words, we might say that Equation 3.6 enforces the notion of average gain,

while Equation 4.2 enforces the notion of pointwise gain. The two versions return

different values of G(di, fnj): as the following example shows, it is immediate to

verify that if FNj contains more than one document, the validation gains G(di, fnj)

that derive by correcting different documents are the same (by definition) if we use

Equation 3.6 but are not the same if we use Equation 4.2.

Suppose we have classified a set of 100 documents according to class cj , and

that the classification is such that TPj = 10, FNj = 20, FPj = 30, and

TNj = 40. According to Equation 3.6, G(di, fnj) evaluates to ≈ 0.0190 for

each false negative corrected. Instead, according to Equation 4.2, G(di, fnj)

evaluates to ≈ 0.0241 for the 1st false negative corrected, ≈ 0.0235 for the

2nd, ≈ 0.0228 for the 3rd, ..., down to ≈ 0.0147 for the 20th. ut
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Given this new definition we may implement a dynamic strategy in which, instead of

plainly sorting the test documents in descending order of their U(di, Ω) score, after

each correction is made we update ˆTP
La

j , F̂P
La

j , ˆFN
La

j by adding and subtracting

1 where appropriate, we recompute G(di, fpj), G(di, fnj) and U(di, Ω), and we use

the newly computed U(di, Ω) values when selecting the document that should be

presented next to the human annotator. In detail, the following steps are iteratively

performed:

1. For all classes cj ∈ C, compute G(di, fpj) and/or G(di, fnj) using Equations 4.2;

2. If the human annotator does not want to stop validating documents, then identify

the document dmax ≡ arg max
di∈Te

U(di, Ω) for which total utility is maximised,

where U(di, Ω) is as in Equation 3.7, and where Equations 4.2 are used in its

computation in place of Equations 3.5 and 3.6;

3. Remove dmax from Te;

4. For all cj ∈ C, have the human annotator check the label attached by Φ̂j to dmax;

if all these labels are correct go to Step 2; else, for all classes cj ∈ C for which the

label attached by Φ̂j to dmax is incorrect:

a) Have the human annotator correct the label;

b) If dmax was a false positive for cj , decrease F̂P
La

j by 1; if it was a false negative

for cj , increase ˆTP
La

j by 1 and decrease ˆFN
La

j by 1;

c) Re-smooth ˆTP
La

j , F̂P
La

j , ˆFN
La

j if needed;

d) Recompute G(di, fpj) and/or G(di, fnj) and go back to Step 2.

This might also be dubbed an incremental ranking strategy, in the sense pioneered in

[1] for relevance feedback in ad-hoc search, in the sense that the values of G(di, fpj)

and G(di, fnj) are incrementally updated so that the U(di, Ω) function reflects the

fact that part of Te has indeed been corrected. In keeping with [8] we prefer to call

it a dynamic strategy, and to call the one of Section 3.3.1 a static one.

Note that in Step 2 we simply compute the maximum element (according to

U(di, Ω)) of Te instead of sorting the entire set, since we can perform this step in

O(|Te|) instead of O(|Te| log |Te|)1. Furthermore, note that in this algorithm the

re-computation of Uj(di, Ω) does not entail the recomputation of the probabilities

P (fpj) and/or P (fnj) of Equation 3.3, since these probabilities are computed (i.e.,

calibrated) once for all, immediately after the training phase.

Note also that computing validation gains via Equations 3.5 and 3.6 is the only

possibility within the static method (since the values of G(di, fpj) and G(di, fnj)

produced must be used unchanged throughout the process), but is clearly inadequate

1 When computing this maximum element returns repeatedly a document whose labels are
all correct, the lack of a sorting step entails the need of computing the maximum element
several times in a row with the values of G(di, fpj) and G(di, fnj) unchanged. In these
cases, the presence of a sorting step would thus have been advantageous. However, the
likelihood that this situation occurs tends to be small, especially when |C| is large, thus
making the computation of the maximum element preferable to sorting.
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in a dynamic context, in which validation gains are always supposed to be up-to-date

reflections of the current situation.

The dynamic nature of this method makes it clear why, as specified at the end of

Section 3.3.3, we smooth the cell count estimates only “on demand” (see also Step

4c of the above algorithm), i.e., only if any of ˆTP
ML

j , F̂P
ML

j , ˆFN
ML

j is < 1. To see

this, suppose that we smooth ˆTP
ML

j , F̂P
ML

j , ˆFN
ML

j at each iteration, even when not

strictly needed. Adding a count of one to each of them at each iteration means that,

after k iterations, k counts have been added to each of them; this means that, after

many iterations, the counts added to the cells have completely disrupted the relative

proportions among the cells that result from the maximum-likelihood estimation. This

would likely make the dynamic method underperform the static method, which does

not suffer from this problem since the maximum-likelihood estimates are smoothed

only once. As a result, we smooth a contingency table only when strictly needed, i.e.,

when one of ˆTP
ML

j , F̂P
ML

j , ˆFN
ML

j is < 1.

By solving the inequality G(di, fnj) > G(di, fpj) we may find out under which

conditions correcting a false negative yields a higher gain than correcting a false

positive. It turns out that, when validation gains are defined according to Equation

4.2, G(di, fnj) > G(di, fpj) whenever FN + FP > 1, i.e., practically always. Of

course, this need not be the case for evaluation functions different from F1, and in

particular for instances of Fβ with β 6= 1.

From the standpoint of total computational cost, our dynamic technique is O(|Te|·
(|C|+|Te|)), since (i) computing the U(di, Ω) score for |Te| documents and computing

their maximum according to the computed U(di, Ω) score can be done in O(|Te| ·
|C|) steps, and (ii) this step must be repeated O(|Te|) times. This policy is thus, as

expected, computationally more expensive than the previous one.

4.1.1 Experiments

The results of the experiments with the dynamic version of our utility-theoretic

method and of our two oracle-based methods are reported in Figures 4.1 to 4.4 and

in Tables 4.1 and 4.2, where they are indicated as U-Theoretic(d), Oracle1(d) and Or-

acle2(d). Of course there exists no dynamic version of the baseline method, since this

latter does not involve validation gains.

The first observation that can be drawn from these results is the fact that U-

Theoretic(d) is not superior to U-Theoretic(s), as could instead have been expected:

in fact, in Figures 4.1 to 4.4 the curves corresponding to the former are barely dis-

tinguishable from those corresponding to the latter, and the numeric results reported

in Tables 4.1 and 4.2 show no substantial difference either. Note that there are ex-

tremely small differences also between Oracle1(s) and Oracle1(d); this shows that the
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Figure 4.1: Error reduction, measured as ERMρ , as a function of validation depth. The
dataset is Reuters-21578, the learner is MP-Boost. The Random curve indicates
the results of our estimation of the expected ER of the random ranker via a Monte
Carlo method with 100 random trials. Higher curves are better.

lack of any substantial difference between static and dynamic is not due to a possi-

ble suboptimality of the method for estimating contingency table cells (including the

method adopted for smoothing the estimates). Analogously, note also the extremely

small differences between Oracle2(s) and Oracle2(d), which indicates that the culprit

is not the method for estimating the probabilities of misclassification.

This substantial equivalence between the static and the dynamic methods is some-

how surprising, since on a purely intuitive basis the dynamic method seems definitely

superior to the static one. We think that the reason for these apparently counterintu-

itive results is that, when validation gains are recomputed in Step 4d of the algorithm,

the magnitude of the update (i.e., the difference between validation gains before and

after the update) is too small to make an impact. This is especially true for large test

sets, where incrementing or decrementing by 1 the value of a contingency cell makes

too tiny a difference, since that value is very large.
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Figure 4.2: Same as Figure 4.1, but with the SVM learner in place of MP-Boost.

Actually, the part of Figure 4.1 relative to MP-Boost displays an apparently

strange phenomenon, i.e., the fact that for some values of ξ the Oracle2(s) method

outperforms Oracle2(d). A similar phenomenon can be noticed in some of the cells of

Tables 4.1 and 4.2, where the static version of either Oracle1 or Oracle2 outperforms,

even if by a small margin, the dynamic version. This seems especially strange for Ora-

cle2(d), which is the theoretically optimal method (since it is a method that operates

with perfect foreknowledge), and as such should be impossible to beat. The reason

for this apparently counterintuitive behaviour lies not in the ranking methods, but in

a counterintuitive property of F1, i.e., the fact that, when TP = FN = 0 (i.e., there

are no positives in the gold standard – and 25 out of 115 classes in the dataset used

in Figure 4.1 have this property), its value is 0 when FP > 0 but 1 when FN = 0

(so, TP = FP = FN = 0 is a “point of discontinuity” for F1). This essentially means

that, when TP = FN = 0 and FP > 0, G(di, fnj) is 1/|FP | for the static method

and 0 for the dynamic method; i.e., in this case the dynamic method does not provide

any incentive for correcting a false positive, while the static method does. As a result,

the static method can speed up the correction of false positives more than the dy-
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(a) MP-Boost results.
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(b) SVMs results.

Figure 4.3: Results obtained by (i) splitting the Reuters-21578 test set into 10
random, equally-sized parts, (ii) running the analogous experiments of Figure 4.1
independently on each part, and (iii) averaging the results across the 10 parts.
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(a) MP-Boost results.

0.0 0.2 0.4 0.6 0.8 1.0
Inspection Depth

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
ed

uc
tio

n 
(E

R)

SVMs; Reuters-21578/100; Macro

Random
Baseline
U-Theoretic(s)
U-Theoretic(d)
Oracle1(s)
Oracle1(d)
Oracle2(s)
Oracle2(d)
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Figure 4.4: Same as Figure 4.3 but with Reuters-21578/100 in place of Reuters-
21578/10.

namic method does. As mentioned above, this phenomenon exposes a suboptimality

not of the dynamic method, but of the F1 function.
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ξ = 0.05 ξ = 0.10 ξ = 0.20

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline .071 .108 .152

U-Theoretic(s) .163 (+128%) .226 (+109%) .280 (+84%)

U-Theoretic(d) .160 (+124%) .224 (+107%) .279 (+84%)

Oracle1(s) .155 (+117%) .222 (+106%) .280 (+84%)

Oracle1(d) .152 (+113%) .219 (+103%) .275 (+81%)

Oracle2(s) .693 (+869%) .738 (+583%) .707 (+365%)

Oracle2(d) .677 (+847%) .725 (+571%) .699 (+360%)

R
e
u
t
e
r
s-
2
1
5
7
8
/
1
0

Baseline .063 .097 .135

U-Theoretic(s) .145 (+131%) .203 (+110%) .245 (+81%)

U-Theoretic(d) .139 (+121%) .198 (+105%) .239 (+77%)

Oracle1(s) .159 (+153%) .205 (+112%) .243 (+80%)

Oracle1(d) .158 (+152%) .212 (+119%) .255 (+89%)

Oracle2(s) .555 (+784%) .643 (+566%) .648 (+380%)

Oracle2(d) .558 (+789%) .648 (+571%) .654 (+384%)

R
e
u
t
e
r
s-
2
1
5
7
8
/
1
0
0

Baseline .069 .121 .164

U-Theoretic(s) .118 (+71%) .172 (+42%) .215 (+31%)

U-Theoretic(d) .119 (+72%) .176 (+45%) .217 (+32%)

Oracle1(s) .192 (+178%) .247 (+104%) .281 (+71%)

Oracle1(d) .197 (+185%) .266 (+120%) .318 (+94%)

Oracle2(s) .429 (+521%) .537 (+344%) .575 (+251%)

Oracle2(d) .429 (+521%) .537 (+344%) .576 (+251%)

O
H
S
U
M
E
D Baseline .385 .479 .512

U-Theoretic(s) .442 (+15%) .529 (+10%) .549 (+7%)

U-Theoretic(d) .443 (+15%) .531 (+11%) .550 (+7%)

Oracle1(s) .445 (+16%) .530 (+11%) .549 (+7%)

Oracle1(d) .449 (+17%) .532 (+11%) .550 (+7%)

Oracle2(s) .838 (+118%) .839 (+75%) .769 (+50%)

Oracle2(d) .758 (+97%) .762 (+59%) .700 (+37%)

O
H
S
U
M
E
D
-S Baseline .021 .025 .026

U-Theoretic(s) .087 (+323%) .118 (+374%) .132 (+402%)

U-Theoretic(d) .088 (+329%) .118 (+374%) .132 (+402%)

Oracle1(s) .091 (+343%) .117 (+370%) .125 (+375%)

Oracle1(d) .094 (+358%) .119 (+378%) .128 (+387%)

Oracle2(s) .481 (+2246%) .554 (+2125%) .572 (+2075%)

Oracle2(d) .450 (+2095%) .498 (+1900%) .496 (+1786%)

Table 4.1: Results of various ranking methods, applied to MP-Boost and several test
collections, in terms of ENERMρ (ξ), for ξ ∈ {0.05, 0.10, 0.20}.
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ξ = 0.05 ξ = 0.10 ξ = 0.20

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline .262 .352 .420

U-Theoretic(s) .442 (+69%) .531 (+51%) .562 (+34%)

U-Theoretic(d) .431 (+65%) .523 (+49%) .557 (+33%)

Oracle1(s) .477 (+82%) .563 (+60%) .586 (+40%)

Oracle1(d) .476 (+82%) .567 (+61%) .592 (+41%)

Oracle2(s) .719 (+174%) .760 (+116%) .723 (+72%)

Oracle2(d) .723 (+176%) .763 (+117%) .724 (+72%)

R
e
u
t
e
r
s-
2
1
5
7
8
/
1
0

Baseline .243 .322 .383

U-Theoretic(s) .330 (+36%) .415 (+29%) .465 (+21%)

U-Theoretic(d) .335 (+38%) .420 (+30%) .470 (+23%)

Oracle1(s) .392 (+61%) .482 (+50%) .522 (+36%)

Oracle1(d) .394 (+62%) .488 (+52%) .531 (+39%)

Oracle2(s) .596 (+145%) .676 (+110%) .672 (+75%)

Oracle2(d) .599 (+147%) .679 (+111%) .675 (+76%)

R
e
u
t
e
r
s-
2
1
5
7
8
/
1
0
0

Baseline .226 .302 .364

U-Theoretic(s) .291 (+29%) .365 (+21%) .416 (+14%)

U-Theoretic(d) .289 (+28%) .367 (+22%) .419 (+15%)

Oracle1(s) .318 (+41%) .422 (+40%) .479 (+32%)

Oracle1(d) .318 (+41%) .427 (+41%) .489 (+34%)

Oracle2(s) .458 (+103%) .568 (+88%) .600 (+65%)

Oracle2(d) .458 (+103%) .569 (+88%) .601 (+65%)

O
H
S
U
M
E
D Baseline .526 .630 .644

U-Theoretic(s) .623 (+18%) .685 (+9%) .666 (+3%)

U-Theoretic(d) .618 (+17%) .676 (+7%) .655 (+2%)

Oracle1(s) .639 (+21%) .687 (+9%) .657 (+2%)

Oracle1(d) .617 (+17%) .659 (+5%) .636 (-1%)

Oracle2(s) .864 (+64%) .854 (+36%) .778 (+21%)

Oracle2(d) .795 (+51%) .787 (+25%) .721 (+12%)

O
H
S
U
M
E
D
-S Baseline .075 .124 .164

U-Theoretic(s) .212 (+184%) .282 (+127%) .323 (+97%)

U-Theoretic(d) .210 (+182%) .280 (+126%) .321 (+96%)

Oracle1(s) .272 (+265%) .334 (+169%) .352 (+115%)

Oracle1(d) .301 (+303%) .363 (+193%) .380 (+132%)

Oracle2(s) .511 (+585%) .589 (+375%) .603 (+268%)

Oracle2(d) .487 (+553%) .540 (+335%) .536 (+227%)

Table 4.2: Results of various ranking methods, applied to SVMs and several test
collections, in terms of ENERMρ (ξ), for ξ ∈ {0.05, 0.10, 0.20}.
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In Table 4.3 we report the actual computation times incurred by both U-

Theoretic(s) and U-Theoretic(d) on our five datasets2. These figures confirm that the

dynamic method is (as already discussed above) substantially more expensive to run

than the static method; in particular, the magnitude of this difference, together with

the marginal (if any) accuracy improvements brought about by the dynamic method

over the static one, shows that the static method is much more cost-effective than the

dynamic one. In other words, the bad news is that the dynamic method brings about

no improvement; the good news is that the computationally cheaper static method is

hard to beat.

Dataset Method MP-Boost SVMs

Reuters-21578
U-Theoretic(s) 0.426 0.452

U-Theoretic(d) 3.128 3.021

Reuters-21578/10
U-Theoretic(s) 0.166 0.153

U-Theoretic(d) 0.195 0.198

Reuters-21578/100
U-Theoretic(s) 0.033 0.033

U-Theoretic(d) 0.046 0.044

OHSUMED
U-Theoretic(s) 10.282 11.251

U-Theoretic(d) 500.047 577.864

OHSUMED-S
U-Theoretic(s) 0.418 0.424

U-Theoretic(d) 4.731 4.195

Table 4.3: Comparison between the actual computation times (in seconds) of the
U-Theoretic(s) and U-Theoretic(d) methods on our five datasets.

4.2 A “micro-oriented” ranking function

In Chapter 3 we have assumed that the evaluation of classification algorithms across

the |C| classes of interest is performed by macro-averaging the F1 results obtained for

2 The times reported are relative to an experiment in which the entire test set is validated;
this is because, in a simulated experiment, the entire test set must be validated in order
to compute the ERMρ (n) values reported in Figures 3.3 to 3.6. In a realistic setting in
which only a portion of the ranked list is validated, the difference between U-Theoretic(s)
and U-Theoretic(d) is obviously smaller, since the cost of recomputing validation gains is
roughly proportional to the validation depth, and since this cost affects U-Theoretic(d)
but not U-Theoretic(s).
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the individual classes cj ∈ C. Consistently with this view, in Section 3.4 we have intro-

duced macro-averaged versions of E1, ERρ, NERρ, and ENERρ. Macro-averaging

across the classes in |C| essentially means paying equal attention to all of them, irre-

spective of their frequency or other such characteristics.

However, there is an alternative, equally important way to evaluate effectiveness

when a set of |C| classes is involved, namely, micro-averaged effectiveness. While

macro-averaged measures are computed by first computing the measure of interest

individually on each class-specific contingency table and then averaging the results,

micro-averaged measures are computed by merging the |C| contingency tables into a

single one (via summing the values of the corresponding cells) and then computing

the measure of interest on the resulting table. For instance, micro-averaged F1 (noted

Fµ1 ) is obtained by (i) computing the category-specific values TPj , FPj and FNj for

all cj ∈ C, (ii) obtaining TP as the sum of the TPj ’s (same for FP and FN), and then

(iii) applying Equation 2.2.1. Measures such as Eµ1 , ERµρ , NERµρ , and ENERµρ are

defined in the obvious way. The net effect of using a single, global contingency table

is that micro-averaged measures pay more attention to more frequent classes, i.e., the

more the members of a class cj in the test set, the more the measure is influenced by

cj .

Neither macro- nor micro-averaging are the “right” way to average in evaluating

multi-label multi-class classification; it is instead the case that in some applications

we may want to pay equal attention to all the classes (in which case macro-averaging

would be our evaluation method of choice), while in some other applications we may

want to pay more attention to the most frequent classes (in which case we should opt

for micro-averaging).

While we have not explicitly discussed this, the method of Section 3.3.1 was de-

vised with macro-averaged effectiveness in mind. To see this, note that the U(di, Ω)

function of Equation 3.7 is based on an unweighted sum of the class-specific Uj(di, Ω)

scores, i.e., it pays equal importance to all classes in C. This means that Equation

3.7 is optimized for metrics that also pay equal attention to all classes, as all macro-

averaged measures do. We now describe a way to modify the method of Section 3.3.1

in such a way that it is instead optimal when our effectiveness measure of choice

(e.g., ENERρ) is micro-averaged. To do this, we do away with Equation 3.7 and

(similarly to what happens for Fµ1 and Eµ1 ) compute instead U(di, Ω) directly on

a single, global contingency table obtained by the cell-wise sum of the class-specific

contingency tables. That is, we redefine U(di, Ω) as

U(di, Ω) =
∑
cj∈C

∑
ωk∈{tpj ,fpj ,fnj ,tnj}

P (ωk)G(di, ωk) (4.3)

where
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G(di, fpj) =
1

FP
(FFP1 (Φ̂(Te))− F1(Φ̂(Te)))

=
1

FP
(

2TP

2TP + FN
− 2TP

2TP + FP + FN
)

G(di, fnj) =
1

FN
(FFN1 (Φ̂(Te))− F1(Φ̂(Te)))

=
1

FN
(

2(TP + FN)

2(TP + FN) + FP
− 2TP

2TP + FP + FN
)

(4.4)

Equations 4.4 are the same as Equation 3.5 and 3.6, but for the fact that the latter

are class-specific (as indicated by the index j) while the former are global. This is

due to the fact that, when using micro-averaging, there is a single contingency table,

and the gain obtained by correcting, say, a false positive for cx is equal to the gain

obtained by correcting a false positive for cy, for any cx, cy ∈ C. Of course, Equations

4.4 are to be applied when the static method of Section 3.3.1 needs to be optimized for

micro-averaging; when we instead want to do the same optimization for the dynamic

method of Section 4.1, we need instead to apply, in the obvious way, “global” versions

of Equations 4.2.

Actually, a second aspect in the method of Section 3.3.1 that we need to change

in order for it to be optimized for micro-averaging is the probability calibration

method discussed in Section 3.5.2. In fact, Equation 3.11 is clearly devised with

macro-averaging in mind, since it minimizes the average across the cj ∈ C of the

difference between the number PosTrj and the expected number E[PosTrj ] of positive

training examples of class cj . Again, all classes are given equal attention. For our

micro-oriented method we thus replace Equation 3.11 with

arg min
σ
|PosTr − E[PosTr]| =

arg min
σ
|
∑
cj∈C

PosTrj −
∑
cj∈C

E[PosTrj ]| =

arg min
σ
|
∑
cj∈C

PosTrj −
∑
cj∈C

∑
di∈Tr

P (cj |di)| =

arg min
σ
|
∑
cj∈C

PosTrj −
∑
cj∈C

∑
di∈Tr

eσΦ̂j(di)

eσΦ̂j(di) + 1
|

(4.5)

where the difference between the number and the expected number of training ex-

amples in the global contingency table is minimized. It is easy to verify that the two

methods may return different values of σ, as the following example shows.

Suppose that C = {c1, c2}, that PosTr1 = 20 and that PosTr2 = 10. Suppose

that when σ = a then E[PosTr1 ] = 18 and E[PosTr2 ] = 8, while when σ = b

then E[PosTr1 ] = 17 and E[PosTr2 ] = 13. According to Equation 3.11 value a

is better than b (since 1
|C|
∑
cj∈C |Pos

Tr
j − E[PosTrj ]| is equal to 2 for σ = a

and to 3 for σ = b), but according to Equation 4.5 value b is better than a

(since |PosTr − E[PosTr]| is equal to 4 for σ = a and to 0 for σ = b). ut
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The same smoothing methods as discussed in Section 3.3.3 can instead be used; how-

ever, note that smoothing is likely to be needed much less frequently (if at all) here

since, given that we now have a single global contingency table, it is much less likely

that any of its cells have values < 1.

4.2.1 Experiments

The experiments with our “micro-oriented” methods are reported in Tables 4.4 and

4.5. Note that, since the method we use as baseline corresponds (as noted in Section

3.5.4) to using U-Theoretic(s) with all validation gains set to 1, the baseline we use

here is different from the baseline we had used in Section 3.5.5, since the latter was

optimized for macro-averaging while the one we use here is optimized for micro-

averaging. This guarantees that, in both cases, our baselines are strong ones.

The results show that utility-theoretic methods bring about a much slighter im-

provement with respect to the baseline, compared to what we have seen for the macro-

oriented methods. For instance, for the SVM learner, Reuters-21578 dataset, and

validation depth ξ = .10, the improvement of our (static) micro-oriented utility-

theoretic method with respect to the baseline is just +2%, while the improvement

was +51% for the equivalent macro-oriented method. Across the two ranking meth-

ods (static and dynamic), five datasets, two learners, and three values of inspection

depth studied, improvements range from -1% (i.e., in a few peculiar cases we even

have a small deterioration) to +14%, much smaller than in the macro-oriented case

in which the improvements ranged between +2% and +402%.

The main reason for these much smaller improvements lies in the combined ac-

tion of two factors. The first factor is that the validation gains of Equations 4.4 are

computed on the global contingency table, whose cells contain very large numbers,

|C| times larger than the values in the local contingency tables of the macro-oriented

method. This means that, since the values of the validation gains are very small (given

that an increase or a decrease by 1 of very large values brings about little difference),

the difference between G(di, fpj) and G(di, fnj) is even smaller. This makes the dif-

ference between the utility-theoretic methods and the baseline smaller. The second

factor is that the utility function of Equation 4.3, by collapsing all the class-specific

utility values for a document into a single value, tends to dwarf the differences between

the documents.

It should also be noted that, in the micro-oriented method, improvements are

small also because the margins of improvement are small. To witness, the improve-

ments brought about by Oracle2(d) (our theoretical upper bound) with respect to

the baseline are smaller than for the macro-oriented method. For instance, for the

MP-Boost learner, Reuters-21578 dataset, and validation depth ξ = .10, this

improvement is +168%, while it was +571% for the macro-oriented method. So, im-

proving over the baseline is more difficult for the micro-oriented method than for the
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ξ = 0.05 ξ = 0.10 ξ = 0.20

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline .107 .167 .222

U-Theoretic(s) .107 (+0%) .168 (+1%) .224 (+1%)

U-Theoretic(d) .107 (+0%) .167 (+0%) .224 (+1%)

Oracle1(s) .107 (+0%) .168 (+1%) .224 (+1%)

Oracle1(d) .107 (+0%) .167 (+0%) .224 (+1%)

Oracle2(s) .333 (+211%) .448 (+168%) .512 (+131%)

Oracle2(d) .333 (+211%) .448 (+168%) .512 (+131%)

R
e
u
t
e
r
s-
2
1
5
7
8
/
1
0

Baseline .110 .169 .222

U-Theoretic(s) .112 (+2%) .171 (+1%) .224 (+1%)

U-Theoretic(d) .113 (+3%) .171 (+1%) .224 (+1%)

Oracle1(s) .112 (+2%) .171 (+1%) .224 (+1%)

Oracle1(d) .113 (+3%) .171 (+1%) .224 (+1%)

Oracle2(s) .325 (+195%) .438 (+159%) .502 (+126%)

Oracle2(d) .325 (+195%) .438 (+159%) .502 (+126%)

R
e
u
t
e
r
s-
2
1
5
7
8
/
1
0
0

Baseline .102 .158 .208

U-Theoretic(s) .107 (+5%) .163 (+3%) .212 (+2%)

U-Theoretic(d) .106 (+4%) .162 (+3%) .211 (+1%)

Oracle1(s) .115 (+13%) .170 (+8%) .216 (+4%)

Oracle1(d) .116 (+14%) .170 (+8%) .217 (+4%)

Oracle2(s) .318 (+212%) .429 (+172%) .492 (+137%)

Oracle2(d) .318 (+212%) .429 (+172%) .492 (+137%)

O
H
S
U
M
E
D Baseline .442 .552 .583

U-Theoretic(s) .440 (+0%) .549 (-1%) .580 (-1%)

U-Theoretic(d) .442 (+0%) .552 (+0%) .582 (+0%)

Oracle1(s) .439 (-1%) .549 (-1%) .580 (-1%)

Oracle1(d) .441 (+0%) .551 (+0%) .582 (+0%)

Oracle2(s) .660 (+49%) .733 (+33%) .711 (+22%)

Oracle2(d) .660 (+49%) .733 (+33%) .711 (+22%)

O
H
S
U
M
E
D
-S Baseline .044 .068 .094

U-Theoretic(s) .044 (+1%) .069 (+3%) .096 (+2%)

U-Theoretic(d) .044 (+1%) .070 (+3%) .097 (+3%)

Oracle1(s) .044 (+1%) .069 (+3%) .096 (+2%)

Oracle1(d) .044 (+1%) .070 (+3%) .097 (+3%)

Oracle2(s) .149 (+242%) .221 (+227%) .287 (+205%)

Oracle2(d) .149 (+242%) .221 (+227%) .287 (+205%)

Table 4.4: As Table 4.1, but with ENERµρ (ξ) in place of ENERMρ (ξ).
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ξ = 0.05 ξ = 0.10 ξ = 0.20

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline .240 .325 .389

U-Theoretic(s) .246 (+3%) .332 (+2%) .395 (+2%)

U-Theoretic(d) .246 (+3%) .331 (+2%) .394 (+1%)

Oracle1(s) .246 (+3%) .332 (+2%) .395 (+2%)

Oracle1(d) .246 (+3%) .331 (+2%) .395 (+2%)

Oracle2(s) .394 (+64%) .506 (+56%) .556 (+43%)

Oracle2(d) .394 (+64%) .506 (+56%) .556 (+43%)

R
e
u
t
e
r
s-
2
1
5
7
8
/
1
0

Baseline .232 .317 .380

U-Theoretic(s) .237 (+2%) .323 (+2%) .386 (+2%)

U-Theoretic(d) .238 (+3%) .322 (+2%) .383 (+1%)

Oracle1(s) .237 (+2%) .324 (+2%) .386 (+2%)

Oracle1(d) .238 (+3%) .324 (+2%) .386 (+2%)

Oracle2(s) .385 (+66%) .496 (+56%) .547 (+44%)

Oracle2(d) .385 (+66%) .496 (+56%) .547 (+44%)

R
e
u
t
e
r
s-
2
1
5
7
8
/
1
0
0

Baseline .223 .301 .361

U-Theoretic(s) .224 (+0%) .305 (+1%) .366 (+1%)

U-Theoretic(d) .226 (+1%) .304 (+1%) .363 (+1%)

Oracle1(s) .232 (+4%) .317 (+5%) .377 (+4%)

Oracle1(d) .235 (+5%) .322 (+7%) .383 (+6%)

Oracle2(s) .367 (+65%) .481 (+60%) .534 (+48%)

Oracle2(d) .367 (+65%) .481 (+60%) .534 (+48%)

O
H
S
U
M
E
D Baseline .492 .600 .620

U-Theoretic(s) .496 (+1%) .602 (+0%) .621 (+0%)

U-Theoretic(d) .496 (+1%) .602 (+0%) .621 (+0%)

Oracle1(s) .497 (+1%) .602 (+0%) .621 (+0%)

Oracle1(d) .497 (+1%) .603 (+1%) .621 (+0%)

Oracle2(s) .704 (+43%) .761 (+27%) .727 (+17%)

Oracle2(d) .704 (+43%) .761 (+27%) .727 (+17%)

O
H
S
U
M
E
D
-S Baseline .058 .096 .136

U-Theoretic(s) .063 (+10%) .102 (+7%) .143 (+5%)

U-Theoretic(d) .066 (+14%) .104 (+9%) .144 (+6%)

Oracle1(s) .064 (+10%) .103 (+8%) .143 (+5%)

Oracle1(d) .066 (+15%) .105 (+10%) .144 (+6%)

Oracle2(s) .175 (+203%) .259 (+171%) .330 (+143%)

Oracle2(d) .175 (+203%) .259 (+171%) .330 (+143%)

Table 4.5: As Table 4.2, but with ENERµρ (ξ) in place of ENERMρ (ξ).
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Figure 4.5: Error reduction, measured as ERµρ , as a function of validation depth. The
dataset is Reuters-21578, the learner is MP-Boost.

macro-oriented one. The reason why the margins of improvement are smaller is that,

when accuracy is evaluated at the macro level, the infrequent classes play a bigger

role than when evaluating at the macro level. Infrequent classes are such that a large

reduction in error can be achieved even by validating a few documents of the right

type (i.e., false negatives). As a consequence, for the infrequent classes a ranking

method that pays attention to validation gains has the potential to obtain sizeable

improvements in accuracy right from the beginning; and a method that favours the

infrequent classes tends to shine when evaluated at the macro level.

The difference with macro-averaged effectiveness is highlighted by the plots of

ERµρ . In Figure 4.5 we show the increase in error reduction of micro-averaged ranking

methods applied on Reuters-21578 with MP-Boost. Curves are almost indistin-

guishable, due to the close performances of the various ranking methods. Note that

the ERµρ curves are smoother than the ERMρ curves of Figure 3.3. This is due to the

fact that Eµ1 is evaluated on a single, global contingency table, so that correcting an

individual document always has a small effect on Eµ1 . By contrast, correcting a single
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document may have a major effect on a class-specific value of E1 (especially if the

class is infrequent), and this may bring about a relatively major effect on EM1 too.

4.3 Conclusions

In this Chapter we have formalized new ranking methods: a dynamic method, along

with new gain functions, which are recomputed during the iterative process of valida-

tion; a micro-averaged family of ranking methods, in which the gains are computed

on the global contingency table in a multi-class multi-label scenario of TC.

We have developed the dynamic method with the intent of overcoming the sub-

optimality of the static method. In the dynamic approach we keep a more accurate

estimation of the utility, which takes into account of the corrections already performed

during the whole activity of SATC. The experimental phase has underlined the low

impact of the gain updates in the dynamic computation, with the consequence that

this method is not effective as assumed. Furthermore its computation is relatively

expensive, in respect to the static method. However the idea of iteratively update the

gains can be still studied and extended in order to become more effective.

The micro-averaged ranking methods are a reformulation of our SATC methods

with the goal of improving the micro-averaged effectiveness of classification. We have

measured the classification accuracy with the Fµ1 function, in which each correction

weights equally, regardless of the annotated class. Results are biased by the nature

of this type of averaging, thus we can realize that the margin of improvements are

small. However, micro-averaging the evaluation function is central in multi-label TC;

we will see in Chapter 6 that this strategy can be effective in our SATC methods,

when it is applied to other evaluation functions.

With this Chapter we have completed the coverage of all the ranking methods

elaborated in this dissertation. We have summed up the results of these methods in

Tables 4.1 and 4.2 for FM1 and in Tables 4.4 and 4.5 for Fµ1 , so to have a complete

picture of our work. In the rest of the dissertation we will explore new dimensions

of the task, and we will also continue the work of evaluating the effectiveness of our

methods, in various contexts of text classification.

69



70



5

Semi-Automated Text Classification and Active
Learning

Semi-automated text classification techniques imply the active participation of a hu-

man validator. In a common TC scenario human experts annotate the data in a

preliminary phase, then TC models are automatically built by means of supervised

learning algorithms, and evaluated on the available data. In SATC the passive process

of automatic classification is turned into an active process, in which human experts

contribute to the classification task.

In supervised learning there is one task in which the learning process consists of

an interaction between the learner and the human expert: active learning (AL). In

active learning the automatism of supervised learning algorithms is combined with

the manual contribution of human experts. The learner can ask the annotator to

label selected data instances, in order to improve the effectiveness of the classification

model. This process of learning and annotation is iterative and stops when specific

requisites are satisfied.

What AL and SATC have in common is the contribution by the human annotator,

and both tasks have the aim of obtaining an effective classification of data samples.

The aspect of human effort is critical in AL, where we want to obtain the best model

by minimizing the annotation work. The same aspect is fundamental in SATC, where

we want to increase the final classification effectiveness by minimizing the validation

work. There are however big differences in the processes of the two tasks, the labelling

work gives different contributions, and the application scenarios are different.

In TC it is easy to provide an efficient interface to the human annotators. Texts

are easily processable and classifiable by a person, the crucial point is to balance the

computational and the human cost.

In this chapter we describe AL and we compare it with SATC, in the area of multi-

class multi-label TC. We will discuss more deeply the differences and the reasons for

choosing the right task, and, finally, we will support the discussion empirically. We

introduce active learning in Section 5.1, then we present a comparison of the two tasks

in Section 5.2; in Section 5.2.1 we discuss about the application of utility-theoretic
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methods, originally developed for SATC, to AL; in Section 5.2.2 we do the inverse

process, evaluating in SATC contexts methods originally developed for AL.

5.1 Active learning

In active learning the learner chooses which data samples to use for building the

classification model. In the typical AL scenario, the learning process starts with few

labelled data in the training set. After the first learning iteration, new data is choosen

from a collection of unlabelled samples. The learner can then ask an oracle (i.e.,

a human annotator) to label the samples, using the predefined set of classes. By

employing new labelled data, the learner can move to the next iteration, learning on

a richer training set. This iterative process advances until the learner decides that the

built model is effective, or with the human contribution is no more available.

Not all the data is useful to the learner, and the human effort available is limited.

An effective AL strategy selects the samples to use as query1 in order to maximize

the ratio between the expected classification accuracy and the number of training

samples.

In some scenarios the samples could not be immediately available. In TC, the

collections from which new data are drawn are usually static and ready to be queried.

It is easy to obtain unlabelled documents, it is rather expensive to manually label

them. We will assume that we already own all the unlabelled data. The setting is

then similar to SATC, in which the unlabelled data is represented by the test set and

is all available to the classifier.

Drawing samples from a static collection is called pool-based sampling. We start

with a small training set Tr and a large set of unlabelled samples U . At each itera-

tion of the AL algorithm a subset of U is selected and its samples used as queries.

After the annotation they are added to Tr and the learning process proceeds to the

next iteration. The strategy for selection is based on a measure of “benefit” for the

classification model. This value is computed on all the samples in U , so the samples

that bring about the highest benefit are selected. We refer to unlabelled samples as

unclassified documents and vice versa.

5.1.1 Active learning strategies

We have described the task of pool-based sampling as the process of drawing doc-

uments from a collection. The learner chooses the documents it considers more in-

formative, according to a selection strategy. The strategy is the key of the active

learning process. Choosing the most informative documents can be achieved by using

the knowledge the learner has gained so far. At each iteration the learner builds a

1 In active learning a query represents the selected samples to be annotated, that is different
from the well-known notion of query in information retrieval.
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classifier from the current training set, and this gives the learner a tool for analyzing

unclassified documents.

A strategy based on the current learner knowledge is uncertainty sampling [46, 57].

A method based on uncertainty sampling selects the documents on which the current

learner is less confident. The aim of the learner is to enrich the training set with the

most ambiguous documents, in order to improve is ability discriminating documents

in the following iterations. The confidence can be quantified in different ways. The

current classifier output values can be used for estimating the confidence, that can

be obtained with the absolute value of the classifier function (as seen in Chapter

2). Uncertainty is often measured as the proximity of a sample from the decision

boundary. Querying the closest sample bears a more accurate fitting of the boundary

in the next iteration [77].

The main advantages of this strategy are the simplicity and the lower compu-

tational cost. Most of the methods based on uncertainty sampling have a greedy

approach, i.e., they select the document with the least confidence and they throw

away information from the rest of U . This myopic behavior has a consequence: noisy

data and outliers can be queried. Another problem resides in the size of the training

set: the initial training set is small and has little information; the learner starts with

little knowledge, so its first selections can be ineffective.

After the learning process, we obtain a model that could be used on any test set.

We would like to have an estimate of its accuracy on any future data, but we can not

measure the effectiveness during learning. If we could compute some approximation

of the future error, we could estimate the quality of the model, but above all, we

could optimize the AL strategy to reduce this error. Minimizing the expected error is

a strategy for selecting documents that, once learned, should produce the maximum

error reduction of the classifier on future instances [69]. This strategy is able to better

explore U , doing away with the greedy character of uncertainty sampling and many

of its drawbacks.

Estimating the error is the key aspect of this strategy, and it is usually performed

on U . Error estimation should be computed for each possible query, consequently a

process of learning and classification is executed for each query. At each AL iteration,

we build several training and validation sets. Each training set is made of the Tr

at the current AL iteration, plus one of the document-class assignment candidates

(all the possible combinations of document and class assignments are tested). We

validate the consequent trained model on the remaining documents in U . This step

is repeated for each assignment, therefore the computational cost is prohibitive. In

order to cope with the problem of computational cost, several optimizations can be

enforced, like sub-sampling the unlabelled documents set [69, 51], or using efficient

incremental training [89]. This AL strategy is generally limited by this characteristic

of the computational cost, that can restrict the choice of machine learning techniques.

On the other hand it is effective and it is not affected by outliers; furthermore several
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measures of classification accuracy can be plugged into the computation of error

estimation.

The described strategies have some fundamental concepts in common with SATC

methods; in fact we have already discussed in the previous sections about techniques

which embrace the notions of confidence and accuracy estimation. These approaches

to AL and SATC are thus similar, despite the nature of the two problems. We will

discuss and compare the two tasks in the last sections of this chapter.

Other strategies exist, based on the reduction of the Version Space, the disagree-

ment between ensembles of classifiers, the identification of denser areas in the space of

unlabelled samples. We do not go deeply in the description of AL methods, an exten-

sive survey can be found in [74]. We instead analyze the AL approaches to multi-class

multi-label TC in which multiple classes have to be managed simultaneously in the

learning process.

5.1.2 Multi-label active learning

We have already dealt, in Chapter 3, with the manual annotation of documents in

the case of multi-label assignments. The AL approach of asking for the annotation

for each single document-class pair is inefficient in multi-label TC. After selecting a

document, we expect that the annotator analyzes it in detail, so that she is able to

evaluate the assignment of all classes. Once selected and annotated, the document

becomes part of the acquired knowledge, and it should not be queried anymore.

The AL strategies of the previous section have been primarily studied on the task

of querying for the single-label assignment. The interest of specific AL strategies for

multi-label classification has increased in the last years; the aim of such strategies

is to select documents that bring the best improvement to the classifier on all the

classes. The importance of AL for multi-label classification is enhanced by the intrinsic

difficulty of annotating documents with multiple categories: the human cost is greater

for the manual classification of a document when there are multiple decisions to take.

In many of the approaches to multi-label AL, the task is firstly divided in |C|
independent tasks, one for each class, then a document is selected by aggregating the

information of all the tasks. In other approaches a query is made for each document-

class assignment, thus the human annotator may read the same document |C| times,

which requires much more effort. In this dissertation we will consider only those strate-

gies in which the query is a document and the annotator examines all the available

classes for each query.

A simple approach, using SVMs classifiers, is described in [9]. The classification

problem is decomposed into |C| binary problems. The criterion for selecting a sample

is based on its distance from the margin, for each single class. The concept of distance

from the margin, which is a measure of uncertainty, can be extended to all the classi-

fication algorithms which return a confidence score. This method first calculates the

minimum classification confidence for each document, and then selects the ones with

the lowest minimum confidence.
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Selecting documents which, once annotated and added to Tr, minimize the ex-

pected loss (or error) of the classifier, is a common strategy in AL. In the case of

multiple categories the authors in [50] propose two methods for selecting samples,

based on a loss function computed on the predicted classes: Mean Max Loss (MML)

selects the samples which bring about the maximum average loss reduction on the

assigned classes; Max Loss (ML) selects the samples which bring about the maximum

loss reduction on the most confident predictions.

A more sophisticated approach comes from the work in [82]. The authors apply

a method which minimizes the expected loss, called Maximum loss reduction with

Maximal Confidence (MMC). The loss function is enriched with a “prediction of the

predictions”. This prediction is modelled with another classifier, which is trained

in order to predict the number of classes of an unlabelled document, based on the

confidence scores of the main current binary classifiers. This method is enhanced

in [33], where the authors propose a framework for multi-label AL. The framework

generalizes the strategy of employing an auxiliary learner, which is used together with

the main learner. The loss function becomes a parameter of the framework, so an AL

method can be defined choosing a combination of the two learners and a loss function.

A comparison of several approaches is discussed in [20]. Different AL methods are

implemented and evaluated, exploring three dimensions of choice for the design of a

method. In the “evidence” dimension the basic information for document selection is

chosen, e.g., the confidence of the classifier. The “class” dimension defines the way the

evidence of the multiple classes is aggregated, e.g., maximum or average value. The

“weight” dimension sets the method for weighting each class, e.g., weighting more

those classes on which the classifier has a low effectiveness.

[51] presents some effective query methods, which are evaluated and compared

with some of the methods previously described. One method is called Max-Margin

Uncertainty sampling (MMU) and it is based on the confidence of the binary clas-

sifiers. A document is selected according to a margin computed on two confidence

values: the minimum confidence of the positive predictions and the minimum of the

negative ones. Another method is called Label Cardinality Inconsistency (LCI) and

it uses a different kind of information, based on the distribution of the classes. The

inconsistency measure is defined as the absolute values of the difference between the

number of predicted positive labels and the average number of classes of the current

training set, the document with the highest distance is selected. A third method is

a weighted combination of the previous two: at each iteration few documents are se-

lected, one for each different weight combination; the algorithm selects the document

to query with a technique based on the expected error reduction.
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5.2 A comparison of active learning with semi-automated text
classification

We have analyzed the task of active learning, explaining the motivations and the

key aspects of minimizing the human labelling effort. In the previous chapters we

have described methods for ranking documents whose goal is bringing about the best

improvement in classification accuracy. The AL and SATC approaches can be similar,

but the scenarios of application are different.

The problem that we want to handle with AL is to build an effective classifier with

the available data. The scenario of application is wide, but it stops in the first phase of

TC, learning; AL is often prior to the classification phase (however, we could continue

to enrich the model during the classification, but this is often avoided). The learning

phase is usually independent, it can be overly expensive, and the model is produced

with an accurate choice of the learning techniques and the parameters. Furthermore,

retraining several times the model becomes expensive.

A model trained using AL has to be reusable, then a sampling strategy looks

further than just minimising the error, it has to draw samples that better represent

the underlying distribution. The classifier must have generalization capabilities, oth-

erwise the sample selection can easily drive the model to data overfitting. This is

usually avoided with selection strategies that are exploratory, and take into account

the distribution of U , while avoiding a greedy selection behavior. Also the stopping

criterion is a critical choice, namely, understanding when the model is robust. If we

stop too early, the learner could have low accuracy, if we stop too late the learner

could overfit. The stopping criterion is also limited by the available human resources.

These problems are absent in SATC, where we point at the best effectiveness as soon

as possible. In SATC we directly improve the classification accuracy after each anno-

tation, a fact that we can not assure for AL, where there are no guarantees that a

retrained model, after an annotation, will be better than the previous one.

SATC methods are meant for a final phase, subsequent to classification. This

phase is independent from the previous one, especially from the learning one. SATC

is applicable in a common scenario in TC: we have a ready made TC system and we

use it for any new test set we receive. We are not always able to access the test set

together with the training set, and new data can arrive at separated times. We do

not want to rebuild the classification system, that we consider already effective, but

we would like to obtain the best accuracy we can, with the available classification

tools and human resources. A SATC application is completely independent of the TC

system, but it is strictly dependent of the test set and its classification.

5.2.1 Semi-automated text classification methods for active learning

Methods originally defined for SATC could intuitively be suitable for an AL task.

We can expect that the informativeness of the top-ranked documents is useful for
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improving a classification model. The concepts of difficulty of classification and util-

ity are close to uncertainty and error reduction. Applying a SATC method to AL

means ranking U in order to exploit the documents that, once annotated, can better

improve the accuracy of classification of U . Our hypothesis is that this can give us a

quantification of the benefit that these documents can have on the retrained model;

for instance, the utility, in terms of improvement in accuracy, of di ∈ U , can be used

as measure of improvement in effectiveness of the classifier trained on di ∪ Tr. In

Section 5.2.1 we will discuss our intuition, with the support of the experiments. The

ranking has to be computed at each AL iteration, since probability calibration and

contingency tables estimation are performed on the current training set.

A utility-based method can be conceptually close to an AL method that maximizes

the expected error reduction. In both we look for the document which minimizes the

error on the test set (or U). A substantial difference is in how the expected accuracy,

or error, is obtained. The expected utilities are computed for each document, with

the information obtained from the training set. The estimation is computed at the

category level, and then we combine the class-specific utilities of each document. For

estimating the error in AL, the approach is to test a new learner for each document

and to perform the estimation on U . The computational cost of this approach is much

higher, but we can presume this is more effective in improving the classifier. The

real difference is in the goals: a SATC method improves the accuracy on the dataset

analyzed, a corrected document will ensure this boosting; while, in AL, we could not

be interested in reducing the error on U , but on any new instance drawn from the

same distribution of data, thus we can not guarantee any improvement in classification

accuracy.

One problem we can expect in the effectiveness of a SATC method in AL is caused

by the estimations on the training set. SATC methods are designed for a scenario

in which the training set is already fixed and static. In AL we start from a small

training set and we iteratively enrich it with new documents, trying to create the

most representative set of labelled data. The effectiveness of SATC methods is then

dependent on the initial choice, or availability of labelled data, and the effectiveness

in sampling new representative data.

Experimental protocol

SATC methods are easily deployable in an AL process. We can define an experimental

setup for AL in which we can plug in algorithms from both families of methods. We

firstly formulate three parameters of an AL process: a the number of documents in the

initial training set, at the first iteration; b the number of documents to query at each

iteration, namely the granularity of the retraining; c the maximum number of itera-

tions. The selection of the initial training set is executed following the chronological

order of the documents in the considered collections, selecting the first a documents.

This selection strategy simulates a real scenario in which we have only access to the
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set of documents produced at a specific time, and we filter new documents to annotate

as they are generated. An AL process follows these steps:

1. Set the iteration counter s = 0;

2. Set as Trs the first a documents in Tr, set as Us = Tr \ Trs;
3. For s = 1, . . . , c repeat the following steps:

a) Build a classifier Φ̂s from the current training set Trs;

b) Evaluate the classification accuracy of Φ̂s on Te;

c) If a SATC method is used: estimate the contingency table and execute prob-

ability calibration on Trs;

d) Classify Us using Φ̂s;

e) Rank Us according to the AL/SATC method;

f) Set Trs+1 ← Trs∪top(Us, b) and Us+1 ← Us\top(Us, b), where the top function

returns the b top-ranked documents of the previous step;

The choice of parameter values follows the experimental protocol in [20]. We set

a = 100, which is a small fraction of documents among the size of the data available for

annotation. The number of queries for retraining is b = 50; most of the AL strategies

are formulated for retraining after each query, this solution can be unfeasible because

of the computational costs. Having the room for setting the granularity of retraining is

mandatory in some situations, for example when we want to control the scalability of

the system. We stop the process after c = 99 iterations, thus the number of documents

in the final training set is a+ b · c = 5050.

We compare five methods, the first two are equivalent to the homonymous SATC

methods, while the other three are the approaches presented in [51], which are argued

by their authors as state-of-the-art methods for multi-label AL:

Baseline. This method is equivalent to uncertainty sampling applied as in multi-

label TC, where the uncertainty on a document is the sum of the uncertainties

on each class. A similar method is evaluated in [20] where it is called CAN . The

difference is in how uncertainty is defined: in our method we compute a probability

of misclassification, calibrating the probability on the training set; in CAN the

uncertainty is inversely proportional to the confidence values, averaged on the

classes.

U-Theoretic(s). We rank the documents of Us at each iteration using the homony-

mous SATC method.

MMU - Max-Margin prediction Uncertainty. This method employs the margin

between the group of positive classes and the group of negative ones, predicted

for a document. Intuitively a classifier should maximize the margin defined as:

margin(di) = min
j:Dij=+1

Φ̂j(di)− max
j:Dij=−1

Φ̂j(di) = min
j:Dij=+1

Cij + min
j:Dij=−1

Cij

that is the separation between the least positive prediction confidence and the

least negative prediction confidence. Documents are then ranked according to a

value of uncertainty, defined as the inverse of the margin function.
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LCI - Label Cardinality Inconsistency. The average number of classes assigned

to the documents of a dataset is also called the label cardinality. The difference

between the number of positive classes of a document and the label cardinality

can be used as a measure of likely inconsistency of the predictions. We estimate

label cardinality of Us on Trs and rank the documents in Us according to the

function:

inconsistency(di) =

∥∥∥∥∥∥|L(di)| −
1

|Tr|

|Tr|∑
e=1

|LC(de)|

∥∥∥∥∥∥
where

L(di) = {cj : Dij = +1, cj ∈ C} , LC(di) = {cj : Φj(di) = +1, cj ∈ C}

Adaptive. MMU and LCI are combined in this method in order to get the best of

the two approaches. A documents is ranked according to the function:

q(di, β) =
inconsistency(di)

1−β

margin(di)β

the parameter β weights the contribution of the two functions (i.e., the higher

β, the stronger the penalization given by the margin). In order to estimate the

optimal value for β, at each iteration, a discrete set B of parameter values is tested.

For each value in B a ranking is computed and a sampling strategy, based on the

minimization of the expected error, is executed. The strategy selects the first b

documents, ranked with q, then it retrains the classifier on Trs augmented with

the selected documents and their classification. An approximate generalization

error is calculated for each set of selected documents, the set which minimize this

error is queried. This error is computed through the Hinge loss, a loss function

specific for SVMs outputs, so we test this method only with this learner.

The details of the error function are described in [51]; the original approach does

not integrate the b parameter, so it tests only one document for each value in

B. Due to the computational cost of this method, we think that this parameter

allows to better scale the method on the size of unlabelled samples. The number

of retraining processes is thus tuned by the parameter b and the size of B, that

we have set as B = {0.0, 0.1, . . . 0.9, 1.0}.

We evaluate the AL methods on the datasets Reuters-21578 and OHSUMED-S.

For both datasets the document dates are available, so we can order them chrono-

logically, and we can split the training set on the first a documents. The learners are

MP-Boost and SVMs, configured as in the experimental setting of SATC (see Sec-

tion 3.5). The evaluation measure are FM1 and Fµ1 ; they are used as input parameters

for the Baseline (the averaging method determines the probability calibration) and

the U-theoretic(s) method. The AL method based on the utility is thus adjusted for

a specific accuracy measure, i.e., according to the measure used in the evaluation of

the test set.
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Results and discussion

We show the plots of the results for the eight combinations of datasets, learners and

evaluation measures. In each figure we see how the classification accuracy on Te

changes as new documents are added to Tr and the classifier is retrained.

In Figure 5.1 we observe the macro-averaged results. The curves indicate the in-

crease in FM1 computed on the test sets during the AL process, namely after every

retraining. All the learners achieve a low FM1 at the beginning of the training, while

they reach a good accuracy at the end of the process, very close to the final accuracy

they achieve using the entire training set (the training sets of Reuters-21578 and

OHSUMED-S have respectively 9603 and 12358 documents). There are few differ-

ences in the results on the two datasets, but we see a substantial difference in the AL

processes of the two learners. For MP-Boost the methods have a similar effective-

ness, except for the Baseline that is penalized by its heavy reliance on the probabilities

of misclassification only. We have previously seen how the probabilities computed for

MP-Boost are inaccurate in reflecting the real errors made by the classifier. This

problem shows up again in AL: the confidence scores output mi MP-Boost seem to

correlate little with the ground truth.

In the SVMs results we note the excellent performances of the U-theoretic(s)

method. The documents annotated with high validation gains are thus very useful

for the retrained models. Two facts can be decisive in these results, compared to MP-

Boost: (a) the Baseline method is strong due to the good confidence estimates of

SVMs, then the probabilities of misclassification are accurate; (b) the estimation of

the contingency tables on the training sets are precise in reflecting the need of specific

annotations required by the model.

The U-theoretic(s) method can help to find new positive documents for an infre-

quent class; in fact the gain of such classes, computed on the training set, is quite

high. On the test set we expect an identical distribution of the classes. The learner

can improve much more its macro-averaged effectiveness obtaining more information

(i.e. positively annotated documents) on these classes. Therefore the U-Theoretic(s)

method selects the documents on which the classifier is less confident on the infrequent

classes (with high gain). The ability of selecting documents with infrequent classes is

confirmed by the results for micro-averaged effectiveness in Figure 5.2, in which we

can not notice the same performance for SVMs.

All AL methods have very similar performances; the Adaptive method, based on

minimizing the expected error, does not have the expected boost. It must be said that

this method approximates the standard expected error reduction approach in AL: it

employs only the document-class assignments made by the classifier, so it does not

explore all the possible assignment candidates; it employs only |B| sets of documents,

and not the whole U .

The plots show drops in the accuracy, especially in the MP-Boost results. This

happens because of the multi-label fashion of annotation and classification. The initial

80



5.2. A COMPARISON OF ACTIVE LEARNING WITH SATC

0 1000 2000 3000 4000 5000
Added samples

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65
F1

Learner: MP-Boost; Dataset: Reuters-21578; Type: Macro

MMU
LCI
Baseline
U-Theoretic(s)

(a)

0 1000 2000 3000 4000 5000
Added samples

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

F1

Learner: SVMs; Dataset: Reuters-21578; Type: Macro

MMU
LCI
Adaptive
Baseline
U-Theoretic(s)

(b)

0 1000 2000 3000 4000 5000
Added samples

0.20

0.25

0.30

0.35

0.40

0.45

0.50

F1

Learner: MP-Boost; Dataset: Ohsumed-S; Type: Macro

MMU
LCI
Baseline
U-Theoretic(s)

(c)

0 1000 2000 3000 4000 5000
Added samples

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

F1

Learner: SVMs; Dataset: Ohsumed-S; Type: Macro

MMU
LCI
Adaptive
Baseline
U-Theoretic(s)

(d)

Figure 5.1: Results for macro-averaged F1 of active learning runs, the evaluation is
made on Te, learners are MP-Boost (5.1a and 5.1c) and SVMs (5.1b and 5.1d),
datasets are Reuters-21578 (5.1a and 5.1b) and OHSUMED-S (5.1c and 5.1d).

training set can miss some classes, so if a new class appears after an iteration, the

next learners cover that class. The problem is that after b documents are queried,

one or very few documents are positive for a new class. Having few positive samples

may cause a low accuracy of the classifier on these classes, and the macro-averaged

measure is strongly affected by them. This is even more evident when a class has no

positive documents in the test set, but it has positive documents in the unlabelled

set. For example, in the results of MP-Boost on the Reuters-21578 dataset, in

the Baseline ranking, after iteration 10, the category “can” obtains its first positive

document in the training set, but it has not positive examples in the test set. On

this class the FM1 is always 1, until iteration 9, because the classifier does not know

positive examples for the class, so it correctly does not assign any document of the test

set to “can”; after iteration 9, the FM1 goes from 1 to 0, because the classifier starts

to make wrong predictions on the test set, committing 14 false positives. Only at
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Figure 5.2: Results for micro-averaged F1 of active learning runs, the evaluation is
made on Te, learners are MP-Boost (5.2a and 5.2c) and SVMs (5.2b and 5.2d),
datasets are Reuters-21578 (5.2a and 5.2b) and OHSUMED-S (5.2c and 5.2d).

iteration 16 the classification model gains enough information on the category “can”

in order to correctly classify the test set (only true negatives). In order to prevent

this scenario we could sample an initial training set in which, for each class, at least

one positive document is present. Thiswould give us a less clear view of the behavior

of the learners and the AL strategies on difficult data.

The results on Fµ1 are shown in Figure 5.2, following the same schema of Figure

5.1. The plots for MP-Boost confirm the results on FM1 , the methods have similar

performance, the drops of the curves are less marked because the micro-averaged

effectiveness is less susceptible to errors on infrequent classes.

For SVMs we do not notice the same improvement we have witnessed in the

macro-averaged evaluations. As in SATC, the validation gains are computed on the

whole estimated contingency table, so there are not class-specific weights. This implies
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that the U-theoretic(s) method deviates only slightly from the Baseline. If we look at

Figure 5.2b the Baseline is even less effective in the first iterations, consequently the

U-Theoretic(s) method is penalized.

5.2.2 Active learning methods for semi-automated text classification

Many of the AL strategies are applicable to SATC, but their use is not always jus-

tifiable. Applying an AL strategy to SATC means substituting U with the test set.

There is no need to retrain the model after a query, we only need to obtain a ranking

of the test set.

In AL we do not look at the accuracy on the test set, in fact an AL method only

analyzes the training set and U (which is independent of the test set). However, the

AL methods based on uncertainty try to understand the behavior of the classifier,

similarly to SATC methods where we estimate how much the classifier makes mis-

takes. An AL method that minimizes the estimated error, instead, does not involve a

ranking on all the unlabelled examples. It does not try to exploit the informativeness

of an unlabelled document but it only looks at the effectiveness of the built classifier.

Another problem that an AL method has to solve is to avoid outliers, noisy samples

that do not bring benefits to the classification model. This problem is absent in SATC,

since we assume that all the documents in the test set need to be annotated.

We compare two AL methods applied to the SATC task:

MMU - Max-Margin prediction Uncertainty. This is an uncertainty sampling

strategy, that is intuitively comparable with the Baseline method. Instead of sum-

ming up the probabilities of misclassification it looks at the least confident positive

and negative decisions.

LCI - Label Cardinality Inconsistency. Documents with an excessive number

of automatic assignments, and documents with too few assignments, can be more

prone to errors. These documents can have, respectively, several false positives

and many false negatives. This method measures this inconsistency and orders

the documents accordingly.

We do not test the Adaptive method for one main reason: we exclude the retraining

of Tr in SATC, moreover we should execute |B| retraining for each document.

Results and discussion

Results are plotted in two figures: Figure 5.3 and Figure 5.4 for macro- and micro-

averaged error reduction, respectively. The same results for ENERρ are represented

in Tables 5.1 and 5.2. Our U-Theoretic(s) method performs always the best, except for

MP-Boost on the Reuters-21578 dataset (Figure 5.3a). The rankings with MP-

Boost are problematic; we again think that the poor confidence estimates on this

learner may cause low performances for methods based on confidence scores. In fact
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Figure 5.3: Results for macro-averaged error reduction of active learning methods
applied on SATC, for learners MP-Boost (5.3a and 5.3c) and SVMs (5.3b and 5.3d),
on datasets Reuters-21578 (5.3a and 5.3b) and OHSUMED-S (5.3c and 5.3d).

we can notice the lowest effectiveness of MMU, that is heavily dependent on these

values. This method uses only two lowest confidence values (positive and negative

predictions) per class, so even if only one confidence is not accurate (e.g., too low)

the relative margin is compromised. This phenomenon influences the MMU ranking

even more near the last part of the validation process.
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Figure 5.4: Results for micro-averaged error reduction of active learning methods
applied on SATC, for learners MP-Boost (5.4a and 5.4c) and SVMs (5.4b and 5.4d),
on datasets Reuters-21578 (5.4a and 5.4b) and OHSUMED-S (5.4c and 5.4d).

The MMU method always performs worse than the Baseline. We think that this

method is weaker in understanding the quality of the predictions of the classifiers.

If we take for example two documents with the same margin, the information about

prediction errors remains hidden, e.g.: the predictions behind the margin could be

distributed close to it and be potentially wrong, but with MMU we could not include

these classes. Employing other methods, beyond the Baseline, based on classifier con-

fidence, is still interesting, because mislassifications could be located only in specific
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ξ = 0.05 ξ = 0.10 ξ = 0.20

MP-Boost

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline .071 .108 .152

U-Theoretic(s) .163 (+128%) .226 (+109%) .280 (+84%)

MMU .040 (-44%) .072 (-33%) .107 (-30%)

LCI .295 (+313%) .335 (+210%) .355 (+134%)

O
H
S
U
M
E
D
-S Baseline .021 .025 .026

U-Theoretic(s) .087 (+323%) .118 (+374%) .132 (+402%)

MMU .018 (-13%) .021 (-14%) .019 (-29%)

LCI .056 (+171%) .085 (+243%) .108 (+311%)

SVMs

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline .262 .352 .420

U-Theoretic(s) .442 (+69%) .531 (+51%) .562 (+34%)

MMU .177 (-32%) .306 (-13%) .402 (-4%)

LCI .152 (-42%) .224 (-36%) .278 (-34%)

O
H
S
U
M
E
D
-S Baseline .075 .124 .164

U-Theoretic(s) .212 (+184%) .282 (+127%) .323 (+97%)

MMU .056 (-25%) .092 (-25%) .127 (-23%)

LCI .084 (+13%) .111 (-10%) .122 (-26%)

Table 5.1: Results of ranking methods based on active learning strategies, applied
to MP-Boost and SVMs, on Reuters-21578 and OHSUMED-S, in terms of
ENERMρ (ξ), for ξ ∈ {0.05, 0.10, 0.20}. Improvements listed for the various methods
are relative to the baseline.

ranges of confidence; we could identify these confidences and consequently aggregate

them for each document. Developing further methods in this way could be a future

exploration of ranking strategies for SATC.

The LCI method proves effective on MP-Boost where other methods perform

badly. Actually the method puts in the first ranks the documents with many classes

assigned, these documents have higher probability to be classified under different

classes, a sort of ambiguity that can also produce more errors. A curious behaviour

of the method is readable from the curves, especially on the Reuters-21578 test set

in micro-averaged results. The error reduction increases linearly until about 25% of

inspection depth, then the slope drops and the linear growth is slower. If we look at
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ξ = 0.05 ξ = 0.10 ξ = 0.20

MP-Boost

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline .107 .167 .222

U-Theoretic(s) .107 (+%) .168 (+1%) .224 (+1%)

MMU .102 (-5%) .156 (-7%) .199 (-10%)

LCI .166 (+55%) .222 (+33%) .267 (+20%)

O
H
S
U
M
E
D
-S Baseline .044 .068 .094

U-Theoretic(s) .044 (+1%) .069 (+3%) .096 (+2%)

MMU .042 (-3%) .069 (+3%) .094 (+0%)

LCI .047 (+8%) .076 (+12%) .099 (+5%)

SVMs

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline .240 .325 .389

U-Theoretic(s) .246 (+3%) .332 (+2%) .395 (+2%)

MMU .179 (-25%) .282 (-13%) .360 (-7%)

LCI .124 (-48%) .185 (-43%) .235 (-40%)

O
H
S
U
M
E
D
-S Baseline .058 .096 .136

U-Theoretic(s) .063 (+10%) .102 (+7%) .143 (+5%)

MMU .059 (+3%) .101 (+6%) .142 (+4%)

LCI .042 (-27%) .075 (-22%) .098 (-28%)

Table 5.2: Results of ranking methods based on active learning strategies, applied
to MP-Boost and SVMs, on Reuters-21578 and OHSUMED-S, in terms of
ENERµρ (ξ), for ξ ∈ {0.05, 0.10, 0.20}. Improvements listed for the various methods
are relative to the baseline.

the ranking we can understand this phenomenon: the last 75% of the documents are

the ones classified with one class, reminding that the label cardinality of Reuters-

21578 is 1.135, the score of these documents is obviously the lowest. This method,

in spite of its simplicity, exploits an interesting fact about classification errors, which

are generally less frequent on documents with a number of assignments equal to the

average number of classes; in fact the error reduction on these documents rises slowly.

In this last section of the ranking the documents position is only determined by the

sorting algorithm, so the errors are uniformly distributed, and the error reduction

grows linearly. Our methods excel when the confidence estimates are strong, and

between the documents with one predicted class, they are able to select the ones that

improve the classification accuracy the most.
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5.3 Conclusions

We have devoted this chapter to a study of active learning strategies for multi-class

multi-label text classification, putting them in comparison with SATC strategies for

ranking classified documents. The task of AL and SATC have some aspects in com-

mon, but they definitely differ in the intent of application; so combining the solutions

of the two tasks may be not really justified, but we think that some characteristics of

the methods permit the experimental comparison we have conducted.

In the chapter the two tasks are analyzed in two phases. We have first applied

SATC methods to AL processes, and we have then done the inverse operation, apply-

ing AL methods to SATC processes. Applying U-Theoretic(s) to AL seems promising,

by observing empirical results with SVMs. The reasons and possible developments of

the method should be further investigated. We consider taking advantage of the sim-

ple information of label cardinality inconsistency in SATC methods, which we have

observed to be effective in some conditions.

We can finally say that AL and SATC live in different scenarios, that we need

specific approaches for each of them. In multi-label AL a good direction is in weighting

classes differently; we can induce from the experiments that the documents which

help to discriminate infrequent classes are important, especially for macro-averaged

evaluations. For SATC, the AL methods tested in these chapter are not completely

effective, often they are under our baseline; this should prompt us to try new methods,

that go beyond the intuitions related to AL.
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6

Evaluating Semi-Automated Text Classification
Applications

The application of semi-automated text classification methods is straightforward in

any context of automatic text classification. The developed ranking methods can

be configured and applied to any set of classified documents. Now that we have a

wider vision of the task, we can explore some extensions of the problem, in order to

understand more about the effectiveness of the discussed methods. In this chapter

we will look at scenarios in which SATC methods are involved, so as to enrich our

comprehension of the task and so as to be able to apply the strategies correctly.

In Section 6.1 we start with a pragmatic vision of SATC, as we try to answer

the potential demand of a customer who asks for a guarantee of effectiveness from

the validation phase. In Section 6.2 we run experiments with different evaluation

measures, in order to understand how the ranking methods respond to a different

need of effectiveness. In Section 6.3 we present a new evaluation measure for SATC.

Finally in Section 6.4 we apply SATC methods to classification systems devised for

the domain of market research.

6.1 Estimating accuracy

We have evaluated our SATC methods by using evaluation measures specifically de-

vised for the task; this allows us to fairly compare the quality of the rankings produced

by different learners and on different datasets. We have not directly shown the growth

of the classification accuracy, starting from the initial effectiveness of the classifier to

the final maximum value. The advantage of showing classification accuracy is that we

can understand the ranking effectiveness with more conventional evaluation measures

for TC.

One strong motivation for adopting SATC is performing a manual validation in

order to reach the required minimum level of classification accuracy. One goal in

a SATC task could be to guarantee an accuracy value after a specific number of

corrections. Another goal could be to correct until a specific classification accuracy

that, a certain point in the process, we have achieved. This kind of applications can
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be very useful for the customer, but there is a main obstacle: we do not know the

classification accuracy on the test set. In our experimental setting we have used the

test sets of the collections (in which documents are already manually classified) for a

comparison of the methods; in a production setting a test set can not be evaluated,

we can only trust the estimates performed by the method.

In other words, we cannot know the contingency cell counts of the test set but we

can estimate them. We can use the same method for obtaining contingency cell esti-

mates that we apply for computing the rankings; the cell estimates allow to compute

an estimation of the classification accuracy, which is obtained via cross-validation

on the training set. During the manual validation the accuracy estimation has to be

updated after each correction. In Section 4.1 we have studied a dynamic method for

computing utilities, which operates by adjusting the contingency cell estimates ac-

cording to the number of corrections performed. We can use the same method for

updating the accuracy estimate.

The estimation of classification accuracy is a standard task in TC, the main pur-

pose of estimating effectiveness is to compare different classification models in order

to choose the best one. The standard approach is to execute a k-fold cross-validation

on the labelled data [40]. For our requirements we have to estimate the contingency

table; we achieved this operation in Chapter 3 by summing up the quantities of the

single cells of the folds, and producing global contingency tables of the training set.

This is a proper approach, which brings about an unbiased estimation of the classifica-

tion accuracy, especially for a measure like F1, which is affected by special, undefined

cases (e.g., when there are zero true positives) [23].

The difficulty of estimating the classification accuracy is discussed in [80], where

the authors study how the F1 accuracy changes on the test set, sampling new data

sequentially. They evaluate three cases, one of which is very similar to our scenario:

the training set is fixed and test samples are randomly selected and annotated; after

each selection the classifier is evaluated on the augmented test set. The goal is to

reach a target value of F1, which allows the user to accept the classifier as effective.

The authors argue that trusting the estimation of F1 (computed on the annotated

subset of Te) cannot give a correct reading of the classifier accuracy; the process often

falls in an overestimation of the effectiveness, making the user erroneously accept the

classifier.

The problem of minimizing the cost of annotation and ensuring a certain level of

effectiveness is dealt with in [5]. In this work the goal is to build training and test data

with manual work, with the aim of certifying a given level of classification accuracy.

The annotation work begins on the training set and, when a certain stop criterion

is reached, continues on the test set. This process is conducted with the constraint

of a limited budget of annotation; the authors argue that, using some policies for

annotation, it is possible to certify a given level of effectiveness, thus limiting the

human effort.
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In our task we estimate the effectiveness on the training set, and we take it as the

best estimate we can achieve for the trained model. We do not evaluate the test set, as

new test samples are validated, but we update the estimated contingency table. From

this strategy we can expect that: (a) the estimated accuracy is slightly underestimated,

because in k-fold cross-validation we evaluate k models trained on training sets smaller

than the whole Tr; (b) by avoiding to estimate the accuracy on the sequentially

annotated samples of the test set, we prevent obtaining an overestimated evaluation,

as pointed out in [80].

6.1.1 Comparing learning methods globally

When we have to perform a TC task we usually have the data and a number of

decisions to make. In the common scenario we have a set of labelled data and a set

of unclassified data, the latter can be immediately processable, or be available only

in the future. Most of the decisions have to be taken in the learning phase, when we

choose the algorithms and their parameters. All the choices are done for obtaining

the most effective classifier with the knowledge we have.

In SATC there is another parameter that can come into play after the training: the

availability of human work. In order to obtain the best effectiveness we can profit from

the number of documents that one or more experts are willing to annotate. In this

scenario we have to set up the classification system for both the learning phase and the

manual validation phase. The reason is that one classifier can be better than another

in TC, but it can be worse in SATC; this is because we obtain different rankings from

different classifiers. By employing TC with SATC strategies, a production setting

can consist of using a validation set for evaluating the combinations of learners and

ranking methods, in order to build the optimal classification setup. The evaluation

can be based on ENERρ(ξ), the user has to set the ξ parameter in order for it to

reflect the available human effort. In the next section we will compare among each

other the combinations of learners and SATC methods.

6.1.2 Results and discussion

We now run some comparisons of the rankings generated from different learners. The

evaluation is performed on the test sets, the same results of Chapter 3 are plotted, but

directly showing the F1 measure for each ranking. Different classifiers have a different

initial effectiveness on the test set, and during the validation that follows the ranking,

this effectiveness grows differently. We show only the U-Theoretic(s) method for each

learner and each data set (we have seen in Chapter 4 that U-Theoretic(d) performs

very similarly to the static method). We define pairs of learner and ranking method;

a pair can be considered as a SATC setup, which returns a classification of the test

set but also a ranking of the documents.

In order to compare the actual accuracy improvements with the estimated coun-

terparts, for each learner we show the curves of the accuracy estimates. The estimated
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classification accuracy is measured with F1, the initial value is the one returned by the

10-fold cross-validation on Tr. After each correction, performed following the rank-

ings returned by the SATC method, the estimated contingency table on which F1

is computed is modified. The updating protocol is the same used for the dynamic

method, described in Section 4.1, so the cell estimates are computed and smoothed

on demand, as described in Section 3.3.3.

We perform our analysis on the datasets Reuters-21578, OHSUMED, and

OHSUMED-S, with the learners MP-Boost and SVMs. For each plot (Figure 6.1)

we indicate, with the learner λ, the pairs λ/U-Theoretic(s), which are equivalent to

the results in Chapters 3 and 4; we indicate the estimated counterparts as λ/E, where

λ refers to the learner on which the estimated accuracy is updated according to the

ranking computed by U-Theoretic(s).

Analyzing the learners on FM1 , we notice an interesting phenomenon on the test

sets: the SVM classifier starts with the lowest FM1 , which increases quickly as the

documents are corrected. The MP-Boost classifier instead has a good initial ef-

fectiveness, but then the ranking is not effective as the SVM one. For instance, on

Reuters-21578 and OHSUMED, the classification accuracy of SVMs is compara-

ble to MP-Boost after only 25 and 18 annotations, respectively. After this point of

intersection, the rankings achieved with SVMs are better for validating the classifi-

cation. SVMs seems then the preferable algorithm when we have some human effort

available; in general this means that we can reverse our choices on the best learner,

if we do not base our decision only on the estimated classification accuracy. We can

say that SATC rankings give us a sort of evaluation measure of the learners, which is

not only based on classification accuracy, but also on the ability to understand which

documents affect more this accuracy.

In Table 6.1 we read the F1 values on Te and the ones estimated on Tr, while in

Figure 6.1 we see how the rankings impact on the estimated accuracies. We notice that

the estimated values are sometimes higher and sometimes lower than the true values

(we expected to have underestimated values), this means that we cannot trust the

estimated effectiveness. During the validation the estimated F1 values are updated,

their values grow as classification corrections are made.

In macro-averaged F1 the curves show an underestimation of the real improve-

ments in accuracy, thus giving the user an inexact picture of the gained effectiveness.

This happens even when the initial estimated accuracy is higher than the actual one;

in this case, after few annotations (with an exception for MP-Boost in Figure 6.1c),

the updated real accuracy exceeds the estimated one. The advantage of this fact is

that we obtain an estimated accuracy that we can guarantee with “enough” confi-

dence. We achieve a sort of pessimistic approximation of the reached effectiveness,

and we can thus satisfy a requirement of minimum level of gained accuracy. The

reason why the estimated curves of FM1 never reach 1 is because, for some classes,
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Figure 6.1: Comparison of the actual and estimated FM1 and Fµ1 on the test sets. The
curves describe the increment in F1 during manual validation of the test sets.
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Evaluation Te Estimated Final estimated

MP-Boost

R

FM1 .608 .560 .711

Fµ1 .848 .840 .992

O
FM1 .447 .491 .796

Fµ1 .611 .644 .998

O
-S F

M
1 .480 .553 .807

Fµ1 .714 .738 .996

SVMs

R

FM1 .527 .513 .719

Fµ1 .860 .860 .988

O

FM1 .423 .490 .804

Fµ1 .676 .707 .997

O
-S F

M
1 .478 .521 .801

Fµ1 .756 .770 .988

Table 6.1: Comparison of learners effectiveness and estimated FM1 and Fµ1 . Datasets
are indicated as R for Reuters-21578, O for OHSUMED and O-S for OHSUMED-
S. In the first column we indicate the evaluation of the classifiers on Te, in the second
column we indicate the evaluations estimated on Tr via 10-fold cross-validation, and
in the third column we indicate the estimated evaluation after the total manual vali-
dation of Te.

the corrections of the estimated contingency tables never obtain the total elimination

of errors. This happens because the estimated false positives and false negatives of

these classes are higher than their actual values. The values in which the curves stop

growing determine the margin beyond which we cannot have any information about

the classification accuracy; we show these values in the third column of Table 6.1.

For example, with MP-Boost on Reuters-21578, if the minimum level of FM1 re-

quested is .800, we can never reach a number of annotations for which the validation

“converges”, namely a validation depth in which the returned estimated accuracy is

.800.

In the results of micro-averaged F1 the curves often overestimate the true progress

of the manual validations. The increments are proportional, because the likelihood of

the estimated contingency table is high, so also the final value is close to 1. In plots

like Figure 6.1b we see a notable drop of the curve, which is due to the smoothing of
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the contingency cells; it happens after the point in which the estimated false positives,

or negatives, reach 0.

These results help us understand the scope of application of SATC methods. In

the future we could study more rigorously the power of SATC ranking evaluations, in

order to give the user the tools for validating the classification with a higher confidence

of the estimations.

6.2 Other measures of classification accuracy

In this dissertation we have explored several dimensions of the task of semi-automated

text classification; we have compared these methods on different datasets and learners,

fixing the evaluation measure in all the experimental setting. We now show the results

of SATC processes which are set up for different accuracy measures. For instance we

apply and evaluate SATC methods on Fβ [78], with β = {0.5, 2}. This function is

defined as:

Fβ(Φ̂j(Te)) = (1 + β2) · precisionj · recallj
(β2 · precisionj) + recallj

=

=
(1 + β2) · TPj

(1 + β2) · TPj + FPj + (1 + β2) · FNj
where parameter β sets the relative importance of precision and recall. With β < 1

precision weighs more, and with β = 0 we obtain the precision function; with β > 1

recall weighs more, and for limβ→∞ the measure coincides with the recall function.

It is possible to compute the macro- and micro-averaged versions of the measure, as

seen in Chapter 2.

We can define a generalized version of the average gain functions, employing the

Fβ measure:

Gβ(di, fpj) =
1

FPj
(FFPβ (Φ̂j(Te))− Fβ(Φ̂j(Te))) =

=
(1 + β2) · TPj

(1 + β2) · TPj + (1 + β2) · FNj
− (1 + β2) · TPj

(1 + β2) · TPj + FPj + (1 + β2) · FNj

Gβ(di, fnj) =
1

FNj
(FFNβ (Φ̂j(Te))− Fβ(Φ̂j(Te))) =

=
(1 + β2) · (TPj + FNj)

(1 + β2) · (TPj + FNj) + FPj
− (1 + β2) · TPj

(1 + β2) · TPj + FPj + (1 + β2) · FNj

We can omit the definition of the pointwise gains, which follow the same structure

of the functions above. Changing the values of β affects the difference between the

gain values. For instance, setting β = 0.5 implies a bigger gain in correcting a false

positive, which is the only type of error that impacts on precision, while setting β = 2
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Dataset
EM0.5 Eµ0.5 EM2 Eµ2

MP-B SVMs MP-B SVMs MP-B SVMs MP-B SVMs

OHSUMED .513 .514 .359 .244 .577 .617 .417 .388

OHSUMED-S .488 .453 .264 .180 .540 .565 .306 .300

Reuters-21578 .372 .449 .133 .091 .403 .504 .170 .185

Table 6.2: Errors generated by the MP-Boost and SVMs classifiers, evaluating the
classification accuracy with F0.5 and F2.

implies a bigger gain in correcting a false negative, which is the only type of error

that impacts on recall.

The chosen values of 0.5 and 2 are used for defining precision- or recall-oriented

evaluations respectively. An example of a precision-oriented task is adaptive filtering

[67]. In adaptive filtering a retrieval system answers the information need of a user,

returning relevant documents in real-time, as a continuous stream of content. The

importance of high precision is given by the format of the results, which are presented

one document at a time; the user does not want to read all the documents, but she

wants a highly relevant selection, so recall is not critical. The system is effective when

it does not produce false positives, at the cost of possibly making false negatives. An

interesting aspect of this task is the human interaction: the user can mark non-relevant

documents, in order to enrich the retrieval model with new information. This manual

process is different from the SATC validation process, because it does not imply an

improvement in effectiveness; non-relevant documents have to be filtered out by the

system, even if they can be useful once annotated.

One recall-oriented task is e-discovery [62, 63], in which the goal is to retrieve

documents from large collections that are relevant to a request for production in civil

litigation. The documents are usually reviewed by a team of experts, so examining an

entire collection is an expensive manual process. Information retrieval systems help

to select only a subset of documents for manual review, but a primary requisite in

e-discovery is that manual review has to cover all relevant documents. High recall is

then mandatory in e-discovery.A measure like F2 balances well the requisites of an

e-discovery retrieval application. We think that, for the SATC task, F0.5 and F2 are

more interesting measures than precision and recall. Especially the recall function has

a limitation: correcting a false positive does not bring about a gain in recall, because

false positives are not covered by this measure, thus G∞(di, fpj) would be undefined.

6.2.1 Results and discussion

Experiments are conducted by adopting the same protocol of Chapter 3. Regarding

the evaluation measures for SATC, the only modification is in the definition of error.
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Figure 6.2: Results obtained on Reuters-21578 with MP-Boost for the measures
ERM0.5 (Figure 6.2a) and ERM2 (Figure 6.2b).

We define ENERM0.5 and ENERM2 as the macro-averaged expected normalized error

reductions, where the errors are defined as EM0.5 ≡ 1 − FM0.5 and EM2 ≡ 1 − FM2
respectively. The same applies for the micro-averaged version ENERµ0.5 and ENERµ2 .

For simplicity of notation we omit the subscript ρ. In Table 6.2 the errors on the test

sets are reported; in this experimental setting we show the results on the datasets

OHSUMED, OHSUMED-S and Reuters-21578.

We present a fraction of the results, in order to analyze only the most interesting

aspects of these experiments. In Figure 6.2 we plot the curves using the same configu-

ration of Figure 3.3 in Chapter 3, so we can observe the differences between different

measures. The error reductions grow as in the results for F1, the same happens in

the results on the other datasets and learners, that we leave out for reasons of space.

Utility-theoretic methods are thus effective also with these accuracy measures.

We would like to understand how the learners and ranking methods behave when

the classification accuracy is more precision- or recall-oriented. In Table 6.2 we observe

that the learners are more effective on F0.5, while on F2 they perform worse than both

F0.5 and F1 (see also Table 3.3 in Chapter 3).

For FM0.5 the baselines are generally higher than for FM1 and FM2 . This is because

of the improved effectiveness of the classifiers; we do not report the results for FM0.5,

which follow the trend seen for FM1 , and we concentrate instead on Fµ0.5. In Table

6.3 we show the evaluations for Fµ0.5 (we leave out U-Theoretic(d) because of the

similar performance to U-Theoretic(s)). Regarding the results with MP-Boost, we
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ξ = 0.05 ξ = 0.10 ξ = 0.20

MP-Boost

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline .107 .167 .223

U-Theoretic(s) .128 (+20%) .185 (+11%) .235 (+5%)

Oracle1(s) .128 (+20%) .185 (+11%) .235 (+5%)

Oracle2(s) .385 (+260%) .506 (+203%) .559 (+151%)

O
H
S
U
M
E
D Baseline .475 .583 .606

U-Theoretic(s) .487 (+3%) .594 (+2%) .615 (+1%)

Oracle1(s) .486 (+2%) .594 (+2%) .615 (+1%)

Oracle2(s) .680 (+43%) .747 (+28%) .719 (+19%)

O
H
S
U
M
E
D
-S Baseline .048 .072 .097

U-Theoretic(s) .057 (+19%) .085 (+18%) .113 (+16%)

Oracle1(s) .056 (+19%) .085 (+17%) .113 (+16%)

Oracle2(s) .158 (+233%) .243 (+238%) .318 (+227%)

SVMs

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline .242 .329 .392

U-Theoretic(s) .206 (-15%) .296 (-10%) .366 (-7%)

Oracle1(s) .206 (-15%) .296 (-10%) .366 (-7%)

Oracle2(s) .435 (+80%) .550 (+67%) .590 (+51%)

O
H
S
U
M
E
D Baseline .537 .638 .647

U-Theoretic(s) .542 (+1%) .642 (+1%) .650 (+0%)

Oracle1(s) .542 (+1%) .642 (+1%) .650 (+%)

Oracle2(s) .734 (+37%) .780 (+22%) .738 (+14%)

O
H
S
U
M
E
D
-S Baseline .076 .120 .163

U-Theoretic(s) .071 (-7%) .115 (-4%) .160 (-2%)

Oracle1(s) .071 (-6%) .116 (-3%) .161 (-1%)

Oracle2(s) .206 (+172%) .306 (+155%) .381 (+134%)

Table 6.3: Results of ranking methods applied to MP-Boost and SVMs, on
Reuters-21578, OHSUMED and OHSUMED-S, in terms of ENERµ0.5(ξ), for
ξ ∈ {0.05, 0.10, 0.20}. Improvements listed for the various methods are relative to
the baseline.

observe a significant improvement of the utility-theoretic methods with respect to the

results of Section 4.2.1, considering that the baselines are higher too. The same results
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do not hold for SVMs, where we see a failure of the utility-based methods. This is

actually due to the gain pairs, whose difference is minimum for SVMs, i.e., the gain

of correcting false positives is very similar to the gain of correcting false negatives in

these experiments. This condition seems to produce ineffective utilities.

Regarding the recall-oriented measure F2, we obtain very good results on macro-

averaged effectiveness, despite the lower performance of the baselines, which are af-

fected by the worse effectiveness of the classifiers; utility-based methods always gain a

consistent improvement over the baselines, very similar to the improvement obtained

for FM1 . We leave out the data of these results, for reasons of space, and visualize

the evaluations for Fµ2 . This is the case in which our methods succeed the most with

micro-averaged gains, in both MP-Boost and SVMs (even if OHSUMED remains

a tough collection in this type of evaluation); in Table 6.4 we can read the results.

Document utilities are strongly affected by the value of β, because the higher the

value of β, the bigger the difference between Gβ(di, fnj) and Gβ(di, fpj). Thus, cor-

recting a false negative of an automatic classification, when recall is a priority, has

a heavy influence on error reduction. When the two gains are more unbalanced, the

micro-averaged ranking methods become effective; in fact, we can note a consider-

able difference with respect to the results in Section 4.2.1. This is one of the main

advantages of utility-theoretic methods, which exploits particular needs of the user;

the methods are completely adaptable to heterogeneous scenarios of application.

6.3 A new measure of error reduction

In Chapter 3 we defined for ranking method ρ the notion of normalized error reduction

at rank n as NERρ(n) = ERρ(n) − n
|Te| . We removed the random factor from the

definition of error reduction, because we expected that any ranking method can be

better than a random ranking, when the method uses some smart, basic principle.

In this measure we set a lower bound for the evaluation, but we still miss an upper

bound, the maximum error reduction that a method can achieve.

In the experimental phase of Chapter 3 we implemented some methods called

“oracles”. One of these methods, Oracle2, is the best possible ranking we can obtain,

but it uses information that is not accessible. The definition of such upper bounds

can be extended to any method (we already designed the methods Oracle2(s) and

Oracle2(d)) and, moreover, it can be used as the theoretic limit which a ranking

method cannot exceed. We can exploit this upper bound in an evaluation measure,

which takes into account the error reduction relative to the best ranking obtainable.

We thus define a function S : P→ P (where P is the set of ranking methods) which

returns the oracle S(ρ) relative to the ranking method ρ, namely another ranking

method which uses the actual contingency tables and the true labels of a test set. We

design a new evaluation measure, that we call doubly-normalized error reduction:
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ξ = 0.05 ξ = 0.10 ξ = 0.20

MP-Boost

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline .108 .167 .223

U-Theoretic(s) .123 (+14%) .189 (+13%) .246 (+10%)

Oracle1(s) .123 (+14%) .189 (+13%) .246 (+10%)

Oracle2(s) .349 (+223%) .469 (+181%) .531 (+138%)

O
H
S
U
M
E
D Baseline .415 .527 .563

U-Theoretic(s) .415 (+0%) .520 (-1%) .555 (-1%)

Oracle1(s) .415 (+0%) .520 (-1%) .554 (-2%)

Oracle2(s) .690 (+66%) .753 (+43%) .723 (+28%)

O
H
S
U
M
E
D
-S Baseline .038 .062 .089

U-Theoretic(s) .053 (+40%) .086 (+39%) .116 (+30%)

Oracle1(s) .053 (+40%) .086 (+39%) .116 (+30%)

Oracle2(s) .168 (+341%) .247 (+301%) .317 (+255%)

SVMs

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline .236 .320 .385

U-Theoretic(s) .266 (+13%) .367 (+15%) .433 (+12%)

Oracle1(s) .266 (+13%) .367 (+15%) .433 (+12%)

Oracle2(s) .407 (+72%) .520 (+63%) .567 (+47%)

O
H
S
U
M
E
D Baseline .461 .573 .600

U-Theoretic(s) .485 (+5%) .589 (+3%) .608 (+1%)

Oracle1(s) .485 (+5%) .589 (+3%) .609 (+2%)

Oracle2(s) .717 (+56%) .770 (+34%) .732 (+22%)

O
H
S
U
M
E
D
-S Baseline .049 .082 .119

U-Theoretic(s) .074 (+51%) .116 (+42%) .157 (+32%)

Oracle1(s) .074 (+52%) .116 (+42%) .157 (+32%)

Oracle2(s) .180 (+267%) .266 (+225%) .339 (+185%)

Table 6.4: Results of ranking methods applied to MP-Boost and SVMs, on
Reuters-21578, OHSUMED and OHSUMED-S, in terms of ENERµ2 (ξ), for
ξ ∈ {0.05, 0.10, 0.20}. Improvements listed for the various methods are relative to
the baseline.

DNERρ(n) =
NERρ(n)

ERS(ρ)(n)− n
|Te|
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The function is undefined when ERS(ρ)(n) − n
|Te| = 0, namely when the lower and

upper bounds coincide; in this case we take DNERρ(n) = 1, since the method ρ co-

incides with the oracle S(ρ). The “double normalization” stands for the contributions

of both NERρ and ERS(ρ). The normalized error reduction is re-normalized in order

to squeeze the range of possible error reductions, which is limited by the ER of the

two bounds. This measure delineates the ratio between the effective error reduction

and the loss in respect to the perfect ranker; this loss is inversely proportional to the

ability of the ranking method to estimate values (probabilities and gains) close to the

oracle values.

DNERρ is a new instrument for the evaluation of SATC methods, that exploits

the quality of the ranking methods applied on specific learning algorithms and data.

In fact, in this dissertation we have seen that the oracles behave differently when

data and predictions change. The upper bounds give us a reference for comparison,

so, for example, if a method seems to perform poorly, looking at its oracle makes us

understand if there is real room for improvement; this aspect is exploited by DNERρ.

For each method ρ and combination of learner and dataset, we decide to use as

S(ρ) the Oracle2 which performs the best on that combination. We could specify a

single oracle for each ranking method, but then we could not compare them on the

same setting, because of the different normalization of each method. This measure

is however more interesting when we match the evaluations on different learners and

datasets; we cannot compare these evaluations directly, because the normalization is

different from one setting to another, but we can obtain a sort of qualitative judgement

of the methods.

As for the previous measures, we define DNERMρ and DNERµρ for macro- and

micro-averaged error reduction, respectively, and we extend the ENERρ measure to

EDNERρ =

|Te|∑
n=1

Ps(n)DNERρ(n)

So, equivalently we have EDNERMρ and EDNERµρ . In order to compute EDNERρ(ξ)

we have to select the best oracle in terms of ENERρ(ξ) to use as normalization param-

eter of EDNERρ. We therefore formulate the oracle selection function S : P,R→ P,

plugged in EDNERρ, as

S(ρ, ξ) = max
ρ

ENERρ(ξ)

which is computed for each dataset, learner, and value of ξ; in our experiments we set

ξ ∈ {0.05, 0.10, 0.20}. The function comes in two versions, like for any error reduction

measure: SM (ρ, ξ) and Sµ(ρ, ξ).

6.3.1 Results and discussion

We show a selection of the results with the ranking methods, learners and datasets

used in this dissertation, evaluated with EDNERρ; the format is the same of the

101



CHAPTER 6. EVALUATING SATC APPLICATIONS

results for ENERρ. We omit the Oracle2 methods, because they obviously have an

EDNERρ equal to 1, or very close to 1 for the worst of the two Oracle2s.

In Table 6.5 we compare the evaluations of the rankings of the three versions of

Reuters-21578 with MP-Boost and SVMs as learners. We can notice that the dif-

ferences between the evaluations computed with EDNERMρ are not proportional

to the corresponding differences with ENERMρ (see Table 3.1 in Chapter 3). In

EDNERρ the error reduction grows differently, the normalization is computed at

each step of the simulated validation, and it depends of the error reduction of the

oracle, thus this is not a simple re-normalization of ENERρ.

In these evaluations we point out an interesting result: on Reuters-21578/10 and

Reuters-21578/100 we can judge the utility-theoretic methods to be more effective

than they turned out to be in Chapter 3. In Table 6.5 we see that the expected error

reduction on these two datasets (especially on the tiny datasets) is superior than on

Reuters-21578, while we saw the opposite for ENERMρ . In Chapter 3 we argued

that, when test sets are small, smoothing affects the rankings to a larger degree, and

that the effect of smoothing is to perturb the contingency tables, thus the difference

with the oracles is larger. From these evaluations we understand that also the best

rankers do not perform well on small datasets, so our ranking methods are more

effective than they had proven to be, despite the more inaccurate estimation of the

contingency tables.

When comparing different learners, the EDNERMρ measure does not give new

insights with respect to the previous evaluations; the Oracle2 methods produced from

MP-Boost and SVMs behave very similarly, the normalizations have thus an anal-

ogous contribution in the evaluations performed on the two learners (give a fixed a

dataset). The results confirm the better performance of SVMs.

In Table 6.6 we report the evaluations of the rankings for the three versions of

Reuters-21578 with the SVM learner (the evaluation measure is EDNERµρ ). We

observe high values of EDNERµρ , for both baselines and utility-based methods, that

suggest a high effectiveness of the ranking methods, close to that of the best ranker.

Here we also confirm the low performances of Oracle2 methods, which show the ev-

ident limitation of the manual validation in improving micro-averaged effectiveness,

as pointed out in Section 4.2. We can understand that the room for improvement of

the ranking methods is constrained by the nature of this type of classification accu-

racy: the improvements in accuracy brought about by different document corrections

are homogeneous, and also with the best ranking method we can not achieve the

impressive performance typical of macro-averaged effectiveness.

The EDNERρ evaluation measure proves to be a useful tool for several analyses

of SATC methods, therefore it can be used together with ENERρ in the evaluation

of the ranking methods. One possible drawback of this measure is that it requires the
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ξ = 0.05 ξ = 0.10 ξ = 0.20

MP-Boost

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline 0.091 0.142 0.248

U-Theoretic(s) 0.210 (+130%) 0.294 (+107%) 0.419 (+69%)

U-Theoretic(d) 0.206 (+126%) 0.292 (+106%) 0.417 (+68%)

Oracle1(s) 0.196 (+115%) 0.287 (+102%) 0.417 (+68%)

Oracle1(d) 0.192 (+110%) 0.283 (+99%) 0.411 (+66%)

R
-2
1
5
7
8
/
1
0 Baseline 0.104 0.142 0.225

U-Theoretic(s) 0.227 (+118%) 0.290 (+104%) 0.380 (+69%)

U-Theoretic(d) 0.220 (+112%) 0.282 (+99%) 0.371 (+65%)

Oracle1(s) 0.270 (+160%) 0.307 (+116%) 0.386 (+72%)

Oracle1(d) 0.268 (+158%) 0.315 (+122%) 0.400 (+78%)

R
-2
1
5
7
8
/
1
0
0

Baseline 0.148 0.206 0.284

U-Theoretic(s) 0.267 (+80%) 0.307 (+49%) 0.375 (+32%)

U-Theoretic(d) 0.267 (+80%) 0.312 (+51%) 0.379 (+33%)

Oracle1(s) 0.447 (+202%) 0.458 (+122%) 0.492 (+73%)

Oracle1(d) 0.455 (+207%) 0.487 (+136%) 0.554 (+95%)

SVMs

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline 0.345 0.455 0.607

U-Theoretic(s) 0.575 (+67%) 0.677 (+49%) 0.782 (+29%)

U-Theoretic(d) 0.558 (+62%) 0.665 (+46%) 0.774 (+28%)

Oracle1(s) 0.624 (+81%) 0.719 (+58%) 0.811 (+34%)

Oracle1(d) 0.621 (+80%) 0.723 (+59%) 0.819 (+35%)

R
-2
1
5
7
8
/
1
0 Baseline 0.391 0.463 0.585

U-Theoretic(s) 0.532 (+36%) 0.598 (+29%) 0.699 (+19%)

U-Theoretic(d) 0.539 (+38%) 0.605 (+31%) 0.705 (+21%)

Oracle1(s) 0.635 (+62%) 0.695 (+50%) 0.777 (+33%)

Oracle1(d) 0.639 (+63%) 0.704 (+52%) 0.791 (+35%)

R
-2
1
5
7
8
/
1
0
0

Baseline 0.493 0.525 0.612

U-Theoretic(s) 0.644 (+31%) 0.645 (+23%) 0.702 (+15%)

U-Theoretic(d) 0.638 (+29%) 0.646 (+23%) 0.705 (+15%)

Oracle1(s) 0.690 (+40%) 0.730 (+39%) 0.795 (+30%)

Oracle1(d) 0.688 (+40%) 0.737 (+40%) 0.809 (+32%)

Table 6.5: Results of ranking methods applied to MP-Boost and SVMs, on
Reuters-21578, Reuters-21578/10 and Reuters-21578/100, in terms of
EDNERMρ (ξ), for ξ ∈ {0.05, 0.10, 0.20}. Improvements listed for the various methods
are relative to the baseline.
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SVMs

ξ = 0.05 ξ = 0.10 ξ = 0.20

R
e
u
t
e
r
s-
2
1
5
7
8

Baseline 0.604 0.631 0.701

U-Theoretic(s) 0.618 (+2%) 0.645 (+2%) 0.711 (+1%)

U-Theoretic(d) 0.619 (+2%) 0.644 (+2%) 0.710 (+1%)

Oracle1(s) 0.618 (+2%) 0.645 (+2%) 0.711 (+1%)

Oracle1(d) 0.619 (+2%) 0.645 (+2%) 0.710 (+1%)

R
-2
1
5
7
8
/
1
0 Baseline 0.593 0.624 0.692

U-Theoretic(s) 0.606 (+2%) 0.637 (+2%) 0.702 (+1%)

U-Theoretic(d) 0.611 (+3%) 0.639 (+2%) 0.703 (+2%)

Oracle1(s) 0.605 (+2%) 0.637 (+2%) 0.703 (+2%)

Oracle1(d) 0.608 (+3%) 0.638 (+2%) 0.703 (+2%)

R
-2
1
5
7
8
/
1
0
0 Baseline 0.610 0.621 0.677

U-Theoretic(s) 0.611 (+%) 0.628 (+1%) 0.685 (+1%)

U-Theoretic(d) 0.627 (+3%) 0.637 (+3%) 0.690 (+2%)

Oracle1(s) 0.628 (+3%) 0.650 (+5%) 0.705 (+4%)

Oracle1(d) 0.639 (+5%) 0.660 (+6%) 0.716 (+6%)

Table 6.6: Results of ranking methods applied to SVMs, on Reuters-21578,
Reuters-21578/10 and Reuters-21578/100, in terms of EDNERµρ (ξ), for ξ ∈
{0.05, 0.10, 0.20}. Improvements listed for the various methods are relative to the
baseline.

computation of the Oracle2 methods, a requisite that can become tedious when the

methods have to be validated on multiple, large datasets.

6.4 Experiments with automated verbatim coding

In the field of market research a fundamental instrument for obtaining informative

data from customer surveys is the use of open-ended questions. This is valid in many

other fields in industry, as customer relationship, opinion research in political sci-

ences, etc. In this area a lot of human effort is spent for the analysis of data, which

is usually classified according to a codeframe (i.e., a classification scheme); the code-

frame is developed along with the questions. Applications for the automatic coding

of open-ended verbatim1 responses have been developed in recent years [21]. These

1 A verbatim is a piece of text that is an exact transcription of the user’s answer, which could
have been originally produced using various media (e.g., telephone interview, handwritten
text, SMS answer, email, web form, etc.).
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Dataset |Tr| |Te| |C| AV C AV L
EM1 Eµ1

MP-B SVMs MP-B SVMs

LL-A 140 61 17 15.35 1.21 .093 .090 .063 .035

LL-B 350 151 31 20.48 1.62 .185 .246 .080 .089

LL-C 140 61 17 8.24 1.59 .102 .059 .068 .018

LL-D 350 151 27 31.30 2.05 .506 .701 .148 .161

LL-E 140 61 36 6.53 2.59 .173 .221 .118 .139

LL-F 350 151 56 26.45 3.96 .334 .477 .178 .192

LL-G 350 151 100 15.68 3.87 .377 .518 .230 .242

LL-H 350 151 84 21.73 4.83 .404 .620 .218 .269

LL-I 350 151 67 23.81 4.60 .398 .486 .219 .238

LL-L 350 151 65 20.55 3.15 .554 .574 .259 .255

Egg-A1 700 300 16 86.56 1.98 .691 .787 .468 .464

Egg-A2 700 300 16 86.56 1.98 .685 .728 .498 .479

Egg-B1 653 273 21 50.38 1.62 .610 .614 .403 .387

Egg-B2 653 273 21 50.38 1.62 .612 .685 .437 .414

ANES L/D 1865 800 1 969.00 0.52 .156 .137 .156 .137

Table 6.7: Characteristics of the ten market research datasets (LL-A to LL-L), four
customer satisfaction datasets (Egg-A1 to Egg-B2), and one social science dataset
(ANES L/D), that we have used here for experimentation. The columns represent
the name of the dataset, the number of training verbatims (|Tr|) and the number of
test verbatims (|Te|), the number of codes in the codeframe (|C|), the average number
of positive training verbatims per code (AV C), the average training verbatim length
(AV L), and the initial error (both EM1 and Eµ1 ) generated by the MP-Boost and
SVMs classifiers.

applications rely on a supervised learning approach, which means that training data

is indispensable, and is commonly available from the already coded verbatims of a

company. Automatic verbatim coders allow companies to reduce the manual human

work, which only becomes necessary for the training phase or for successive phases of

retraining (i.e., active learning).

In this field semi-automated text classification can play a productive role, giving

the human coders a further tool for improving the classification of verbatims. In order

to test our SATC methods on this domain we can experiments on datasets of real

survey data.
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Table 6.7 lists the main characteristics of the 15 datasets we have used. The first

10 datasets (LL-A to LL-L) consist of verbatims from market research surveys and

were provided by Language Logic LLC. The LL-B, LL-D, and LL-F to LL-L datasets

are from a large consumer packaged-good study, with both open-ended and brand-

list questions. The LL-A, LL-C, and LL-E datasets are instead from one wave of

a continuous (“tracking”) survey that Language Logic LLC codes 12 times a year,

which consists of “semi-open” brand questions (i.e., questions – such as “What is

your favourite soft drink?” – that, although in principle eliciting a textual response,

usually generate many responses consisting of only the name of a product or brand,

with this name coming from a small set of such names). The next 4 datasets consist of

verbatims from customer satisfaction surveys and were provided by Egg PLC; for both

datasets, which were collected in the context of two different surveys, respondents

were answering the question “Have we done anything recently that has especially

disappointed you?”. Actually, the Egg-A1 and Egg-A2 datasets contain the same

verbatims, but the test verbatims differ in the codes applied to them, since they were

coded independently by two different human coders, so as to provide data for an

intercoder agreement study (see e.g., [11]); so, we treat them as separate datasets.

The same goes for the Egg-B1 and Egg-B2 datasets. The last dataset (ANES L/D)

consists of verbatims from a political survey run in 1992 and were obtained from

the American National Election Studies (ANES) committee. Two sets of verbatims

were used: the first were returned in answer to the question “Is there anything in

particular about Mr. Clinton that might make you want to vote for him? If so, what

is that?” while the second were returned in answer to the question “Is there anything

in particular about Mr. Clinton that might make you want to vote against him? What

is that?”. Our coding task consisted in guessing whether the verbatim belongs to the

former or to the latter set. For all these 15 datasets, see [21, Table I] for more details.

It is apparent from the last column of Table 6.7 that the LL-A to LL-L and ANES

L/D datasets appear “easier” (i.e., they give rise to error values lower than .269 for

Eµ1 ), while the Egg datasets appear “harder” (with error values higher than .387 for

Eµ1 ). We might wonder whether the datasets characterized by lower error are also

characterized by higher ENERρ values. To investigate this, instead of visualizing

the expected normalized error reduction for each single dataset, in Tables 6.8 and

6.9 we represent the results of the methods presented in Chapter 3 for macro- and

micro-averaged effectiveness, separately averaged across the eleven “easier” datasets

(LL and ANES) and across the four “harder” ones (Egg). Furthermore it is clear from

Table 6.7 that the size of these datasets, and the average sizes of the verbatims, are

considerably smaller than the datasets we have analyzed so far.

When looking at the results for ENERMρ , we immediately notice that the baselines

of the easier datasets are higher. This is because the confidence estimates on these

datasets are more reliable, due to the higher effectiveness of the classifiers. On the

106



6.4. EXPERIMENTS WITH AUTOMATED VERBATIM CODING

ξ = 0.05 ξ = 0.10 ξ = 0.20

MP-Boost
ea

si
er

Baseline .093 .153 .193

U-Theoretic(s) .097 (+4%) .155 (+1%) .190 (-1%)

Oracle1(s) .092 (-1%) .151 (-1%) .187 (-3%)

Oracle2(s) .317 (+240%) .420 (+175%) .474 (+145%)

h
a
rd

er

Baseline .008 .008 .010

U-Theoretic(s) .023 (+204%) .039 (+413%) .051 (+394%)

Oracle1(s) .037 (+386%) .045 (+485%) .050 (+382%)

Oracle2(s) .229 (+2893%) .299 (+3800%) .350 (+3282%)

SVMs

ea
si

er

Baseline .121 .207 .273

U-Theoretic(s) .174 (+43%) .261 (+26%) .322 (+18%)

Oracle1(s) .222 (+83%) .304 (+47%) .354 (+30%)

Oracle2(s) .368 (+203%) .462 (+123%) .503 (+85%)

h
a
rd

er

Baseline .075 .114 .151

U-Theoretic(s) .089 (+19%) .135 (+18%) .178 (+18%)

Oracle1(s) .112 (+50%) .159 (+39%) .200 (+32%)

Oracle2(s) .286 (+281%) .369 (+222%) .420 (+177%)

Table 6.8: Results of SATC ranking methods on survey datasets, in terms of
ENERMρ (ξ), for ξ ∈ {0.05, 0.10, 0.20}. Improvements listed for the various methods
are relative to the baseline.

harder datasets, with MP-Boost the Baseline method performs poorly, close to a

random ranker. In this case we see a substantial contribution of the gains in improving

the expected error reduction, even if the values of ENERMρ are still low; the Oracle2

methods give us the idea of how much room there is for improvement, which means

that we should firstly enhance the classifier effectiveness, then the ranking methods

can consequently perform better. Except for this case, on the four harder datasets we

notice a lower improvement of the utility-based methods with respect to the baselines.

The likely reason for this fact is not that the latter four datasets are easier, but that

the average imbalance between positive and negative examples (i.e., the ratio between

the value in the AV C column and the number of samples in the datasets of Table 6.7)

happens to be smaller for these four datasets than for the other eleven datasets; a

smaller imbalance means that the difference in gain between correcting a false positive
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ξ = 0.05 ξ = 0.10 ξ = 0.20

MP-Boost

ea
si

er
Baseline .110 .171 .210

U-Theoretic(s) .097 (-12%) .153 (-10%) .198 (-6%)

Oracle1(s) .097 (-12%) .154 (-10%) .197 (-6%)

Oracle2(s) .244 (+122%) .352 (+106%) .420 (+100%)

h
ar

d
er

Baseline .013 .024 .036

U-Theoretic(s) .014 (+4%) .022 (-6%) .031 (-15%)

Oracle1(s) .013 (+3%) .022 (-6%) .031 (-14%)

Oracle2(s) .103 (+697%) .157 (+566%) .208 (+471%)

SVMs

ea
si

er

Baseline .111 .187 .255

U-Theoretic(s) .116 (+4%) .193 (+3%) .260 (+2%)

Oracle1(s) .160 (+44%) .231 (+23%) .287 (+13%)

Oracle2(s) .280 (+153%) .374 (+100%) .429 (+69%)

h
ar

d
er

Baseline .047 .074 .102

U-Theoretic(s) .048 (+2%) .074 (+0%) .103 (+1%)

Oracle1(s) .049 (+3%) .075 (+2%) .104 (+2%)

Oracle2(s) .135 (+185%) .201 (+172%) .259 (+155%)

Table 6.9: Results of SATC ranking methods on survey datasets, in terms of
ENERµρ (ξ), for ξ ∈ {0.05, 0.10, 0.20}. Improvements listed for the various methods
are relative to the baseline.

and correcting a false negative is smaller, which makes the utility-theoretic method

more similar to the baseline (probabilistic) method.

U-Theoretic(s) rankings produced from MP-Boost classifications, applied on the

easier datasets, have an evident difficulty in improving over the Baseline (especially

for ENERµρ ). This happens also for the Oracle1 methods, which indicates that the

estimation of the contingency table cannot be one of the causes. Looking at the re-

sults on the single datasets (not shown here) it seems that the poor performance of

U-Theoretic(s) is correlated with the performance of the baselines, but in an oppo-

site way: the higher the Baseline error reduction, the lower the U-Theoretic(s) error

reduction. This is then due to a bad combination of the probability and gain values

in the computation of utility; confidence estimates of MP-Boost have an irregular

distribution, which can impact negatively on the utility function, especially when the

datasets are small and the features are limited, as in the case of these datasets.

108



6.5. CONCLUSIONS

Results are different for SVMs, which seems a preferable learner for this task.

U-Theoretic(s) always achieves the best performance, also in micro-averaged error

reduction, even if it is less notable. Both harder and easier datasets present charac-

teristics specific to the survey data (e.g., the average size of the verbatims), which

make the application of learning algorithms, and SATC methods, a compelling pro-

cess. This scenario of application deserves further studies, in order to better combine

supervised learning algorithms with ranking methods for manual validation.

6.5 Conclusions

In this chapter we have worked at building a wider picture of the effectiveness of

our ranking methods for semi-automated text classification. We have studied some

development and extensions of SATC applications, in order to examine the feasibility

of the ranking methods in different scenarios.

We have found that estimating the classification accuracy after a manual valida-

tion is a difficult task, and it is not trivial to certify a specific level of effectiveness. We

can however refine the accuracy estimation through annotations, and acknowledge,

with some degree of confidence, the minimum level of effectiveness of the automatic

classification. In the future we could study and quantify the confidence of these esti-

mations, by working on the data with statistical tools.

The Fβ measure allows the customer to evaluate a classification according to

particular requisites. We have shown that utility-theoretic methods allow to drastically

improve the classification effectiveness when a manual validation is performed. Our

ranking methods identify the documents that, once corrected, better satisfy predefined

requirements, which can be oriented to precision or on recall.

We have defined a new measure for the evaluation of ranking methods, namely

EDNERρ. The results evaluated with this measure show how ranking methods be-

have in comparison with the perfect rankers. We have seen that, when our methods

are close to the oracles, or when the oracles determine a below-average upper bound,

this measure allows interesting analyses to be carried out.

Finally, we have conducted experiments with data from market research surveys,

achieving good results, especially with SVMs.

It is clear that the potential of SATC applications is extensive, and the devel-

opment of new instruments in the SATC framework can be further explored in the

future.
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Conclusions

We have presented a range of methods, all based on utility theory, for ranking the

documents labelled by an automatic classifier. The documents are ranked in order

to maximize the expected improvement in classification accuracy brought about by a

human annotator who validates some of the documents, starting from the top-ranked

ones. We call this task semi-automated text classification. We have also proposed

an evaluation measure for such ranking methods, based on the expectation of the

reduction in error brought about by the human annotator’s validation activity.

In Chapter 3 we have developed a utility-theoretic ranking method for macro-

averaged effectiveness, and a first variant of the SATC evaluation measure (the ex-

pected normalized error reduction).

We have then introduced additional utility-theoretic ranking methods in Chapter

4: a “dynamic” version of the basic, “static” method of Chapter 3, and micro-averaged

versions of both. Experiments have been carried out on standard datasets and stan-

dard learning algorithms for text classification. The results show that the intuition

of using utility theory is correct. In particular, out of four methods evaluated, we

have found that the two methods optimized for macro-averaged effectiveness deliver

drastically improved performance with respect to the baseline, while the two methods

optimized for micro-averaged effectiveness bring about only limited improvements for

F1. We have also found that the two static methods, while seemingly inferior to the

dynamic ones on a purely intuitive basis, perform as well as the dynamic ones at a

fraction of the computational cost.

In Chapter 5 we have studied analogies and differences between the tasks of SATC

and active learning, in order to better understand the importance and the potential of

SATC methods. We have conducted an empirical analysis of the feasibility of SATC

methods in an AL scenario. We have looked at how AL methods behave in a SATC

task. Aside from the evident difference of the two tasks, the results of utility-theoretic

ranking methods, as applied to AL look promising.

In Chapter 6 we have analyzed a pragmatic scenario for the application of our

SATC methods, with the aim of identifying the stopping criterion in the manual an-
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notation process. We have then continued in the evaluation of our SATC methods,

showing the good performance of micro-averaged ranking function for the F2 evalua-

tion function, introducing an additional variant of the SATC evaluation measure, and

conducting an empirical evaluation of SATC methods on datasets specifically devised

for the classification of surveys for market research.

To the best of our knowledge, the work presented in this dissertation is the first in

the literature to address semi-automated text classification as a task in its own, and

to present methods explicitly devised for optimizing it.

7.1 Future directions

Due to the novelty of the task of semi-automated text classification, the potential

of new research studies is vast, as well as the opportunities of implementing ranking

methods in TC applications (e.g., e-discovery).

We could test new learners, especially the ones based on supervised learning algo-

rithms which output probability values as confidence estimates. By employing these

algorithms we could do away with the costly phase of probability calibration, and

directly obtain accurate probabilities of misclassification. Some examples of such al-

gorithms are logistic regression [88] or Naive Bayes [44]. We also remark that our

techniques are obviously not limited to text classification, but can be useful in any

classification context in which class imbalance [30], or cost-sensitivity 1 in general

[18], suggest using a measure (such as Fβ) that caters for these characteristics.

The aspect of cost in classification has been differently tackled in active learning

[55], where the cost is applied to the activity of labelling. In a SATC application the

cost of validation (i.e., the cost of inspecting and eventually correcting a document)

could be integrated in the ranking function; e.g., the cost could be proportional to the

length of the document. In this case, for example, correcting a document of 100 words

which brings about an improvement of 20% in accuracy is suboptimal with respect

to correcting two documents of 15 words each which bring an improvement of 10%

each. Also the evaluation measure should consider this cost. In [24] the author defines

an evaluation measure for information retrieval, based on modelling user behaviour,

in which the cost of certain user choices is summed to the product of the probability

and the benefit of the choices. This approach could be also followed in the definition

of our measures.

The expected reciprocal rank (ERR) measure [13] (see Section 3.6) can be a starting

point for creating a more sophisticated evaluation measure, that models the behaviour

of the user who pays attention to the work made. For example, a user is likely to con-

tinue a validation if she has not performed enough corrections, or she is likely to stop

if the corrections are frequent. An evaluation measure can model this situation, that

1 Cost-sensitive classification extends regular classification by charging different costs for
different types of classification errors.
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is closer to a concrete validation activity, in which the user determines a stopping

criterion based on her estimation of the error reduction. Following this approach of

providing a sort of estimation of the user “persistence”, we could define additional

methods for estimating the probability of the user to stop, independently of the rank-

ing; for example we could compute some statistics on the average number of labels

(and errors) that a document can have.

New ranking methods could be developed, leaving the utility-based strategy, and

embracing standard techniques for document ranking. Learning to rank refers to ma-

chine learning techniques used for the activity of ranking; nowadays it is the standard

approach to ranking in information retrieval [53]. A learning to rank method for SATC

could learn, from the training set, the characteristics of the documents which make

them prone to be misclassified. Besides learning to rank, we could continue to explore

active learning strategies in order to find the correct methods to be adapted to SATC.

We will continue to carry out new experiments, using new datasets and learners,

but also new methods for contingency table smoothing and probability calibration. We

will aim at the statistical robustness of our evaluations, by using more data, with the

final objective of achieving accurate estimations of the error reduction, independently

of the datasets used.
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