
DIPARTIMENTO DI FISICA “ENRICO FERMI”

Corso di Laurea Magistrale in Fisica

Tesi di Laurea

Performance Improvement of the Inertial Sensors
of Advanced Virgo Seismic Isolators

with Digital Techniques

Candidato:

Giovanni Cerretani
Relatori:

Dott. Diego Passuello
Ing. Alberto Gennai

Anno Accademico 2012/2013





Contents

Abstract 1

Introduction 3

I. Gravitational Waves 7

1. A Little of Theory 9
1.1. An Introduction to General Relativity . . . . . . . . . . . . . . . . . 9

1.1.1. The Principle of Equivalence . . . . . . . . . . . . . . . . . . . 9
1.1.2. General Relativity and Einstein’s Field Equations . . . . . . . 10

1.2. Gravitational radiation . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3. The Effects of Gravitational Waves . . . . . . . . . . . . . . . . . . . 13

2. The Search for Gravitational Waves 17
2.1. The First Indirect Observation: PSR B1913+16 . . . . . . . . . . . . 17
2.2. BICEP2 and Inflationary Gravitational Radiation . . . . . . . . . . . 19
2.3. Sources of Gravitational Waves . . . . . . . . . . . . . . . . . . . . . 19

2.3.1. Burst Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2. Periodic Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3. Stochastic Background . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4. The Impracticality of Artificial Sources . . . . . . . . . . . . . 24

2.4. Detectors of Gravitational Waves . . . . . . . . . . . . . . . . . . . . 26
2.4.1. Weber Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2. Interferometers . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i



Contents Contents

II. Accelerometer Control 29

3. An Introduction to Control Theory 31
3.1. Linear Time-Invariant Systems . . . . . . . . . . . . . . . . . . . . . 31
3.2. Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3. Feedback Control Systems . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1. Actual Feedback Controls . . . . . . . . . . . . . . . . . . . . 35
3.3.2. Advantages and Disadvantages . . . . . . . . . . . . . . . . . 36

3.4. Stability of a Linear System . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.1. Nyquist Stability Criterion . . . . . . . . . . . . . . . . . . . . 36

4. Digital Filters 37
4.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2. Linear Shift-Invariant Systems . . . . . . . . . . . . . . . . . . . . . . 38
4.3. Design of Digital Filters from Analog Filters . . . . . . . . . . . . . . 38

5. Seismic Isolation System in Advanced Virgo 41
5.1. Seismic Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2. Superattenuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1. Passive Attenuation . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2. Superattenuator Control System . . . . . . . . . . . . . . . . . 45

5.3. Control System towards Advanced Virgo . . . . . . . . . . . . . . . . 47
5.3.1. Gyroscope and Tilt Control . . . . . . . . . . . . . . . . . . . 47
5.3.2. Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.3. Control Techniques . . . . . . . . . . . . . . . . . . . . . . . . 50

6. Accelerometer Design and Control 55
6.1. A Simple Dynamics Description . . . . . . . . . . . . . . . . . . . . . 56
6.2. Feedback Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3. Virgo/Virgo+ Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4. Advanced Virgo Design . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4.1. Critical Damping . . . . . . . . . . . . . . . . . . . . . . . . . 63

III. Implementation of the Digital Control 69

7. Measurement of Transfer Functions 71
7.1. Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2. Open Loop Transfer Function . . . . . . . . . . . . . . . . . . . . . . 73

7.2.1. LVDT Non-Linearity Effects . . . . . . . . . . . . . . . . . . . 75
7.3. Closed Loop Transfer Function . . . . . . . . . . . . . . . . . . . . . 76

8. Digital Synthesizer and Demodulation 77
8.1. Linear Variable Differential Transformers . . . . . . . . . . . . . . . . 77

8.1.1. Operation of a Transformer . . . . . . . . . . . . . . . . . . . 78

ii



Contents

8.2. Demodulation of the LVDT Signal . . . . . . . . . . . . . . . . . . . 80
8.2.1. Effects of a Quadrature Term . . . . . . . . . . . . . . . . . . 81

8.3. An Algorithm to Demodulate with Phase Locking . . . . . . . . . . . 83
8.3.1. Stability of the System, Simulations and Limits . . . . . . . . 93

9. Accelerometer Noise Budget 95
9.1. Process Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.2. Sensing Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.2.1. Noise on Primary Coil . . . . . . . . . . . . . . . . . . . . . . 96
9.2.2. Noise on Secondary Coils . . . . . . . . . . . . . . . . . . . . . 97

9.3. Acting Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.4. Total Noise Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.4.1. Comparison with Virgo/Virgo+ Analog Control . . . . . . . . 104

10.Conclusions 109

A. Mathematical Tools 111
A.1. Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1.1. Inverse Laplace Transform . . . . . . . . . . . . . . . . . . . . 111
A.1.2. Used Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.2. Z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.2.1. Region of Convergence . . . . . . . . . . . . . . . . . . . . . . 113
A.2.2. Inverse Z-transform . . . . . . . . . . . . . . . . . . . . . . . . 113
A.2.3. Convolution of Sequences . . . . . . . . . . . . . . . . . . . . 113
A.2.4. Used Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.3. Bilinear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 114

B. Technical Tools 117
B.1. Mechanical Impedances . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.2. Thermal Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C. Notes on Seismic Noise 119
C.1. An Analytic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Bibliography 121

Nomenclature 125

iii





Abstract

Gravitational waves, predicted on the basis of the General Relativity, are ripples in
the curvature of space-time that propagate as a wave. The passage of a gravitational
wave induces tiny oscillations in the relative separation between two test masses, that
can be measured. Nevertheless these oscillations are extremely small, so that only a
very sensitive detector is able to measure them. The Advanced Virgo project is a
major upgrade of the 3 km-long interferometric gravitational wave detector Virgo,
with the goal of increasing its sensitivity by about one order of magnitude in the
whole detection band. We expect to have a maximum strain amplitude sensitivity of
4× 10−24 1√

Hz at ∼ 300Hz. In other words this means that it will be able to detect a
relative displacement between mirrors of about 10−20 m, by averaging for one second.
This sensitivity should allow to detect several tens of events per year.
Among the various ongoing updates, an important improvement is represented
by the new electronics used to control the Superattenuators, complex mechanical
structures that isolate optical elements from seismic noise by a factor 1015 at 1Hz.
Using the information of several inertial sensors, a digital control system keeps the
structures as stable as possible. A new board for the Superattenuator control has
been designed, that incorporates analog-to-digital and digital-to-analog converters, a
Field Programmable Gate Array (FPGA) and a Digital Signal Processor (DSP) into
a single unit. This board is enough to handle every single part of the Superattenuator
inertial control. It performs the computation of feedback forces, and is used to
synthesize sine wave to drive the coils of the inertial sensors, as well as to read their
output. Furthermore it interfaces with all the other structures of Virgo.
In this thesis I have studied the horizontal accelerometers, feedback-controlled sensors
used in the Superattenuator inertial control to measure the seismic noise in the
frequency band from DC to 100Hz. Using the computing power of the new electronics
(the new DSP has 8 cores and can compute 8.4GFLOPS per core for double precision
floating point indeed), I have designed a new control system for the accelerometers,
exploiting the properties of a critically damped harmonic oscillator. This system
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allows to improve by about one order of magnitude the sensitivity of these sensors,
with respect to the system used in Virgo, by reducing the root mean square of the
force needed for the control by a factor 2. In this way, the accelerometer sensitivity
can reach about 10−9 m/s2

√
Hz at 1Hz.

In the last part of the thesis I have studied the Linear Variable Differential Transformer
(LVDT), a kind of displacement sensor widely used in Superattenuator control. I
have designed a system to read the output of LVDT using a FPGA. It consists of
a Direct Digital Synthesizer (DDS) that is used both to drive the primary coil of
the LVDT with a sine wave at 50 kHz, and then to demodulate the signal induced
on the secondary coils, whose amplitude is modulated by a signal proportional to
displacement. An algorithm, based on a Phase-Locked Loop (PLL), allows the
detection of the phase shift of the signal induced on the secondary coils, and tunes
the system in order to maximize the signal-to-noise ratio of the measurement of
displacement.
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Introduction

Virgo is a 3 km-long laser Michelson interferometer located in Italy, whose aim is the
direct observation of gravitational wave, in frequency range extended from 10Hz to
10 kHz. It acquired data from 2007 up to 2011. As shown in Fig. 0.1, the sensitivity
of the experiment has changed during the years, up to reach in 2011 the design
specs with the update named Virgo+: the maximum strain amplitude sensitivity
was h = 4× 10−23 1√

Hz at 300Hz. According to the project, in this final configuration
it was supposed to detect a few events per year, but no evidence of gravitational
wave has been found in data analyses so far.

The absence of events is likely due to an overestimation of rates in the initial design,
primarily because of a bad knowledge of some stellar parameters. The realistic rate of
events detectable by Virgo in its initial design, updated to the most recent hypothesis
in stellar field, is

Rre ∼ 0.03 yr−1 (0.1)

mostly due to neutron stars coalescence. [1]

It is clear that in these conditions is very difficult to detect something. Because of it,
a significant upgrade is in progress at Virgo; this will lead to a new generation of
gravitational wave antennas: Advanced Virgo (AdV). Also LIGO, the other main
experiment in the gravitational wave field, is undergoing a similar upgrade.

The aim of Advanced Virgo is to achieve a sensitivity that is an improvement on
the original Virgo by one order of magnitude in sensitivity, which corresponds to an
increase of the detection rate by three orders of magnitude. According to a realistic
estimation of the binary system coalescence rates in the universe (the same used in
equation 0.1), this upgrade would allow to see [1]

Rre ∼ 70 yr−1 (0.2)
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Figure 0.1.: Strain amplitude spectral densities of Virgo during time, compared
with the design sensitivity. Virgo+ represents the last update to the interferometer,
performed in 2010.

The design sensitivity curve of Advanced Virgo is shown in figure Fig. 0.2: the
maximum strain amplitude sensitivity of h = 3.5× 10−24 1√

Hz is expected at ∼ 300Hz.
In other words this means that it will be able to detect a relative displacement between
mirrors of about 10−20 m, by averaging for one second.

Therefore, most of the detector subsystems have to deliver a largely improved
performance to be compatible with the design sensitivity. Of course, the achievement
of this goal requires to take to the limit of perfection every single component of
the interferometer. The power of new laser will be increased by one order of
magnitude, the interferometer optical configuration will undergo the installation of
new components, mirrors will be replaced with new ones twice as heavy as before to
limit the effect of radiation pressure, the vacuum level will be improved by a factor
of about 100, just to name a few.

For this thesis I joined the group responsible of the Superattenuator inertial control,
a complex feedback system conceived to extraordinarily reduce effects of the seismic
noise at the level of the mirrors, by a factor 1015 at 1Hz. Indeed, the vibrations of
the ground limit the sensitivity of an Earth-based gravitational wave detector at
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Figure 0.2.: Advanced Virgo design sensitivity with noise budget [2]

low frequencies, as it’s shown in Fig. 0.2, and must be properly treated. The main
effort of the group for Advanced Virgo is to design a new electronic system, that
incorporates analog-to-digital and digital-to-analog converters and a Digital Signal
Processor (DSP) into a single unit. This board is enough to handle every single part
of the Superattenuator inertial control. It performs the computation of feedback
forces to keep the whole system as stable as possible, and is used to synthesize
sine wave to drive the coils of the inertial sensors, as well as to read their output.
Furthermore it interfaces with all the other structures of Virgo. This is possible
due to the huge computing power of modern DSPs, that can natively handle double
precision floating point, performing sums and multiplications very fast. They run
a software called Inertial Damping, almost entirely written in assembly language
to optimize as much as possible the application of digital filters and to make the
duration of calculations predictable. This is mandatory, because unpredictable delays
are not tolerated in such a delicate real time application. A first prototype of the
new board arrived in Virgo site at the end of 2013 and, of course, a lot of work has to
be done, both in hardware and software, to be ready for the beginning of Advanced
Virgo operations expected by the end of 2015.

The production of the new board also entails the reduction of the number of boards
used up to now. In addition to those that will be merged together, in each crate we
will remove a commercial waveform generator, a board used to read displacement
sensors and another one used for the analog control of the accelerometer: the new
DSP is fast enough to take over also the management of these operations.
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The Part I of this thesis contains an introduction on the search for gravitational
waves, from the theoretical background to the possible sources.
In the Part II, I study the horizontal accelerometers, feedback-controlled sensors used
in the Superattenuator inertial control to measure the seismic noise in the frequency
band from DC to 100Hz. I analyze their operating principles and the typical signal
that they might measure. Then, exploiting the performances of the new board, I
design a new control system for the accelerometers, exploiting the properties of a
critically damped harmonic oscillator
The implementation of this system is presented in the Part III of the thesis, together
with its noise budget: we see how this new control system increase the sensitivity of
the experiment of almost one order of magnitude. It contains also the description
of an algorithm, implemented in the new electronics, that allows to maximize the
signal-to-noise ratio of the measurement of displacement using a Linear Variable
Differential Transformer (LVDT), a displacement sensor widely used in Virgo.
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Part I.

Gravitational Waves
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1
A Little of Theory

1.1. An Introduction to General Relativity

The gravitational force dominates the universe on the large scale, binding matter
into stars, stars into galaxies, and galaxies into cluster of galaxies. The classic theory
of gravitation is based on Newton’s law of gravity which states that who masses m1
and m2 separated by a distance r feel a mutual gravitational attraction

F = −Gm1m2

r2 (1.1)

where G is a constant of proportionality called “universal gravitational constant”;
its value is G = 6.67384(80) × 10−11 m3 kg−1 s−2. [3] This equation describes the
motion of the planets around the Sun with great accuracy. However, there are several
features that cannot be explained by the Newton’s law. The most significant one is
a tiny component in the precession of the perihelion of the orbit of Mercury. The
main problem is that equation 1.1 is time independent, which would mean that the
gravitational force could act instantaneously at all distances. Such behavior is in
flat contradiction to the “Special Theory of Relativity” (SR), which requires that no
signal should travel faster than the speed of light c. [4]
The problem is shared with electromagnetism and Coulomb’s law: in this case it was
solved with Maxwell’s equations, witch are consistent with SR.
In 1916 Albert Einstein published his geometric theory of gravitation, called “General
Theory of Relativity” or “General Relativity” (GR), that is a description of gravitation
consistent with special relativity.

1.1.1. The Principle of Equivalence

General relativity is based on the Principle of Equivalence. This establishes the
equality of gravitational and inertial mass, demonstrated at first by Galileo and

9



Chapter 1 A Little of Theory

Newton. Einstein interpreted this result to postulate the “weak equivalence principle”:
the motion of a neutral test body released at a given point in space-time is independent
of its composition. [4]
Furthermore, Einstein reflected that, as a consequence, no external static homoge-
neous gravitational field could be detected in a freely falling elevator, because the
observers, their test bodies, and the elevator itself would respond to the field with
the same acceleration. Although inertial forces do not exactly cancel gravitational
forces for freely falling systems in an inhomogeneous or time-dependent gravitational
field, we can still expect an approximate cancellation if we restrict our attention to
such a small region of space and time that the field changes very little over the region.
Therefore, the “strong equivalence principle” was postulated by Einstein and it states
that at every space-time point in an arbitrary gravitational field is possible to choose
a “locally inertial coordinate system” such that, within a sufficiently small region
of the point in question, the laws of nature take the same form as in unaccelerated
Cartesian coordinate systems in the absence of gravitation. [5]

1.1.2. General Relativity and Einstein’s Field Equations

According to General relativity, the universe consists of an active space-time contin-
uum that is distorted by matter and energy passing through it.
A first effect predicted by general relativity was detected by Arthur Stanley Eddington
in 1919. The theory suggest that starlight which passes the limb of the Sun on its
way to the Earth should be deflected by 1.750′′. Eddington organized an expedition
to the Island of Príncipe (São Tomé and Príncipe) which photographed the star field
around the Sun during a solar eclipse occurred on May 29. When comparison was
made with night photographs of the same star field, the predicted general relativistic
deflection was confirmed. [4]
Since that day the predictions of general relativity have been confirmed in all
observations and experiments up to now. Among the other results, in the limit of
low velocities and small gravitational effects, GR reduces to Newton’s law with small
corrections: in the case of Mercury, these corrections account precisely for the small
residual advance of perihelion.
GR allows to describe the curvature of space-time, as directly related to the energy
and momentum of whatever matter and radiation are present. The relation is
specified by the Einstein field equations, a set of 10 partial differential equations:

Rµν −
1
2gµνR− λgµν = 8πGTµν (1.2)

gµν is the metric tensor, that contains information about the intensity of the grav-
itational field. Rµν represent the curvature of the space-time and contains second
derivatives of gµν , while R = gµνRµν is called scalar curvature. λ was introduced
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1.2 Gravitational radiation

by Einstein and is called the cosmological constant: for some reasons it has to
be very small and, four our purposes, we can assume λ = 0. Finally, Tµν is the
energy–momentum tensor and contains the distribution of energy and momentum in
the space-time.

1.2. Gravitational radiation

There ares many similarities between gravitation and electromagnetism. It should
therefore come as no surprise that Einstein’s equations, like Maxwell equations, have
radiative solutions.
We know that electromagnetic propagation is described by d’Alembert equations
(c = 1)

�Aµ = Jµ/ε0 (1.3)

deriving from Maxwell’s equation, where Aµ = (φ,A) describes the electromagnetic
potentials and Jµ = (ρ, j) describes the source of the field. [6] A particular solution
to this equation is represented by the retarded potentials:

Aµ (x, t) = 1
4πε0

ˆ
d3x′

Jµ (x′, t− |x′ − x|)
|x′ − x|

(1.4)

They show that the state of the field in a certain point of the space-time depends
on that of the source at a previous time t− |x′ − x|: the information propagates at
speed c into the electromagnetic waves.
The derivation of gravitational radiation from Einstein’s field equations 1.2 is more
complicated than that of electromagnetic radiation from Maxwell’s equations, due
to the nonlinearity of the first. Maxwell’s equations are linear because the electro-
magnetic field does not itself carry charge; on the other hand, we may say that any
gravitational wave is itself a distribution of energy and momentum that contributes
to the gravitational field of the wave: it is impossible to separate the contributions
of gravitational waves to the curvature from the contributions of the Earth, the Sun,
the galaxy, or anything else. Thus, there is no way to find general radiative solutions
of the exact Einstein’s equations.
Here we present only the weak-field radiative solutions, which describe waves carrying
not enough energy to affect their own propagation.
If we suppose to be far from the source of the fields, the space-time will be nearly
flat and the metric will be close to the Minkowski metric ηµν :

gµν = ηµν + hµν (1.5)

with |hµν | � 1. Now Einstein field equations 1.2 can be written to first order in h,

R(1)
µν = −8πGSµν (1.6)

11



Chapter 1 A Little of Theory

with

Rµν ' R(1)
µν ≡

1
2

(
�hµν −

∂2

∂xλ∂xµ
hλν −

∂2

∂xλ∂xν
hλµ + ∂2

∂xµ∂xν
hλλ

)

and

Sµν ≡ Tµν −
1
2ηµνT

λ
λ

We can also perform a further simplification to this equations and, in some steps,
write equations 1.6 as

�hµν = −16πGSµν (1.7)

These equations are actually very similar to 1.3 and naturally we can write retarded
solutions

hµν (x, t) = −4G
ˆ
d3x′

Sµν (x′, t− |x′ − x|)
|x′ − x|

(1.8)

These solutions describe the physical phenomenon of the gravitational waves produced
by the source Sµν . They are transverse waves traveling with the same finite speed
of propagation c of the electromagnetic waves and the same intensity decrease as
function of distance from the source.
Far from the source, as |x′ − x| → ∞, the retarded solution approaches a plane
wave, and the equations 1.7 are reduced to the homogeneous ones, �hµν = 0. Here,
a solution is

hµν = eµν exp
(
ikλx

λ
)

+ e∗µν exp
(
−ikλxλ

)
(1.9)

with

kµk
µ = 0 (1.10)

and

kµe
µ
ν = 1

2kνe
µ
µ (1.11)

eµν = eνµ is a 4x4 symmetric tensor and is called the polarization tensor. In general,
a 4x4 matrix have 10 independent components; the gauge invariance 1.11 reduce
them to only 6, but it can be shown that of these six there are only two physically
significant degrees of freedom, i.e. only two independent physical polarizations. [5]
The commonly used couple of independent polarization is

e+
µν =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 and e×µν =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 (1.12)
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1.3 The Effects of Gravitational Waves

and it forms a basis for the polarization space. The two elements are pronounced
respectively plus and cross polarizations. We can obtain any other polarization (for
example the circular polarizations) by a suitable linear superposition of these two.

Reducing wave described in equation 1.9 to a wave traveling along the z-axis, i.e.
k = k · ẑ, we get

hµν = eµν cos
(
kλx

λ
)

= eµν cos (ωt− kz) (1.13)

Using the polarization in 1.12, the general form of 1.13 is made up of a linear
combination of the two orthogonal states

h+
µν = h+e+

µν cos (ωt− kz) (1.14)

and

h×µν = h×e×µν cos (ωt− kz + ϕ) (1.15)

where ϕ is an arbitrary phase angle, and h+ and h× are the amplitudes of the
components. A graphical explanation of these two polarization is shown in Fig. 1.1.

1.3. The Effects of Gravitational Waves

To understand what happens to the space-time when a gravitational waves passes
through it, it can be useful to consider tho nearby bodies located in the same xy-plane
at A = (ξ, 0) and B = (0, 0). If we suppose the weak field condition 1.5 to be true,
their proper separation is

ds = ξ′ ≈
√
|g11(t, 0)|ξ ≈

[
1 + h11(t, 0)

2

]
ξ

Applying the wave in equation 1.14, the proper space-time interval between A and
B undergoes a strain of amplitude

ε+x = ξ′ − ξ
ξ

= h11(0, 0)
2 = h+

2 (1.16)

Thus h+

2 is the amplitude of the differential change in lengths between nearby points
along the x-axis. A similar reasoning suggests that the same wave would produce a
tidal effect along y-axis of

ε+y = −h
+

2 (1.17)
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If the distance between two point is small (with respect to the wavelength of the
gravitational radiation) the strain amplitude can be obtained as follows. Suppose to
have A =

(
− l0

2 , 0
)
and B =

(
l0
2 , 0

)
. Then their proper separation is

l(t) =
ˆ + l0

2

− l0
2

dx
√
|g11(t− x, 0)| =

ˆ + l0
2

− l0
2

dx

[
1 + h11(t− x, 0)

2

]
(1.18)

Using equation 1.14 this gives

l(t) = l0 + h+

2

ˆ + l0
2

− l0
2

dx cos (ωt− kx) (1.19)

Then the change in path length is

∆l(t) ≡ l(t)− l0 = h+

2k

[
sin

(
ωt+ kl0

2

)
− sin

(
ωt− kl0

2

)]

= h+

k
cos (ωt) sin

(
kl0
2

)
= ∆L cos (ωt) (1.20)

where ∆L ≡ λh+

2π sin
(
πl0
λ

)
is the amplitude of the oscillations. Therefore the strain

amplitude is

ε+x = ∆L
l0

= λh+

2πl0
sin

(
πl0
λ

)

that is consistent with the nearby bodies explanation, tending to 1.16 when l0 � λ.
We conclude that, according to equations 1.16, 1.17 and 1.20, under the effect of
a e+

µν polarized gravitational wave, the proper distance between two nearby bodies
varies in the plane perpendicular to the wave direction with

x(t) = x0

(
1 + h+

2 cosωt
)

(1.21)

y(t) = y0

(
1− h+

2 cosωt
)

(1.22)
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h+
µν = h+e+

µν cos (ωt) h×µν = h×e×µν cos (ωt)

ωt = 0

ωt = π
2

ωt = π

ωt = 3π
2

ωt = 2π

Figure 1.1.: The effect of gravitational waves in two different polarization (e+
µν and

e×µν) on a circle of test masses followed over one cycle. The wave is traveling along
the z-axis, the paper is the xy-plane at z = 0, and the observer is looking towards
the source.
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2
The Search for Gravitational Waves

Now that we understand the effects of gravitational waves on the space-time, we
need to look for the sources and to estimate the typical amplitude of their radiation
when it reach the Earth.

In principle, gravitational waves can experience almost all the familiar peculiarities
of propagation typical of electromagnetic waves. Nevertheless nobody has so far
detected any direct evidence of gravitational waves.

A direct detection is defined as the measurement of the perturbation h (t) as
function of the time, while the term indirect detection refers to the observation of
phenomena that suggest the presence of a gravitational radiation, without making
possible any measurement of its waveform.

Even if, as of 2014, no direct detection of gravitational waves has yet been claimed,
there are strong indications that such radiation exists, because at least a pair of
sources may already has been detected.

2.1. The First Indirect Observation: PSR B1913+16

The most famous indirect detection dates back to 1974: it is the binary system
made by pulsar PSR B1913+16 and another neutron star, orbiting around their
center of mass. The orbit period is Pb = 7.75 h and the projected orbital velocity
is v ∼ c/1000: this suggest that there can be some measurable relativistic effects.
Among the best known results are measurement of the general relativistic advance
of periastron at a rate ∼ 35× 103 times that of Mercury in the solar system and,
above all, the effect of gravitational radiation damping, causing a measurable rate of
orbital decay. [7]

Peters and Matthews [8] showed that, according to general relativity, the resulting
rate of change in orbital period, measured in the orbiting system reference frame,
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Chapter 2 The Search for Gravitational Waves

Figure 2.1.: Orbital decay caused by the loss of energy by gravitational radiation
of PSR B1913+16 system. The parabola depicts the expected shift of periastron
time relative to an unchanging orbit, according to general relativity. Data points
represent Weisberg’s measurements, with error bars mostly too small to see. [7]

should be proportional to

ṖGR
b ∝ (Pb)−

5
3

obtaining for PSR B1913+16 a current value of
ṖGR
b = (−2.402531± 0.000014)× 10−12 s/s

This value is being measured since the discovery of these pulsars, as shown in Fig. 2.1.
To properly compare the values, we have to take into account a small additional
contribution ∆Ṗb = (−0.027 ± 0.005) × 10−12 s/s to the observed Ṗb due to the
relative acceleration of that frame with respect to the solar system barycenter. The
most recent measurement of Ṗb was made by Weisberg in 2010 [7] and the agreement
with the predicted value is extraordinary:

Ṗb −∆Ṗb
ṖGR
b

= 0.997± 0.002 (2.1)
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2.2 BICEP2 and Inflationary Gravitational Radiation

This result provides conclusive evidence for the existence of gravitational radiation,
as predicted by Einstein’s theory.

2.2. BICEP2 and Inflationary Gravitational Radiation

The experiment BICEP2 is a Cosmic Microwave Background (CMB) polarimeter
specifically designed to search for the signal of inflationary gravitational waves in the
B-mode power spectrum around ` ∼ 80. Theoretically, inflation predicts that the
quantization of the gravitational field coupled to exponential expansion produces a
primordial background of stochastic gravitational waves with a characteristic spectral
shape. These gravitational waves would have imprinted a unique signature upon
the CMB. Gravitational waves induce local quadrupole anisotropies in the radiation
field within the last-scattering surface, inducing polarization in the scattered light.
This polarization pattern would include a “curl”, or B-mode, component at degree
angular scales that cannot be generated primordially by density perturbations. [9]

In March 2014, BICEP2 collaboration claimed the measurement of a large excess
of signal in the power spectrum, compatible (with significance > 5σ from the null
hypothesis) with the presence of gravitational radiation. Of course, this result is
very recent and still needs to be confirmed. In case, it would represent the second,
independent evidence of the existence of gravitational waves.

2.3. Sources of Gravitational Waves

According to general relativity, gravitational waves are radiated by objects whose
motion involves acceleration, provided that the motion is not perfectly spherically
symmetric (like an expanding or contracting sphere) or cylindrically symmetric (like
a spinning disk or sphere). More technically, in almost all situations the second time
derivative of the quadrupole moment of an isolated system’s stress-energy tensor
must be nonzero in order for it to emit gravitational radiation. [10] This is analogous
to the changing dipole moment of charge, or current, necessary for electromagnetic
radiation.

Einstein’s theory predicts that gravitational radiation is produced in extremely
small quantities in ordinary atomic processes. The probability that a transition
between two atomic states will proceed by emission of gravitational, rather than
electromagnetic, radiation is of order GE/e2, where E is the energy released and e
is the elementary charge. For E = 1 eV this probability is about 10−54. This also
implies that gravitational waves are so weakly absorbed by matter that absorption
has been important only near the Plank era of the big bang (i.e. t� 10−43 s), and
the same thing happens for their scattering and dispersion.
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Chapter 2 The Search for Gravitational Waves

Figure 2.2.: Example of an inspiral gravitational wave from the coalescence of a
binary system. [11]

The most energetic gravitational waves likely to be observed on Earth are those
produced in near macroscopic events, i.e. stellar collapse in our galaxy. It can be
useful to divide the waves (and the relative sources) in three classes:
• bursts, which last for only few cycles, or at most for times short, compared to

a typical observing run;
• periodic waves, which are superposition of sinusoids with frequencies that are

more or less constant over time, compared to an observing run;
• stochastic waves, which fluctuate stochastically and last for a time long com-

pared to an observing run.
We briefly analyze some candidate sources of detectable gravitational radiation
with some prediction of the properties of their waves. We will not explain the full
details of achieved results, because often a simple treatment of the problem is not
enough. Depending on the strength of the source, one can resort several degree
of approximation. However it is important to remark that the strongest emitters,
that are obviously the most interesting ones, are likely to violate our weak field
assumptions. When there is no small parameter in which one can expand, the only
way to compute the full details of the wave field emitted by them is by numerical
techniques.

2.3.1. Burst Sources

Coalescence of Compact Binaries

General relativity predicts that a point mass m fixed in a rotating coordinate system
at (r = r0, θ = 0, φ = 0) with angular velocity Ω, losses energy through the emission
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2.3 Sources of Gravitational Waves

of gravitational radiation at twice the frequency of the orbit, with power

P (2Ω) = 32GΩ6m2r4
0

5c5 (2.2)

A direct calculation of the power emitted by a planet orbiting around its star suggest
that it is very weak: for example, Jupiter’s loss of energy through gravitational
radiation, because of its orbit around the Sun, is ∼ 5.3 kW. [5]
However, this value can be significant if we study the behavior of binary system
of massive stars orbiting around their center of mass, close enough to be driven
into coalescence by gravitational radiation reaction, in a time less than the age of
universe. These systems are usually two neutron stars, two black holes, or a neutron
star and a black hole whose orbits have degraded to the point that the two masses
are about to coalesce. In this phase the system generates spiral gravitational waves.
The binary star system PSR B1913+16 is an example of such a system.
As the two masses rotate around each other, their orbital distances decrease and
their speeds increase: this causes the frequency of the gravitational waves they emit
to increase up to f ' 1 kHz (in the most common case of two neutron stars) until
the two objects definitively merge into one. An example of the expected signal from
an event of this kind is shown in Fig. 2.2.
The characteristic amplitude of the burst waves at a distance r from the source can
be obtained with this relation:

hc ∼ 10−22
(
M

M�

) 1
3
(

µ

M�

) 1
2
(

100Hz
fc

) 1
6
(

100MPc
r

)
(2.3)

where M and µ are respectively the total mass of the system and the reduced mass
(expressed in solar masses), and fc is a characteristic frequency of the waves. [10]
At present, there are significant uncertainties in the astrophysical rate predictions for
compact binary coalescences. A realistic estimation of double neutron star system
coalescence rate is ∼ 100Myr−1 for a galaxy similar to Milky Way that corresponds
to volumetric rate of ∼ 1Mpc−3 Myr−1. [1] For example, the aforementioned PSR
B1913+16 binary system is going to coalesce in ∼ 300Myr.

Supernovae

In general, a type II supernova will emit gravitational radiation, except in the unlikely
event that the explosion is perfectly symmetric. There have been several attempts
to simulate the waveform of such an event, and the expected signature is now pretty
well known. An example is given in Fig. 2.3: according to this model, the maximum
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Figure 2.3.: Gravitational wave polarizations h+ and h× (rescaled by distance D)
obtained in a simulation (Ott et al., 2013 [12]) as a function of post-bounce time
seen by and observer on the pole (θ = 0, φ = 0; top panel) and on the equator
(θ = π/2, φ = 0; bottom panel)

amplitude of waves is expected to be h ≈ 20 cm/D, that correspond to h ≈ 10−22 at
a distance D = 10 kpc.
A more generic formula to obtain the order of magnitude of h at a distance r from
the source is

hc ∼ 2.7× 10−20
(
EGW
M�

) 1
2
(

1 kHz
fc

) 1
2
(

10Mpc
r

)
(2.4)

where EGW is the energy emitted through gravitational radiation by the supernova,
expressed in solar masses, and 200Hz . fc . 10 kHz is the characteristic frequency
of the waves in these events. [10] Its value depends strongly on the asymmetry of the
explosion. Recent simulations indicate an expected value of EGW ∼ 10−8M�. [13]

2.3.2. Periodic Sources

Pulsars

Pulsars are highly magnetized, rotating neutron stars. Possible asymmetries in mass
distribution lead to the emission of gravitational radiation. The larger are those
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2.3 Sources of Gravitational Waves

asymmetries and the more rapidly they rotate, the stronger will be the radiation.
Due to their high stability, pulsars are hypothesized to emit continuous, narrow-band,
quasi-sinusoidal gravitational waves.
These sources are expected to produce comparatively weak gravitational waves since
they evolve over longer periods of time, and are usually less catastrophic than inspiral
or burst sources. The characteristic amplitude of these waves, measured at a distance
r from the pulsar rotating around z-axis, can be obtained as

hc ∼ 8× 10−20ε

(
Izz

1038 kgm2

)(
f

1 kHz

)2 (10 kpc
r

)
(2.5)

with fiducial equatorial gravitational ellipticity ε defined as

ε = Qxx −Qyy

Izz

where Qxx and Qyy are quadrupole moments with respect to x and y axes, and Izz is
the moment of inertia around z-axis. [10]
Equation 2.5 leads to expected amplitudes h ∼ 10−24÷25 for the most interesting
known pulsars, in the limit case in which they loss energy only through the emission
of gravitational radiation. Despite the weakness of the waves, in principle the signal
can be seen averaging it over many periods. Actually known pulsars usually have
precisely determined frequency evolutions and sky-positions making them ideal
targets for gravitational wave detectors. If a pulsar is monitored regularly through
electromagnetic observations it can yield a coherent phase model, which allows
gravitational wave data to be coherently integrated over months or years. [14]

Ordinary Binary Stars

Ordinary binary star systems are the most reliably understood sources of gravitational
waves. From the measured mass and orbital parameters of a binary and its estimate
distance, one can compute with confidence the details of its waves.
Unfortunately, ordinary binaries have orbital periods usually longer than an hour, that
correspond to f ∼ 1mHz. Because of seismic noise, detectors in earth laboratories
cannot hope to see waves at such low frequencies.
The characteristic amplitude of such waves measured at a distance r from the source
is

hc ∼ 10−20
(
M

M�

) 2
3
(

µ

M�

)(
fc

10mHz

) 2
3 (100 pc

r

)
(2.6)

where fc is twice the frequency of the orbit. [10]
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2.3.3. Stochastic Background

The discovery of the CMB in 1964 suggests that there can be a gravitational analogous.
This type of background is called Stochastic Gravitational-Wave Background (SGWB)
and could be the result of processes that took place very shortly after the Big Bang,
but since we know very little about the state of the universe at that time, it is hard
to make predictions.
While the evolution of the universe following the Big Bang Nucleosynthesis (BBN) is
well understood, there is little observational data probing the evolution prior to BBN,
when the universe was less than one minute old. The gravitational wave spectrum
should carry information about exactly this epoch of the universe evolution.
Nevertheless, such a background might also arise from processes that take place fairly
recently (within the past several billion years) and this more recent contribution
might overwhelm the parts of the background which contain information about the
state of the early universe. [15]
The spectral properties of the stochastic background are characterized by the density
parameter ΩGW (ν), a dimensionless value defined as

ΩGW (ν) = 1
ρcr

dρGW
d ln ν

where ρcr is the critical energy-density required to just close the universe and dρGW
is the energy density of gravitational radiation contained in frequency range ν to
ν+dν. [16] This parameter is one of the contribute to the sum in Friedmann equation
(assuming the universe to be flat)∑

i

Ωi + ΩΛ = 1 (2.7)

where Ωi are the density parameters for the various matter species and ΩΛ for the
cosmological constant.
It is hard to make a theoretical estimation of this density parameter, but an upper
limit can be obtained from direct and indirect measurements. If we assume ΩGW (ν) to
be constant, i.e. a frequency independent gravitational wave spectrum, experimental
results of LIGO and Virgo give an upper limit (95% CL) of its value: ΩGW <
6.9× 10−6. Other upper limits achievable with several theoretical models and some
experiments are presented in Fig. 2.4.
The network of advanced detectors actually under development will be able to probe
the isotropic SGWB at the level of ΩGW ∼ 10−9 or smaller. [17]

2.3.4. The Impracticality of Artificial Sources

No artificial generator of gravitational waves seems practicable. For example, consider
a dumbbell consisting of two masses of 103 kg each, at either ends of a 2m-long rod,

24



2.3 Sources of Gravitational Waves

10−1810−1610−1410−1210−1010−8 10−6 10−4 10−2 100 102 104 106 108 1010

10−14

10−12

10−10

10−8

10−6

10−4

CMB Large
Angle

Pulsar
Limit

LIGO S4

AdvLIGO

BBNCMB & Matter
Spectra

Planck

Inflation

LISA
Pre−Big−Bang

Cosmic Strings

LIGO S5

Frequency (Hz)

Ω
G

W

Figure 2.4.: Comparison of different SGWB density parameter upper limits, accord-
ing measurements and models. Note that the BBN and CMB bounds apply only
to backgrounds generated prior to the BBN and the CMB decoupling respectively,
while the LIGO bound also probes the SGWB produced later (for example in
“cosmic strings” model). [17]

that spins about an axis orthogonal to the connecting rod passing through the center
of mass, at frequency f = 10 kHz. Neglecting for simplicity the contribution of the
connecting rod (that would be of course subjected to a huge tension), the amplitude
of the gravitational waves generated by this device will be

h = 2.6× 10−33
(1m
r

)

Now, the “wave zone” approximation is valid for r > 30 km, where h ∼ 10−37, 15
magnitudes lower than any astronomical source.

In the 1980s, gravitational wave emissions from the particle beams in high energy
accelerators, as well as from nuclear explosion, have also been evaluated, and found
wanting. [18] It is the reason that experimental study of gravitational waves is directed
toward astronomical sources, that generate, by far, the strongest gravitational waves
we are likely to encounter. [19]
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2.4. Detectors of Gravitational Waves

A gravitational-wave detector is any device designed to measure gravitational waves.
Since the 1960s gravitational-wave detectors have been built and constantly improved.
Some types of detectors, both proposed and realized, are here grouped according to
their bandwidth:
• High frequency detectors: Weber bar, interferometer, super-fluid interferometers

and superconducting circuits.
• Low frequency detectors: Doppler tracking of spacecraft, interferometer in

space, Earth’s normal modes, Sun’s normal modes, vibration of blocks of the
Earth’s crust, skyhook.
• Very low frequency detectors: pulsar timing, timing of orbital motions, anisotropies

in the temperature of the cosmic microwave radiation (indirect detection).
Note that, due to the stochastic movements of the ground, only high-frequency
detectors can be earth-based. The most common types of detectors are resonant
bars (aka Weber bars) and interferometers.

2.4.1. Weber Bars

Resonant bars have represented the first type of gravitational-wave detector. A
large, solid bar of metal isolated from outside vibrations, designed to detect the
expected wave motion is called a Weber bar. Strains in space due to an incident
gravitational wave excite the resonant frequency of the bar, and these vibrations
could be amplified to detectable levels. When a burst of gravitational waves hits
and excites the oscillator, this will vibrate for a time span much longer than the
duration of the burst (typically 1ms), thus allowing the extraction of the signal from
the detector noise. [20] Their sensitivity is limited to a very narrow bandwidth, so
that Weber bars are not sensitive enough to detect anything but extremely powerful
gravitational waves.
For example, AURIGA (Antenna Ultracriogenica Risonante per l’Indagine Gravita-
zionale Astronomica) is an ultracryogenic resonant bar gravitational wave detector
in Italy. It is located at the Laboratori Nazionali di Legnaro of the INFN. Nowadays,
the other working experiments are MiniGrail (Netherlands) and Mario Schenberg
(Brazil).

2.4.2. Interferometers

Interferometric detectors are the most interesting devices ever conceived to detect
gravitational waves. Indeed we can determine the distance between two test masses
(nothing more than mirrors) by measuring the round trip travel time of light beams
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2.4 Detectors of Gravitational Waves

sent over large distances, and thus it is natural to aim at Michelson interferometer.
The key difference with the 1887 interferometer is that here we need not connect
the mirrors in a single rigid structure, but each mass is left in free fall, so that it
responds in a indepentend way to gravitational effects.

We can calculate the time that it takes to that ray to travel in each arm of our
interferometer, when it is crossed by a gravitational wave. In equations 1.21 and
1.22 We have already seen the effect on the distance between two points; in a
Michelson interferometer the arms are orthogonal and their lengths L equal each
other (L = x0 = y0), so that the relative variation

∆L (t) = 2 [x (t)− y (t)] = 2L · h+ cosωt
= 2L · h (t) (2.8)

where the additional factor 2 takes into account for the round trip in the interferometer,
and h (t) = h+ cosωt. Remembering that for light ds2 = 0, this correspond to a
difference in time of arrival

∆τ (t) = ∆L (t)
c

= 2L
c
h (t)

= τ0 · h (t) (2.9)

where τ0 is the travel time in absence of gravitational radiation. Corrections to
this due to the effect of the gravitational wave itself are negligible. [19] We can also
express 2.9 as a phase shift:

∆ϕ (t) = 2πc
λL

τ0 · h (t) (2.10)

where λL is the wavelength of the light used in the interferometer. It is clear that the
effect is directly proportional to h: this immediately says that the longer the optical
path in the apparatus, the larger will be the phase shift due to the gravitational
wave.

This scaling law doesn’t hold for arbitrarily long arms because, on the other hand, this
reduces the bandwidth of our experiment. Indeed, for λGW ∼ L the approximation
done to get equations 1.21 and 1.22 is no longer valid. Using the correct physical
description in equation 1.20, we can get a graph of the sensitivity of a Michelson
interferometer, expressed in ∆ϕ per h unit as function of fGW . It is shown in Fig. 2.5,
for several values of L: looking at the behavior at high frequencies, given a certain
fGW there is a L beyond which there are no further gains.

Of course, the feasibility of a earth-based interferometer with L > 5km is almost
null, at least for the cost. Luckily an optical arrangement could come to the aid of
us: implementing two Fabry-Pérot cavities in both Michelson interferometer arms,
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we achieve the same performance of a longer interferometer. In brief, photons are
trapped in the cavities for an average time

τs = 2L
c

F
π

(2.11)

or, in other words, travel F/π times through the cavity before to come out. The
quantity F is a quality index of the cavity, and it is called finesse. From Fig. 2.5, it
is shown as the sensitivity of a 3km long interferometer with F = 150 Fabry-Pérot
cavities is roughly equivalent to a 400 km standard interferometer.
So far there have been at least 4 working interferometric detectors: LIGO (USA,
3 detectors in 2 sites), VIRGO (Italy), GEO 600 (Germany), and TAMA 300
(Japan). An interesting experiment is eLISA: it will be the first dedicated space-based
gravitational wave detector, using laser interferometry to monitor the fluctuations in
the relative distances between three spacecrafts, arranged in an equilateral triangle
with 109 m arms (almost the diameter of the Sun).
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Accelerometer Control

29





3
An Introduction to Control Theory

Feedback is a central feature of life. The process of feedback governs how we grow,
respond to stress and challenge, and regulate factors such as body temperature,
blood pressure and cholesterol level. The mechanisms operate at every level, from the
interaction of proteins in cells to the interaction of organisms in complex ecologies.
Nowadays feedback controls are essential in any field of science and engineering. Also
Virgo contains several control systems. The highest level is represented by a closed
loop control system that is used both during the lock acquisition of the interferometer
and the steady state (science mode) operations. It must be capable of the maintaining
the interferometer controlled at the design sensitivity with good stability and duty
cycle. It controls the position of the optical elements of the interferometer, which in
turn are controlled by other local closed loop control systems. Also further levels of
control exist: for example, the accelerometers used in Virgo seismic isolation system
use a feedback control to work to the best of their abilities.
In this chapter we introduce some basic concepts of control theory applied to
continuous-time systems. Later, these basis will be extended to discrete-time systems.

3.1. Linear Time-Invariant Systems

It is possible to distinguish two main classes of systems:
• linear systems
• nonlinear systems

A system is called linear if the superposition principle applies. The superposition
principle states that the net response at a given place and time, caused by two or
more stimuli, is the sum of the responses which would have been caused by each
stimulus individually. Hence, for a linear system, the response to several inputs
can be calculated by treating one input at a time and adding the results. It is this
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Chapter 3 An Introduction to Control Theory

principle that allows one to build up complicated solutions to the linear differential
equation from simple solutions. In an experimental investigation of a dynamic system,
if cause and effect are proportional, thus implying that the superposition principle
holds, then the system can be considered linear.

A differential equation is linear if its coefficients are constants or functions only of the
independent variable. Dynamic systems that are composed of linear time-invariant
lumped-parameter components may be described by linear time-invariant differential
equations - i.e. constant-coefficient differential equations. Such systems are called
Linear Time-Invariant systems (or LTI systems). On the other hand, systems that
are represented by differential equations whose coefficients are functions of time are
called linear time-variant systems. [22]

Eventually, systems that does not satisfy the superposition principle, which means
that the output is not directly proportional to the input, are called nonlinear systems.

3.2. Transfer Functions

In control theory, functions called transfer functions are commonly used to charac-
terize the input-output relationships of components or systems that can be described
by linear, time-invariant, differential equations. They are defined as the ratio of the
Laplace transform of the output (response function) to the Laplace transform of the
input (driving function) under the assumption that all initial conditions are zero.
Laplace transform L [·] and its inverse transform L−1 [·] are defined in Appendix A,
together with some properties.

Consider the linear time-invariant system defined by the following differential equation:

an
(n)
y + an−1

(n−1)
y + . . .+ a1ẏ + a0y = bm

(m)
x + bm−1

(m−1)
x + . . .+ b1ẋ+ b0x (3.1)

where y = y (t) is the output of the system and x = x (t) is the input. The transfer
function G (s) of this system is

G (s) = Y (s)
X (s) = bms

m + bm−1s
m−1 + . . .+ b1s+ b0

ansn + an−1sn−1 + . . .+ a1s+ a0
=

m∑
i=0
bis

i

n∑
j=0
ajsj

(3.2)

where X (s) = L [x] and Y (s) = L [y] .

A common notation convention, where lower case letters denote signals and capital
letters their Laplace transforms, is used in the thesis. Furthermore, in order to
obtain a lighter notation, the explicit dependence of signals on time t will be usually
omitted, as also the explicit dependence of their Laplace transforms on s.

32



3.2 Transfer Functions

By using the concept of transfer function, it is possible to represent system dynamics
by algebraic equations in s. If the highest power of s in the denominator of the
transfer function is equal to n, the system is called an nth-order system.

It follows from equation 3.2 that the output can be written as

Y = G ·X (3.3)

From convolution theorem we know that

x ∗ y = L−1 [L [x] · L [y]] = L−1 [X · Y ] (3.4)

Applying the inverse Laplace transform to both sides of 3.3, and using 3.4, we find
the relation between input and output in time domain

y (t) =
ˆ +∞

−∞
x (τ) g (t− τ) dτ

=
ˆ +∞

−∞
g (τ)x (t− τ) dτ (3.5)

where g (t) = L−1 [G (s)], and both g (t) and x (t) are 0 for t < 0. The function
g (t) represents the impulse response of the system: applying an unit-impulse input
x (t) = δ (t) to the system indeed, equation 3.5 states that y (t) = g (t). Similarly,
G (s) is the unit-impulse response in frequency domain.

If the transfer function of a system is unknown, it is hence possible to obtain complete
information about the dynamic characteristics of the system by exciting its input
with an impulse or with white noise, and measuring the response at the output. The
Laplace transform of the output is the transfer function of that system, and it gives
a full description of the dynamic characteristics of the system. Of course this method
can be used also to check the goodness of a mathematical model of the system. [22]

Also other forms of mathematical models exist. For example, often it is advantageous
to use state-space representation: it consists of 4 matrices (A, B, C and D) that,
if u is the input vector, y is the output vector and x is the state vector, represent
the state in this form:

ẋ (t) = A (t)x (t) +B (t)u (t)
y (t) = C (t)x (t) +D (t)u (t)

Unlike the frequency domain approach, the use of the state space representation
is not limited to systems with linear components and zero initial conditions. This
representation is extensively used in Virgo control systems.
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Figure 3.2.: Closed loop system

3.3. Feedback Control Systems

A system with transfer function H can be connected in cascade to a system described
by G, as depicted in Fig. 3.1. The output of G and the input of H must have the
same physical dimension. We will always assume also that the input impedance of
H (that is a measure of how much a structure opposes motion when subjected to a
given force) is much higher than the output impedance of G. Under this hypothesis,
the transfer function T of the new system is given by the product

T = Y

X
= G ·H (3.6)

If the assumption on the impedances is not valid, so the presence of H modifies the
behavior of G, and equation 3.6 is no longer valid. An extension of the concept of
electrical impedance to a mechanical system can be found in Appendix B.

A widely used configuration is when one or more systems are connected to form a
feedback control system, often referred to as a closed-loop control system, i.e. when
the output of a system G is fed back (directly or filtered by another system H) to a
summing point with the input, as shown in Fig. 3.2.
The output of G and the input of H must have the same physical dimension, and
of course also the output of H and the input of G. The output of the sum E is
called error signal. The closed loop system in Fig. 3.2 is equivalent to a system whose
transfer function T is, subject to the similar conditions on impedances previously
mentioned,

T = Y

X
= G

1 +G ·H
(3.7)
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Figure 3.3.: Real closed loop system

if e = x− u, and is called the closed-loop transfer function. Otherwise, if e = x+ u,

T = Y

X
= G

1−G ·H (3.8)

The ratio of the feedback signal U to the error signal E is called the open-loop
transfer function:

U

E
= G ·H (3.9)

The key role of the feedback element H is to modify the output before it is compared
with the input, so as to bring the output of the system to a desired behavior.

3.3.1. Actual Feedback Controls

A modern controller senses the operation of a system, compares it against the desired
behavior, computes corrective actions based on a model of the system response to
external inputs and actuates the system to effect the desired change. This basic
feedback loop of sensing, computation and actuation is the central concept in control.
A typical example of a real control system is shown in Fig. 3.3. It can be decomposed
in two parts: a plant, which is assumed to be given and unalterable, and is represented
by a physical system and some noisy sensors; a controller, which is the dynamic
system that is to be designed, and that consists of a filter and an actuator. In modern
control systems, computation of the feedback filter is typically implemented on a DSP
or in a computer, requiring the use of Analog-to-Digital (ADC) and Digital-to-Analog
(DAC) converters.
Uncertainty enters the system through noise in sensing and actuating subsystems, ex-
ternal disturbances that affect the feedback system operation and uncertain dynamics
in the system (parameter errors, unmodeled effects, etc.).
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3.3.2. Advantages and Disadvantages

An advantage of the closed-loop control system is that the use of a well designed
feedback makes the system response relatively insensitive to external disturbances
and internal variations in system parameters that always occur. It is thus possible to
use relatively inaccurate and inexpensive components to obtain the accurate control
of a given plant, whereas doing so is impossible in the open-loop case.
On the other hand, stability is a major problem in the closed-loop control system,
which may tend to over correct errors, thereby causing instability. An open-loop
control system is easier to build because system stability is not a major problem: a
series connection of two stable system is always stable. [22]
Moreover, the actuation of a feedback control usually introduces unwanted noise to
the system. The signal-to-noise ratio cannot be improved using a feedback control.
This can be proved analytically or just following a simple idea: a controller is not
able to distinguish signal from noise. It amplifies and processes everything without
distinctions. It’s important to remember this: the purpose of a feedback control is
not the improvement of the Signal-to-Noise Ratio (SNR).

3.4. Stability of a Linear System

There are several ways to investigate the stability of a closed-loop system. Let’s take
into account the denominator 1 +G ·H of the transfer function 3.7. The equation

1 +G ·H = 0 (3.10)

is called characteristic equation of the system. Its roots are called poles of the system
and their position in s plane strongly determines the stability of the system. It’s
possible to demonstrate that a system is stable if and only if all of them lie in the
left-half s plane.

3.4.1. Nyquist Stability Criterion

The Nyquist stability criterion is a powerful tool to analyze the stability of a system
using its open-loop transfer function. It states that

the closed-loop system is stable if and only if the graph in the s plane
of the open-loop transfer function G (iω) · H (iω) for −∞ < ω < +∞,
encircles the point −1 as many times anticlockwise as G (s) ·H (s) has
right half-plane poles (provided that there are no hidden unstable modes
caused by unwanted cancellations of poles and zeros in the closed-loop
system). [23]
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4
Digital Filters

Despite the work of this thesis consists in the implementation of a digital filter,
the techniques so far described are to be applied to analog systems. Luckily it is
quite simple to extend these concepts to the digital world, also because often digital
signals are derived from analog signals by periodic sampling. Almost everything in
continuous-time systems has a counterpart in discrete-time systems.
In this chapter are presented definitions and basic techniques to handle a digital
system, that will be used later in this thesis.

4.1. Definitions

Before continuing, it is useful to make some definitions. It’s possible to distinguish
two families of signals:
• continuous-time signals, defined at any value of the time variable t, and thus

represented by continuous variable functions;
• discrete-time signals, defined only at discrete times and so represented as

sequences of number.
Furthermore, also the amplitude of the signals can be either continuous or discrete.
So, signals are also grouped in:
• analog signals, when both time and amplitude are continuous;
• digital signals, when both time and amplitude are discrete.

Similarly, continuous-time systems are systems for which both the input and output
are continuous-time signals and discrete-time systems are those for which the input
and output are discrete-time signals; analog systems are systems for which the input
and output are analog signals and digital systems are those for which both input and
output are digital signals.
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Chapter 4 Digital Filters

4.2. Linear Shift-Invariant Systems

As we have already seen, it is very useful to study a system in the frequency domain
using Laplace transform: the first thing to do is to extend it to discrete-time signals.
For discrete-time systems, the natural replacement is the Z-transform Z [·], defined
in Appendix A together with some properties.
An important class of discrete-time systems is represented by the Linear Shift-
Invariant systems for which the input x (n) and the output y (n) satisfy an N th-order
linear constant-coefficient difference equation of the form

N∑
k=0

aky (n− k) =
M∑
r=0
brx (n− r) (4.1)

Shift-invariant means that if y (n) is the response to x (n), then y (n− k) is the
response to x (n− k), ∀k ∈ Z. This class of system is the analogous, in the digital
domain, of LTI systems described by equation 3.1.
Similarly to 3.2, the transfer function of a linear shift-invariant system is defined as
the ratio of the Z-transform of the output to the Z-transform of the input:

G (z) = Y (z)
X (z) =

M∑
i=0
biz
−i

N∑
j=0
ajz−j

where we have used the Z-transform time shifting property Z [y (n− k)] = z−kZ [y (n)].
As for Laplace transform, G represents also the Z-transform of the response to the
unit-sample sequence

δ (n) =
1 if n = 0

0 if n 6= 0
(4.2)

whose Z-transform is Z [δ (n)] = 1.

4.3. Design of Digital Filters from Analog Filters

The traditional approach to the design of digital filters involves the transformation
of an analog filter into a digital filter, meeting prescribed specifications. This is a
reasonable approach because:

1. the art of analog filter design is highly advanced and it is favorable to utilize
the design procedures already developed for analog filters, that usually are
rather simple to implement;
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4.3 Design of Digital Filters from Analog Filters

2. in many applications it is interesting to use a digital filter to simulate the
performance of an LTI analog filter.

Transforming an analog system to a digital system is tantamount to obtain a discrete-
time transfer function Gd (z) from a continuous-time transfer function Ga (s). In
such transformation we generally require that the essential properties of the analog
frequency response be preserved in the frequency response of the resulting digital
filter. Loosely speaking, this implies that we want the imaginary axis of the s-plane
to map into the unit circle of the z-plane. A second condition is that a stable analog
filter should be transformed to a stable digital filter. That is, if the analog system
has poles only in the left-half s-plane, then the digital filter must have poles only
inside the unit circle. [24] A common procedure that satisfies these requirements is
called bilinear transformation and it is described in sec. A.3. It states that is possible
to obtain Gd (z) from Ga (s) with these two conditions by the substitution

s→ 2
T

1− z−1

1 + z−1 (4.3)

where T is the sampling period. It’s easy to prove that the s-plane imaginary axis is
mapped in the z-plane unit circle. Indeed, according to equation 4.3, points in the
unit circle, where

z = eiωdT (4.4)

are mapped in purely imaginary s = iωa:

s = 2
T

1− e−iωdT

1 + e−iωdT
= i

2
T

tan
(
T

2 ωd
)

= iωa

That is, the discrete-time filter behaves at frequency ω the same way that the
continuous-time filter behaves at frequency ωa

ωa = 2
T

tan
(
T

2 ωd
)

(4.5)

This means that every feature that is visible in the frequency response of the
continuous-time filter is also visible in the discrete-time filter, but at a different fre-
quency, as shown in the example in Fig. 4.1. This effect of the bilinear transformation
is called frequency warping, and it can be neglected for frequencies ωd � 2/T , where
ωd ≈ ωa. However some applications inside Virgo require a so high precision that
this effect must be considered: for example there are some high-Q notch filters whose
cut-frequencies must to be placed with very high precision. This is done by pre-
warping the filter design, that is designing the continuous-time filter to compensate
for this effect.
The periodicity of equation 4.5 is a direct consequence of the aliasing predicted by
Nyquist sampling theorem.
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Figure 4.1.: Example of application of bilinear transformation to a generic
continuous-time high pass filter (in blue), sampled at fc = 3030Hz. The discrete-
time system (in green) has the peak in a slightly different frequency due to the
warping, and it is periodic with period fc.
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5
Seismic Isolation System in Advanced Virgo

This chapter describes the operation of the seismic isolation system in Advanced
Virgo, explaining how (and how much) they are able to attenuate the seismic noise
at the level of the optical elements of the interferometer.

5.1. Seismic Noise

The sensitivity of interferometric antennas for gravitational waves is limited at low
frequency by seismic noise. This term indicates the stochastic movements of the soil,
due to a multitude of causes that include nearby anthropogenic activities (such as
traffic or heavy machinery), as well as natural phenomena like wind, sea waves, the
position of the moon, ...

Its Power Spectral Density (PSD) at ground level is not flat, and strongly depends
on environmental conditions. An empiric estimation (also known as standard seismic
noise) is

Sx0 (f) ∼
∣∣∣∣∣∣10−7

(
1Hz
f

)2 m√
Hz

∣∣∣∣∣∣
2

(5.1)

and it corresponds to a white noise in ground acceleration. A spectrum of seismic
noise measured in Virgo Central Building is presented in Fig. 5.1: it shows in more
detail the features of seismic noise in condition of quiet micro-seism, and compares
it with the model in 5.1.

In particular, at the Virgo site, the wind effect is visible under 0.1Hz, the ocean
between 0.1 and 0.2Hz, the Mar Tirreno between 0.2 and 1Hz, the traffic between
1 and 5Hz. This noise (also called micro-seism, or µ-seism) obviously fluctuates
according to the environmental conditions, as shown in Fig. 5.2.
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Figure 5.1.: Seismic noise in the Virgo Central Building, in a condition of quiet
micro-seism. The green curve shows the spectral amplitude of the vertical seismic
red curve the East–West horizontal vibration and the blue curve the North–South
horizontal seismic vibration. The dashed black line is the model in 5.1 (actually
multiplied by a factor 2). The magenta markers show a more complex model used
in Advanced Virgo to reproduce the main features of the seismic noise. [25]

The seismic noise enters in the Virgo noise budget through both the residual vibration
transmitted by the mechanical structures to the mirrors and the direct coupling
due to the Newtonian attraction force of the suspended test masses to the soil (the
so–called Newtonian or Gravity Gradient Noise).

5.2. Superattenuators

Therefore, if Advanced Virgo wants to measure displacement of magnitude 10−20 m,
the interferometer must be strongly isolated from the seismic noise. Superattenua-
tors (SA), often referred to also as suspensions, are complex mechanical structures
implemented in Virgo to insulate optical elements from seismic noise, that make
strong use of control theory.
The Virgo/Virgo+ Superattenuators have performed reliably fulfilling the require-
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5.2 Superattenuators

Figure 5.2.: Statistical property of the spectral amplitude of the micro-seismic
displacement noise measured in the Virgo Central Building. For each frequency
bin, it is reconstructed the probability to find a seismic amplitude below the
threshold indicated by each curve. [25]

ments and, since the time of project design, their passive attenuation performance
was considered to be compliant with the AdV requirements. Nevertheless, even if
the essence of the suspension will be kept unchanged, some upgrades of mechanical
and electronic elements are ongoing, in order to achieve better performances during
periods with adverse meteorological conditions.

Advanced Virgo comprises 10 SAs all operating in Ultra-High Vacuum chambers.
Seven SAs are installed in the central building while the additional three are located
in north end, west end buildings (3 km far from central area) and mode cleaner
building. Two classes of SAs are at present foreseen, short and long, depending on
actual chain length and number of seismic filters used in the chain.

They have been designed to fulfill two main specifications:

1. reduce ground vibration transmission, in order to make mirror residual dis-
placement below the interferometer sensitivity starting from a few hertz and
thus to make seismic noise negligible above 10Hz;

2. reduce the mirror swing displacement in the low frequency range below a few
hertz, where the seismic noise is amplified by the filter chain resonances.

We are going to see how these aims are fulfilled.
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Figure 5.3.: The Virgo Superattenuator: the mechanical filter chain adopted to
attenuate seismic vibration in the detection band, the three-leg inverted pendulum
pre-isolator, the top filter of the chain (F0) and the payload are well visible.
Dimensions in mm.

5.2.1. Passive Attenuation

The first specification is passively achieved by the SA chain of mechanical filters,
that acts as a five-stage pendulum (see Fig. 5.3). Each stage behaves as a simple
pendulum, and acts a second order low-pass filter; in an n-stage pendulum the
horizontal motion of the suspension point, at a frequency f much higher than the
frequencies of the normal modes, is transmitted to the suspended mass with a
reduction factor proportional to f 2n. This is true because the mechanical impedances
are properly matched (see Appendix B).

In order to decrease the frequency detection threshold it is necessary to reduce the
resonant frequencies of the chain and thus to increase the length of the pendulums.
The Virgo SA chain of pendulums has an overall height of about 8m and all its
horizontal normal modes are below ∼ 2Hz, providing the required attenuation
starting from about 4Hz. Vertical vibrations would be also partially transferred
to the laser beam (horizontal) direction because of the unavoidable mechanical
couplings between different degrees of freedom (estimated to be below one per cent)
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5.2 Superattenuators

and because of the Earth curvature that makes widely separated pendulums non
parallel to each other (misalignment of 3× 10−4 rad for 3 km-long arms).
The top stage of the chain is formed by another mechanical filter named Filter 0 (F0)
lying over a top table suspended by thin wires from a pre-isolation tripod, usually
called Inverted Pendulum (IP): in AdV its three legs are monolithic, made by a
single aluminum tube, in order to avoid dangerous yielding in the junctions and
to eliminate undesired structural modes due to the presence of intermediate links.
IP modes will be at 30− 40mHz, achieving a significant seismic attenuation in the
horizontal direction also in the pendulum chain resonance range (0.1− 2Hz).
The 4 middle stages are called Standard Filters (SF). A SF is essentially a rigid steel
cylinder (70 cm in diameter and 18.5 cm in height) supporting a set of maraging steel
cantilevered triangular blades clamped along the outer surface of the filter body.
Once properly loaded, the main vertical resonance of the blade system is around
1.5Hz, that becomes < 0.5Hz under the effects of the anti-springs, devices installed
on SF to reduce the frequencies of the vertical resonances. [26]
SFs precede the last stage called, for historical reason, Filter 7 (F7). It was designed
to suspend and steer the payload, a system that is composed by the marionette and
the mirror. The marionette allows the steering of the mirror with electromagnetic
actuators in three degrees of freedom. In Virgo/Virgo+, F7 included the reference
mass, that was designed to compensate the recoil of the mirror. However, it is
removed in the new AdV payload design.

5.2.2. Superattenuator Control System

For the second scope, there is a digital feedback control system that takes care to
suppress by a factor of about 10 the micron-wide mirror motion due to the ∼ 80
chain resonances. It uses the information of 20 local sensors, plus 3 global sensors
available when the full Virgo interferometer is locked. DSP-based boards use the
information of these sensors to compute a real-time control, that eventually drives
coil-magnet actuators for the feedback action. [27]
Local sensors consist of:
• three horizontal accelerometers (only in the top stage, placed at 120◦)
• two vertical accelerometers (only in the top stage, over the “cross bar”)
• Linear Variable Differential Transformer (LVDT) displacement sensors (almost

everywhere in the structure)
• optical readout of payload displacement (in the last stage)
• dual-axes electrolytic tilt-meter (in the last stage)

The three global sensors provide the relative displacement of suspended optical
elements along three main directions: the beam direction z plus two angles around
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Figure 5.4.: Top stage of the North Input Superattenuator. One of the three
horizontal accelerometer is highlighted in the red circle.

second horizontal axis x and vertical axis y. They are defined as global because
the information is provided by the Virgo global control through the status of the
whole interferometer, and not of a single Superattenuator. Coil-magnet actuators are
placed at the top stage and at the F7 level, on the marionette and directly on the
mirror (except for the piezo actuators that are going to be placed at the base of IP).

The feedback control software is called Inertial Damping (ID). It runs on dedicated
boards, exploiting the huge computing power of modern DSPs. Two distinct DSPs
control independently the top stage and the payload.

In particular, top stage control loops are always active regardless of the status of the
interferometer (i.e. not only when the interferometer is locked acquiring data). Its
sensors monitor the displacement of the top stage in the DC − 100Hz bandwidth
with an equivalent sensitivity of 10−11 m√

Hz for accelerometers, and 10−8 m√
Hz for LVDT

displacement sensors. The digital control loop operates at 10 kHz sampling frequency,
the minimum rate required in order to avoid the introduction of actuation noise in
the gravitational wave detection bandwidth. Three degrees of freedom are currently
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controlled (two translations in the horizontal plane and the rotation along the vertical
axis), and a forth one (vertical translation) is active in some suspensions. The last
Virgo+ performances allowed a residual displacement less than 1 µm at the level of
suspended payload and a relative speed between long arm cavities input and end
mirrors of about 0.25 µm/s, compliant with AdV requirements.
Payload control system works a little bit differently, allowing two different opera-
tional modes: when the interferometer is unlocked, payload control makes use of
measurements made in respect with a local reference frame, while, when the Virgo
interferometer is in locked state, payload control uses the set points distributed
by global control and alignment computers. Also here there are three controllable
degrees of freedom: longitudinal displacement (along the Virgo laser beam direction,
z), rotation around the vertical axis and rotation along the horizontal axis orthogonal
to laser beam direction. Only small corrections can be achieved in this stage, so
that the low frequency part of the z error signal is forwarded to top stage control,
where bigger displacement can be achieved. The performances of the payload control
system meet AdV requirements, allowing a residual angular displacement of less
than 1 µrad using local sensors and less than 1 nrad using global sensors, when the
interferometer is locked.
In this way, SAs reduce the seismic noise by a factor 1015 at 10Hz, at the level
of the mirrors (see Fig. 5.5 for the complete transfer function). During Virgo data
acquisition runs, the control system did not limit neither sensitivity nor duty cycle,
that was close to 100%. [2]

5.3. Control System towards Advanced Virgo

As already described in the previous sections, several changes to the mechanical
structure of Virgo SA are in progress to fulfill AdV requirements. Of course, these
are not the only improvements.

5.3.1. Gyroscope and Tilt Control

The introduction of gyroscopes has been taken into account, in order to monitor a
degree of freedom poorly controlled in Virgo, that dominates the seismic noise at low
frequency: the tilt. Indeed, even if ground seismic tilt was never directly measured
by our site, we expect, under “good weather” conditions, a power spectrum density
in the order of

Stilt (f) ∼
∣∣∣∣∣10−7

(
1Hz
f

)
rad√
Hz

∣∣∣∣∣
2

(5.2)

Of course this value strongly depends on the weather conditions, and can grow a lot
in the low frequency region in presence of strong wind and remote earthquakes, just

47



Chapter 5 Seismic Isolation System in Advanced Virgo

like the “ordinary” seismic noise. [28] Accelerometers on SA top stage are sensitive
both to tilt and acceleration, making impossible to decouple two independent degrees
of freedom that cannot be controlled in the same way. Indeed, if a traditional
accelerometer subject to a gravitational acceleration g is tilted an angle α with
respect the vertical direction, it detect an acceleration

a = g sinα

Problems occur when a tilt produces a signal that is misinterpreted as a horizontal
acceleration by the control loop, and loop forces the top stage to move even in
absence of horizontal displacement of the ground. This is why a pure-tilt inertial
sensor is mandatory to increase the duty-cycle of the interferometer, subtracting the
tilt signal from the IP accelerometers and then providing the error for its control. [29]
According to some estimations, a tilt control system implemented on the SA would
be the straightforward solution to reduce by at least one order of magnitude the
mirror swing in 0 − 200mHz range and to fulfill AdV specifications with a wide
safety margin in any weather conditions.
However, even if this problems is known since the construction of the first Virgo, a
suitable sensor is difficult to source mostly due to the high sensitivity required, that
shall be at the level of 10−8 rad√

Hz in the tens of mHz band. Several kind of gyroscopes
has been analyzed since the beginning of Virgo project, but none of them has been
found complying gravitational wave detector requirements.
A prototype of a single axis Hemispherical Resonator Gyroscope (HRG) produced
by Medicon (Russia) is currently under test by INFN Pisa Virgo group. HRG are
the de facto standard gyroscopes used in the inertial guidance of space missions
(launched aboard more than 100 spacecrafts). A recent measurement performed by
Virgo Pisa group discloses that this kind of gyroscope is so far the most suitable
sensor for our purpose and, even if the knowledge of this devices is still too modest
to hypothesize an implementation in AdV, they are probably going to became part
of the experiment in the next future.
In the meanwhile, an alternative approach is under investigation, that consist in the
extrapolation of the tilt from accelerometers and LVDT displacement sensors. This
because theoretically the position of a rigid body has six degrees of freedom, and
can be detected by six independent sensors.
Regarding the actuators for the tilt control, piezoelectric actuators are going to be
installed below the bottom flange supporting the three IP feet. It is also possible to
conceive the use of these actuators to compensate the excess of vertical seismic noise
on the suspension top stage, presently exciting the angular payload motion.

5.3.2. Electronics

In order to ensure a long term operation and maintenance for AdV, and to overcome
the physical and technical obsolescence of hardware, the Superattenuator electronics
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have to be upgraded: most of electronic devices together with the overall architecture
was designed in mid 1990s and has been in operation for 11 to 13 years almost
without any interruption. The average lifetime of the components about ten years,
so that devices have become obsolete and components are often no longer available.
Analog to digital and digital to analog converters, once state of the art, are today
out of production since years. Therefore it is necessary to upgrade the whole control
system for being ready to operate in AdV through the next ten years, as it has been
done for Virgo and Virgo+.
The first DSP board, based on Motorola DSP96002, was put in operation in 1998.
During the next few years, few minor upgrades produced 3 successive releases of the
board. In 2005 the design for a completely new device, based on Analog Devices
ADSP21160, started. First prototypes were ready by the end of 2006 and a couple
of years were spent in software development. The installation was completed in 2010.
Therefore a new design for a processing unit on which rely for the incoming ten years
is mandatory, since the 2005 one would be too old even for initial AdV (2015). [2]
A new board has been developed, that mainly includes a powerful DSP, analog-
to-digital and digital-to-analog converters, with a Field Programmable Gate Array
(FPGA) that lets these devices communicate each other and with all the other boards
of the experiment.
The chosen DSP is a Texas Instruments TMS320C6678, an eight-core fixed and
floating point digital signal processor based on KeyStone Architecture, that can run
at a core speed up to 1.4GHz, executing 6 double precision floating point operations
per cycle per core, corresponding to a total computing power of 8.4GFLPOS per core
for double precision floating point. It supports a large number of high speed standard
interfaces including RapidIO ver. 2, PCI Express Gen2, and Gigabit Ethernet.
For high throughput, low latency communication between devices, this device also
sports a 50-Gbaud full-duplex interface called HyperLink. The functional diagram is
depicted in Fig. 5.7. [30]
For analog-to-digital conversion, the choice fell on Analog Devices AD7760. AD7760
is a high performance, 24-bit Σ−∆ ADC that can work up to 4 MSPS. All signals
generated by SA sensors are amplitude modulated, with a modulation frequency
ranging from 10 kHz up to 50 kHz. The ADC will sample at high rate for then
producing a decimated output. The minimum time delay that will be introduced
by the ADC is 1.5 µs with an output data rate of 4MHz. Decimation down to
10 kHz costs additional 100 µs. Noise in the 1 kHz to 100 kHz range is white and
about 20 nV√

Hz , that is 2 orders of magnitude better that what it was in Virgo+ for
SA accelerometers and LVDT displacement sensors. At low frequency the noise
is dominated by 1/f ; if in Virgo this limited the sensitivity of the sensors, now
it is going to become negligible, because ADC will acquire the signal before the
demodulation: a proper band pass filter around the carrier wave will easily allow to
remove 1/f noise.
A strong effort to select a digital-to-analog converter for AdV has been made during

49



Chapter 5 Seismic Isolation System in Advanced Virgo

the last years. The only point where SA control system can somehow affect overall
experiment performances is via actuators and their driving electronics. The choice
was finally set to Analog Device AD1955. AD1955 is a high performance 2-channel
DAC for audio purposes. It includes a multibit Σ−∆ modulator, high performance
digital interpolation filters, and continuous-time differential current output DACs.
The choice of an “audio” converter was taken only after accurate testing in the
sub-audio frequency range where chip behavior is not fully specified by supplier.
However, we will see that the 1/f noise of this device worsen the sensitivity of Virgo’s
accelerometers at low frequencies.
The new board is also equipped with an FPGA Altera Cyclone IV. It takes care to
the front end communication, in particular with DAC and ADC, and deal with the
on-board DSP through a PCI Express link. It can execute also simple filtering on
the acquired data, before to send is to the DSP.

5.3.3. Control Techniques

In Virgo/Virgo+ the data of displacement sensors and accelerometers in the top
stage, physically placed at 120◦, were mixed up with a sensing matrix, in order
to reconstruct the displacement along three independent degrees of freedom of the
system: two translational x and y, plus one rotational θ. Then a PID-based algorithm
was used to compute the feedback forces in that directions, and eventually coil-
magnet actuators driven with a similar mixing matrix. In control theory terminology,
this “diagonalization” means breaking down a Multiple-Input and Multiple-Output
(MIMO) system into many Single-Input and Single-Output (SISO) systems, that are
much easier to be controlled. [31]
For Advanced Virgo, this algorithm is going to be completely redesigned, using
modern techniques for multivariable feedback design and optimal control theory. An
optimal control is a set of differential equations describing the paths of the control
variables that minimize a cost functional. Linear-Quadratic-Gaussian (LQG) control
is one of the most used techniques used in MIMO systems, and it is candidate to be
used for Superattenuator control system.
Also the bandwidth of the control is going to be increased. The loop unity gain
frequency in SA control system was about 5Hz, but could be raised at least up to
the first mode of the new monolithic IP legs.
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Figure 5.5.: Transfer Functions of the Virgo SA chain. To determine the effective
filtering the role of the inverted pendulum must be inserted. Blue curve: horizontal
transfer function from the F0 to the mirror. Red curve: vertical transfer function
from ground to mirror. [25]
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Figure 5.6.: Prototype of the new board. DSP is covered by the fan. FPGA is
at the center of the image, while at the bottom there are 6 DAC channels and
accelerometer front-end components. 6 ADC channels are on the back.
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Figure 5.7.: Functional diagram of the TMS320C6678 device.
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6
Accelerometer Design and Control

In this chapter is described the behavior of Virgo accelerometers, starting from a
simple dynamic equation up to the description of their internal control systems, both
as it was in Virgo/Virgo+ and how it will be updated in Advanced Virgo.

For the top stage, the position in the bandwidth up to a certain frequency (called
cross-frequency) is obtained directly by displacement sensors, while, above, it is
measured integrating twice the output of accelerometers.

An accelerometer is a devices that measures proper acceleration, which is the ac-
celeration it experiences relative to free fall, and is the acceleration felt by people
and objects. An accelerometer at rest, relative to the Earth’s surface, will measure
approximately g = 9.8m/s2 upwards, because any point on the Earth’s surface is
accelerating upwards, relative to the local inertial frame (the frame of a freely falling
object near the surface). To obtain the acceleration due to motion with respect to the
Earth, this “gravity offset” must be subtracted, introducing also corrections for the
effects caused by the Earth’s rotation. Due to this fact, two different accelerometers
have been implemented in Virgo, to measure either horizontal or vertical acceleration.
The vertical accelerometer is based on the same principle as the horizontal one, but
the mechanics is different to achieve a low resonant frequency while compensating
for the acceleration of gravity. In this thesis we take into account only horizontal
accelerometer, whose design is shown in Fig. 6.1.

In brief, looking inside the box (see Fig. 6.2) they consist of a mass suspended by
two maraging blades in order to form an inverted pendulum. A Linear Variable
Differential Transformer (LVDT) displacement sensor measures the position of the
mass with respect to the external aluminum structure. Finally, there is a coil-magnet
actuator to apply an arbitrary force to the suspended mass.
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Figure 6.1.: AutoCAD project of Virgo horizontal accelerometer. The outer box,
what is transparent in the picture, actually is made by aluminum. At the base,
the horizontal longer dimension is 16.1 cm. [32]

6.1. A Simple Dynamics Description

In a quite simple model, the dynamics of the mass inside the accelerometer is
described by a differential equation. If we call x (t) the position of the pendulum
and x0 (t) the position of the box, with respect to an inertial frame or reference,
the equation of motion of the pendulum inside the accelerometer is that of a driven
damped harmonic oscillator in one dimension

mẍ (t) + γ (ẋ (t)− ẋ0 (t)) + k (x (t)− x0 (t)) = f (t) (6.1)

where m is the mass of the pendulum, γ is the viscous damping coefficient, k is the
elastic constant and f (t) is an external force applied to the mass. From now on I’m
going to omit the dependence on the time of x, x0 and f , in order to get a lighter
notation:

mẍ+ γ (ẋ− ẋ0) + k (x− x0) = f (6.2)

This is of course a LTI system because its input/output behavior is governed by set
of ordinary linear time-invariant differential equations. [23]. In Laplace transform,
under the assumption that all initial conditions are zero, this reduces to

ms2X + γs (X −X0) + k (X −X0) = F (6.3)
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6.1 A Simple Dynamics Description

Figure 6.2.: Insight of the most important components of Virgo horizontal ac-
celerometer. At the center is clearly visible inverted pendulum, with the supports
for LVDT primary and two secondary coils. The primary coil is attached to the
external support, while the secondary coils are fixed to the pendulum. On the left,
the coil support for the feedback force. A lever, on the right, can be used to set
the right working point for the system. [32]

Firstly we will study the simpler case without external forces, F = 0. If we define

ω2
0 = k

m

and

Q = mω0

γ

the equation 6.3 can be rewritten as

s2X + ω0

Q
s (X −X0) + ω2

0 (X −X0) = 0 (6.4)

The ratio between X and X0 is the transfer function X0 → X:

X

X0
=

ω0
Q
s+ ω2

0

s2 + ω0
Q
s+ ω2

0
(6.5)
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Figure 6.3.: Bode diagram of transfer function 6.6, with ω0 = 2π · 3.2Hz and
Q = 50.

Actually, the LVDT position sensor in the accelerometer measures the internal
position x− x0. So, the transfer function between x0 and the position read by the
LVDT is

X −X0

X0
=

ω0
Q
s+ ω2

0

s2 + ω0
Q
s+ ω2

0
− 1 = s2

s2 + ω0
Q
s+ ω2

0
(6.6)

To get the response in magnitude and phase to a particular angular frequency ω,
s has to be replaced with s = iω. It’s easy to see that, when ω � ω0, X − X0 is
proportional to s2X0, i.e. the signal x− x0 is proportional to the second derivative
ẍ0, acceleration of the sensor. The Bode plot of this transfer function is shown in
Fig. 6.3.

6.2. Feedback Control

Up to now we have seen the dynamics of a damped oscillator when no external force
acting on the system. Actually, an external force can be applied and, in this case,
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Pendolum + + Sensor +

sensing noise

X0 X X −X0 Y

Controller+

actuator noise

Actuator

−

F

−

Figure 6.4.: Schematic diagram of Virgo accelerometer control. The actuator noise
is placed before the actuator because it is essentially generated by the DAC, as we
will see later.

the accelerometer becomes a system with two input and one output: the first input
is the signal x0, the second input is the external force f , while the output is of course
x− x0. In this case, the system can be studied applying the superposition principle.
In the equation 6.5, we have already presented the response of x to a stimulus in x0
with f = 0. The other characteristic transfer function is X

F
, that can be obtained

from equation 6.3, imposing x0 = 0 (i.e. assuming no external acceleration):

s2X + ω0

Q
sX + ω2

0X = F

m
(6.7)

This equation leads to the transfer function F → X

X

F
= 1
m

1
s2 + ω0

Q
s+ ω2

0
(6.8)

In principle, the external force can be anything. In the particular case in which this
force is function of the output of the system, we get a feedback control. In our case,
being the output of the system x− x0, the external force is described by a transfer
function H

F

X −X0
= m ·H (6.9)

where m is the mass, so that H is dimensioned as ω2.
According to the schematic diagram in Fig. 3.3, the whole system, including also
the main sources of noise, is conceptually depicted in Fig. 6.4: the pendulum and
actuator transfer functions strongly depend on the dynamics of the accelerometer
and they can’t be changed, unless we modify the instrument. On the other hand,
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the user tunes the controller in order obtain the desired behavior. The process noise
is omitted, as the system thermal noise of the pendulum substantially does not
contribute.
The SNR is given by

SNR = |Tx0|
2 · Sx0

|Ts|2 · Ss + |Ta|2 · Sa
(6.10)

where the terms Ti are the transfer functions of the input of the relative term to the
output, and Si are the power spectral densities of inputs. In particular, the indices
a and s concern respectively the actuation noise and the sensing noise, while x0
represents obviously the signal.
Equation 3.7 can be applied to show that, in all Ti, the controller term appears only
at the denominator: this definitively demonstrates that SNR cannot be improved
with feedback control, whichever it may be. Actually the introduction of a controller
brings along a power spectral densities Sa 6= 0, revealing that a feedback control
could actually worsen the SNR if not properly designed.

6.3. Virgo/Virgo+ Design

In Virgo/Virgo+, accelerometers were designed with a bandwidth of 100Hz, due to a
lot of unmodeled resonances over this frequency. They were controlled by a dedicated
PID-based analog board. A PID controller (PID stands for Proportional-Integral-
Derivative controller) is conceptually represented in Fig. 6.5, and is described by this
transfer function:

H = Kp +Ki ·
1
s

+Kd · s (6.11)

Actually, these three values can be interpreted in terms of time: the first term (pro-
portional) depends on the present error e, the second (integral) on the accumulation
of past errors, and the last one (derivative) is a prediction of future errors, based on
current rate of change. The weighted sum of these three actions is used to adjust the
process via a control element. The process of selecting the controller parameters Kp,
Ki and Kd to meet given performance specifications is known as controller tuning.
The usefulness of PID controls lies in their general applicability to most control
systems. In particular, when the mathematical model of the plant is not known and
therefore analytical design methods cannot be used, PID controls prove to be most
useful. [22]
The bode plot of the PID that controlled accelerometers in Virgo is depicted in
Fig. 6.6, and its transfer function was:

F

X −X0
= m ·H = −53.8s2 − 865.9s− 3480

5.019 · 10−5s2 + 0.39s N/m (6.12)

60



6.4 Advanced Virgo Design
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Figure 6.5.: Schematic diagram of a PID controller

Two zeros are placed in the proximity of the resonance, and an additional pole at
1.2 kHz; furthermore, in the controller there was a third order low pass filter to limit
disturbances at frequencies higher than ∼ 1 kHz.

The feedback force (more precisely the voltage sent to the actuator coil) was taken as
output of the system (as shown in Fig. 6.7). The transfer function F

X−X0
of the closed

loop system is shown in Fig. 6.8: at frequencies < 100Hz the output is proportional
to s2X0, and beyond it is highly suppressed in order to reduce effects of uncertainties.

In other words, the PID-based controller forced the pendulum to the zero-position,
in a certain bandwidth: to do this, it applied a feedback force proportional to its
acceleration (of course in that bandwidth). This is why the acceleration could be
read as the voltage sent to the actuator coil.

6.4. Advanced Virgo Design

As seen before, a feedback worsens SNR: so, why don’t we free the pendulum, using
the accelerometer without any controller? There are at least two reasons that make
a feedback free configuration to be risky. Firstly, there are tens of accelerometers
in Virgo, and, even if the they are build in the same way, some parameters could
change (masses, Q-values, ω0, ...). Secondarily, the LVDT that measures x− x0 has
a linear range of at most 0.5mm around the central position, and we must be sure
that the pendulum does not leave this region. Beyond, their contribution becomes
greater than 1%, and induces spurious effects during the demodulation. Actually,
we must keep this range even narrower because of the noise on primary coil.

In these conditions, the high Q resonance peak at ω0 would dominate the behavior
of the system, making it difficult for us to extract the acceleration from the LVDT
signal: indeed, the transfer function 6.6 says that the signal x− x0 is proportional
to ẍ0 only for ω � ω0. Thus, we need to apply a digital shaping filter to it in order
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Figure 6.6.: Bode plot of PID in Virgo accelerometer control

to extend the bandwidth where the signal is proportional to acceleration, at least up
to 100Hz (this is the bandwidth of Superattenuator inertial control). An inadequate
knowledge of the Q-value could make this a tough job. Actually, the Q-values of
Virgo accelerometers are pretty high (∼ 102) but, depending on several parameters
(temperature, materials, ...), they can be not only very different each other, but can
also vary during the time.

So, being this the main problem of the free configuration, we can design a very
simple controller, that reduces the effects of an high Q-value: this will be thoroughly
analyzed in the next section.

Today the control engineering offers also several tools to design more sophisticated
feedback system, like LQG and H∞ optimal control theories. Nevertheless, these
techniques are especially suited for multivariable feedback systems, i.e. the suspen-
sions, where it is not easy to handle all the resonances and the uncertainties of the
model. When applied to a SISO system, like the accelerometer, they do not provide
remarkable improvements that could justify a mathematically harder approach to
the problem.
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Figure 6.7.: Schematic diagram of Virgo accelerometer analog control

6.4.1. Critical Damping

A suitable feedback force permits to get a control on the Q-value. Indeed, designing
a feedback that produces a force proportional to the pendulum velocity ẋ− ẋ0, or
s (X −X0) in the frequency domain, we can change the transfer functions of our
systems to get a well defined Q-value. This means to apply an external force F with
a transfer function H in equation 6.9 with first order in s:

H = − Γ
m
s

F = −Γs (X −X0) (6.13)
f = −Γ (ẋ− ẋ0)

where Γ is a constant with the dimension of a viscous damping coefficient. With this
choice we can write, using equation 6.3,

ms2X + γs (X −X0) + k (X −X0) = −Γs (X −X0)
ms2X + (γ + Γ) s (X −X0) + k (X −X0) = 0

that corresponds, just like equation 6.6, to a closed loop transfer function X0 →
X −X0

X −X0

X0
= s2

s2 +
(

1
QF

+ 1
Q

)
ω0s+ ω2

0
(6.14)

where we have defined QF = mω0
Γ . It should be easy to see that the closed loop

system correspond to a new damped harmonic oscillator with a Q-value given by

1
QCL

= 1
QF

+ 1
Q

(6.15)
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Figure 6.8.: Bode plot of input/output ratio F
X−X0

in the Virgo/Virgo+ accelerom-
eter, regulated by its analog controller. Units are N/m.

Typical Q-values of Virgo accelerometers operating in vacuum are usually ∼ 150,
but they change during the time and also from a device to the other. If we use a
relatively low QF , such that QF � Q, the effective quality factor loses its dependence
on the original, largely unknown Q:

QCL = QF (6.16)

The value of Q in equation 6.4 critically determines the behavior of the system. We
can distinguish four kind of oscillators:

1. (Q < 0.5) overdamped: the system returns exponentially to steady state without
oscillating. Smaller values of Q return to equilibrium slower.

2. (Q = 0.5) critically damped: the system returns to steady state as quickly as
possible without oscillating.

3. (Q > 0.5) underdamped: the system oscillates with the amplitude exponentially
decreasing to zero. The angular frequency of the underdamped harmonic
oscillator is given by ω2

1 = ω2
0

(
1− (2Q)−2

)
.
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Figure 6.9.: Behavior of an harmonic oscillator with ω0 = 2π · 3.375Hz and initial
conditions [x0, ẋ0] = [1, 0], as function of different Q-values.

4. (Q =∞) undamped: the system oscillates forever.
In engineering design, it is often desirable to get a critical damping: as can be seen in
Fig. 6.9, this condition allows the fastest stabilization of the system to steady state.
In Virgo accelerometer this can be achieved applying a feedback force like 6.14 with
a Γ such that QF = 0.5:

Γ = mω0

QF

≈ 17 N
m/s

Being QF � Q, from 6.16 the system transfer function becomes

X −X0

X0
= s2

s2 + 2ω0s+ ω2
0

(6.17)

and the Bode diagram is shown in Fig. 6.10, compared with the system without
feedback.
In conclusion, we can design the accelerometer control using a feedback force 6.13
and taking X − X0 as output: it is proportional to acceleration s2X0 for ω < ω0,
that is ∼ 3Hz. The extension of the bandwidth where displacement is proportional
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Figure 6.10.: Comparison between the transfer functions X−X0
X0

of the open loop
system (equation 6.6, the same as in Fig. 6.3), and of the same system in critically
damped closed loop configuration (equation 6.14).

to the acceleration can be easily achieved, applying, on the acquired data, a proper
digital filter to reshape the transfer function as we need. Looking at equation 6.17,
if we multiply that function transfer by a filter identical to its denominator

Tshaping (s) = s2 + 2ω0s+ ω2
0 (6.18)

(i.e. a second order high pass filter with a double zero in ω0) we get a system whose
output is proportional to the acceleration in the whole bandwidth

X −X0

X0
= s2 (6.19)

Of course, we should add to 6.18 at least 2 poles at ∼ 100Hz both to get a stable
system and to limit the higher frequencies disturbances, that are completely useless
for the Superattenuator control system. Indeed, we will see in chapter 9 as, at high
frequencies, the thermal noise on LVDT produces an equivalent noise in acceleration
proportional to ω2, exceeding the seismic noise signal at 100Hz.
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6.4 Advanced Virgo Design

Of course, this shaping filter is going to be implemented in the DSP, inside In-
ertial Damping: the equivalent digital filter Tshaping (z) is obtained using bilinear
transformation and pre-warping.
We cannot apply the same procedure with reshaping filters directly with the open
loop transfer function 6.6, because the transfer functions of the reshaping filters
would be tediously tuned accelerometer by accelerometer, as they depends on the
exact Q-values of the single accelerometers.
Some measured transfer functions are presented in the next chapter, where we show
the implementation of this system in a real Virgo accelerometer.

67





Part III.

Implementation of the Digital
Control
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7
Measurement of Transfer Functions

Our group has available a spectrum analyzer Bruel & Kjaer LAN-XI Type 3160. It
has 4 inputs and 2 outputs, and can be used through the software PULSE LabShop
to acquire signals in both time domain and frequency domain, to measure transfer
functions, coherence and also to generate arbitrary signal, in the frequency range
DC to 51.2 kHz. Its noise depends on the peak voltage and in the input range. With
input range 10V peak-to-peak, it is either < 19 nV√

Hz or < 313 nV√
Hz depending on the

peak voltage ≶ 316mV. [33]

The characteristic transfer function of the accelerometer is of course X−X0
X0

. However,
it’s hard to generate white noise in displacement X0. Virgo SAT group has available
a structure that can perform controlled movement, but the bandwidth is limited to
∼ 1Hz, smaller than the expected peak at ω0.

On the other hand, the simplest transfer function to measure on the accelerometer is
X
F
, already presented in equation 6.8. DSP has been used to generate band limited

pseudo-random white noise to be sent to the actuator coil (from 0 to 50Hz, one line
every 7.8125mHz, with 200mV RMS through the actuator coil), and then to read
the output of LVDT demodulated by Virgo analog board.

Actually, DSP was driving actuator with critical damping control summed to that
pseudo-random noise. Indeed, X

F
depends only on mechanical properties of the

system. This allowed a more precise measurement, because the pendulum was not
free to move at its resonance.

7.1. Calibration

For the measurements presented in this chapter, the Virgo/Virgo+ accelerometer
analog board has been used to demodulate the signal of LVDT and to drive actuator
coil, because at that time the new board was not yet ready for the final use.
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Figure 7.1.: Calibration curve of LVDT output around the electrical center, acquired
in a open-loop configuration

The output of demodulation is related to the displacement: before to proceed with
the measurement of transfer functions, it’s useful to analyze and quantify the relation
between voltage at the output of demodulator and displacement. The sensitivity at
transformer level mostly depends on the geometry of the system and on the current
flowing on the primary coil. Then, before the analog-to-digital conversion, the signal
is amplified and then demodulated by Balanced Modulator/Demodulator AD630.

As shown in Fig. 7.1, the proportionality from voltage to displacement is direct (at
least near the electrical center, i.e. where the output is null) and it has been found
to be

ξ = 8103± 48V/m (7.1)

Second and third order effects cannot be evaluated in this range, but their contribute
should be ∼ 1.2% at 0.5mm from the center. [34] For this measurement, we have
tilted the accelerometer inserting gradually some paper sheets under one side of the
accelerometer. From the sizes of the accelerometer (161mm) and the thickness of one
sheet (0.100mm) we get the tilt α, that make the mass inside the accelerometer move
to the new equilibrium point, where mg sinα = −kx. The dominant uncertainty

72



7.2 Open Loop Transfer Function

is related to the low precision in the manual placement of the sheets under the
accelerometer.
In the matter of the actuator, the conversion between voltage and applied force is
found to be ε = 30mN/V. This value comes from the equation 9.5 explained in
chapter 9 about noise budget. In the analog board actuator coil was closed on a
resistor RD = 1 kΩ.

7.2. Open Loop Transfer Function

The transfer function measured in open loop configuration is shown in Fig. 7.2 (even
if for this particular measurement noise was actually generated by Bruel & Kjaer
LAN-XI Type 3160, as written in the caption). The overall behavior in magnitude and
phase matches the expectations, scaling as ω−2 without any remarkable resonance
at least up to 100Hz: effectively the resonance at 5Hz is not internal to the sensor,
being generated by the table used as support for the accelerometer during the
measurements. Finally, as we have already disclosed, a great number of resonances
appears. However, the roughness in this zone is pretty high also due to the statistical
fluctuation for extremely low signals. Since we are going to use the accelerometer
only for frequencies below 100Hz, these resonances can be ignored.
So we have measured the transfer function of accelerometer restricted in this band-
width (DC to 50Hz), to get a better estimation of the parameters. It is shown in
Fig. 7.3. It has been fitted with a 2 poles model

A

s2 +Bs+ C
(7.2)

using MATLAB function tfest. The result of the fit is:

A = −541.18± 0.63 (7.3)
B = 0.4211± 0.0048 (7.4)
C = 437.823± 0.099 (7.5)

with covariance matrix relative to (A,B,C)

Σ =

 0.3912 −3.1999× 10−4 −0.0107
−3.1999× 10−4 2.2970× 10−5 8.7490× 10−6

−0.0107 8.7490× 10−6 0.0099

 (7.6)

These values are related to physical quantities in this way:

ω0 =
√
C (7.7)

Q =
√
C

B
(7.8)

α
(
mω2

0

)−1
= A

C
(7.9)
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Figure 7.2.: Direct measurement of X
F

open loop transfer function up to 400Hz,
expressed as ratio of voltages sent to the coil and read after the demodulator, and
averaged 5000 times. Actuator was driven by 25mV RMS of band limited white
noise DC-400Hz generated by Bruel & Kjaer. How is going to be shown later, the
resonance at 5Hz it’s not internal to the sensor, being generated by the board
used as support for the accelerometer during the measurement.

where the last term is the DC value and α = ξε is product of the sensitivities on
sensing and actuating systems. Propagating uncertainties, we find

ω0

2π = 3.33019± 0.000 38Hz (7.10)

Q = 49.69± 0.56 (7.11)

The Q-value is relatively low, due to the absence of vacuum in our laboratory.
Measured DC value is 1.23607±0.000 43V/V. However, this value is not so interesting,
because strongly depends on the electronic, that will be replaced in AdV. The tfest
fit to estimation is 93.69% (simulation focus).
In conclusion, the model used so far in the text agrees outstandingly with the
measurements.
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Figure 7.3.: Direct measurement of X
F

open loop transfer function at low frequency
(blue line) and the simple pendulum model (green line). It is expressed as ratio
of voltages sent to the coil and read after the demodulator. This time actuator
has been driven by a pseudo-random white noise generated by DSP, sending only
those lines that would have been acquired by Bruel & Kjaer.

7.2.1. LVDT Non-Linearity Effects

An effect arisen during measurements has been the presence of spurious signals, due
to non-linearity of LVDT: after the demodulation, this generates alias signals at
frequencies integer multiple of the original ones. In the open loop configuration,
when pendulum is moving mostly at ω0, this effect is visible at 2ω0, 3ω0, etc. for
displacement > 100 µm.

This is not a real problem because, as we will see later, we may restrict strongly the
movement of the pendulum to prevent also another source of noise: that of signal in
primary coil, that becomes dominant for displacement > 7 µm.
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Figure 7.4.: Direct measurement of X
F
closed loop transfer function at low frequency

(blue line) and the simple pendulum model with critical damping (green line).
Conditions are the same of Fig. 7.3, because they have been measured together.

7.3. Closed Loop Transfer Function

Using the same configuration used for the measurement of open loop transfer function,
we have acquired separately the noise, in the time domain, that was sent to the coil
summed to the feedback force for the critical damping. Of course the superposition
principle applies, so that it’s possible to measure both open loop (Fig. 7.3) and closed
loop transfer functions, at the same time and in the same conditions.
This time, using the same procedures used in the previous section, the tfest fit
returns Q = 0.47499 ± 0.00047. The results is presented in Fig. 7.4, and it’s in
agreement with models: we are really modifying the Q-value, attaining a critical
damping. The 5% difference between the measured Q and the expected 0.5 can be
easily reduced indeed, by tuning poles and zeros of the digital controller.
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8
Digital Synthesizer and Demodulation

In this chapter we present how a Linear Variable Differential Transformer sensor
works, and how it is dimensioned inside Virgo’s accelerometers. Then, it is described
an algorithm to read the displacement using the new electronics of Advanced Virgo.

8.1. Linear Variable Differential Transformers

A LVDT consists of three solenoidal coils, placed end-to-end around a tube. The coil
at the center is the primary coil, and the two outer coils are the called secondary
coils. A cylindrical ferromagnetic core, attached to the object whose position is to
be measured, is free to move along the axis of the tube.1 A carrier sine wave

Vp (t) = sin (Ωt) (8.1)

at Ω = 2π · 50 kHz with unitary amplitude, drives the primary and causes a voltage
to be induced in each secondary. The output of our device is the difference of these
two voltages, and it can be written as

Vs (t) = A (t) sin (Ωt+ ϕ) (8.2)

where A (t) is the signal directly proportional to the displacement (at least near to
the center) and ϕ is a - usually small - primary to secondary coil phase shift. In
practice, phase shift is almost certain to exist in the return signal due to the effect of
stray capacitance in the transducer and connecting leads, as well as from tolerance
and drift effects associated with analog components in the signal path. [35]

1Actually, in accelerometer LVDT, there is no ferromagnetic core: the primary coil is attached
to the external structure, while secondary coils are integral with the pendulum. In this way,
vacuum is used as medium, because of the incompatibility of a standard ferromagnetic core
with the ultra high vacuum of Virgo.
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Chapter 8 Digital Synthesizer and Demodulation

8.1.1. Operation of a Transformer

Let’s see in details how a LVDT works. This will be useful later for the analysis of
the propagation of noise from primary coil to secondary coils.

According to Faraday’s law of induction, voltage E induced in a coil made by N
turns is given by

E = −N ∂Φ
∂t

(8.3)

where Φ is the magnetic flux through the loop. In the case of LVDT, magnetic field
B (z, r, t) is induced by the current flowing in primary coil: it’s value is symmetric
with respect to the coil axis z, and so depends only on z and on the distance from
the axis r =

√
x2 + y2 (where x and y are directions orthogonal to z). The magnetic

flux through a secondary coil of radius R is

Φ (z, t) =
ˆ R

0
~B (z, r, t) · n̂2πrdr (8.4)

The computation of B, and then of its flux, is complicated because it involves elliptic
integrals. Omitting details, the z component of B, Bz = ~B · n̂, is given by

Bz (z, r, t) = i (t)µo
2a

1
π
√
q

(
K(k) + (−α2 − β2 + 1)E(k)

q − 4α

)

where:

• i (t) is current in the wire;

• a radius of the current loop;

• α = r
a
; β = x

a
; q = (α + 1)2 + β2; k =

√
4α
q

;

• K(k) and E(k) are complete elliptic integral of the first kind and complete
elliptic integral of the second kind, respectively.

Since in a transformer the flux can be written as Φ = PNpIp, where P is the
permeance2 and NpIp is the current-turns of the primary coil, we can figure out that
permeance and flux are functions of the distance between coils: if we let this distance
variate during time, then signals are differently induced in each secondary coil. A
numerical computation (presented in Fig. 8.1) shows that a value z0 exists, such that
the derivative ∂P

∂z
is maximized for z = ±z0, with value δP0. Those at z = ±z0 are

of course the best places where to put the secondary coils in a LVDT in order to
obtain the best SNR, because a perturbation in z would produce the maximum effect
on the voltage induced in secondary coils. For the Virgo horizontal accelerometers,

2The SI unit of magnetic permeance is "webers per ampere-turn", that is WbA−1.

78



8.1 Linear Variable Differential Transformers

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
x 10

−6 Derivarive of permeance P respect to z

∂
P
/∂
z
(W

b
/
A
/
m
)

Distance from primary coil z (cm)

Figure 8.1.: Numerical computation of ∂P
∂z

per current-turns unit flowing a �45mm
primary coil, like that of Virgo accelerometers

the maximum is at z0 = 4.7mm, where δP0 = 2.20 µWbA−1 m−1. Actually, in the
accelerometer secondary coils were placed at z1 = 6mm, where

δP1 = 2.12 µWbA−1 m−1

In case of a sensor whose primary coil is driven by a carrier sine wave with angular
frequency Ω, the maximum voltage induced in secondary coils is

EMAX = 2NsΩΦMAX

where ΦMAX is the maximum of the flux during time andNs are the turns of secondary
coil. Then, sensitivity of LVDT can be obtained with the following relation:

∂EMAX

∂z
= ξ = 2ΩNs

∂ΦMAX

∂z
= 2ΩNsNpIpδP1 (8.5)

(of course here NpIp represents the maximum of the current-turns). In SI, ξ is
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Chapter 8 Digital Synthesizer and Demodulation

expressed as V/m. In our sensor these variables assume the following values:

Ω = 2π · 50 kHz
Ns = 450
Np = 41

NpIp = 1.14A

In this conditions, according to 8.5, the sensitivity of Virgo accelerometer LVDT is

ξ = 610V/m (8.6)

where voltage are measured at the maximum during a period.

8.2. Demodulation of the LVDT Signal

A demodulator allows us to extract A (t) from Vs (t): in essence, it takes the output
signal, then multiplies it by the reference signal sin (Ωt+ ϕ0) - that, if need be, can
be delayed by an arbitrary phase ϕ0 - and, eventually, integrates it over a specified
time. Analytically,

I0 (t) = A (t) sin (Ωt+ ϕ) · sin (Ωt+ ϕ0)

= A (t)
2 [cos (∆ϕ)− cos (2Ωt+ ϕ+ ϕ0)] (8.7)

where we have defined

∆ϕ = ϕ− ϕ0

In the same way, using the orthogonality of sine and cosine functions, it is possible to
get an another, independent signal by multiplying by cos (Ωt+ ϕ0), i.e. the reference
wave shifted by π/2:

Q0 (t) = A (t) sin (Ωt+ ϕ) · cos (Ωt+ ϕ0)

= A (t)
2 [sin (∆ϕ) + sin (2Ωt+ ϕ+ ϕ0)] (8.8)

In both cases, the resulting signal is A, multiplied by the sum of a DC signal and
a signal at twice the reference signal frequency Ω. If the bandwidth of A is much
smaller than Ω, a proper low-pass filter - with gain 2 at low frequencies - applied to
these two signals finally lets us to obtain

I (t) = A (t) cos (∆ϕ) (8.9)
Q (t) = A (t) sin (∆ϕ)
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8.2 Demodulation of the LVDT Signal

i.e. two signals both proportional to A (t) and to a constant. This is the principle
of a lock-in amplifier, also known as a phase-sensitive detector for this reason.
The letters I and Q are used in electrical engineering to represent two amplitude-
modulated sinusoids that are offset in phase by one-quarter cycle: they stand for
in-phase and quadrature components, respectively.
To get the maximum SNR from the in-phase component I, we have to maximize
the coefficient cos (∆ϕ). Obviously, the optimal case shows up for ∆ϕ = 0, that can
be achieved by tuning ϕ0 = ϕ. Nevertheless, we don’t know a priori the value of ϕ.
Luckily, a slightly non-zero ∆ϕ implies only a second-order effect in I, so that the
tuning does not require an extreme precision.
In our system, the simplest way to measure the phase shift is

∆ϕ = tan−1
(
Q (t)
I (t)

)
(8.10)

However this is not a good approach, as the calculation of tan−1 in double precision
floating point takes a long time to the DSP (∼ 300 clock cycles), and also because
I (t) often goes through zero. This identity is an alternative approach:

I (t) ·Q (t)
I2 (t) +Q2 (t) = A2 (t) sin (∆ϕ) cos (∆ϕ)

A2 (t) = sin (2∆ϕ)
2 (8.11)

The main advantage is to have the denominator A2 (t) always greater or equal to 0,
making the computation of the division safer. Furthermore,

sin (2∆ϕ)
2 = ∆ϕ

at the first order in ∆ϕ: this means that it’s possible to avoid the calculation of
sin−1 (as laborious as tan−1).

8.2.1. Effects of a Quadrature Term

In addition to phase shift, that is relatively little annoying, a real LVDT shows also
another tedious effect: actually, in the secondary coils voltage 8.2 a term B appears,
in quadrature to A:

Vs (t) = A (t) sin (Ωt+ ϕ) +B (t) cos (Ωt+ ϕ) (8.12)

In this backdrop, we need to rewrite equation 8.7 and 8.8:

I0 (t) = [A (t) sin (Ωt+ ϕ) +B (t) cos (Ωt+ ϕ)] · sin (Ωt+ ϕ0)

= A (t)
2 [cos (∆ϕ)− cos (2Ωt+ ϕ+ ϕ0)]

−B (t)
2 [sin (∆ϕ)− sin (2Ωt+ ϕ+ ϕ0)]
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and

Q0 (t) = [A (t) sin (Ωt+ ϕ) +B (t) cos (Ωt+ ϕ)] · cos (Ωt+ ϕ0)

= A (t)
2 [sin (∆ϕ) + sin (2Ωt+ ϕ+ ϕ0)]

+B (t)
2 [cos (∆ϕ) + cos (2Ωt+ ϕ+ ϕ0)]

These, after the same low-pass filter, become

I (t) = A (t) cos (∆ϕ)−B (t) sin (∆ϕ) (8.13)
Q (t) = A (t) sin (∆ϕ) +B (t) cos (∆ϕ)

or equivalently, in matrix notation,(
I (t)
Q (t)

)
=
(

cos (∆ϕ) − sin (∆ϕ)
sin (∆ϕ) cos (∆ϕ)

)(
A (t)
B (t)

)
(8.14)

In other words, the vector (I (t) , Q (t)) is nothing more than (A (t) , B (t)) rotated
by an angle ∆ϕ. Now, we have two equations for three unknowns: there is no way to
measure ∆ϕ by the only measure of (I (t) , Q (t)), so that it’s impossible to isolate the
displacement signal A (t) from the quadrature term. The presence of a non-adjusted
phase shift inevitably leads to a mixing of A and B on the output of the system.
Fortunately, there’s no need to be discouraged: if |B| � |A| (the dependence on time
is omitted from now on), the contribution of the quadrature term can be actually
neglected, in order to use either equation 8.10 or 8.11 to measure ∆ϕ. For example,
defining

r = B

A

equation 8.11 using I and Q of 8.13 would become

I ·Q
I2 +Q2 = sin(2∆ϕ) + 2r cos(2∆ϕ)− r2 sin(2∆ϕ)

2 (1 + r2)

whose denominator is strictly greater than 0 if r 6= 0. At the first order in r and in
∆ϕ, it shrinks to

I ·Q
I2 +Q2 = ∆ϕ+ r (8.15)

In conclusion, this ratio can be used for calculate ∆ϕ in adequate conditions. Fur-
thermore the denominator is always positive, and a division by zero never occurs.
The error introduced by the quadrature signal B is just r.
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Now, the problem becomes how to get r → 0, i.e. |B| � |A|. Even if B is relatively
small and constant over the time, and independent from the displacement, we don’t
know the initial size of the signal A, that could also be zero. Qualitatively, we can
apply a relatively strong force to the mass through the coil actuator, in order to
get a displacement x− x0 as big as possible: this will increase A while, at the same
time, B remains constant. Then, we perform a measurement of ϕ, set ϕ0 = ϕ and
eventually release the force. At that point, we’ll have I = A and Q = B. This can
be achieved by a finite-state machine implemented in the FPGA.

8.3. An Algorithm to Demodulate with Phase
Locking

Today, digital techniques can be applied in order to automate this tuning. In
particular, a Phase-Locked Loop (PLL) is a control system that generates an
output signal whose phase is related to the phase of an input signal. We can use
this technique to measure the phase shift and then to tune the oscillator used for
the demodulation with a phase ϕ0 = ϕ.
A digital PLL-based loop can be implemented in FPGA, to perform amplitude
demodulation using the relation in 8.15 for a smart measurement of ϕ and thus
allowing to get the maximum SNR from the in-phase component I. Such a system
can be used to read LVDT, both those inside the accelerometer and the others used
in the Superattenuator inertial control.
The schematic diagram is depicted in Fig. 8.2. The principle is quite simple: after
the reconstruction of I and Q from LVDT secondary coils, they are combined to get
∆ϕ. This value passes through an integrator, that slowly changes the initial phase
ϕ0 of a sine-cosine wave generator used in the demodulation. Supposing r → 0, as
time passes ϕ0 tends to ϕ, giving ∆ϕ→ 0. At this point the system is stable: we
get I → A, Q→ B, and ϕ0 that is a direct measurement of time shift.
First of all the logic has been tested in MATLAB and Simulink, simulating a discrete
time model. This has been done mostly to check the performance and to tune the
parameters. The result of a simulation with a 1Hz signal, B = 0 and ϕ = 1.4 rad is
presented in Fig. 8.3: as expected, while the feedback phase ϕ0 tends to the right
value, I → A and Q→ 0.
Eventually, I have developed a project in Quartus II 13.1.0, both writing VHDL code
and using schematic files, to be implemented in Advanced Virgo electronics. Due
to the complex handling of floating point values in a FPGA, all the vectors have
been treated as signed and/or unsigned integers, using numeric_std package. On
the one hand this simplifies several things: for example, the output of ADC belong
to this data type, and so no conversions are needed; it is also trivial to perform
multiplication and division by powers of two. On the other hand, we need to pay
attention to the number of bits used in the arithmetics, to avoid losses of precision.
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Figure 8.2.: Schematic diagram of the PLL-based demodulation with phase locking

Numerically Controlled Oscillator

50 kHz NCO
ϕ0 sin (Ωt+ ϕ0)

The central block is the Numerically Controlled Oscillator (NCO): this term indicates
a digital signal generator which creates a synchronous (i.e. clocked), discrete-time,
discrete-valued representation of a waveform. A first NCO is used to generate two
coherent 50 kHz sinusoidal waves, phase-shifted by π/2 each other, that are used
for the demodulation. Another identical and independent NCO is used to drive the
primary coil of LVDT.

An NCO generally consists of two parts:

• A Phase Accumulator (PA), which adds a frequency control value to the value
held at its output at each clock sample.

• A Phase-to-Amplitude Converter (PAC), which uses the PA output word as
an index into a waveform Look-Up Table (LUT), to provide a corresponding
amplitude sample. Sometimes interpolation is used with the look-up table to
provide better accuracy and reduce phase error noise.

I have written a VHDL code, based on the excellent LGPL-licensed project DDS
Synthesizer, developed since 2008 by Martin Kumm. [36] Let’s see the essence of the
algorithm, whose schematic is in Fig. 8.4, looking at some extracts from the VHDL
code.

1 −− phase accumulators
2 ftw_accu <= ftw_accu + ftw_i ;
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Figure 8.3.: Simulation of a PLL-based demodulation with phase locking made in
Simulink, using the logic in Fig. 8.2. For reasons explained later, the division on
the top right block hasn’t been performed: this explains the wavy behavior of the
feedback phase.

The frequency tuning word FTW (ftw_i in the code) is an unsigned N -bit number,
that specifies the output frequency fDDS as

fDDS = FTW

2N fs (8.16)

where fs is the clock frequency. In other words, the frequency resolution is fs/2N .
The frequency tuning word passes through the PA. Its output F (ftw_accu in the
code) is a periodic ramp and has the same length N .

1 sin_phase <= ftw_accu (N−1 downto N−M) + phase_i ;
2 cos_phase <= ftw_accu (N−1 downto N−M) + phase_i
3 + to_unsigned (2∗∗ (M−2) ,M) ;

At this point, the first M bits of F are defined Φsin (sin_phase),3

FN−1 . . . FN−M︸ ︷︷ ︸
Φsin

FN−M−1 . . . F0

3We’re dealing with a big-endian system
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Figure 8.4.: Schematic diagram of the Numerically Controlled Oscillator. Phase
accumulator is on the left, phase-to-amplitude converter on the right.

and, simultaneously, a variable Φcos (cos_phase) is defined as Φcos = Φsin + 2M−2. A
key feature of this NCO is that it is possible to add an arbitrary value M -bit phase
tuning word PTW (phase_i) to both Φ, that can be interpreted as a initial phase,
but that can also change during the time. In this sense, note that PTW acts as the
integral of FTW : a constant value on FTW and a ramp on PTW would produce
the same effect.

1 −− l u t readout
2 sin_lut_out <= s ine_lut ( to_integer ( sin_phase (M−2 downto 0 ) ) ) ;
3 cos_lut_out <= s ine_lut ( to_integer ( cos_phase (M−2 downto 0 ) ) ) ;

Then Φsin and Φcos are used to read into a LUT that stores the first half period of a
sine (the positive one), multiplied by 2P−1 and sampled 2M−1 times at P − 1 bits,
with M < N :

Asin = 2P−1
∣∣∣∣∣sin

(
Φ̃sin

2M−1π

)∣∣∣∣∣ (8.17)

and

Acos = 2P−1
∣∣∣∣∣sin

(
Φ̃cos

2M−1π

)∣∣∣∣∣
= 2P−1

∣∣∣∣∣sin
(

Φ̃sin

2M−1π + 2M−2

2M−1π

)∣∣∣∣∣
= 2P−1

∣∣∣∣∣cos
(

Φ̃sin

2M−1π

)∣∣∣∣∣ (8.18)

where Asin and Acos (sin_out_lut and cos_out_lut) are unsigned integers with
P − 1 bits, and Φ̃ represents the last M − 1 bits of Φ:

ΦM−1 ΦM−2 . . . Φ0︸ ︷︷ ︸
Φ̃
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Only half a period of sine is stored because of the property sin (x) = − sin (x+ π).4
The first two bits of Φsin and Φcos represents the quadrant relative the angle, that
is related to the sign of sine and cosine: the sine is positive in the first and in the
second ones, while the cosine in the first and in the forth ones. Furthermore, the
phase of cosine is one quadrant ahead that of sine: this is why we define only one
2-bit unsigned integer signal quadrant, relative to the sine:

1 quadrant <= sin_phase (M−1 downto M−2);

The remaining last N −M bits of F are discarded in the PAC, as they are needed
only for the frequency tuning. They could be used for an eventual interpolation, to
provide better accuracy and reduce phase error noise.

In conclusion, the outputs of NCO are two P -bit signed integers, Osin (sin_o) and
Ocos (cos_o), that consist of A with the adjusted sign, and that are written just
after the clock rising edge:

1 −− w r i t i n g output ( quadrant i s t h a t o f s in )
2 sin_o <= sin_lut_out_delay
3 when ( quadrant_2delay = " 00 " or quadrant_2delay = " 01 " )
4 else sin_lut_out_inv_delay ;
5 cos_o <= cos_lut_out_delay
6 when ( quadrant_2delay = " 00 " or quadrant_2delay = " 11 " )
7 else cos_lut_out_inv_delay ;

taking, from the previous iteration,
1 −− updat ing quadrant memory
2 quadrant_delay <= quadrant ;
3 quadrant_2delay <= quadrant_delay ;
4
5 −− updat ing output f o r the next i t e r a t i o n
6 sin_lut_out_inv_delay <= to_signed (−1∗ to_integer ( sin_lut_out ) , P ) ;
7 sin_lut_out_delay <= sin_lut_out ;
8 cos_lut_out_inv_delay <= to_signed (−1∗ to_integer ( cos_lut_out ) , P ) ;
9 cos_lut_out_delay <= cos_lut_out ;

The signals, with self-explaining suffixes _delay and _2delay, are needed to take
into account the delays of the algorithm: the latency of this NCO is 2 clock cycles.

In the implementation used in our test, we have used N = 24, M = 10 and P = 10.
Look-up tables, compatible with the code, are generated by a MATLAB script, with
arbitrary M and P .

4The original Kumm’s algorithm stores only the first quarter of the period of a sine on the LUT,
exploiting the property sin

(
x + π

2
)

= sin
(
−x + π

2
)
. However, in this way the value of the

maximum of the sine is not stored in the LUT and has to be written in the code, generating an
exception inside the algorithm: this problem is avoided, storing the whole first half period.
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Low Pass Filters

low pass
I0 I

The output of LVDT is acquired by ADC in a 24-bit value, and multiplied by the
10-bit outputs of NCO to form I0 and Q0, each one with 34 bits. A low pass filter is
then needed removes the 2Ω contribution.

Instead of a simple low pass filter, we can use a property of the average. In Z-
transform, the average of n samples as this form:

Y

X
= 1 + z−1 + z−2 + . . .+ z−n+1

n
= 1
n

1− z−n
1− z−1 (8.19)

that corresponds to a simple difference equation

yi = yi−1 + xi − xi−n
n

(8.20)

Its sinc-like frequency response (see Fig. 8.5) has the property to have a notch in all
multiples of fc/n, when the wave has a integer number of periods under the averaging
window.5

At this point we would like also to downsample the stream of data: ADC are read at
fc = 3.84MHz, that is pretty high for our purpose. So, the strategy is the following:
an accumulator averages n = 19 samples, then its output is read and the accumulator
is reset.

Why 19? Because it is the nearest integer to 19.2, which would allow to put a notch
at 3.84 MHz

19.2 = 200 kHz. Choosing n = 19, the first notch is actually at fc = 202.1 kHz,
that is still acceptable. And also, why do we chose 200 kHz and not 100 kHz, where
we have the 2Ω contribution of demodulation? Because resampling the stream at
100 kHz would create some aliasing in DC, as the notch has a very narrow band (look
at 8.7 and 8.8: the signal A (t) is amplitude modulated around 2Ω). This is not a
problem if we downsample at 200 kHz, because there should be only a little noise.

This step is performed by ALTACCUMULATE Quartus megafunction. Of course,
this first average does not filter too much at 100 kHz: from transfer function 8.19,

5Sinc-like behavior is a direct consequence of the Fourier transform, in the analog domain, of a
unit box (f (t) = a−1 if t < a else f (t) = 0, where a > 0), that is proportional to cardinal sine
function sincx = sin x

x .
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Figure 8.5.: Frequency response of a discrete average, with n = 19 and fc =
3.84MHz. Notches are at 201.2 kHz and at its multiples, and the phase delay that
scales linearly. Note the similarity with the sensitivity of a Michelson interferometer,
in Fig. 2.5: despite the different fields of application, the principle is the same.

with n = 19 and z = ei2πf/fc (cf. 4.4), there its magnitude response corresponds at

U1 =
∣∣∣∣∣∣ 1
19

1− exp
(
−19 · i2π 100 kHz

3.84 MHz

)
1− exp

(
−i2π 100 kHz

3.84 MHz

)
∣∣∣∣∣∣

=
∣∣∣∣∣∣ 1
19

sin
(
19 · π 100 kHz

3.84 MHz

)
sin

(
π 100 kHz

3.84 MHz

)
∣∣∣∣∣∣

' sinc (π/2) = −4 dB (8.21)

At this point, a second average takes places, with n = 4, this time without down-
sampling (it is called a moving average): being now fc = 202.1 kHz, the first two
notches are placed at 50.5 kHz and 101 kHz. The magnitude of frequency response
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at 100 kHz is

U2 =
∣∣∣∣∣∣14

1− exp
(
−4 · i2π 100 kHz

202.1 kHz

)
1− exp

(
−i2π 100 kHz

202.1 kHz

)
∣∣∣∣∣∣

=
∣∣∣∣∣∣14

sin
(
4 · π 100 kHz

202.1 kHz

)
sin

(
π 100 kHz

202.1 kHz

)
∣∣∣∣∣∣

= 1.6× 10−2 = −35 dB (8.22)

This is done with a simple VHDL code based on a First In, First Out (FIFO). Here
is the code (note the implementation of 8.20):

1 l ibrary i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4
5 entity moving_average i s
6 generic (
7 DATA_WIDTH : i n t e g e r := 24
8 ) ;
9 port (

10 c lk_i : in s td_log i c ;
11 r s t_ i : in s td_log i c ;
12 sample : in s igned (DATA_WIDTH−1 downto 0 ) ;
13 output : out s igned (DATA_WIDTH−1 downto 0)
14 ) ;
15 end moving_average ;
16
17 architecture moving_average_arch of moving_average i s
18
19 type f i f o i s array (3 downto 0) of s igned (DATA_WIDTH+1 downto 0 ) ;
20
21 signal sample s_f i f o : f i f o := ( others => ( others => ’ 0 ’ ) ) ;
22 signal sample_long : s igned (DATA_WIDTH+1 downto 0)
23 := ( others => ’ 0 ’ ) ;
24 signal sum : s igned (DATA_WIDTH+1 downto 0) := ( others => ’ 0 ’ ) ;
25
26 begin
27
28 process ( clk_i , r s t_ i )
29
30 begin
31 sample_long <= to_signed ( to_integer ( sample ) , DATA_WIDTH+2);
32
33 i f r s t_ i = ’1 ’ then
34 sample s_f i f o <= ( others => ( others => ’ 0 ’ ) ) ;
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35 sum <= ( others => ’ 0 ’ ) ;
36
37 e l s i f r i s ing_edge ( c lk_i ) then
38 −− d i f f e r e n c e equat ion o f average :
39 sum <= sum + sample_long − sample s_f i f o ( 0 ) ;
40 −− s l i d i n g o f FIFO:
41 sample s_f i f o <= sample_long & sample s_f i f o (3 downto 1 ) ;
42 end i f ;
43
44 end process ;
45 −− d i v i s i o n by 4 , cropping the l a s t 2 d i g i t s o f sum :
46 output <= sum(DATA_WIDTH+1 downto 2 ) ;
47
48 end moving_average_arch ;

In the last step of the block, a first order digital low pass filter, with cutoff angular
frequency of 100 rad/s, is implemented6 to further clean the 2Ω signal. Its difference
equation and transfer function are7

yn = (1− α)xn + α · yn−1
Y

X
= 1− α

1− α · z−1 (8.23)

The term (1− α) in front of xn and at numerator in the second line is needed to
have unity gain in DC. The value α determines the time constant τ of the filter, with
the relation

logα = −T
τ

(8.24)

where T is the sampling period, (202.1 kHz)−1 = 4.9 µs in our case. For a cutoff
angular frequency of 100 rad/s, τ = (100 rad/s)−1 = 10ms, we need

logα = −4.9 µs
10ms ⇒ α = 0.999505 (8.25)

that is very close to the ratio 2047
2048 (within 0.001%), thus allowing a simple implemen-

tation at 12 bits in the FPGA.
6Even if 100 rad/s ∼= 16Hz is smaller than the bandwidth of the accelerometer, it is enough for
the measurement of ϕ.

7Note that such a filter does not correspond to a continuous time filter through bilinear transfor-
mation. Actually this transformation is called impulse invariance, designing discrete-time filters
from continuous-time filters, in which the impulse response of the continuous-time system is
sampled to produce the impulse response of the discrete-time system. If obtained from a first
order continuous-time low pass filter using bilinear transformation, the transfer function in 8.23
would have an additional term in z−1 at the numerator, so that the digital filter would require
an additional sum, of a term proportional to xn−1. Even if the attenuation at high frequencies
would be better, for the purposes of this system it is enough.
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In conclusion, the attenuation of 8.23 at 100 kHz is

U3 =
∣∣∣∣∣∣ 1− 2047

2048

1− 2047
2048 · exp

(
−i2π 100 kHz

202.1 kHz

)
∣∣∣∣∣∣

= 2.4423× 10−4 = −72 dB (8.26)

Summing 8.21, 8.22 and 8.26, in the filtering block the 2Ω contribution is attenuated
by

Utot = −111 dB (8.27)

This is enough for the FPGA-based demodulation with automatic phase detection.
Additional filters could be placed later in DSP, also directly on I0: its double-precision
floating point handling is for sure much better than what is worth to implement in
FPGA.

From I and Q to ∆ϕ

I·Q
I2+Q2

I

Q

∆ϕ

Once passed through the respective low pass filters, I and Q are used to get ∆ϕ using
equation 8.15. Here a problem occurs: a division between 32-bit integers, performed
by LPM_DIVIDE megafunction, would take both several clock cycles and a lot of
resources inside the FPGA. The choice is to avoid the computation of this division,
and to carry out only I ·Q. Neglecting r,

I ·Q = ∆ϕ
(
I2 +Q2

)
For the purpose of the phase-detection feedback, this has a minimum impact. Indeed,
during the calibration I2 +Q2 is quite constant, probably predictable and, by the
way, always > 0: omitting the division, we only modify the gain of the loop, that
can be handled later.

Integrator

integrator
∆ϕ ϕ0
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Finally, I have designed an integrator: it consists of a multiplier by a 10-bit tunable
constant α, with a simple accumulator in cascade. The input of integrator is a 24-bit
integer, that becomes 34 after the multiplier. An ALTACCUMULATOR sums the
24 most significant bits of ∆ϕ at fc = 202.1 kHz, and it is never reset. The 10 most
significant bits of its output are used to tune the ϕ0 in the NCO, to close the loop.
The difference equation and transfer function of this integrator are

yn = yn−1 + β · xn
Y

X
= β

1− z−1 (8.28)

The characteristic time is infinite (compare with 8.23 and 8.24), as the unit sample
response is the step function.

8.3.1. Stability of the System, Simulations and Limits

Due to the high nonlinearity of this system (some elements, like NCO, cannot be
represented as transfer functions or state space matrices), its stability has to be
verified in a simulation. The most important parameter is the loop gain, tunable
through β in 8.28: it is inversely proportional to the convergence time, but a too
high gain could lead to instability.
After some simulations in MATLAB Simulink, performed to find the best parameters
that lead to desired behavior, the project has been tested on a FPGA, using SignalTap
II to read signals. To simulate the output of a LVDT, a low frequency signal has
been synthesized and modulated with a carrier sine, phase-shifted by a random angle
ϕ generated by a linear congruential generator. After an hardware reset, the system
generated a new phase and then tried to guess it. In these conditions, the algorithm
converged to the real ϕ in a couple of seconds, as shown in Fig. 8.6. A small offset
between ϕ0 and ϕ, it corresponds to few clock cycles, is expected. It is due to delays
from the signal generation to the demodulation unit.
The main problem of this system is that it doesn’t allow to distinguish a phase shift
ϕ from its supplementary π − ϕ. Indeed, the loop makes the phase ϕ0 shift from
the initial zero value toward the correct value, through the shortest path. If the real
phase shift |ϕ| < π

2 , then ϕ0 converges to ϕ without any problem. But, if |ϕ| > π
2 ,

when ϕ0 passes on π − ϕ, there it find a stable node: these two cases differ only
for a sign of the cosine, because sin (ϕ) = sin (π − ϕ) and cos (ϕ) = − cos (π − ϕ).
Looking at 8.9, this additional minus sign could belong also to the signal A (t), so
that the loop is perfectly stable.
In conclusion, a supplementary phase shift and the direction of the displacement
cannot be physically distinguished each other. However this is a relative problem, as
we usually deal with |ϕ| � π

2 .
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Figure 8.6.: Simulation of the algorithm inside the FPGA, acquiring data with
SignalTap II. Time scale is approximate.
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9
Accelerometer Noise Budget

The analytical form of accelerometer SNR has been presented in equation 6.10 and
shows two main sources of noise in the accelerometer: the contributions come from
the sensors and from the actuators. A third contribution is the process noise, that
turns out to be negligible.

In this chapter the main contributes of this curve are analyzed and, eventually,
compared with the noise budget of the accelerometer with the analog control.

9.1. Process Noise

In a mechanical oscillator subject to a viscous damping, thermal noise act as a noise
in force with power spectral density

f̄ 2
n = 4kTmω0

Q

(see Appendix B for details). Of course the Q-value to be used is the open-loop one
(Q ∼ 200), because the Q = 0.5 induced by the feedback doesn’t correspond to a
real loss of energy for friction (we could define it “cold friction”). This force acts like
the feedback force, passing through the transfer function 6.8.

For our pendulum, at low frequencies the equivalent noise in acceleration is

Sthermal (ω � ω0) =
∣∣∣∣∣6.5× 10−11m/s2

√
Hz

∣∣∣∣∣
2

and then decreases as ω−4.
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9.2. Sensing Noise

9.2.1. Noise on Primary Coil

Displacement sensors are LVDT. A 50 kHz sine wave signal is generated by FPGA
using the 10-bits digital synthesizer presented in the previous section. The numerical
noise is negligible, and in case can be easily reduced by increasing the number of
bits. This carrier wave is sent by a DAC to the primary coil. At first sight DAC
noise is negligible, because if the distances between coils are identical, it induces
the same effects on each secondary coil, that are mutually canceled. However, if
there is an offset in the position of secondary coils, that can occur for example when
accelerometer is subject to a tilt, then this cancellation doesn’t occur anymore and
problems can arise.
Quantitatively, the mutual inductance M between primary coil and a secondary coil
satisfies the following relation (in Laplace transform) about the voltage on secondary
coil

NssΦ = MsIp + LssIs

where Lp and Ls are inductance of primary and secondary coils, respectively. The
last term is zero in open-circuit configuration. Thus

M = Ns
Φ
Ip

= NsNp
Φ

NpIp
= NsNpP

where P is the magnetic permeance through secondary coil, and its value at z = 6mm
is P1 = 2.9× 10−8 WbA−1 (it comes from the integral of Fig. 8.1). The coupling
coefficient kps (such that |kps| ≤ 1) can be defined as

kps =

√
LsLp

M

In the accelerometer, being Lp = 0.13mH and Ls = 12.4mH,[37] kps is found to be

kps = NsNpP√
LpLs

= 0.42

For comparison, the coupling coefficient between secondary coils is kss ∼ 0.1, reason-
ably lower due to the greater distance between coils and their smaller dimensions. [37]
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The first derivative of kps with respect to z can be found as

∂kps
∂z

= NpNs√
LpLs

∂P
∂z

= 30.8m−1

at z = 6mm. Of course, a displacement induces opposite variation of kps on each
secondary coil. Using the circuit diagram of the board, a Spice simulation has been
used to calculate the noise induced at the output of secondary coils, generated by a
unitary white noise on the primary coil. In the range |z − z1| < 10 µm, the PSD of
noise induced on secondary coils by a noise on primary coil is proportional to the
PSD of noise on primary coil and to the distances between them:√

Ss
Sp

= 38× 10−5 V√
Hz

(µm)−1
(

V√
Hz

)−1

In our case, the primary coil noise is mostly 1/f noise, caused by instability of DAC
AD1955 reference voltage at low frequencies: it modulates the amplitude of the
50 kHz carrier wave, producing effects also at high frequencies. According to a direct
measurement of this noise, presented in Fig. 9.1, at 1Hz it has 3 µV√

Hz . This means
that, for |z − z1| > 7 µm, this effect induces more than 5 nV√

Hz on the secondary coils.
As we’ll see later, this would dominate on all the other sources of noise.
This is very important, as could dramatically worsen SNR if not properly kept under
control. For example, tilting the sensor with an angle α = x · ω2

0/g = 0.4mrad we
could obtain such a displacement. However it is more likely for this to occur due to
the composite structure of the inverted pendulum of the accelerometer. To prevent
this, we can use an inbuilt stepper motor, that can adjust the position of the mass
within ∼ 7 µm from the center at the beginning of the measurement. For extra
precision, we can also think to apply a DC feedback force.
This noise has never been taken into account until now in Virgo. Even if the old
PID controller worked setting error signal to zero (i.e. keeping the mass as close
as possible to the electrical center of LVDT), an electrical offset in the amplifiers
could let to a mechanical offset in the closed loop system. Looking at the features of
the components of the analog controller, an optimistic estimation suggests that this
offset introduced a DC displacement < 1 µm on the pendulum.

9.2.2. Noise on Secondary Coils

Secondary coils (see Fig. 9.2) have each one resistance of 210 Ω, closed on a 100 Ω
trimmer that balances possible asymmetries on the two branches. [37] The total
resistance turns out to be about 130 Ω: using v̄2

n = 4kTR (see sec. B.2) it correspond
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Figure 9.1.: Square root of power spectral density of AD1955 noise at low frequen-
cies, in its full dynamic range −5V÷ 5V, measured by Virgo Pisa group. These
kind of converters are audio devices, and producers usually don’t provide their
noise in the infrasound band. The 1/f nature of this noise is clearly visible and
the the curve can be approximated by 4× 10−6

√
1 Hz
f

V√
Hz .

to 1.4 nV√
Hz . An op-amp, with 1 nV√

Hz of noise in input, amplifies this signal by a factor
∼ 80. Then the ADC adds ∼ 20 nV√

Hz (at 6V peak to peak in input), corresponding to
0.25 nV√

Hz before the amplification. Finally the demodulation of the signal performed
by FPGA introduces a negligible numerical noise. Using the sum of squares,

√
1.42 + 12 + 0.252 nV√

Hz
= 1.7 nV√

Hz
(9.1)

the noise in sensing results to be white in voltage and dominated by the thermal
noise of the secondary coils. This is desirable, being the only contribute that cannot
be further reduced, and that does not depend on the electronics. According to 8.6,
the noise 9.1 in voltage corresponds to 2.8× 10−12 m√

Hz in displacement. In turn, the
displacement is proportional to the acceleration for ω � ω0, with proportionality
constant ω2

0 (see 6.6): in this bandwidth the noise is equivalent to

Ssensing (ω � ω0) =
∣∣∣∣∣1.1× 10−9m/s2

√
Hz

∣∣∣∣∣
2

(9.2)
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A

C

R = 210 Ω Ls = 12.4mH

R = 100Ω
R = 210 Ω Ls = 12.4mH

B

Figure 9.2.: Circuit diagram of secondary coils. The two ends A and B are read by
a differential amplifier.

For higher frequency it grows as ω4, in as much as it is amplified by the digital
shaping filter Tshaping (s) 6.18, and its PSD is provided by

Ssensing (ω) = |Tshaping (iω)|2 Ssensing (ω � ω0)

Even if Tshaping is a digital filter, for this purpose we can use the continuous-time
equivalent filter from which it has been extracted through bilinear transformation.

9.3. Acting Noise

A feedback force inevitably introduces noise in the system, because it involves noisy
components and uncertainties. The basic idea is to calculate first the PSD of the
feedback force acting in various environmental conditions, and then to see how much
noise it introduces back into the system as equivalent seismic noise.
The closed loop transfer function X0 → F is

T (s) = F

X0
= ms2

1 + s2+ ω0
Q
s+ω2

0
H(s)

(9.3)

With critical damping, from equations 6.13 and 9.3, the closed loop transfer function
X0 → F becomes

T = − Γs3

s2 + 2ω0s+ ω2
0

so that a seismic noise PSD Sx0 (ω) induces a feedback force PSD

Sf (ω) = |T (iω)|2 Sx0 (ω) (9.4)

It is insidious to estimate Sx0 (ω) as it depends on the environmental conditions.
In equation 5.1 I have presented an estimation of the seismic noise PSD at ground
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Figure 9.3.: Square root of seismic noise PSD
√
Sx0 expressed in m√

Hz , measured
in various environmental conditions at the Superattenuator top stage. All of
them are measured during the last Virgo run in August 2011, except for the
“calibration” spectrum that has been measured during a user handled calibration
of the suspension control in 2014. More information in Tab. 9.1.

level. Actually, at the top of the Superattenuators this noise is filtered by the
three-leg inverted pendulum. In Fig. 9.3 there are some spectra of the seismic noise,
that have been measured, in several environmental conditions, by Virgo horizontal
accelerometers placed on the top stage. It is easy to see that the spectrum at
frequencies < 10Hz strongly depends on the weather and can dramatically increase
with strong wind or if, for example, a remote earthquake occurs. Nevertheless, the
strongest signal on the accelerometers is measured when a technician is estimating
coils-to-sensors transfer functions, to calibrate the parameters for the top stage
controller: he sends white noise to the coils, with the Superattenuator free to move
due to the digital controller turned off. The RMS of the acceleration in the four
cases of Fig. 9.3 are presented in Tab. 9.1.

With one of these spectra, it is possible to get the variance of the force, integrating
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Seismic noise Displacement Force
ẍ0 (mm/s2) x− x0 (nm) f (µN)

Normal conditions 0.10 10 17
Wind at 50 km/h (8/8/2011) 0.16 17 30

Earthquake in Japan (8/19/2011) 0.11 11 19
Calibration 0.59 1100 140

Table 9.1.: Root mean square of some quantities in an accelerometer working with
critical damping, measured in various environmental conditions at the Superatten-
uator top stage. I present only two significant figures, the essential to appreciate
some differences. However these values are affected by a moderate variability.

the PSD in ω

σ2
f = 1

2π

ˆ ∞
0

Sf (ω) dω

Values of this integral in the debated environmental conditions are shown in Tab. 9.1,
and their relative spectra Sf are in Fig. 9.4.
This force is done on the mass through a coil actuator, driven with internal resistance
RI = 3.2 kΩ and read on a external resistance RD (see Fig. 9.5). The efficiency is
[34]

ε = 30N/A = 30 Ω
RD

N/V (9.5)

if RD � RI .
An AD1955 DAC soldered on the new board provides the voltage to drive the actuator
coil: according to Fig. 9.1, its noise can be approximated as

4× 10−6
√

1Hz
f

V√
Hz

(9.6)

in its full dynamic range −5V÷ 5V. As it is going to be proved further down, this
is the main noise source in the acting system, and we would like to keep this noise
smaller than the sensing noise 9.2. This can be done scaling the arbitrary resistor
RD placed at output of DAC. Of course, the smaller value of RD, the maximum will
be the force applicable. On the other hand, reducing RD we increase the effect of
the DAC noise on the actuator and then on the system.
Let’s say that we want to keep acting noise at the level of the sensing noise at 1Hz,
where DAC noise is ∼ 4× 10−6 V√

Hz . Indeed, looking at Fig. 9.4, most of the force is
done in the frequency band between 0.1Hz and 50Hz. So, a value of

Sacting (1Hz) =
∣∣∣∣∣1.5× 10−9m/s2

√
Hz

∣∣∣∣∣
2

(9.7)
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Figure 9.4.: Square root of feedback force PSD
√
Sf expressed in N√

Hz , simulated
in various environmental conditions at the Superattenuator top stage, with critical
damping.

would satisfy that condition in the bandwidth above 1Hz, with an even better
improvement for ω � ω0.
Of course DAC noise produces an equivalent noise in acceleration, being the voltage
proportional to the force, and the force proportional to the acceleration. This noise
in acceleration 9.7, relative to mass m = 439 g, is equivalent to a noise in force of
6.5× 10−10 N√

Hz and, using the efficiency 9.5, to a noise in voltage of RD · 22 pA√
Hz .

Comparing this with 9.6, we find that

RD = 200 kΩ

is the minimum value of RD that keep the effect of the DAC noise Sacting well below
Ssensing. With this choice, the coil is able to apply a force as large as

Fmax = 5V · 30N/A
200 kΩ = 750 µN

This value is sufficient to perform the critical damping because, according to Tab. 9.1,
it is 5 times grater than the expected RMS during calibration.
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DAC

RD = 200kΩ
A

RI = 3.2kΩ

L = 0.11H

B

Figure 9.5.: Voltage divider used to reduce the effects of DAC noise to the coil
actuator, whose internal resistance is RI = 3.2 kΩ [37] and the inductance L =
0.11H. To properly scale the DAC voltage we need a resistance RD = 200 kΩ.

Finally I show as the thermal noise of the components in the actuator does not
provide a significant contribution to the noise budget. The schematic diagram is
shown in Fig. 9.5: being the coil impedance negligible at the working frequency
(0.11H at ∼ 1Hz is equivalent less than 1 Ω), the current noise flowing in the circuit
(and thus generating a force in the coil actuator) is the sum of DAC and resistor
noises:

i2n =
v2
n,RD

+ v2
n,RI

+ v2
n,DAC

(RD +RI)2

where, at T = 300K,

√
v2
n,RD

=
√

4kTRD = 57 nV√
Hz√

v2
n,RI

=
√

4kTRI = 7.3 nV√
Hz

This clearly shows that such a voltage divider does not introduce significant additional
noise to the system, and that the main contribute comes from the DAC.

9.4. Total Noise Budget

The noise budget curve of the accelerometer, with the new controller, is presented
in Fig. 9.6. Now the statement “the signal-to-noise ratio cannot be improved using
a feedback control” made at the beginning of the thesis should become clear to the
reader: in the open-loop configuration, the red line would disappear from the noise
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Figure 9.6.: Advanced Virgo accelerometer noise budget

budget, and the only significant contribute would be represented by the thermal
noise of LVDT (the green line). The introduction of a control system is a compromise
between the sensitivity and the usability of the sensor.
A significant improvement could come from the use of a better DAC. Our group is
currently investigating the possibility to replace the AD1955 with less noisy devices:
it is likely that we are able to reduce of almost two order of magnitude the the acting
noise at 1Hz in the final version of the board. This would imply that the main
contribute of the noise budget at low frequencies will be the sensing noise indeed,
and also would make the 7 µm-range, presented in sec. 9.2.1, wider.

9.4.1. Comparison with Virgo/Virgo+ Analog Control

In Virgo and Virgo+, accelerometers had an analog controller with transfer function
6.12. Inserting it in the closed loop transfer function 9.3, and using 9.4 to get Sf (ω),
the variance of the force in the analog circuit

σ2
f = 1

2π

ˆ ∞
0

Sf (ω) dω
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9.4 Total Noise Budget

Critical damping (RMS) Analog PID (RMS)
x− x0 (nm) f (µN) x− x0 (nm) f (µN)

Normal conditions 10 17 2.6 40
Wind at 50 km/h 17 30 4.7 67

Earthquake in Japan 11 19 3.0 45
Calibration 1100 140 64 250

Table 9.2.: Comparison of RMS of feedback forces and average displacement

corresponded to the RMS values in sec. 9.4.1, where they are compared to the critical
damping controller.
In Fig. 9.7 the Virgo/Virgo+ power spectral density of the force Sf (ω) is compared
with the new one, when accelerometer is subject to white noise acceleration. With
PID controller, force was proportional to the acceleration in the bandwidth (the
voltage on the coil driver was taken as output, indeed). In the critical damping
configuration, the feedback force in the same condition is lower everywhere: it is
focused only around the resonance. This explain the values in sec. 9.4.1.
Finally, the noise budget of Virgo/Virgo+ accelerometer is presented in Fig. 9.8,
compared with the noise of the new digital control. [34] The dominant noise at low
frequencies was relative to the old ADC, with 1/f corner around 1Hz. With the
digital control, the 1/f noise of ADC is not a problem anymore, because they acquire
directly the high frequency signal and don’t introduce a significant contribute. On
the other hand, the digital control implies the use of a DAC to apply the feedback
force: as seen in the previous sections, the 1/f noise of AD1955 is the main contribute
to the noise budget. However, as explained in the previous section, this could be no
longer true with a better DAC.
Then, as with the critical damping control, the thermal noise of secondary coils
became dominant beyond 10Hz: of course it is an intrinsic property of the system,
independent of the controller used.
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10
Conclusions

It is less than two years from the beginning of the data acquisition, and the project
Advanced Virgo is going to make operative the interferometer with a never before
achieved sensitivity. To be ready to detect gravitational signals from many potential
sources around our galaxy, every single part of Virgo is undergoing several upgrades.
In this thesis I have presented a description as exhaustive as possible of horizontal
accelerometers, currently used over the Superattenuators to measure the seismic
noise. While the mechanics of the sensor will remain the same, the electronics
that controls accelerometers is completely rebuilt. In particular, a dedicated board,
hosting their analog controller in Virgo, disappears: the DSP of the new electronics
of the Superattenuator inertial control is enough powerful to take care also of the
control of accelerometers.
I have designed a digital control system for the horizontal accelerometers. It makes
possible to reduce by a factor 2 the external force applied to the pendulum for
the feedback control, with respect to the old controller used in Virgo and Virgo+.
This, together with the better performances of the new ADC and DAC, lets us
to increase of almost one order of magnitude the sensitivity of the sensors in the
frequency band from DC to 3Hz. Furthermore, this improvement could be even
larger if current digital-to-analog converters are replaced with better ones. Because
of the great importance of such a thing, our group is currently investigating this
possibility. In the future, the critical damping control have to be extended for vertical
accelerometers.
Using the noise levels of the new components, I have also defined a limit to the
dynamic range of the position of the pendulum inside the accelerometer: with the
current DAC, it must be kept within ∼ 7 µm from the center, in order to limit the
effects of the noise on primary coil of LVDT over the accelerometer sensitivity. Of
course, this range would be wider using a better DAC.
Eventually, I have created an algorithm to synthesize sinusoidal waves with a DDS,
and then to demodulate the signal from secondary coils of LVDT. Using a digital
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closed loop system, this algorithm measures the phase shift between reference wave
and signal, and then adjusts itself in order to get the best signal-to-noise ratio
from LVDT. This algorithm, implemented in FPGA, can be used not only for
accelerometers, but of course also for the others LVDTs used in Superattenuator
inertial control.
Furthermore, a purely digital control applied to accelerometers brings about a lot
of other advantages. For example, the DDS realized with the FPGA let us to do
without the commercial signal generators, that have been used so far in Virgo, one
for each Superattenuator, to drive LVDT inside the accelerometers. In addition to
an obvious savings opportunity relative to their maintenance, we can also suppose to
send signals at slightly different frequencies to the various LVDT, in order to avoid
possible electromagnetic interferences that could arise between sensors.
In conclusion, the potentialities of the new electronics are enormous. Besides the
inertial control of Superattenuators, the computational resources of DSP and FPGA
are sufficient to host many new features, compared to what it was in Virgo and
Virgo+.
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A
Mathematical Tools

A.1. Laplace Transform

Laplace transform is a linear operator of a function f (t) with a real argument t
(t ≥ 0) that transforms f (t) to a function F (s) with complex argument s, given by
the integral

L [f (t)] (s) = F (s) =
ˆ ∞

0+
f (τ) e−sτdτ (A.1)

This transformation is bijective for the majority of practical uses.

A.1.1. Inverse Laplace Transform

The inverse Laplace transform is

L−1 [F (s)] (t) = 1
2πi lim

T→∞

ˆ γ+iT

γ−iT
F (s)estds, (A.2)

where the integration is done along the vertical line Re(s) = γ in the complex plane
such that γ is greater than the real part of all singularities of F (s).

The set of values for which F (s) converges is known as the region of convergence.

A.1.2. Used Properties

Table of the used properties:
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Time domain Frequency domain
Linearity af (t) + bg (t) aF (s) + bG (s)

Differentiation f ′ (t) sF (s)− f (0)
Second differentiation f ′′ (t) s2F (s)− sf (0)− f ′ (0)
General differentiation f (n) (t) snF (s)−∑n

k=1 s
k−1f (n−k) (0)

Integration
´ t

0 f (t) dτ 1
s
F (s)

Convolution (f ∗ g) (t) F (s) ·G (s)
Unit impulse δ (t) 1

Unit box r (t) =
a−1 0 ≤ t ≤ a

0 elsewhere
esT 1−esT

sT

A.2. Z-Transform

In continuous-time system theory the Laplace transform can be considered as a
generalization of the Fourier transform. In a similar manner the Fourier transform
for discrete-time signals and systems of a sequence x (n)

X
(
eiω
)

=
+∞∑

n=−∞
x (n) e−iωn (A.3)

can be generalized in what is commonly referred to as the Z-transform. The Z-
transform X (z) of a sequence x (n) is defined as

Z [x (n)] (z) = X (z) =
+∞∑

n=−∞
x (n) z−n (A.4)

where z is a complex variable. Furthermore, by expressing z in polar form as z = reiω,
equation A.4 becomes

X
(
reiω

)
=

+∞∑
n=−∞

x (n) r−ne−iωn

Thus, according to equation A.3, the Z-transform of x (n) can be interpreted as the
Fourier transform of x (n) r−n.
Sometimes the Z-transform defined in equation A.4 is called two-sided Z-transform,
because there is also a similar functional

ZI [x (n)] (z) = XI (z) =
+∞∑
n=0

x (n) z−n (A.5)

that is defined one-sided Z-transform. Clearly, if x (n) = 0 for n < 0 the one-sided
and two-sided transforms are equivalent.
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A.2 Z-Transform

A.2.1. Region of Convergence

For any given sequence, the set of values of z for which the Z-transform converges
is called the region of convergence. Because of the multiplication of the sequence
by a real exponential r−n, it is possible for the Z-transform to converge even if the
Fourier transform does not. Usually, the region of convergence, in the z-plane, is an
annular region centered in the origin that can be as large as infinity.

A.2.2. Inverse Z-transform

There is also an inverse Z-transform, defined as

Z−1 [X (z)] (n) = x (n) = 1
2πi

˛
C

X (z) zn−1dz (A.6)

where C is a counterclockwise closed contour in the region of convergence of X (z)
and encircling the origin of the z-plane.

A.2.3. Convolution of Sequences

The convolution theorem of Laplace transform seen in equations 3.4 exists also for
the z-transform: if w (n) is the convolution of the two sequences x (n) and y (n),

w (n) =
+∞∑

k=−∞
x (k) y (n− k)

then the z transform of w (n) is the product of the Z-transform of x (n) and y (n)

W (z) = X (z) · Y (z)

A.2.4. Used Properties

Table of the used properties:

Time domain Z-domain
Linearity a1x1 (n) + a2x2 (n) a1X1 (z) + a2X2 (z)

Time shifting x (n− k) z−kX (z)
Convolution x1 (n) ∗ x2 (n) X1 (z) ·X2 (z)
Unit sample δ (n) 1
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A.3. Bilinear Transformation

Suppose we have the following first order differential equation

a1y
′(t) + a0y(t) = b0x(t) (A.7)

where, obviously, y′(t) is the time derivative of y(t). Using a Laplace transform and
assuming as initial condition y(0+) = 0 we get

a1sY (s) + a0Y (S) = b0X(s)

from which we obtain the transfer function

Ha(s) = Y (s)
X(s) = b0

a1s+ a0
(A.8)

Obviously we have

y(t) =
ˆ t

t0

y′(τ)dτ + y(t0)

and, putting t = nT and t0 = (n−1)T in this last equation (f = 1/T is the sampling
frequency), we get:

y(nT ) =
ˆ nT

(n−1)T
y′(τ)dτ + y((n− 1)T )

Approximating the integral by the trapezoidal rule we obtain:

y(nT ) ' y((n− 1)T ) + T

2 [y′(nT ) + y′((n− 1)T )] (A.9)

On the other hand we have from eq. A.7

y′(nT ) = −a0

a1
y(nT ) + b0

a1
x(nT )

putting this last equation into eq. A.9 we get

yn − yn−1 '
T

2

[
−a0

a1
(yn + yn−1) + b0

a1
(xn + xn−1)

]

where we’ve written yn instead of y(nT ). Now, using the Z-transform and remem-
bering that if xn → X(z) then xn−1 → z−1X(z), we obtain:

H(z) = Y (z)
X(z) = b0

a1
2
T

1−z−1

1+z−1 s+ a0
(A.10)
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A.3 Bilinear Transformation

Comparing the analog transfer function A.8 with the discrete one in A.10, we see
that we can obtain the latter from the former simply by substituting the s Laplace’s
variable with the following expression:

s→ 2
T

1− z−1

1 + z−1 (A.11)

Obviously we can obtain an analog transfer function from a discrete one using the
inverse transformation:

z → 1 + T/2 s
1− T/2 s (A.12)

The transformation A.11 is called bilinear transformation. We obtain it in the
case of a first order linear differential equation. Nevertheless its validity is more
general, because an N th-order linear differential equation can be written as a set of
N first order linear differential equations.
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B
Technical Tools

B.1. Mechanical Impedances

In the electrical world, the impedance is the measure of the opposition that a circuit
presents to a current when a voltage is applied, ans is represented as a complex
quantity Ze. Is defined as the complex ratio of the Laplace transforms of the voltage
V to the current I:

Ze = V

I
(B.1)

Under the assumption that all initial conditions are zero, the characteristic differential
equation of a series RLC circuit with applied an external voltage V is

LsI +RI + C−1 1
s
I = V (B.2)

Similarly, the characteristic differential equation of a forced damped harmonic
oscillator with null initial conditions is

ms2X + γsX + kX = F (B.3)

It’s easy to see that these two systems can be studied with the same mathematical
tools if we associate the physical quantities as shown in table B.1.
It follows that we can define a mechanical impedance Zm as the ratio of the external
force F to the velocity of the system v = sX:

Zm = F

v
(B.4)

This is a measure of how much a structure resists motion when subjected to a given
force, and has the dimension of a damping coefficient. It’s interesting to observe that
the the product of V and I, elements of equation X is dimensioned as a power, so as
that of F and v.
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Series RLC circuit Damped oscillator
I current ⇐⇒ sX velocity
L inductance ⇐⇒ m mass
R resistance ⇐⇒ γ damping coefficient
C−1 elastance ⇐⇒ k spring constant
V voltage ⇐⇒ F force

Table B.1.: Associations of electrical quantities and mechanical quantities.

B.2. Thermal Noise

The resistance is related to the thermal noise in a circuit. With no current applied,
the voltage measured across the two ends of a circuit is not null, and its power
spectral density is

v̄2
n = 4kTR (B.5)

where kT = 25.6meV = 4.11× 10−21 J at room temperature (298K) of the circuit
and R is the real part of its impedance. This is usually referred as Johnson–Nyquist
noise.
The same power spectral density can be extended to the mechanical world with the
associations in table B.1. This means that a mechanical system, e.g. a damped
harmonic oscillator, presents a noise in force whose power spectral density is

f̄ 2
n = 4kTγ (B.6)

or, using Q = mω0
γ

,

f̄ 2
n = 4kTmω0

Q
(B.7)
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C
Notes on Seismic Noise

C.1. An Analytic Approach

Instead of using the measured values of seismic noise, we can use the spectrum 5.1,
that allows a parametric solution:

Sx0 (f) ∼
∣∣∣∣∣∣A ·

(
1Hz
f

)2 m√
Hz

∣∣∣∣∣∣
2

(where A = 10−7). According to 9.4, this induce, in the critical damped system, a
feedback force with power spectral density of

Sf (ω) = |T (iω)|2 Sx0 (ω)
This becomes

Sf (ω) =
∣∣∣∣∣− Γ (iω)3

(iω)2 + 2ω0 (iω) + ω2
0

∣∣∣∣∣
2 (4π2A

ω2

)2

=
(

4π2ΓAω
ω2 + ω2

0

)2

With one of these spectra, it’s possible to get the variance of the force, integrating
the PSD in ω

σ2
f = 1

2π

ˆ ∞
0

Sf (ω) dω

= 1
2π

ˆ ∞
0

(
4π2ΓAω
ω2 + ω2

0

)2

dω

= (4π2ΓA)2

2π

ˆ ∞
0

ω2

(ω2 + ω2
0)2dω

= (4π2ΓA)2

2π
π

4ω0
= 2π4Γ2A2

ω0

119
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Using the right values, this corresponds to a standard deviation

σf = 40 µN

that is consistent with estimations presented in Tab. 9.1.
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Nomenclature

ADC Analog-to-Digital converter

AdV Advanced Virgo

BBN Big Bang Nucleosynthesis

CMB Cosmic Microwave Background

DAC Digital-to-Analog converter

DSP Digital Signal Processor

F0 Filter 0

F7 Filter 7

FIFO First In, First Out

FPGA Field Programmable Gate Array

GR General Relativity

HRG Hemispherical Resonator Gyroscope

ID Inertial Damping

IP Inverted Pendulum

LQG Linear-Quadratic-Gaussian

LTI Linear Time-Invariant system

LUT Look-Up Table
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Nomenclature

LVDT Linear Variable Differential Transformer

MIMO Multiple-Input and Multiple-Output

NCO Numerically Controlled Oscillator

PA Phase Accumulator

PAC Phase-to-Amplitude Converter

PID Proportional-Integral-Derivative controller

PLL Phase-Locked Loop

PSD Power Spectral Density

SA Superattenuator

SF Standard Filter

SGWB Stochastic Gravitational-Wave Background

SISO Single-Input and Single-Output

SNR Signal-to-Noise Ratio

SR Special Theory of Relativity
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