
Autore:

Roberta Daidone ____________________

Relatore:

Prof. Gianluca Dini ____________________

Performance Evaluation of
Security Solutions

for Wireless Sensor Networks

Anno 2014

UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in
INGEGNERIA DELL’INFORMAZIONE

Tesi di Dottorato di Ricerca

A me stessa.
A chi c’è sempre stato.

A chi è arrivato giusto in tempo.

Sommario

Negli ultimi anni, le comunicazioni wireless hanno iniziato a coinvolgere non solo i
computer, ma una grande quantità di oggetti eterogenei. Le Wireless Sensor Network
(WSN) contribuiscono al nuovo paradigma del pervasive computing, traducendosi in
nuovi requisiti per nuove applicazioni. Le WSN sono impiegate non soltanto indipen-
dentemente, ma anche nei Cooperating Objects System (COS), dove diversi agenti
fisici mobili condividono l’ambiente operativo per perseguire uno scopo comune.

I nodi sensori tipicamente possiedono risorse limitate e vengono posti in zone
ostili. WSN e COS sono un obiettivo invitante per un avversario, in quanto una vio-
lazione della sicurezza delle comunicazioni può facilmente tradursi in una violazione
della sicurezza del sistema, con il rischio di danneggiare persone o cose. I principali
requisiti di sicurezza per le WSN sono le comunicazioni sicure, la gestione delle chiavi
crittografiche e il bootstrap sicuro. In genere, la sicurezza comporta operazioni pesan-
ti dal punto di vista computazionale, mentre i sensori dispongono di risorse limitate.
Ciò significa che i requisiti di sicurezza di una WSN vanno soddisfatti assicurando un
impatto leggero sulle prestazioni, in termini di occupazione di memoria, carico della
rete e consumo energetico.

Questo lavoro di tesi parte da una valutazione delle prestazioni della sicurezza
dello standard IEEE 802.15.4, in termini di occupazione di memoria, prestazioni del-
la rete e consumo energetico. Poi viene presentata la soluzione a una vulnerabilità
dello standard IEEE 802.15.4, che causa un attacco di Denial of Service selettivo.
Infine, si presenta PLASA: un’architettura di sicurezza per reti di sensori modulare
e riconfigurabile. PLASA estende l’architettura di STaR. STaR è un modulo per co-
municazioni sicure da noi progettato per garantire confidenzialità e/o autenticità delle
comunicazioni in maniera trasparente e flessibile. PLASA parte dal nucleo di STaR,
introducendo i moduli per la gestione delle chiavi e per il bootstrap sicuro, così da
fornire un sistema fruibile non solo per le WSN, ma per i COS nella loro interezza.

I

II

Abstract

In the recent years, wireless communication is involving not only computers, but a mul-
titude of heterogeneous devices. Wireless Sensor Networks (WSNs) contribute to the
new paradigm of pervasive computing, and this translates into new requirements for
new applications. WSNs are employed not only on their own, but also in Cooperating
Objects Systems (COSs), where mobile physical agents share the same environment
to fulfill their tasks, either in group or in isolation.

Sensor nodes are typically resource constrained devices deployed in unattended,
possibly hostile environments. WSNs and COSs are a tempting target for an adver-
sary, since a security infringement may easily translate into a safety one, with possible
consequences in terms of damages to things and injures to people. Main security re-
quirements for WSNs are secure communication, key management and secure boot-
strapping. Security usually involves resource greedy operations, while sensors are re-
source constrained devices. This means that security requirements must be satisfied
assuring a lightweight impact in terms of memory occupancy, network performance
and energy consumption.

In this thesis work, we start from a performance evaluation of the security sublayer
of the IEEE 802.15.4 standard in terms of memory occupancy, network performance
and energy consumption. Then, present and evaluate a solution to a vulnerability of
the IEEE 802.15.4 standard that causes a selective Denial of Service attack. Finally,
we present PLASA: a modular and reconfigurable security architecture for WSNs.
PLASA extends the STaR architecture. STaR is a secure communication module we
designed to provide confidentiality and/or authenticity of communications in a trans-
parent and flexible manner. PLASA enhances STaR, introducing modules for key man-
agement and secure bootstrapping, so providing a complete system that is suitable
not only for the WSN, but for the entire COS.

III

IV

Contents

1 Introduction . 1

2 The IEEE 802.15.4 security sublayer . 3
2.1 Related work . 5
2.2 IEEE 802.15.4: an overview . 6

2.2.1 IEEE 802.15.4 security sublayer . 8
2.2.2 Security operations . 11
2.2.3 The CONET open implementation of IEEE 802.15.4 12

2.3 Evaluation . 13
2.3.1 Analysis . 13

Latency and goodput . 14
Per-packet energy consumption . 15
Evaluation of parameters . 16
Analytical results . 18
Experimental validation of the analytical model 22

2.3.2 Simulation analysis . 23
2.3.3 Experimental evaluation of memory overhead 28

3 Selective Denial of Service in IEEE 802.15.4 networks 31
3.1 Wireless Denial of Service: the jamming attack . 32
3.2 IEEE 802.15.4 MAC overview . 34

3.2.1 Guaranteed Time Slot (GTS) . 36
3.2.2 Security services . 38

3.3 GTS-based selective jamming attack . 39
3.4 Selective Jamming Resistant GTS (SJRG) . 40

3.4.1 Discussion on dictionary attack . 42
3.5 SJRG implementation . 43
3.6 SJRG evaluation . 44

3.6.1 Effectiveness . 44
3.6.2 Memory footprint . 45

V

3.6.3 Network performance . 46
3.6.4 Energy consumption . 48
3.6.5 On scalability . 49

4 PLASA . 51
4.1 Related work . 52
4.2 PLASA architecture . 53

4.2.1 STaR module . 54
STaR security services . 56
STaR communication support . 57
STaR dynamic reconfiguration . 58

4.2.2 Authentication module . 60
4.2.3 KeyDB module . 61
4.2.4 Key management module functions . 61

4.3 PLASA performance evaluation . 62
4.3.1 Memory occupancy . 62
4.3.2 PLASA communication and processing overhead 64
4.3.3 PLASA energy consumption . 66

4.4 PLASA integration study case . 67
4.4.1 PLASA to protect a COS from scratch . 68

PLASA integration . 71

5 Conclusion . 73

References . 75

VI

List of Figures

2.1 IEEE 802.15.4 superframe structure. 7
2.2 Auxiliary Security Header (ASH) structure. 9
2.3 CTR security level. 9
2.4 CBC-MAC security level. 9
2.5 CCM security level. 9
2.6 Format of ASH in KeyIdMode0. 10
2.7 Format of ASH in KeyIdMode1. 11
2.8 Format of ASH in KeyIdMode2. 11
2.9 Format of ASH in KeyIdMode3. 11
2.10 Latency timeline without security. 14
2.11 Latency timeline with security. 14
2.12 Latency for HW-based cryptography with different security levels. 19
2.13 Goodput for HW-based cryptography with different security levels. 19
2.14 Energy for HW-based cryptography with different security levels. 20
2.15 Latency for SW-based cryptography with different security levels. 20
2.16 Goodput for SW-based cryptography with different security levels. 21
2.17 Energy for SW-based cryptography with different security levels. 21
2.18 Simulated latency for HW-based cryptography. 24
2.19 Simulated goodput for HW-based cryptography. 25
2.20 Simulated energy consumption for HW-based cryptography. 25
2.21 Simulated latency for SW-based cryptography. 27
2.22 Simulated goodput for SW-based cryptography. 27
2.23 Simulated energy consumption for SW-based cryptography. 28
2.24 ROM memory overhead with HW-based cryptography. 29
2.25 ROM memory overhead with SW-based cryptography. 29
2.26 RAM memory overhead. 30

3.1 Beacon frame format. 35
3.2 IEEE 802.15.4 superframe structure. 35

VII

3.3 GTS allocation and deallocation requests. 36
3.4 GTS request command format. 37
3.5 Format of the GTS fields. 37
3.6 Format of the GTS descriptor. 38
3.7 Example of GTS-based selective jamming attack. 39
3.8 SJRG memory occupancy on Tmote Sky motes. 46

4.1 PLASA component overview. 53
4.2 Example of packet processed by STaR. 55
4.3 STaR architecture. 55
4.4 Outgoing packet processing. 58
4.5 Incoming packet processing. 58
4.6 STaR control packet format. 59
4.7 PLASA memory footprint. 63
4.8 PLASA secured COS scenario. 68

VIII

List of Tables

2.1 Security levels. 10
2.2 Size of the ASH as a function of the KeyIdMode. 11
2.3 Parameters. 17
2.4 Frame expansion due to security. Values are in bytes. 18
2.5 Experimental vs analytical latency. Values are in ms. 23
2.6 Experimental vs analytical goodput. Values are in Kbit/s. 23
2.7 Simulative vs. experimental latency and goodput with HW-based

encryption. 26

3.1 List of acronyms. 34
3.2 SJRG processing overhead contributions. 47
3.3 SJRG transmission overhead contributions. 48
3.4 SJRG energy consumption contributions. 48

4.1 Detailed memory occupancy. 62
4.2 PLASA dproc contributions for PLASA modules. 65
4.3 PLASA dtx contributions for PLASA modules. 65
4.4 PLASA energy consumption contributions. 67

IX

X

1

Introduction

In the recent years, Wireless Sensor Networks (WSNs) have received an increasing
amount of attention and have been adopted in many application scenarios, from en-
vironmental to health care monitoring applications. In such scenarios, sensor nodes
collect environmental data, and transmit them to a central base station through a
wireless network. WSNs have been used chiefly for scientific purposes, where an
adversary has little incentive to attack sensors [1].

Sensor nodes are typically resource constrained devices deployed in unattended,
possibly hostile environments. This implies that devices are exposed to the risk of
being compromised. In order to avoid this, security should be introduced in WSNs.
Introducing security in WSNs increases the demand for computational resources and
memory to store temporary data. These extra requirements may become an issue
because sensors are resource constrained devices, with scarce computational power
and shortage of memory. Also, sensors are usually battery powered, and security
operations have an impact also on battery lifetime.

In order to provide the above mentioned applications with secure communication,
we recommend to keep into account the following issues.

• Evaluate security costs in advance to trade-off sensors performance and security.
Once security costs are known, it is possible to choose the best solution in terms
of both security and network sustainability.

• Rely on modular and flexible security architectures, so making it possible to
choose the best solution in terms of both security and network sustainability.

• Design mechanisms that provide different security policies and allow to switch
from a policy to another, assuring high adaptation to changes in the network.

In this Ph.D. dissertation, we consider the above mentioned assertions about se-
curity in WSNs, and support their foundation by means of the following contributions.

In Chapter 2 we present a thorough investigation of costs of the IEEE 802.15.4 se-
curity sublayer. We have evaluated the costs of different security settings provided by
the IEEE 802.15.4 standard and cross-validated them by means of analysis, simu-

1

CHAPTER 1. INTRODUCTION

lations and real experiments. Real experiments result in a twofold contribution: they
provide validation of analysis and simulations, but also allow to evaluate the impact of
security on memory occupancy. Realizing our own IEEE 802.15.4 security sublayer
implementation [2] for TinyOS [3] and Tmote Sky motes [4], gave us the knowledge
of constraints in the number of Tmote Sky motes in a PAN when using security.

In Chapter 3 we complete the work of Sokullu et al. [5, 6] enlarging the range
of possible GTS-based selective jamming incarnations with the sniper attack . Also,
we present an IEEE 802.15.4 standard-compliant countermeasure against the GTS-
based selective jamming attack, i.e. Selective Jamming Resistant GTS (SJRG). SJRG
is based on two basic mechanisms: i) protection of secrecy and integrity of beacon
and GTS request frames by means of encryption; and ii) protection from network traffic
analysis by means of intra-Slot randomization. While several solutions can be devised,
the challenge is to devise one that is compliant with the IEEE 802.15.4 standard. We
took up the challenge and conceived the aforementioned mechanisms in such a way
that SJRG is fully compliant with IEEE 802.15.4.

In Chapter 4 we present PLASA, a modular security suite to provide WSNs with
secure communications, key management and secure bootstrapping. PLASA includes
STaR, a modular, reconfigurable and transparent software component for secure com-
munications in WSNs. STaR guarantees confidentiality, integrity, and authenticity by
means of encryption and/or authentication. STaR is modular because it separates in-
terfaces from their implementations. STaR is reconfigurable because it makes it pos-
sible to change security policies on a per packet basis at runtime. That is, it assures a
fine grained adaptability to possible changes in security requirements. STaR is trans-
parent, because the application can still rely on the communication interface already
in use. PLASA’s modularity allows for loading/unloading PLASA modules to match se-
curity requirements, add new features, or extend existing ones. This clearly separates
the implementation of the application from PLASA components. PLASA characteris-
tics allow for reusing application components in scenarios where security becomes
relevant. Also, PLASA is dynamically reconfigurable because it can switch from a se-
curity procedure to another while the application is running.

2

2

The IEEE 802.15.4 security sublayer

IEEE 802.15.4 is a standard addressing low-rate wireless personal area networks
with a focus on enabling low power devices, personal area networks, and wireless
sensor networks (WSNs). The standard is characterized by maintaining a high level
of simplicity, allowing for low cost and low power implementations [7]. IEEE 802.15.4 is
adopted in a wide range of application scenarios, ranging from structural monitoring
to health care, from military surveillance to industrial automation. Most of these appli-
cations require forms of secure communication. For this reason, IEEE 802.15.4 spec-
ification includes a number of security provisions and options that constitute the se-
curity sublayer [7]. The security sublayer provides link-level security services by guar-
anteeing confidentiality and/or authenticity and replay detection on a per-frame basis.
Specifically, it provides two security parameters, the security level, which specifies one
(out of eight) possible security service, and the key identifier mode, which specifies
one (out of four) possible way to store and lookup cryptographic keys.

Security and performance of IEEE 802.15.4 have been thoroughly analyzed. For
instance, a performance analysis of IEEE 802.15.4 without considering security has
been performed in quite a few papers including [8, 9, 10]. In addition, a security anal-
ysis of IEEE 802.15.4 security sublayer, its services, vulnerabilities, and related coun-
termeasures, has been presented in [11, 12, 13]. However, a thorough analysis of
the impact that the security sublayer has on the overall IEEE 802.15.4 performance is
missing. Some related works have been presented but they focus on specific aspects.
For example, [11, 13, 14, 15, 16, 17, 18] deal with the cost for the sensor node of using
off-the-shelf ciphers, encryption modes, and authentication algorithms in terms of en-
ergy, storage and computing overhead. Other works focus instead on the cost of key
establishment, an important although collateral aspect [9, 19, 20, 21]. However, what it
is really missing is an analysis providing quantitative indications regarding the impact
that the security sublayer has on the overall standard performance. We believe that
this analysis is crucial. Security and performance compete for the same system re-
sources, namely memory, CPU, bandwidth and energy, which are scarce in low power,
low cost sensor devices. Therefore, quantitative indications regarding resource con-

3

CHAPTER 2. THE IEEE 802.15.4 SECURITY SUBLAYER

sumption are fundamental to design and implement adequate performance-security
trade-offs in IEEE 802.15.4-based applications.

In this dissertation we present a performance analysis of the IEEE 802.15.4 se-
curity sublayer. In particular we evaluate the impact that security levels and key iden-
tification modes have on network performance indices such as latency, goodput, and
energy consumption. The objective of our analysis is twofold. On the one hand, we
aim at evaluating how security impacts on network performance, i.e., how security
services (e.g. confidentiality and/or authenticity and replay detection) and security op-
tions (e.g., the length of the message authentication code) influence performance. On
the other hand, we aim at devising a cost model that allows designers and imple-
menters to carry out, for example at pre-deployment, simulation and/or performance
analysis that include security too.

IEEE 802.15.4 security sublayer provides its services to above network and ap-
plication layers. Although IEEE 802.15.4 security sublayer is the natural choice for
ZigBee [22], nevertheless this is not the only option. Actually, different network and/or
application protocols, can be deployed on top of the IEEE 802.15.4 MAC layer [23].
For this reason, we have chosen to evaluate the performance of the IEEE 802.15.4 se-
curity sublayer in isolation, irrespective of the actual network or application protocols
that will be layered on top of it, so as to give our work a wider and more general scope.

We claim that our work has the following merits. First, we show that i) securing
traffic has performance costs due to the increased length of a secured frame and the
additional computations required for security processing; and, ii) these costs depend
on the chosen security parameters. Second, we show that the highest cost has to be
paid when we switch from unsecured to secured traffic. However, when traffic is se-
cured via hardware-based cryptography, the chosen security service has little, or even
negligible, impact on performance. Conversely, when traffic is secured via software-
based cryptography, the performance penalty strongly depends on the chosen secu-
rity level. Third, we propose a simple yet effective analytical model that we also use to
extend an Ns2-based simulator of the IEEE 802.15.4 MAC protocol. The model and
the extended simulator have been experimentally validated by means of real measure-
ments on an open-source implementation of the IEEE 802.15.4 for TinyOS on Tmote
Sky motes [2, 24]. Finally, the availability of an implementation of the standard has
allowed us to evaluate the memory overhead related to the security sublayer. It turns
out that, while the code implementing the sublayer has limited memory occupancy,
the internal data structures may constitute a constraint to the system scalability.

The closest work to ours is [11]. However, in this work Chen et al. present a per-
formance analysis that is only based on simulations and lacks of any experimental
validation. In addition, they neglect the impact of the key identifier mode, and refer
to a partial implementation of the security sublayer that fails to capture the memory
costs and the consequent constraints on the system scalability.

4

2.1. RELATED WORK

2.1 Related work

Security of IEEE 802.15.4 has been largely investigated. Many works have focused on
the analysis of the security services offered by the IEEE 802.15.4 security sublayer,
its vulnerabilities, the possible attacks and related countermeasures. Among them,
relevant examples are [12, 13, 25]. In addition to this, another branch of research has
focused on the impact of security on performance. For instance, several works have
investigated the cost of using off-the-shelf ciphers, encryption modes, and authentica-
tion algorithms on wireless sensor nodes in terms of energy consumption, storage and
computing overhead. Relevant examples are [14, 15, 16, 17, 26, 27]. However, none
of these works focuses on the performance implications of IEEE 802.15.4 security.

Xiao et al. and Zhu et al. explored first the impact of security on performance
[13, 18]. However, these works greatly differ from ours for several reasons. They both
investigate the cost of a software implementation of the ciphers, encryption modes,
and authentication algorithms. Such an investigation only focuses on performance
implications on a single node. In contrast, we refer to more efficient sensor node
architectures where cryptographic transformations are applied at the hardware level
by the communication device. Also, we focus on the overall wireless sensor network
performance rather than on a single node. Last, but not the least, we refer to the
current version of the standard (released in 2006 [7]) whereas Zhu et al. and Xiao et
al. refer to the 2003 version [28]. These versions greatly differ in the security sublayer.

The closest work to ours is certainly [11]. Like us, Chen et al. refer to the 2006
version of the standard and evaluate the impact of the security sublayer on the over-
all network performance. They mainly focus on the influence of the packet size and
inter-arrival time, whereas we mainly focus on the impact of the security level and
the key identification mode. In addition, there are other strong differences. First of all,
like [13, 18], Chen et al. consider an incomplete implementation of the security sub-
layer. Actually, their implementation is limited to the cryptographic transformations but
completely neglects the data structures required by the security sublayer and, conse-
quently, their impact on memory consumption. Therefore, they fail to capture an impor-
tant factor limiting the overall scalability. As we consider a complete implementation,
we are instead able to capture such a scalability issue (Section 2.3.3). Furthermore,
they only consider a software implementation of AES-128 [29], the block cipher at the
basis of the cryptographic transformations. More in details, they only refer to 20-byte
payload frames and consider a 26 ms per-block encryption/decryption delay, a partic-
ularly large value derived in a previous work [30]. Instead, we consider several payload
sizes (namely 2, 18, and 80 bytes), and use both hardware-based and software-based
cryptography. Specifically, we consider hardware-based cryptography supported by
the CC2420 communication device [31], and software-based cryptography based on
an implementation of AES-128 taken from the TinyOS security algorithms repository
[32]. From our experiments it turns out that hardware-based cryptography accounts
for an approximately constant overhead of 1.4 ms. Furthermore, software-based cryp-

5

CHAPTER 2. THE IEEE 802.15.4 SECURITY SUBLAYER

tography introduces an initial computing delay of 0.74 ms for key scheduling and an
additional computing delay of 1.93 ms for each encrypted/decrypted block (see Sec-
tion 2.3.1). It follows that performance indicators reported by Chen et. al. in [11] result
about one order of magnitude larger than ours in the case of software-based cryptog-
raphy and two orders of magnitude larger in the case of hardware-based cryptography
(see Section 2.3). Finally, Chen et al.’s analysis is only based on simulation without
any experimental validation of the results. The only measurements account for the
cost of software cryptography but they come from a previous paper [30]. In contrast,
we present an analytical model, an extended simulator, and a set of experiments on
real sensor nodes validating both the model and the simulation results. The work we
present in this chapter extends a work presented in [33].

Using security mechanisms requires establishing the cryptographic keys to be
used by the encryption algorithms. However, the IEEE 802.15.4 security sublayer
does not specify any key establishment scheme and, for this reason, we will not dis-
cuss this issue any further in the rest of the chapter. Notwithstanding, it is important
to notice here that, due to the limited resources and the large scale of WSNs, the key
management scheme for desktop- and server-computing are generally not suitable.
Therefore, key management and its performance in WSNs has become a very active
research topic [34, 35]. Many key management schemes have been proposed and
evaluated, that are ready to use in IEEE 802.15.4 [19, 34, 36, 37]. Relevant examples
are [20, 38, 39, 40].

Finally, we would like to spend a comment on [41]. TinySec is not compliant with
IEEE 802.15.4. Actually, it can be considered an alternative solution to link-level secu-
rity. However, from a performance point of view, Karloff et al. achieve similar conclu-
sions as ours. Namely, much of the overhead can be fully explained by the increased
packet length and additional computations that security imposes.

2.2 IEEE 802.15.4: an overview

In this section we provide an overview of the IEEE 802.15.4 standard, with a focus on
the CSMA/CA network multiple access protocol. The reader may refer to the standard
[7] for further details.

IEEE 802.15.4 is a standard for low-rate, low-power Personal Area Networks
(PANs). The standard defines two different types of device, namely Reduced-Function
Devices (RFDs) and Full-Function Devices (FFDs). RFDs are intended to perform
simple operations and typically feature minimal resources in terms of memory, stor-
age and processing capabilities. In contrast, FFDs may have more resources and can
fulfill network management tasks. A device may play one of the following roles: ordi-
nary device, coordinator, or PAN coordinator. An RFD can only be an ordinary device,
whereas an FFD can play any role. A network may have one or more coordinators
but only one PAN coordinator that is selected among the coordinators. A coordinator
is responsible to manage a subset of ordinary nodes by relaying messages among

6

2.2. IEEE 802.15.4: AN OVERVIEW

them. In order to communicate, ordinary nodes must associate with a coordinator.
IEEE 802.15.4 supports two network topologies, namely star, and peer to peer. The
former one is single-hop, whereas the latter is multi-hop. Also, the standard defines
two channel access modes, namely, beacon-enabled and nonbeacon-enabled. In the
beacon-enabled mode, the PAN coordinator periodically broadcasts beacon frames
to synchronize channel access. In the nonbeacon-enabled mode, coordinators do not
emit beacon frames and devices transmit frames without waiting for beacons. In this
dissertation we focus on the beacon-enabled mode.

Figure 2.1: IEEE 802.15.4 superframe structure.

With reference to Figure 2.1, in the beacon-enabled mode, two consecutive bea-
cons bound a superframe. A superframe is divided into superframe slots whose du-
ration is 320 µs. All operations are slot-aligned. A superframe has an active portion
and an optional inactive portion. The PAN coordinator can switch to low-power mode
during the inactive portion.

The active portion of a superframe may be divided in two periods, the Contention
Access Period (CAP) and, optionally, the Contention Free Period (CFP). The Con-
tention Access Period starts immediately after the beacon. The Contention Free Pe-
riod, if present, goes from the end of the Contention Access Period to the end of
the active portion. The Contention Free Period consists in a collection of Guaranteed
Time Slots (GTSs) that are allocated by the PAN coordinator to requesting devices in
order to let them access the medium without contention. In this dissertation we will
focus on the Contention Access Period.

In the Contention Access Period sensor nodes use the Carrier Sense Multiple Ac-
cess with Collision Avoidance (CSMA/CA) protocol to access the shared communica-
tion medium and avoid collisions. The access protocol is organized in backoff stages.
Initially, a sensor node waits for a random backoff interval, which is a time interval
multiple of the superframe slot. At the end of this waiting, the sensor node performs
two consecutive Clear Channel Assessment (CCA) operations, to ascertain that the
channel is free. If the channel is found busy at least once, the sensor node starts
another backoff stage with a longer backoff period (if the maximum allowed number
of backoff stages is exceeded the frame is dropped). Specifically, the backoff win-
dow is doubled at each backoff stage, unless the maximum allowed value has been

7

CHAPTER 2. THE IEEE 802.15.4 SECURITY SUBLAYER

reached. On the contrary, if the channel results free twice, the sensor node sends the
data frame and waits for the related ACK frame. Upon receiving a frame correctly, the
recipient replies with an ACK without contention. If the ACK is not received within a
predefined time interval, the sender retransmits the data frame (unless the maximum
number of retransmissions has been exceeded).

2.2.1 IEEE 802.15.4 security sublayer

The IEEE 802.15.4 security sublayer optionally provides link-level security services to
the higher layers. In general, link-level security secures the wireless link and allows
applications to function at least as securely as they would do over a wired network.
It follows that link-level security allows a seamless integration of wireless networks
into existing wired networks and provides the greatest ease of deployment among
currently available network cryptographic approaches [42]. Furthermore, specifically
in a WSN, link-layer security supports in-network processing, passive participation
and local broadcast to save traffic and reduce energy [41, 43]. The two other likely
alternatives, namely end-to-end security at the application layer and end-to-end se-
curity at the transport layer, provide a high level of security, but require a complex
setup of cryptographic keys, and neither guarantee seamless integration nor support
in-network processing, passive participation and local broadcast. Of course, link-level
security and end-to-end security mechanisms can co-exist. Security at multiple places
in the protocol stack is not considered harmful and constitutes a means to respond to
demand for more security with yet more sophisticated use of cryptography [42, 43].

The IEEE 802.15.4 security sublayer guarantees data confidentiality, data authen-
ticity and replay detection on a per-frame basis. ACK frames are not secured. A frame
can be secured according to security levels. Specifically, three different security levels
are defined: the CTR security level provides confidentiality; the CBC-MAC security
level provides authentication and replay detection; and, finally, the CCM security level
provides authentication and confidentiality. In order to implement the cryptographic
transformations required by the security levels, the standard uses the Advanced En-
cryption Standard (AES) block cipher [29]. AES has a fixed block size of 128 bits and
a variable key size of 128, 192, or 256 bits. IEEE 802.15.4 uses 128-bits keys only.

IEEE 802.15.4 does not define any key establishment schemes, which are en-
trusted to the higher layers. In practice, the standard assumes that both senders and
recipients pre-share common security settings and store the needed security material
before secure communications can actually take place. However, IEEE 802.15.4 pro-
vides four Key Identifier Modes to identify and retrieve a cryptographic key to se-
cure/unsecure a frame.

An unsecured frame is composed of three fields, namely a MAC Header (7–23
bytes), and a variable length Payload (0–118 bytes) and a Frame Check Sequence
(FCS, 2 bytes). A secured frame contains an additional header called the Auxiliary
Security Header (ASH), and, if the security level includes authentication, the Message

8

2.2. IEEE 802.15.4: AN OVERVIEW

Figure 2.2: Auxiliary Security Header (ASH) structure.

Integrity Code (MIC). The ASH carries the information required for security processing
and frame securing and unsecuring. In a secured frame, the ASH is placed next to the
standard MAC header (Figure 2.2). The ASH is a 5–14 byte data structure composed
of three fields: i) the Security Control Header (1 byte) which specifies the security level
(3-bits SecLevel sub-field) and the Key Identifier Mode (2-bits KeyIdMode sub-field);
ii) the Frame Counter (4 bytes) for the anti-replay service; and, finally, iii) the Key
Identifier Field (0–9 bytes) that contains information to identify the key to unsecure a
frame. The Auxiliary Security Header (ASH) is transmitted in the clear but it can be
authenticated as described in the following.

Figure 2.3: CTR security level.

Figure 2.4: CBC-MAC security level.

Figure 2.5: CCM security level.

9

CHAPTER 2. THE IEEE 802.15.4 SECURITY SUBLAYER

Security levels are depicted in Figures 2.3, 2.4, and 2.5. The CTR security level
secures a frame by encrypting its payload in the counter mode (Figure 2.3). As a rule
of thumb, the CTR security level requires a block cipher encryption operation for each
block to encrypt. The CBC-MAC security level secures a frame by authenticating the
frame header, the ASH, and the payload (Figure 2.4). The CBC-MAC security level
initially computes a 128-bit Message Integrity Code (MIC) by using the AES block
cipher in the cipher-block-chaining mode. Then, the MIC is truncated and appended to
the frame. The MIC can be truncated at 4, 8 or 16 bytes, so leading to three variations
of CBC-MAC of increasing security, namely CBC-MAC-4, CBC-MAC-8, and CBC-
MAC-16, respectively. As a rule of thumb, the CBC-MAC security level requires a block
cipher encryption operation for each block to authenticate. Finally, the CCM security
level secures a frame by using the AES block cipher in the counter with CBC-MAC
mode (Figure 2.5). The CCM security level initially authenticates the frame header, the
ASH, and the payload as in the CBC-MAC security level. Like the CBC-MAC security
level, the MIC can be truncated at 4, 8, or 16 bytes so producing three variations of
the CCM of increasing security, namely CCM-4, CCM-8, and CCM-16, respectively.
Finally, CCM security level encrypts the resulting MIC and the payload in the counter
mode. The CCM security level requires one block cipher encryption operation for each
block of encrypted or authenticated fields (i.e. frame header, ASH and MIC) and two
encryption operations for the payload, that is both authenticated and encrypted.

Security mode
Data Data Replay MIC size

confidentiality authenticity detection (bytes)
CTR ON OFF ON -

CBC-MAC-4 OFF ON ON 4
CBC-MAC-8 OFF ON ON 8
CBC-MAC-16 OFF ON ON 16

CCM-4 ON ON ON 4
CCM-8 ON ON ON 8
CCM-16 ON ON ON 16

Table 2.1: Security levels.

Table 2.1 gives an overview of the available security levels. For each security level,
the table specifies the security services it provides (i.e. “Confidentiality,” “Authentica-
tion,” and “Replay detection”). If a security level introduces a MIC, column “MIC size”
specifies the corresponding length in bytes.

Figure 2.6: Format of ASH in KeyIdMode0.

10

2.2. IEEE 802.15.4: AN OVERVIEW

Figure 2.7: Format of ASH in KeyIdMode1.

Figure 2.8: Format of ASH in KeyIdMode2.

Figure 2.9: Format of ASH in KeyIdMode3.

Figures 2.6, 2.7. 2.8 and 2.9 show the format of the ASH depending on the key
identifier mode. In the case of Key Identifier Mode 0 (KeyIdMode0), the ASH does
not include any Key Identifier Field and security operations rely on a pre-shared static
default key (Figure 2.6). In the case of Key Identifier Mode 1 (Figure 2.7), the Key
Identifier Field contains the Key Index sub-field only (1 byte). In the case of Key Iden-
tifier Modes 2 and 3 (KeyIdMode2 and KeyIdMode3), the Key Identifier Field contains
both the Key Index and Key Source subfields. The Key Source Subfield is four bytes
in the KeyIdMode2 (Figure 2.8) and eight bytes in the KeyIdMode3 (Figure 2.9).

KeyIdMode ASH size (bytes)
0 5
1 6
2 10
3 14

Table 2.2: Size of the ASH as a function of the KeyIdMode.

Table 2.2 reports the size of the Auxiliary Security Header (ASH) as a function of
the key identifier mode.

2.2.2 Security operations

The standard specifies a number of security operations, namely the security proce-
dures and sub-procedures. A thorough and detailed description of these operations
is beyond the scope of this dissertation (the interested reader may directly refer to

11

CHAPTER 2. THE IEEE 802.15.4 SECURITY SUBLAYER

the standard [7]). However, in this section, we give a very concise description of the
operations in order to convey the intuition of the computations they carry out and the
computing overhead they imply. In particular, we highlight that security operations in-
volve not only cryptographic transformations but also management operations, such
as frame parsing and data structures lookups.

The standard considers two main security procedures, the outgoing frame security
procedure, performed on the sending side upon frame transmission, and the incom-
ing frame security procedure, performed on the receiving side upon frame reception.
These procedures exploit two main data structures, the Key Table and the Device
Table. The Key Table stores the cryptographic keys used by the node as well as infor-
mation about the usage of these keys. Typically, the Key Table is accessed using the
pair (Key Source, Key Index) as search key to retrieve the cryptographic key identified
by such a pair, the list of nodes using such a key, and the types of frames (beacon,
data, command) to be protected by means of such a key. The Device Table records
the devices with which the node is communicating. Typically, the Device Table is ac-
cessed using the device identifier as search key to retrieve the last value of the frame
counter received from that device.

The outgoing frame security procedure receives the unsecured frame, the security
level, the key identifier mode, the Key Source and the Key Index as input parameters,
and secures such a frame as specified by the security level, using the key identified by
the pair (Key Source, Key Index) according to the key identifier mode. If the procedure
succeeds, the resulting secured frame is returned for transmission. Notice that secur-
ing the frame consists in applying to the unsecured frame the cryptographic functions
specified by the security level.

The incoming frame security procedure receives the secured frame and, initially,
parses it and determines the values of the security level, the key identifier mode, the
Key Source and the Key Index as specified in the Auxiliary Security Header. Then, the
procedure unsecures the frame, as specified by the security level, using the key iden-
tified by the pair (Key Source, Key Index) according to the key identifier mode. If the
procedure succeeds, the resulting unsecured frame is returned for reception. Notice
that unsecuring a frame also requires checking whether the received frame is a replay
or not. The procedure accomplishes this check by accessing the Device Table spec-
ifying the sending node identifier as search key, retrieving the corresponding frame
counter field value, and ascertaining that this value is smaller than that contained in
the secured frame.

2.2.3 The CONET open implementation of IEEE 802.15.4

We have implemented a complete and fully operational version of the standard se-
curity sublayer within an open-source implementation of IEEE 802.15.4 maintained
by the TinyOS IEEE 802.15.4 Working Group [3]. The whole standard, including the
security sublayer, has been implemented [24] in the nesC language for the TinyOS

12

2.3. EVALUATION

operating system on the Tmote Sky platform equipped with the CC2420 chipset.
The security sublayer implementation can be downloaded from [2]. To the best of our
knowledge, this is the first available free implementation of IEEE 802.15.4 including
security services. All the experimental evaluations reported in this dissertation have
been carried out on this implementation.

2.3 Evaluation

In the presence of security, the network experiences performance degradation due to
two sources of overhead, namely the communication overhead and the processing
overhead. The communication overhead is due to the extra bits that are transmitted
due to security, namely, the ASH and the MIC field (if present). The processing over-
head is due to the extra processing due to security procedures including parsing the
ASH, looking up into tables as required by the standard procedures, and applying the
cryptographic algorithms to secure/unsecure frames.

In order to quantify the impact of communication and processing overhead, we
consider the following performance indices:

• Latency (τ), defined as the interval of time between the instant at which the source
node starts the frame transmission and the instant at which the same node re-
ceives the corresponding ACK.

• Goodput (G), defined as the amount of useful information bits correctly received
by the PAN coordinator per unit of time.

• Per-packet energy consumption (ε), defined as the total energy consumed by each
sensor node divided by the number of data frames correctly delivered to the PAN
coordinator.

In the goodput definition we consider only the payload and not the whole frame in
order to underline the impact of the security overhead on transmission of the useful
information carried by a MAC frame. The size of the payload field is always the same,
irrespectively of the security level used. As a consequence, goodput decreases when
security increases. This effect will be quantified in the next sections.

2.3.1 Analysis

In this section we evaluate analytically the impact of security services on the perfor-
mance indices defined above. To this end, we consider a very simple network con-
sisting of only two nodes, the PAN coordinator and a sensor node. In this setting, the
sensor node always succeeds in accessing the wireless medium at the first attempt.
This allows us to better understand the impact of security on performance.

13

CHAPTER 2. THE IEEE 802.15.4 SECURITY SUBLAYER

Figure 2.10: Latency timeline without security.

Figure 2.11: Latency timeline with security.

Latency and goodput

In order to model the impact of security on latency, we first define latency in the ab-
sence of security and, then, we add the effects of security. The average latency expe-
rienced by a frame consists of a number of components corresponding to the different
steps of the CSMA/CA algorithm (see Section 2.2). As shown in Figure 2.10, assum-
ing that the sensor node starts in the idle state, latency can be computed as:

τ =
τslot
2

+ τbck + 2 · τcca + τtx + τack (2.1)

where

τtx =

⌈
τf + τtat
τslot

⌉
· τslot (2.2)

In Equation 2.1, τslot
2 accounts for an average delay deriving from the fact that

operations are aligned to a backoff slot, whose duration is equal to τslot; τbck accounts
for the random backoff time, which includes τidle−rx, the time necessary to switch the
radio from the idle state to the receiving state; 2 · τcca accounts for the time necessary
to perform two consecutive Clear Channel Assessment operations; τtx accounts for
the total time required to actually transmit a frame; and, finally, τack is the time to
receive the corresponding ACK frame. In its turn, τtx is equal to a whole number of
backoff slots that contain the time interval τf + τtat (see Equation 2.2), namely the
frame transmission time τf to actually transmit a frame, and the turnaround time τtat
to switch the radio from transmission mode to reception (and thus become able to

14

2.3. EVALUATION

receive the ACK frame). The turnaround time τtat to switch the radio from receive
mode to transmission mode is part of the second τcca time interval.

Security brings in two latency contributions: the security processing time τ secproc,
which accounts for the security processing overhead, and the security communica-
tion time τ seccomm, which accounts for the security communication overhead. The secu-
rity processing time τ secproc accounts for the time required by security operations. The
security communication time τ seccomm accounts for the time necessary to transmit the
additional fields brought about by security, namely the ASH and the MIC field (when
present). The communication time τ seccomm has to be added to the frame transmission
time τf . With reference to Figure 2.11, it follows that Equation 2.1 becomes:

τ sec = τ secproc +
τslot
2

+ τbck + 2 · τcca + τ sectx + τack (2.3)

where

τ sectx =

⌈
τf + τ seccomm + τtat

τslot

⌉
· τslot (2.4)

Once we have derived analytical formulas without and with security, we can easily
calculate the goodput G experienced in both cases. Assuming that the sensor node
has always a frame ready for transmission, the pattern shown in Figures 2.10 and
2.11 repeats for each following frame transmission. Hence:

G =
P

τ
(2.5)

and

G =
P

τ sec
(2.6)

Per-packet energy consumption

Since we are assuming a network scenario with only two nodes and an ideal com-
munication channel, the PAN coordinator receives all transmitted frames correctly. In
addition, the transmission pattern for all frames is the same as the one shown in Fig-
ures 2.10 and 2.11. Hence, in order to derive the per-packet energy consumption we
can refer to a single frame transmission. Specifically, we sum the energy expendi-
tures in every time interval contributing to latency (see Equation 2.3). The energy ε
consumed in an interval is the product of the power w consumed in τ and time interval
τ itself, i.e. ε = w · τ . Power consumption can be derived from the device datasheet.

In order to evaluate the per-packet energy consumption, we observe from Section
2.2.2 that the processing overhead τ secproc can be split into two components, namely

15

CHAPTER 2. THE IEEE 802.15.4 SECURITY SUBLAYER

the management overhead, τ secmgmt, that accounts for frame parsing and tables lookup,
and the encryption overhead, τ seccrypto, that accounts for applying cryptographic algo-
rithms to frames. The former component is implemented in software on the sensor
node microcontroller. The latter component can be implemented both in software on
the sensor node microcontroller or in hardware on the radio chipset, provided this de-
vice offers hardware support to cryptography. The CC2420 radio chipset available on
Tmote Sky sensor nodes provides such a support [31].

Whether cryptography is hardware-based (hw-based) or software-based (sw-
based) may have a strong impact on performance for two reasons. Hardware-based
encryption is faster than software-based encryption. On the other hand, hardware-
based encryption is performed on the communication device that, generally, has larger
power consumption than the microcontroller. In the rest of this dissertation we will
evaluate performance in both cases.

Furthermore, whether cryptography is hw-based or sw-based also influences the
granularity at which we are able to evaluate parameter τ seccrypto. The AES algorithm
consists of a key scheduling algorithm and an encryption (decryption) algorithm. Key
scheduling is performed just once, before encryption (decryption) starts, whereas the
encryption (decryption) algorithm is performed on each plaintext (ciphertext) block. In
the sw-based cryptography case, by properly instrumenting implementation, it is pos-
sible to separate the key scheduling overhead (τ seckey sw) from the per-block encryption
(decryption) algorithm overhead (τ secblock sw). In contrast, in the hw-based cryptography
case this is not possible. It follows that the encryption processing overhead τ seccrypto will
be expressed in terms of a single parameter τ seccrypto hw in the hw-based cryptography.
In contrast, the encryption processing overhead τ seccrypto sw in sw-based cryptography
will be expressed in terms of two parameters, τ seckey sw and τ secblock sw.

Evaluation of parameters

Table 2.3 shows the parameters values for calculating Equation 2.3, assuming that
the communication chipset is CC2420 [31] and the microcontroller is MSP430 [4].
The values of absorbed current referring to MSP430 and CC2420 are taken from the
respective datasheets [4, 31]. The only exception is the value of the absorbed current
during τ seccrypto hw that has been taken from [17]. The absorbed current during τidle−rx

has been obtained by averaging the current absorbed in the idle state and the current
absorbed in the receiving state. The current absorbed during turnaround time τtat
has been estimated analogously (i.e., the mean value between the current absorbed
in the receiving state and the current absorbed in the transmitting state). Please note
that the approach we used to evaluate these currents is the same used by the Ns2
simulator to evaluate energy consumption [36, 44].

The duration of all delay components shown in Table 2.3 are derived from the
standard, except for the values of τ secmgmt, τ

sec
crypto hw, τ seckey sw, and τ secblock sw, that have

been evaluated experimentally. Specifically, to measure these delays, we used two

16

2.3. EVALUATION

Device Parmeter
Duration Current

Power Energy

(µs) (mA)
consumption consumption

(mW) (µJ)

MSP430

Security management
260 0.6 1.08 0.28overhead

(τ secmgmt)

v = 1.8 V

SW-based key scheduling
740 0.6 1.08 0.80overhead

(τ seckey sw)
SW-based per-block

1630 0.6 1.08 1.76cryptography
overhead (τ secblock sw)

CC2420

Total HW-based encryption
1393 21.27 [17] 38.14 53.13overhead

(τ seccrypto hw)

v = 1.8 V

Average backoff
1120 0.427 0.77 0.86

period (τbck)
Slot duration

320 0.427 0.77 0.25
(τslot)
Idle-rx

192 10.067 18.12 3.48
switching (τidle−rx)

Turnaround
192 18.55 33.39 6.41

time (τtat)
Clear Channel

320 19.7 35.46 11.35
Assessment (τcca)

Reception of
352 19.7 35.46 12.48

ACK frame (τack)

Table 2.3: Parameters.

timers and properly instrumented our implementation of the standard (see Section
2.2.3). For the sw-based cryptography case, we used the software implementation of
AES-128 algorithm that is available in the TinyOS repository [32]. In all cases, we fixed
KeyIdMode3 and considered three different payload sizes, i.e., 2, 18, and 80 bytes. We
measured the parameters for all possible combinations of security levels and payload
sizes. For each measurement, we run an experiment consisting in sending 100 frames
and taking the average. Each experiment was repeated 10 times, in order to assure a
better accuracy and measure the standard deviation.

It is worthwhile to notice that time τ secmgmt (260.61 ± 0.53 µs) accounts for the man-
agement overhead due to frame parsing and table lookups. This overhead is equal for
both sw-based and hw-based cryptography and is independent of the frame size and
the security level. Furthermore, in the case of hw-based cryptography, we found that,
in practice, τ seccrypto hw (1393 µs), is influenced by neither the security level nor the pay-
load size. In principle, τ seccrypto hw would depend on these parameters, which determine

17

CHAPTER 2. THE IEEE 802.15.4 SECURITY SUBLAYER

the actual number of blocks to be encrypted and/or authenticated. However, hw-based
cryptography is so fast that its overhead is masked by the time necessary for regis-
ters setup and device strobing. Finally, in sw-based cryptography, the key scheduling
overhead τ seckey sw and the per-block encryption overhead τ secblock sw are not negligible
and account to 740 µs and 1630 µs, respectively. It follows that, in contrast to hw-
based cryptography, τ seccrypto sw now greatly depends on both the payload size and the
security level.

CTR
CBC-MAC-4 CBC-MAC-8 CBC-MAC-16

or CCM-4 or CCM-8 or CCM-16
KeyIdMode0 5 9 13 21
KeyIdMode1 6 10 14 22
KeyIdMode2 10 14 18 26
KeyIdMode3 14 18 22 30

Table 2.4: Frame expansion due to security. Values are in bytes.

Table 2.4 shows the frame expansion (in bytes) as a function of the security level
and the key identifier mode. Such an expansion is due to the ASH and the MIC,
if present. The size of the former depends on the KeyIdMode (see Section 2.2.1)
whereas the size of the latter depends on the security level (see Section 2.2.1).

Analytical results

In this section we show the trends of latency, goodput and energy consumption as
functions of the security level. In this analysis, we consider the KeyIdMode3 that, for
each security level, causes the largest ASH, therefore the largest frame expansion
and thus represents the worst case from the communication viewpoint. We evaluate
the trends in the case of both hw-based and sw-based cryptography for three different
values of the payload, namely 2 bytes, which features a small payload ; 18 bytes,
which features a realistic payload ; and, finally, 80 bytes, which features the largest
payload when the MIC and ASH have the largest size.

Figures 2.12, 2.13, and 2.14 show the trend of latency, goodput and energy con-
sumption with the security levels for different payload sizes in KeyIdMode3, when
using hw-based cryptography. As it turns out, the main performance penalty occurs
when we move from unsecured (NO-SEC) to secured traffic. However, a variation of
the security level causes little, almost negligible, variations in the security cost. Con-
sider latency for example. Switching from NO-SEC to CTR, causes latency to increase
by the 57% in the case of 2-bytes payload, 49% in the case of 18-bytes payload, and
35% in the case of 80-bytes payload. However, switching from CTR to CCM-16 causes
just a latency increase of 12%, 11%, and 8%, respectively. As to goodput, switching
from NO-SEC to CTR causes a decrement of 36% in the case of 2-bytes payload,

18

2.3. EVALUATION

Figure 2.12: Latency for HW-based cryptography with different security levels.

Figure 2.13: Goodput for HW-based cryptography with different security levels.

33% in the case of 18-bytes payload, and 26% in that of 80-bytes payload. However,
switching from CTR to CCM-16 causes a further decrement of just 11% in the case
of 2-bytes payload, 10% in the case of 18-bytes payload, and 7% in that of 80-bytes
payload. Finally, as to energy consumption, switching from NO-SEC to CTR causes
an increment of 89% in the case of 2-bytes payload, 71% in the case of 18-bytes pay-
load, and 45% in that of 80-bytes payload. However, switching from CTR to CCM-16
causes a further increment of just 15% in the case of 2-bytes payload, 13% in the
case of 18-bytes payload, and 5% in that of 80-bytes payload.

19

CHAPTER 2. THE IEEE 802.15.4 SECURITY SUBLAYER

Figure 2.14: Energy for HW-based cryptography with different security levels.

It is interesting to observe that, in some cases, a change in the security level
that causes a frame size increment does not reflect in a latency increase. For in-
stance, consider the 80-bytes payload curve. Switching from CCM-4 (CBC-MAC-4)
to CCM-8 (CBC-MAC-8) does not cause any latency change even though the latter
implies transmitting 4 bytes more than the former. This is because the increase in
the transmission time due to frame size increment is hidden by the backoff alignment,
as expressed by Equation 2.4. Similar considerations hold for goodput and energy
consumption.

Figure 2.15: Latency for SW-based cryptography with different security levels.

20

2.3. EVALUATION

Figure 2.16: Goodput for SW-based cryptography with different security levels.

Figure 2.17: Energy for SW-based cryptography with different security levels.

Figures 2.15, 2.16, and 2.17 show the trend of latency, goodput and energy con-
sumption with the security levels for different payload sizes in KeyIdMode3, when
using sw-based cryptography. Similarly to the previous case (i.e. hw-based cryptog-
raphy), a performance penalty occurs when we move from unsecured (NO-SEC) to
secured traffic. However, in contrast to the previous case, variations in the security
level (or payload size) cause considerable variations in the security cost. Actually, as
discussed in Section 2.3.1, the security level determines the number of block encryp-

21

CHAPTER 2. THE IEEE 802.15.4 SECURITY SUBLAYER

tion/decryption operations whose delays, in the case of sw-based cryptography, are
not negligible.

For example, switching from NO-SEC to CTR, causes latency to increase con-
siderably by the 86% in the case of 2-bytes payload, 112% in the case of 18-bytes
payload, and 158% in the case of 80-bytes payload. However, switching from CTR to
CBC-MAC causes latency to increase by about 30% in the case of 2-bytes payload,
about 23% in the case of 18-byes payload and, finally, about 24% in the case of 80-
bytes payload. Switching from CTR to CCM causes latency to increase by about 80%
in the case of 2-bytes payload, about 79% in the case of 18-byes payload and, finally,
about 87% in the case of 80-bytes payload.

Goodput has a dual behavior. Switching from NO-SEC to CTR causes a goodput
decrement of 46% in the case of 2-bytes payload, 52% in the case of 18-bytes pay-
load, and 61% in that of 80-bytes payload. Goodput further decreases upon switching
to CBC-MAC and CCM.

As to per-packet energy consumption, switching from NO-SEC to CTR causes
an increment of 18% in the case of 2-bytes payload, 16% in the case of 18-bytes
payload, and 13% in that of 80-bytes payload. Furthermore, switching from CTR to
CCM-16 causes a further increment of 15% in the case of 2-bytes payload, 13% in
the case of 18-bytes payload, and, finally, 9% in the case of 80-bytes payload.

It turns out that the per-packet energy consumption is the only metric that improves
upon moving from hw-based to sw-based cryptography. For instance, if we consider
the CCM-16 security level, latency increases by 44% in the case of 2-bytes payload,
137% in the case of 18-bytes payload, and 235% in the case of 80-bytes payload.
Consistently, goodput decreases by 50%, 58%, and 70%, respectively. In contrast,
per-packet energy increases by 29%, 24%, and 14%, respectively. The reason is that,
while performing cryptographic operations, MSP430 absorbs much less power than
CC2420. Actually, from Table 2.3 it turns out that both devices operate at 1.08 V
but MSP430 absorbs 0.6 mA, whereas CC2420 absorbs 21.19 mA, i.e. a current,
and thus a power that is about 35 times larger than the former. As a consequence,
even though sw-based cryptography is slower than hw-based cryptography, the overall
energy consumed by the former is smaller than that consumed by the latter.

Experimental validation of the analytical model

The analytical model has been validated through experimental measurements on a
real testbed. The experimental testbed consisted of Tmote Sky sensor nodes [4],
equipped with an MSP430 microcontroller, 10 KB of RAM, 48 KB of ROM and, finally,
a CC2420 radio transceiver. CC2420 is compliant with the IEEE 802.15.4 physical
layer and supports a 250 Kbit/s bit rate over an unlicensed 2.4 GHz ISM band [31]. As
to system software, sensor nodes run the TinyOS 2.x operating system (available from
[45]) and the CONET open-source implementation of IEEE 802.15.4 (see Section
2.2.3). To validate the analytical results derived in previous section, we considered
only two sensor nodes, KeyIdMode3 and a payload size equal to 18 bytes.

22

2.3. EVALUATION

SecLevel
Experimental Analytical Experimental Analytical
(HW-based (HW-based (SW-based (SW-based

cryptography) cryptography) cryptography) cryptography)
NO-SEC 4.28 (± 0.14) 4.06 4.28 (± 0.14) 4.06

CTR 6.35 (± 0.13) 6.04 9.08 (± 0.16) 8.64
CBC-MAC-4 6.57 (± 0.18) 6.04 10.83 (± 0.16) 10.27

CCM-4 6.51 (± 0.17) 6.04 16.51 (± 0.16) 15.16
CBC-MAC-8 6.62 (± 0.13) 6.36 11.25 (± 0.14) 10.59

CCM-8 6.79 (± 0.22) 6.36 16.62 (± 0.16) 15.48
CBC-MAC-16 6.95 (± 0.22) 6.68 11.43 (± 0.16) 10.91

CCM-16 6.99 (± 0.20) 6.68 16.75 (± 0.17) 15.80

Table 2.5: Experimental vs analytical latency. Values are in ms.

SecLevel
Experimental Analytical Experimental Analytical
(HW-based (HW-based (SW-based (SW-based

cryptography) cryptography) cryptography) cryptography)
NO-SEC 33.62 (± 1.1) 35.43 33.62 (± 1.1) 35.43

CTR 22.69 (± 0.47) 23.85 15.86 (± 0.26) 16.66
CBC-MAC-4 21.90 (± 0.59) 23.85 13.30 (± 0.20) 14.02

CCM-4 22.12 (± 0.58) 23.85 8.72 (± 0.13) 9.50
CBC-MAC-8 21.77 (± 0.43) 22.65 12.80 (± 0.15) 13.59

CCM-8 21.20 (± 0.69) 22.65 8.67 (± 0.14) 9.30
CBC-MAC-16 20.71 (± 0.63) 21.57 12.60 (± 0.18) 13.19

CCM-16 20.60 (± 0.58) 21.57 8.60 (± 0.09) 9.11

Table 2.6: Experimental vs analytical goodput. Values are in Kbit/s.

Table 2.5 and Table 2.6 show the analytical and experimental values of latency
and goodput, for different security levels, when using hw-based and sw-based cryp-
tography, respectively. The experimental measurements are fully consistent with the
analytical results. Furthermore, they completely confirm the trend we have already
observed in Section 2.3.1. As far as hw-based cryptography, a significant variation in
performance occurs when we proceed from unsecured to secured frames. However,
the security level has little, if not negligible, influence on performance. When using
sw-based cryptography, the performance loss is greater than in the case of hw-based
cryptography and strongly depends on the number of block encryption operations and
thus, ultimately, on the payload size and the security level.

2.3.2 Simulation analysis

In the previous analysis, we have considered a network composed of two nodes. This
allows us to understand the impact of security when there is no contention between

23

CHAPTER 2. THE IEEE 802.15.4 SECURITY SUBLAYER

sensor nodes. In this section we consider a more complex but more realistic network
composed by more nodes.

We consider a star, beacon-enabled PAN composed of a coordinator and a vari-
able number of ordinary sensor nodes that are placed in a circle around the sink node,
10 m far from it. Upon receiving a beacon frame, an ordinary node attempts, until it
succeeds, to transmit a frame to the coordinator. The Beacon Interval is 983.04 ms
(BO = 6 and SO = 6).

In order to evaluate the impact of security on performance, we simulated such a
network by means of the Ns2 simulation tool [46]. The basic IEEE 802.15.4 simulator
has been extended to take into account τ secproc and τ seccomm. The former was modeled as
a pure delay. The latter has been implemented by fictitiously enlarging the payload by
a quantity specified in Table 2.4 for each relevant pair (security level, KeyIdMode). In
simulations, we only considered KeyIdMode3. We have set the transmission range to
15 m and the carrier sensing range to 30 m as in [47]. In addition, we have considered
an 18-bytes payload corresponding to a total unsecured frame size of 33 bytes. We
derived simulation results for both hw-based and sw-based cryptography.

For each simulation, we have performed 10 independent repetitions, each consist-
ing of 1000 Beacon Intervals each. The presented results are averaged over the ten
replications with a 95% confidence level. For each repetition, we discarded the initial
transient period during which nodes associate to the PAN coordinator before starting
generating data packets.

Figure 2.18: Simulated latency for HW-based cryptography.

As to hw-based cryptography, Figures 2.18, 2.19 and 2.20 show the simulation
trend of latency, goodput, and per-packet energy consumption with the number of

24

2.3. EVALUATION

Figure 2.19: Simulated goodput for HW-based cryptography.

Figure 2.20: Simulated energy consumption for HW-based cryptography.

nodes for each security level. Confidence intervals are so small that they cannot be
graphically appreciated.

As above, we validated our simulation results through experimental measure-
ments. Table 2.7 compares the simulation and experimental results (and the corre-
sponding confidence intervals), for latency and goodput with two and ten nodes. As it
turns out, simulation and experimental results agree with each other.

At first glance, we may observe that, in accordance with the previous analysis, for
any given number of nodes, switching from unsecured to secured traffic causes a neat
performance loss due to the security processing and communication overhead. How-

25

CHAPTER 2. THE IEEE 802.15.4 SECURITY SUBLAYER

Latency Goodput

SecLevel
Experimental Simulative Experimental Simulative
latency (ms) latency (ms) goodput (%) goodput (%)

2
no

de
s

NO-SEC 4.28 (± 0.14) 3.42 (± 0.01) 33.62 (± 1.1) 35.44 (± 0)
CTR 6.35 (± 0.13) 5.98 (± 0.01) 22.69 (± 0.47) 24.07(± 0)

CBC-MAC-4 6.57 (± 0.18) 5.98 (± 0.01) 21.90 (± 0.59) 24.07(± 0)
CCM-4 6.51 (± 0.17) 5.98 (± 0.01) 22.12 (± 0.58) 24.07 (± 0)

CBC-MAC-8 6.62 (±0.13) 6.30 (± 0.01) 21.77 (± 0.43) 22.84 (± 0)
CCM-8 6.79 (± 0.22) 6.30 (± 0.01) 21.20 (± 0.69) 22.84 (± 0)

CBC-MAC-16 6.95 (± 0.22) 6.30 (± 0.01) 20.71 (± 0.63) 22.84 (± 0)
CCM-16 6.99 (± 0.20) 6.30 (± 0.01) 20.60 (± 0.58) 22.84 (± 0)

10
no

de
s

NO-SEC 13.12 (± 0.14) 12.47 (± 0.03) 29.34 (± 0.96) 30.76 (± 0.05)
CTR 19.14 (± 0.58) 19.84 (± 0.03) 21.40 (± 0.45) 19.03 (± 0.02)

CBC-MAC-4 19.71 (± 0.61) 19.85 (± 0.03) 21.44 (± 0.57) 19.09 (± 0.04)
CCM-4 19.51 (± 0.54) 19.85 (± 0.03) 20.66 (± 0.54) 19.09 (± 0.04)

CBC-MAC-8 19.43 (± 0.43) 20.54 (± 0.04) 20.55 (± 0.41) 17.12 (± 0.02)
CCM-8 20.10 (± 0.37) 20.54 (± 0.04) 20.40 (± 0.66) 17.12 (± 0.02)

CBC-MAC-16 19.41 (± 0.50) 20.69 (± 0.05) 20.05 (± 0.61) 16.92 (± 0.04)
CCM-16 20.33 (± 0.53) 20.69 (± 0.05) 18.58 (± 0.52) 16.92 (± 0.04)

Table 2.7: Simulative vs. experimental latency and goodput with HW-based encryp-
tion.

ever, the specific security level has little, or even no influence on such a loss. Going
into more details, let us consider the trend of latency (Figure 2.18). For each security
level, latency increases with the number of nodes. This depends on the fact that, when
the number of nodes increases, it is more likely that a node attempting to transmit has
to wait for the free medium. Also, the probability of collisions increases and, hence,
some frames have to be retransmitted. However, it turns out that the latency in the
case of secured traffic grows with the number of nodes more quickly than the latency
in the case of unsecured traffic. Actually, curves tend to diverge. This depends on the
additional delays deriving from the security processing and communication overhead
that every transmitting node brings in. Due to this additional delay, ceteris paribus,
in the case of secured traffic, node experiences a latency longer than in the case of
unsecured traffic. Goodput has a dual trend (Figure 2.19), with respect to latency.

Similar considerations also apply to the energy consumption per delivered packet
(Figure 2.20). The increasing trend is more remarkable than latency because not only
the total energy consumption increases with the number of sensor nodes, but the
percentage of delivered frames decreases, as emphasized by the goodput decrease
in Figure 2.19.

As to sw-based cryptography, Figures 2.21, 2.22 and 2.23 show the trend of la-
tency, goodput and per-packet energy consumption with the number of nodes for each

26

2.3. EVALUATION

Figure 2.21: Simulated latency for SW-based cryptography.

Figure 2.22: Simulated goodput for SW-based cryptography.

security level. As above, confidence intervals are so small that they cannot be graph-
ically appreciated.

As expected, Figures 2.21, 2.22 and 2.23 show that switching from unsecured
to secured traffic causes a performance loss. Furthermore, figures also show that
payload size and security level have influence on such a loss, due to the number
of block encryption operations that are required. However, Figure 2.23 shows that
per-packet energy consumption constitutes an exception and its trend is very similar
to the hardware-based cryptography (Figure 2.20). This is because, with respect to

27

CHAPTER 2. THE IEEE 802.15.4 SECURITY SUBLAYER

Figure 2.23: Simulated energy consumption for SW-based cryptography.

hw-based cryptography, sw-based cryptography increases the encryption processing
overhead τ seccrypto but, at the same time, requires a lower power consumption.

As in the previous case, we validated our simulation results through experimental
measurements. Again, we observed a general agreement between simulation and
experimental results. We omit them for the sake of space.

2.3.3 Experimental evaluation of memory overhead

In this section we evaluate, through an experimental analysis carried out with the
testbed described in Section 2.3.1, the memory overhead introduced by the IEEE
802.15.4 security sublayer.

Figures 2.24 and 2.25 show the ROM footprint breakdown on both the PAN co-
ordinator and a regular sensor node. With hw-based cryptography (Figure 2.24), the
amount of memory required by the security sublayer executable is the 11.58% of
the overall memory available on the PAN coordinator, and the 12.96% on a regu-
lar sensor node. In both cases, most of the memory occupancy is due to the IEEE
802.15.4 implementation (i.e. the original communication stack). Note also that the
19.46% (15.44%) of memory on the PAN coordinator (regular node) remains avail-
able for other uses (e.g., applications). With sw-based cryptography (Figure 2.25), the
amount of memory required by the security sublayer executable is the 17.36% of the
overall memory available on the PAN coordinator, and the 18.76% on a regular sensor
node. In both cases, most of the memory occupancy is due to the IEEE 802.15.4 im-
plementation and software-based implementation of the encryption algorithm. Note
also that 13.68% (9.66%) of memory on the PAN coordinator (regular node) remains
available for other uses (e.g., applications).

28

2.3. EVALUATION

Figure 2.24: ROM memory overhead with HW-based cryptography.

Figure 2.25: ROM memory overhead with SW-based cryptography.

29

CHAPTER 2. THE IEEE 802.15.4 SECURITY SUBLAYER

Figure 2.26: RAM memory overhead.

However, the space necessary to allocate executable is not the only storage cost
that we have to pay in order to use the security sublayer. As discussed in Section
2.2.2, the security sublayer requires data structures, e.g., the Device Table and the
Key Table, that are allocated in RAM and whose size grows with the number of nodes
and keys. Figure 2.26 shows the trend of RAM occupancy when the number of nodes
grows. In our implementation, 9 sender nodes require about 3858 bytes of RAM with
hardware encryption. Beyond this threshold, we experimentally observe that motes
hang or behave erratically.

In the case of sw-based cryptography, we have to allocate in RAM also the data
structures of the AES encryption algorithm, which account for about 1 Kbytes. It fol-
lows that the threshold is crossed with a smaller number of nodes, namely four.

With TinyOS/msp430-gcc, there is no limit, but the physical capacity, to the amount
of memory that a software component may use. However, it is not recommended to
fill up the entire RAM with the component variables, because TinyOS needs space for
the stack. There is no straightforward way to calculate the amount of memory TinyOS
needs. However, as a rule of thumb, it is better to leave at least 500 byte or 1 KB
empty, otherwise mote might hang or do erratic things because of a stack overflow.

Of course, we cannot exclude that a more efficient implementation than ours may
get a greater threshold. However, regardless the actual value of the threshold, the im-
portant point to capture here is that in memory scarce devices, the amount of memory
necessary for security data structures may constitute a limit to the system scalability.

30

3

Selective Denial of Service in IEEE 802.15.4 networks

The IEEE 802.15.4 standard [7] allows devices to access the medium not only in con-
tention mode but also in a contention-free way, in order to support Quality of Service
(QoS). In contention-free mode, devices access the medium according to the Guar-
anteed Time Slot (GTS) mechanism, which allows devices to access the medium
without contention [48].

In a PAN, the medium access temporization is divided into consecutive super-
frames. Each superframe is divided into a Contention Access Period (CAP) and a
Contention Free Period (CFP). In the CFP, nodes access the medium during pre-
assigned slots, namely GTS slots (hereafter Slots). At the beginning of a superframe,
network devices require Slots to the PAN coordinator , which allocates available Slots
to requiring nodes, and returns them the GTS List specifying its allocation decision.

Unfortunately, the PAN coordinator transmits the GTS List in the clear. Therefore,
an adversary simply equipped with a radio receiver/transmitter can easily eavesdrop
the allocation decision, select a Slot, and jam it. We call this kind of Denial of Service
(DoS) attack the GTS-based selective jamming attack .

With respect to a classical wide-band jamming where the adversary jams the
whole channel, a GTS-based selective jamming attack defines a different trade-off
between attack severity and attack detectability. A wide-band jamming attack has the
highest severity but is the simplest to detect. In contrast, a selective jamming is much
more difficult to detect because the adversary limits its exposure to a Slot. However,
it may cause severe QoS degradation to specific traffic segments.

Sokullu et al. have first identified this type of attack and illustrated two possible
incarnations, namely the random attack and the intelligent attack [5]. In the random
attack, the adversary selects the Slot to jam at random. In contrast, in the intelligent
attack, the adversary exploits the knowledge of the allocation decision to select the
longest Slot. Furthermore, Sokullu et al. have evaluated that an intelligent attacker
can achieve a corruption strength of 50.48% [6], which means that only half of the
available bandwidth would be actually available for communication during the CFP. It
turns out that an intelligent attack makes it possible to compromise the QoS of the

31

CHAPTER 3. SELECTIVE DENIAL OF SERVICE IN IEEE 802.15.4 NETWORKS

whole network. Notwithstanding the efficiency and the severity of this type of attack,
no countermeasures have been devised before the work we presented in [49].

In this dissertation we fill this gap by a twofold contribution. First of all, we com-
plete the range of possible GTS-based selective jamming incarnations with the sniper
attack . In this attack, the adversary selects a victim node and then, exploiting the
knowledge of the allocation decision, jams the Slot allocated to that node. It follows
that this attack may compromise the QoS of a specific node, or even thwart its com-
munication capability altogether, with the minimum chances of being detected.

Secondly, we present a standard-compliant countermeasure against the GTS-
based selective jamming attack, i.e. Selective Jamming Resistant GTS (SJRG). When
SJRG is active, an attacker can do no better than a random attack (of course this at-
tack, as well as the wide-band jamming, is inevitable). SJRG is based on two basic
mechanisms: i) protection of secrecy and integrity of beacon and GTS request frames
by means of encryption; and ii) protection from network traffic analysis by means of
intra-Slot randomization. While several solutions can be devised, the challenge is to
devise one that is compliant with the IEEE 802.15.4 standard. We took up the chal-
lenge and conceived the aforementioned mechanisms in such a way that SJRG is
fully compliant to IEEE 802.15.4.

3.1 Wireless Denial of Service: the jamming attack

Denial of Service (DoS) attacks are a threat which is vital to take into account while
securing wireless communications. DoS attacks can be referred to any event that
diminishes or eliminates a network’s capability to perform its expected functions [50].
In other words, DoS attacks target availability by preventing communication between
network devices or by preventing a single device from sending traffic [51].

Jamming consists in corrupting messages transmitted by legitimate users, by in-
terfering in the network’s operational frequencies. Jamming is one of the most com-
mon DoS attacks, and is considered a severe issue in wireless communications
[52, 53, 54, 55, 56]. In the rest of this section, we consider i) techniques typically
adopted to detect and defeat jamming; ii) the effectiveness of jamming against wire-
less communication; and iii) how different kinds of jamming attacks are classified.

Typical techniques to detect jamming attacks consist in analyzing: i) the received
signal strength indicator; ii) the average time required to sense an idle channel; and
iii) the packet delivery ratio [56].

On the other hand, the most adopted defense against the jamming attack relies
on spread-spectrum communication among network devices [51, 57, 58]. This coun-
termeasure requires the attacker either to follow the adopted hopping sequence, or
to interfere with a wide section of the band. Another solution relies on legitimate net-
work nodes, which collaboratively identify the jammed region in order to route traffic
around it [50]. This requires to adopt a proper routing protocol, such as the TinyOS

32

3.1. WIRELESS DENIAL OF SERVICE: THE JAMMING ATTACK

Destination-Sequenced Distance-Vector Routing [59], which determines high-quality
links according to associated link quality estimators.

It has been proven that link layer jamming particularly affects wireless networks
performance. In [60], the authors discuss a selective jamming attack, according to
which the adversary disturbs the transmission of specific and particularly important
kinds of packets. Also, they show the effectiveness of selective jamming on the TCP
protocol and its performance. Finally, they propose some methods based on crypto-
graphic primitives, aimed at mitigating its effects.

In [61], the authors define an intelligent jammer from the energy consumption
point of view. Since in a WSN it is reasonable to assume that the attacker is a sensor
node, energy is an issue even for the attacker. Since the intelligent jammer knows
MAC protocol specifications, she can preserve energy by attacking at a specific time.
On the contrary, a blind jammer wastes energy emitting a continuous signal without
any knowledge of the medium access criteria.

An adversary can perform different kinds of jamming, and different classifications
of such an attack have been proposed so far. In [56], Xu et al. focus on Wireless
Sensor Networks, and classify jamming attacks as constant, deceptive, random, and
reactive. A constant jammer aims at corrupting all network packets by continuously
transmitting random signals. Note that such an “always-on” jamming strategy is eas-
ier to detect, since it is based on the continuous presence of an high interference
level [52, 55, 56]. The deceptive attack consists in injecting a constant stream of bytes
into the network, making it look as legitimate traffic. Instead, a random jammer per-
forms the attack by alternating a sleep phase with a jamming phase, thus reducing
energy consumption. Finally, a reactive jammer, such as the sniper attacker, performs
jamming only when she detects a transmission by other nodes. Of course, reactive
jamming results to be much more difficult to be detected, since it is likely to be con-
fused with regular collisions.

O’Flynn considers IEEE 802.15.4 networks, and refers to a different classification
of jamming attacks [62], i.e. i) a wide-band jamming of all available channels; ii) a spe-
cific jamming performed upon detecting transmissions of IEEE 802.15.4 messages;
and iii) a much more precise jamming against specific messages or network nodes.
The sniper attacker performs a jamming of the third kind, and she is particularly dan-
gerous since she perfectly knows when her target transmits. So, she does not need
to read the first several bytes of IEEE 802.15.4 MAC headers.

Wood et al. take into account IEEE 802.15.4 networks, and present DEEJAM, a
protocol which provides a number of defenses against energy-efficient jamming at-
tacks in IEEE 802.15.4 networks [63]. The authors classify jamming attacks into four
categories, namely interrupt jamming, activity jamming, scan jamming, and pulse jam-
ming. DEEJAM aims at hiding messages from a jammer node, evading its search, and
reducing the impact of messages that are corrupted anyway. In particular, it makes use
of channel hopping, or uses a pseudo-random sequence as Start of Frame Delimiter
at the physical-layer. As a result, the DEEJAM protocol maintains a packet delivery

33

CHAPTER 3. SELECTIVE DENIAL OF SERVICE IN IEEE 802.15.4 NETWORKS

ratio of up to 88%. However, several Wireless Sensor Networks applications are sup-
posed to rely on approved standard, as IEEE 802.15.4. Therefore, DEEJAM can not
be considered an official protocol and is not likely to be widely adopted.

3.2 IEEE 802.15.4 MAC overview

In this section, we briefly summarize the main features of IEEE 802.15.4, with refer-
ence to the Guaranteed Time Slots (GTS) mechanism and available security services.
Table 3.1 provides the reader with a list of acronyms we use throughout this chapter.

Acronym Term
AES Advanced Encryption Standard
ASH Auxiliary Security Header
CAP Contention Access Period

CBC-MAC Cipher Block Chaining Message Authentication Code
CCM Counter with CBC-MAC (mode of operation)
CFP Contention-Free Period
CRC Cyclic Redundancy Check

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CTR Counter Mode
FCFS First Come First Served
FCS Frame Check Sequence
FFD Full-Function Device
GTS Guaranteed Time Slot
MAC Medium Access Control
MFR MAC Footer
MHR MAC Header
MIC Message Integrity Code
PAN Personal Area Network
RFD Reduced-Function Device

Table 3.1: List of acronyms.

As described by the IEEE 802.15.4 standard [7], Personal Area Networks (PANs)
can be composed of two types of devices, namely Full-Function Devices (FFDs) and
Reduced-Function Devices (RFDs). FFDs can communicate with both FFDs and
RFDs, while RFDs can communicate only with other FFDs. Also, one specific FFD
is elected as the PAN coordinator, and is responsible for network management. Two
possible topologies are admitted: Star and Peer-to-peer. In the Star topology each
RFD communicates directly with the PAN coordinator, whereas in the Peer-to-peer
topology each device can communicate with any other FFD in its range. In the rest of
this chapter, we consider the Star topology, and simply refer to an RFD as a node.

34

3.2. IEEE 802.15.4 MAC OVERVIEW

Figure 3.1: Beacon frame format.

As specified by the standard, PANs can work in two possible ways, namely
nonbeacon-enabled or beacon-enabled mode. In particular, in nonbeacon-enabled
mode, frames are transmitted according to an unslotted Carrier Sense Multiple Ac-
cess with Collision Avoidance (CSMA/CA) algorithm. In case the medium is sensed
idle, the transmission starts immediately. Otherwise, a device delays the transmission
for an exponential random backoff time. In beacon-enabled networks, the PAN coor-
dinator periodically broadcasts beacon frames in order to synchronize devices. Each
device transmits frames according to a slotted CSMA/CA algorithm. The structure of
a beacon frame is shown in Figure 3.1.

Figure 3.2: IEEE 802.15.4 superframe structure.

In beacon-enabled mode, the PAN coordinator bounds the medium access tem-
porization as a sequence of superframes. As shown in Figure 3.2, each superframe is
bounded by two consecutive beacon frames, periodically transmitted by the PAN co-
ordinator. A superframe can have an active portion and an inactive portion. During the
inactive portion, the PAN coordinator may switch to low-power mode to save energy.
The active portion consists of 16 equally sized superframe slots. The active portion
includes a Contention Access Period (CAP) and an optional Contention Free Period
(CFP). During the CAP, nodes access the medium on a contention basis, according
to a slotted CSMA/CA algorithm. On the other hand, devices may ask the PAN co-

35

CHAPTER 3. SELECTIVE DENIAL OF SERVICE IN IEEE 802.15.4 NETWORKS

ordinator for dedicated portions of the CFP, Slots in our parlance, in order to access
the medium without contention. This mechanism is known as Guaranteed Time Slot
(GTS) (see Section 3.2.1) , and is particularly useful for applications with QoS con-
straints and requirements, such as low latency or particular bandwidth requirements.

3.2.1 Guaranteed Time Slot (GTS)

CFP allows nodes to access the medium during pre-assigned superframe slots, ac-
cording to the GTS mechanism of IEEE 802.15.4 [7]. Slots are allocated within the
CFP by the PAN coordinator, and are composed by one or more superframe slots.

Figure 3.3: GTS allocation and deallocation requests.

Figure 3.3 shows the sequence of operations which take place during a GTS allo-
cation/deallocation process. A node can ask the PAN coordinator for one Slot, speci-
fying the amount of superframe slots needed and the traffic direction, i.e. transmission
or reception. If the request is accepted, one Slot is reserved to that specific user for
its own transmissions/receptions. When the assigned Slot is no more needed, a node
requests the PAN coordinator to deallocate it. Both allocations and deallocations are
requested by MAC command frames, transmitted anytime nodes successfully access
the medium during the CAP.

36

3.2. IEEE 802.15.4 MAC OVERVIEW

On the other hand, the PAN coordinator manages a pool of seven Slots in a First
Come First Served (FCFS) fashion. Until there are still superframe slots available in
the CFP, the PAN coordinator provides requesting nodes with one Slot each. Each Slot
size is the amount of superframe slots specified in the associated GTS request. The
information carried within the GTS fields of each beacon frame specifies i) whether
the node’s request has been accepted or not; and ii) when the node is supposed to
exclusively access the medium during the CFP. By doing so, a number of users can
access the medium without colliding with each other.

Figure 3.4: GTS request command format.

Both allocation and deallocation requests are issued by means of a MAC Com-
mand frame, namely GTS Request Command, whose structure is shown in Figure
3.4. The GTS Characteristics field is the most significant field in GTS allocation re-
quests, and is composed of the following subfields: i) the GTS Length, which specifies
the number of superframe slots requested for the Slot; ii) the GTS Direction, which
specifies the direction of the data frame transmission; and, finally, iii) the Characteris-
tics Type, which distinguishes between GTS allocation and GTS deallocation.

Figure 3.5: Format of the GTS fields.

Upon receiving a GTS Request Command, the PAN coordinator may send back
an optional ACK. Then, the PAN coordinator decides whether to allocate a Slot, con-
sidering the GTS requests specifications and the current available capacity in the
superframe. GTS requests are considered in a FCFS fashion, and assigned Slots are
placed contiguously starting from the end of the CAP. Finally, GTS related information
is carried in the GTS fields of beacon frames (see Figure 3.1).

37

CHAPTER 3. SELECTIVE DENIAL OF SERVICE IN IEEE 802.15.4 NETWORKS

Figure 3.5 shows the format of such GTS fields, which consist of: i) the GTS
Specification, which specifies if GTS is allowed or not and defines the size of the
GTS List field; ii) the GTS Directions, which identify the directions of Slots in the
superframe; and, finally, iii) the GTS List, which includes GTS descriptors representing
the satisfied GTS requests.

Figure 3.6: Format of the GTS descriptor.

Figure 3.6 shows the format of a GTS descriptor. Each one of them is 3 bytes long,
and is composed of the following fields: i) the Device Short Address, which contains
the short address of the device for which the GTS descriptor is intended; ii) the GTS
Starting Slot, which contains the superframe slot at which the Slot begins; and, finally,
iii) the GTS Length, which contains the number of contiguous superframe slots over
which GTS is active.

Every GTS requesting node continues to track beacon frames for at most aGTS-
DescPersistenceTime superframes, in order to check if its request has been accepted
[7]. If this is the case, the requesting node extracts the GTS Starting slot from the
right GTS descriptor, thus gaining knowledge of its own transmission/reception time.
Thanks to the GTS Starting slot, each satisfied node knows when it can transmit or
receive frames without any contention to access the medium. Otherwise, if a GTS
allocation request can not be satisfied, the unsatisfied node notifies a failure to the
next upper layer. If a Slot is no longer required, it can be deallocated at any time, at
the discretion of the PAN coordinator or the devices that originally issued the request.

3.2.2 Security services

IEEE 802.15.4 provides also a number of security services, and makes them available
to the higher layers. The standard provides data confidentiality, data authenticity, and
replay protection on a per-frame basis. If communications are secured, senders build
an Auxiliary Security Header (ASH), insert it next to the standard MAC header, and
secure frames before transmitting them. According to the information carried within
the ASH, recipients retrieve the right cryptographic key and unsecure MAC frames.

The standard includes a security suite based on the Advanced Encryption Stan-
dard (AES) 128 bits symmetric-key cryptography [29]. Besides, three different secu-
rity modes are available, i.e. encryption only (CTR); authentication only (CBC-MAC);
and, finally, both encryption and authentication (CCM). Both CBC-MAC and CCM rely
on a Message Integrity Code (MIC), whose size can be either 4, 8, or 16 bytes. By
means of these security tools, security data structures and security procedures pro-

38

3.3. GTS-BASED SELECTIVE JAMMING ATTACK

vided by the standard, it is possible to secure/unsecure MAC frames and contrast the
GTS-based selective jamming attack.

3.3 GTS-based selective jamming attack

As described in Section 3.2.1, the PAN coordinator manages GTS allocation requests,
and notifies the accepted ones by broadcasting unencrypted beacon frames. How-
ever, as defined by Sokullu et al. [5, 6], the intelligent attacker exploits the knowledge
of the allocation decision in order to find out the longest Slot, and selectively jam it.

Instead, the sniper attacker we defined exploits the transmission of unsecured
beacon frames in order to know which users have been granted a collision-free Slot.
Then, the attacker creates collisions only during the Slot of a specific user, resulting
in a Denial of Service (DoS) attack against it.

Figure 3.7: Example of GTS-based selective jamming attack.

Figure 3.7 shows an example of GTS-based selective jamming attack. By eaves-
dropping the medium, an adversary is able to extract the GTS List from the GTS fields
of the beacon frame (see Figure 3.5). Thus, she can gain knowledge of how Slots have
been scheduled within the superframe. In other words, the adversary becomes aware
of which specific users are going to access the medium during the CFP of the current
superframe, and during which specific Slot each one of them will access the medium.

This means it is very easy for the adversary to selectively interfere with trans-
missions, causing collisions and corruptions of data frames between the legitimate
GTS clients and the PAN coordinator. The sniper attacker performs the GTS-based
selective jamming attack as follows.

1. She selects her victim, that is, she picks a specific node among network devices.
2. She collects beacon frames and parses their MAC headers. By doing so, she

figures whether her victim has been assigned a Slot in the CFP of the current

39

CHAPTER 3. SELECTIVE DENIAL OF SERVICE IN IEEE 802.15.4 NETWORKS

superframe. If this is the case, she jams the Slot assigned to her victim, selectively
interfering with her transmission/reception.

3.4 Selective Jamming Resistant GTS (SJRG)

As explained in Section 3.3, an adversary can intercept broadcast beacon frames,
retrieve the GTS descriptors from them, and perform the attack discussed above.
The actual vulnerability in the GTS mechanism consists in the adversary having free
access to the information carried within the GTS descriptors. A solution to this consists
in encrypting and authenticating GTS-related information within beacon frames.

Encryption makes it possible to prevent an adversary from knowing Slots alloca-
tion. Also, authentication assures that beacon frames have been actually built by the
PAN coordinator. Of course, beacons can be secured by means of the security ser-
vices provided by the IEEE 802.15.4 standard. Unfortunately, the standard allows for
encrypting just the beacon payload portion of the beacon MAC payload (see Figure
3.1). In contrast, the information we need to protect is carried within the GTS fields.

In this section, we describe Selective Jamming Resistant GTS (SJRG), our so-
lution to the GTS-based selective jamming attack. SJRG is compliant with the IEEE
802.15.4 standard, and effective against both the intelligent attacker [5, 6] and the
sniper attacker. Our countermeasure consists of the following steps: i) MAC frames
smart encryption and authentication; and ii) random Slots allocation. The main objec-
tive of our solution is to prevent an attacker from gaining access to the information
carried within the GTS Fields of beacon frames (see Section 3.2.1). SJRG manages
such fields as follows.

The GTS Specification field contains the GTS Descriptor Count subfield, and
specifies the number of GTS descriptors contained in the GTS List. The GTS List
is a list of GTS descriptors, and is moved to the beacon payload portion of the beacon
frame, so making it possible to encrypt and authenticate it. Finally, the GTS Directions
subfield is moved to the beacon payload portion, so making it possible to secure it.

According to our countermeasure, the information required to successfully perform
the attack is moved inside the beacon payload. As a consequence, such information
can now be encrypted, so that the attacker is not able to correctly retrieve and ana-
lyze it. The PAN coordinator and the nodes which make use of this countermeasure
must be able to mutually recognize each other. In order to do that, it is sufficient to
rely on a proper SJRG flag in beacon frames and GTS Request commands. As to
the beacon frames, we use one bit of the Reserved subfield of the GTS Specifica-
tion field (see Figure 3.5). As to the GTS Request commands, we use one bit of the
Reserved subfield of the GTS Characteristics field (see Figure 3.4). We believe that
these two bits are the only part of SJRG which may result in a modification of the
IEEE 802.15.4 standard.

It is useful to encrypt and authenticate also MAC command frames. By doing so,
the adversary would not be able to analyze network traffic and recognize GTS Re-

40

3.4. SELECTIVE JAMMING RESISTANT GTS (SJRG)

quest Commands. If MAC command frames are encrypted, the adversary can still
recognize them from their MAC header, but cannot either recognize a GTS Request
Command nor distinguish between GTS allocation and deallocation requests. Authen-
tication is needed as well, otherwise the adversary would be able to spread fake GTS
Request Commands. Encryption and authentication rely on a fresh nonce value, i.e.
a randomly generated number used to prevent replay attacks.

The standard states that the PAN coordinator manages the Slots assignment in
a static, predictable way. So, if no deallocations occur, assigned Slots are not meant
to change their position in the CFP, even for a considerable amount of consecutive
superframes. Thus, even if the adversary cannot analyze the encrypted GTS List,
she is still able to infer this information by analyzing the network traffic pattern, and
observe the sequence of transmissions during the CFP. This analysis can be made
pointless by unpredictably changing the position of Slots on a per superframe basis.

Unpredictably changing the position of Slots on a per superframe basis makes it
possible to practically preclude an intelligent attacker or a sniper attacker from pur-
posely causing collisions during a specific Slot. Since only the order of Slots in the
CFP is changed, our solution is not in conflict with the IEEE 802.15.4 FCFS schedul-
ing policy. In fact, GTS requests are still served in the same way by the PAN coordi-
nator, thus SJRG does not affect the amount of accepted GTS requests.

Thanks to SJRG, the sniper attacker is not able to purposely interfere during a
specific Slot. As a consequence, she can attempt a collision only on a randomly picked
Slot. SJRG reduces the probability of success of the sniper attacker to x/n, where x

and n are the size in superframe slots of the target Slot and the CFP, respectively.
The worst case for the sniper attacker is when all Slots have been assigned and have
size equal to 1 superframe slot. In such a case, since the maximum allowed GTS
allocation is 7 Slots [7], the sniper attacker has a statistical success rate of 1/7.

What follows is the sequence of actions that take place at the beginning of each
superframe in the presence of SJRG.

1. Every node interested in requesting a Slot prepares a GTS Request command
frame. Then, these nodes specify the number of required superframe slots, and
set the SJRG flag in the Reserved subfield of the GTS Characteristics field (see
Figure 3.4). Finally, they authenticate and encrypt the GTS Request command
frame, and send it to the PAN coordinator.

2. The PAN coordinator verifies the authenticity of GTS Request commands, and
decrypts them. Then, for each one of them, it verifies that the SJRG flag in the
Reserved subfield of the GTS Characteristics field is set.

3. The PAN coordinator serves GTS requests in an FCFS fashion, according to
IEEE 802.15.4 standard specifications. Once GTS requests have been served,
the Slots allocation is randomly altered.

4. The PAN coordinator builds the beacon for the current superframe as follows.

41

CHAPTER 3. SELECTIVE DENIAL OF SERVICE IN IEEE 802.15.4 NETWORKS

a) The GTS Directions and GTS List fields are filled, according to the output
from step 3. These fields are placed into the Beacon Payload field, instead of
the GTS fields.

b) The GTS Descriptor Count subfield of the GTS Specification field is set to 0.
c) The SJRG flag in the Reserved subfield of the GTS Specification field is set.
d) The beacon frame is authenticated. Then, the PAN coordinator encrypts the

Beacon Payload field, and broadcasts the beacon frame to network nodes.

5. Upon reception of a beacon frame, each node verifies its authenticity. Then, each
node which has issued a GTS request performs the following actions.

a) It verifies that the SJRG flag in the Reserved subfield of the GTS Specification
field is set.

b) It decrypts the Beacon Payload field, and verifies the authenticity of the bea-
con frame. Then, it retrieves the GTS List from the Beacon Payload, and
checks if its GTS request has been accepted, i.e. if it has been granted a Slot
for the current superframe.

It is worth clarifying that SJRG is not a countermeasure against the wide-band
jamming attack. In fact, it is not effective in case an adversary interferes with all nodes’
transmissions during the CFP, by continuously jamming all available channels. Still, we
believe that, in a WSN, it is very likely that the attacker relies on sensor nodes and
aims at limiting energy consumption, thus avoiding performing wide-band jamming.

3.4.1 Discussion on dictionary attack

Since SJRG requires the encryption of a small amount of bytes to protect the alloca-
tion of Slots, there might still be a chance for an adversary to find a breach in SJRG by
performing a dictionary attack.

In order to understand what a dictionary attack consists in, consider an attacker
who eavesdrops the medium, records all possible encrypted GTS Lists, and builds a
dictionary. Such a dictionary allows the adversary to associate the behavior of GTS
devices to the corresponding GTS List, even if it is encrypted. Each GTS List includes
the Slot during which devices are supposed to transmit. If the adversary succeeds in
building the dictionary, she can i) listen to a beacon frame and retrieve the encrypted
GTS List of the current superframe; ii) look for the corresponding entry in the dictio-
nary; and iii) find the exact Slot to jam in order to hit her victim. Of course, this would
make SJRG useless against selective jamming.

In the following, we show how such a dictionary attack is not practically feasible.
We recall that the cryptographic key used to authenticate and encrypt MAC frames
has to be renewed when the Frame Counter field value is 0xffffffff, as specified by
the IEEE 802.15.4 standard [7]. Also, we assume that all MAC data frames are sent
by network devices to the PAN coordinator, thus the GTS Directions content remains
constant over time. This is reasonable, because in many applications the PAN coordi-
nator just collects information transmitted by sensor nodes.

42

3.5. SJRG IMPLEMENTATION

According to the IEEE 802.15.4 standard, we can have up to 7 Slots per super-
frame. Thus, by randomly altering Slots allocation, we can have up to 7! = 5040

possible GTS List configurations, carried within beacon payloads. Also, the IEEE
802.15.4 standard requires to encrypt each frame considering a 13 bytes nonce. Even
if the nonce has a predictable structure, it includes a 32 bits long frame counter, which
varies at each frame. Then, a complete dictionary consists of 5040 · 232 entries. Each
entry includes one possible GTS List configuration with 7 GTS descriptors, whose
size is 3 bytes each. Since we have assumed that the GTS Directions content re-
mains constant over time, it is not necessary to include such a field in the dictionary,
so each entry is 21 bytes in size.

Thus, building a complete dictionary would be practically unfeasible, since it re-
quires more than 413 TB to be stored, which is not affordable for a wide range of
adversaries. Also, if we considered a security mode which includes both encryption
and authentication, we would have some extra unpredictability due to the extra bytes
of the MIC. As a consequence, the dictionary would get even larger in terms of both
number of entries and their size. Moreover, in order to have a complete dictionary, the
adversary would have to build all the possible 5040 · 232 entries. This is impossible
because the Frame Counter field value reaches 0xffffffff after 232 beacons, which is
less than the amount of dictionary entries. Thus, the adversary cannot complete the
dictionary before key renewal takes place.

3.5 SJRG implementation

We implemented SJRG referring to the implementation of IEEE 802.15.4 for the
TinyOS platform [3]. We extended the release, and implemented IEEE 802.15.4 se-
curity services and procedures. We defined modules that implement security data
structures and security procedures described by the IEEE 802.15.4 standard [24],
with reference to the Tmote Sky platform [4] and the CC2420 chipset [31].

As to SJRG, we extended the MAC frames parsing process, in order to properly
manage the ASH in the presence of secured MAC beacon and command frames.
In this section, we consider the CCM-16 security mode, which authenticates frames
using a 16 bytes MIC, and then encrypts both the MIC and the payload. Nevertheless,
SJRG works properly also with CCM-4 and CCM-8 security modes (see Section 3.2.2
for an overview about security modes). In case the PAN coordinator and network
devices rely on SJRG, they mutually recognize each other by means of the SJRG flag
carried within beacon frames and GTS Request commands (see Section 3.4).

As already discussed, it is vital also to exchange Slots positions in an unpre-
dictable way. Otherwise, the adversary would be able to predict the new allocation
scheme, and successfully perform the GTS attack. Therefore, the random reorgani-
zation of Slots within the MAC frame must rely on a secure pseudo-random number
generator (SPRNG). We implemented a SPRNG based on the CC2420 chipset [31].
Specifically, we took inspiration from the ANSI X9.17 pseudo-random bit generator

43

CHAPTER 3. SELECTIVE DENIAL OF SERVICE IN IEEE 802.15.4 NETWORKS

[64], and considered a practical variation in order to build our own one. Specifically,
our randomization function can be expressed as follows.

xi =

{
Ek(s) if i = 1
Ek(xi−1) if i 6= 1

The input of the encryption function E is a key k and a quantity to be encrypted.
The seed s must be a fresh quantity, i.e. a nonce value, and can be initialized during
the PAN coordinator startup. Since the adversary does not know the key k, the output
xi of the above function can be considered a random variable. Note that if we assume
that the key k is a secret, then the seed s can be public.

After the PAN coordinator has performed the regular Slots allocation, the order
of Slots within the CFP is altered by adding all GTS starting Slots with a pseudo-
random quantity generated with the SPRNG. As a result, the adversary cannot obtain
information about Slots allocation by either analyzing the network traffic or observing
the order of transmissions during the CFP.

3.6 SJRG evaluation

We evaluate SJRG by considering four different aspects: i) effectiveness, i.e. the gain
in terms of delivery ratio achieved with respect to an unprotected setup; ii) memory
footprint, i.e. the extra amount of memory required by our implementation; iii) net-
work performance, i.e. the delay due to additional processing and transmissions; and,
finally, iv) the additional per packet energy consumption.

We performed our evaluation by taking into account a real application on a realistic
scenario. We considered an IEEE 802.15.4 star topology consisting of one PAN coor-
dinator and 7 RFD nodes acting as GTS senders. Also, we considered the presence
of one sniper attacker. All nodes were Tmote Sky motes, which feature a CC2420
chipset and are provided with a 48 kB ROM [4].

In our testing application, the PAN coordinator broadcasts a beacon frame, so that
sender nodes can associate to the PAN. Then, all sender nodes ask for a Slot to
the PAN coordinator, specifying that they support SJRG. Since the PAN coordinator
provides SJRG, it broadcasts a SJRG beacon frame. Once they have received the
SJRG beacon frame, sender nodes gain knowledge of their reserved Slot. From then
on, each one of them transmits its data frames to the PAN coordinator during the
assigned Slot. The attacker node aims at disrupting data frames transmission of a
specific sender, but SJRG forces it to pick a Slot as target in a random way.

3.6.1 Effectiveness

The effectiveness of our countermeasure has been evaluated considering the prob-
ability of success of the attacker to jam communications of her target node, both in
the presence and in the absence of SJRG. The presence of 7 senders represents

44

3.6. SJRG EVALUATION

the worst case from the attacker point of view, because the PAN coordinator always
allocates 7 Slots in the CFP. Also, we fixed the size of Slots to one superframe slot
each. That is, the smaller the target is, the harder it is for the attacker to hit it.

In order to estimate how many successful transmissions have been made, we ob-
served the amount of acknowledgments received by each node that transmits during
its own Slot, in the presence of the attacker node. In order to increase the accuracy
of our results, we performed 10 repetitions of 100 transmissions for each experiment.
The results we present here are averaged over all the different repetitions. We also
report the standard deviation we derived from the independent replication method.

Our experimental evaluation considered the following two scenarios:

• No SJRG: the 88.4% of transmissions from the target node were corrupted by the
sniper attacker, while no transmissions from other sender nodes were corrupted.
The 11.6% of successful transmissions from the target node are due to imperfect
clock sychronization of Tmote Sky motes. That is, because of the clock drift effect,
a short frame might be transmitted before the adversary starts jamming the target.

• SJRG: the 13.8% of transmissions from the target node were corrupted by the
sniper attacker, and the 13.7% from the other sender nodes were corrupted as
well. This is due to the fact that the attacker cannot recognize her target anymore,
and jams one Slot, by picking it at random. Thus, in the presence of SJRG, all
sender nodes have a certain probability of being jammed. Nevertheless, the per-
centage of failure is affordable, and can be handled by means of retransmissions.

The amount of data frames sent by the target node and correctly received by the
PAN coordinator confirms our theoretical assumption, i.e. the attacker has a statistical
success rate of 1/7. So, no Denial of Service (DoS) occurs.

3.6.2 Memory footprint

The amount of memory required by our implementation has been evaluated by com-
paring the TinyOS image size for Tmote Sky motes, both in the presence and in the
absence of SJRG. We evaluated memory consumption considering the most com-
plex and complete standard security configuration (i.e. KeyIdMode3 key retrieval and
CCM-16 security mode), as a worst case.

As shown in Figure 3.8, the extra amount of memory is mostly due to the imple-
mentation of the IEEE 802.15.4 security sublayer. Specifically, we highlight the follow-
ing five contributions: i) basic IEEE 802.15.4 implementation; ii) IEEE 802.15.4 secu-
rity sublayer; iii) IEEE 802.15.4 GTS; iv) SJRG; and v) unallocated memory.

Our implementation of SJRG occupies the 1.95% of the whole Tmote Sky memory
for the PAN coordinator, and the 1.08% for sender devices. We believe that such an
extra memory consumption is reasonable and affordable. Finally, even in the presence
of SJRG, there is still a not negligible amount of unallocated memory, both on the PAN
coordinator and sender devices. This memory can be used for additional features or
more complex applications.

45

CHAPTER 3. SELECTIVE DENIAL OF SERVICE IN IEEE 802.15.4 NETWORKS

Figure 3.8: SJRG memory occupancy on Tmote Sky motes.

3.6.3 Network performance

As to network performance, SJRG is operating on top of the 2.4 GHz physical layer,
with a 250 Kb/s bit rate [31]. We modeled the impact of SJRG on network perfor-
mance by considering two main aspects, namely processing overhead and transmis-
sion overhead experienced by the PAN coordinator.

The processing overhead consists of two contributions: i) the hardware encryp-
tion and authentication contribution, due to the CC2420 chipset; and ii) the software
contribution, due to the MSP430 microcontroller. In order to evaluate the software
contribution, we considered these two components separately.

In Table 3.2, the first line reports the hardware encryption and authentication con-
tribution. The second line shows the processing overhead due to software security
procedures. The third line reports the processing overhead introduced by SJRG. Note
that only the third line regards SJRG, while the first and second ones show contribu-
tions due to the IEEE 802.15.4 security sublayer. These values are averaged over all
the different repetitions. We also include the standard deviation we derived from the
independent replication method.

46

3.6. SJRG EVALUATION

Contribution
Processing Standard

overhead (µs) deviation (µs)
HW IEEE 802.15.4 security 254.47 1.34
SW IEEE 802.15.4 security 1752.26 5.46

SJRG 125.83 2.12

Table 3.2: SJRG processing overhead contributions.

The transmission overhead has been evaluated analytically, considering a bit rate
equal to 250 Kb/s [31]. We have considered the time required to transmit the additional
bytes added by SJRG, according to the standard security policy. The size of the orig-
inal GTS beacon packet to manage 7 Slots is 34 bytes, including the standard frame
header and the Cyclic Redundancy Check (CRC). Since we consider SJRG relying
on the most complete IEEE 802.15.4 security services (i.e. KeyIdMode3 key retrieval
and CCM-16 security mode), the beacon frame size is increased of 31 bytes, of which
30 are due to the IEEE 802.15.4 security sublayer.

More in details: i) 14 bytes are due to the presence of the ASH; ii) 16 bytes are
required to provide frame authentication; and iii) 1 byte is due to the fact that we
split the GTS fields, duplicate the GTS Direction subfield, and place it into the Beacon
Payload field. We keep a fake copy of the GTS Direction subfield in its original position,
in order to stay compliant with the standard.

We computed the transmission time dtx of a SJRG beacon frame as the ratio
between the frame size in bits and the bit-rate:

dtx =
65 · 8
0.250

= 2080µs

The original beacon frame is 34 bytes in size, so it can be transmitted in

dtx =
34 · 8
0.250

= 1088µs

so the transmission overhead is

2080µs− 1088µs = 992µs

Note that SJRG adds only one byte to the beacon payload, while the 14 bytes of
the ASH and the 16 bytes of the MIC are due to the IEEE 802.15.4 security policies.

However, the user can trade off security and efficiency, thus reducing the trans-
mission overhead due to the presence of the ASH and the MIC. IEEE 802.15.4 allows
for choosing among i) different key retrieval methods, which influence the ASH size,
and ii) different sizes of the MIC field, in case authentication or encryption and authen-
tication are required. Table 3.3 provides an overview of different ASH and MIC sizes,
with their associated transmission overheads. It is evident that by properly matching
the ASH and MIC sizes, it is possible to reduce the transmission overhead.

47

CHAPTER 3. SELECTIVE DENIAL OF SERVICE IN IEEE 802.15.4 NETWORKS

Key retrieval policy ASH size (bytes) Transmission overhead (µs)
KeyIdMode3 14 448
KeyIdMode2 10 320
KeyIdMode1 6 192
KeyIdMode0 5 160

Security mode MIC size (bytes) Transmission overhead (µs)
CBC-MAC-16/CCM-16 16 512

CBC-MAC-8/CCM-8 8 256
CBC-MAC-4/CCM-4 4 128

Table 3.3: SJRG transmission overhead contributions.

Our results show that the transmission overhead introduced by SJRG is mostly
due to the IEEE 802.15.4 security sublayer. Even in case all Slots are in use,
SJRG adds only one byte to the beacon frame, which means 32 µs of additional
transmission delay. If some Slots are not allocated, SJRG assumes that all Slots are
present, as explained in Section 3.4. Of course, this increases the beacon frame size.
However, beacon frames are transmitted once per superframe, which means that one
beacon is broadcast every 0.983 seconds (considering BeaconOrder = 6 and Su-
perframeOrder = 6 [7]). Thus, we believe that the increase of beacon frames size is
affordable [33, 38].

3.6.4 Energy consumption

As to energy consumption, we considered processing and transmission contributions
separately. Each contribution has the form Ei = Pi · di. We define di as the delay
contribution due to operation i, and refer to delay values reported in Section 3.6.3.
Pi = Vi · Ii is the single power contribution, expressed as the product between volt-
age and current of the MSP430 microcontroller and the CC2420 chipset, responsible
for processing and transmission, respectively [4]. Table 3.4 provides an overview of
such contributions.

Transmission
Ptx (mW) dtx (µs) Etx (nJ)

31.32 992 31069.44

Processing

PHWsec (mW) dHWsec (µs) EHWsec (nJ)
31.32 254.47 7970

PSWsec (mW) dSWsec (µs) ESWsec (nJ)
1.08 1752.26 1892.44

PSJRG (mW) dSJRG (µs) ESJRG (nJ)
1.08 125.83 135.90

Table 3.4: SJRG energy consumption contributions.

48

3.6. SJRG EVALUATION

Considerable increases in per packet energy consumption are due to the trans-
mission overhead of the extra bytes required by the IEEE 802.15.4 security sublayer.
Also the processing overhead of standard encryption and authentication algorithms
has a considerable impact on energy consumption. However, these contributions can
be reduced by changing the size of the ASH and the MIC to be transmitted, as dis-
cussed in Section 3.6.3.

The actual SJRG contribution to energy consumption is the one reported in the last
entry of Table 3.4, that is the energy consumed to add the SJRG field to the beacon
frame after having computed the Slots order. We believe that this additional energy
consumption is affordable, if compared to the contributions introduced by standard
security mechanisms, including their transmission overhead.

3.6.5 On scalability

In this section, we argue that scalability of SJRG with respect to the number of users
and the number of attackers is not an issue.

As to the number of users, the IEEE 802.15.4 standard admits up to 7 GTS users
during the CFP, thus practically limiting the amount of GTS users to be considered in
the performance analysis of SJRG. At the same time, GTS users which have been
granted a Slot, and thus potential victims of the attacker, do not contend with each
other to access the medium. As a consequence, although the total number of users in
the system may impact the GTS mechanism, such a number does not affect SJRG.

As to the number of attackers, we argue that considering two or more attackers is
not so interesting, besides being beyond the threat model we consider in this disser-
tation. In fact, consider the borderline case in which several attackers, independently
of each other, perform a random attack, as SJRG prevents them from performing the
intelligent and the sniper attack. In such a case, the greater the number of attackers,
the greater the likelihood that they jam all Slots, so causing a total jamming of the
collision-free portion of the channel. However, this attack would be easily detectable.
As a consequence, several independent attackers would hamper each other.

49

50

4

PLASA

In the past, WSNs were mainly used for scientific purposes, where an adversary had
little incentive to attack sensors [1]. In the recent years, Wireless Sensor Networks
(WSNs) have been adopted in an increasing number of application scenarios. In par-
ticular, WSNs are employed in i) Cooperating Objects Systems (COSs) [65, 66] ii)
Critical Infrastructures (CIs) [67, 68]. In COs, mobile physical agents share the same
environment with the WSN to fulfill their tasks, either in group or in isolation. In CIs,
sensor nodes collect data and transmit them to a central base station through a wire-
less network. In both scenarios, sensor nodes are resource constrained devices de-
ployed in unattended, possibly hostile environments.

Given the nature of WSNs and the wireless channel vulnerabilities, it is an easy
task for an adversary to eavesdrop messages and alter them, or inject fake ones.
Possible consequences of a security infringement may translate into damages to
things and injures to people. The more pervasive these applications become, the
more pressing security guarantees get. It follows that, in all these scenarios, is vital
to add security features to these applications. The main security requirements to be
satisfied include secure communication, key management and secure bootstrapping.

In this chapter we present PLASA, a modular and transparent security suite to pro-
vide WSNs with secure communications, key management and secure bootstrapping.
PLASA is modular, this makes it easily portable on different hardware, such as [69, 70]
and network stacks [4, 7, 22]. Modularity allows for PLASA customization to match se-
curity requirements, add new features, or extend existing ones. PLASA characteristics
allow for reusing application components in scenarios where security becomes rele-
vant. Also, PLASA is dynamically reconfigurable because it can switch from a security
procedure to another when the application is running.

STaR is the module of PLASA that guarantees confidentiality, integrity, and au-
thenticity of communications by means of a set of encryption and/or authentication
protocols, both hardware and software. It allows for protecting multiple traffic flows at
the same time, according to different security policies. STaR is reconfigurable because
it makes it possible to change security policies on a per packet basis at runtime. That

51

CHAPTER 4. PLASA

is, it assures a fine grained adaptability to possible changes in security requirements.
STaR is transparent, because the application can still rely on the communication in-
terface already in use. The application does not require to be redesigned or recoded
in order to exploit a certain security policy. This clearly separates the implementation
of the application from the STaR component. STaR allows people that do not have a
security background to secure their applications by simply selecting security policies
to be applied. Besides, application developers need neither to implement complex
security procedures, nor to configure unfriendly tools, such as network firewalls.

STaR integration in applications guarantees the software engineering principle of
separation of concerns [71]. In fact, the STaR developer and the application devel-
oper can be two distinct persons that just agreed on the interface functions used to
configure STaR. In other words, the application developer can adapt the system be-
havior to new security requirements just calling some STaR functions that have been
implemented by the STaR developer, that is a security expert. Finally, STaR assures a
fine grained adaptability to possible changes in security requirements and fine tuning
of performance vs. resource consumption trade-offs.

PLASA features a generic architecture, and can be implemented for any hardware
platform and WSNs operating system. We evaluated our PLASA implementation [72]
for TinyOS [3] on Tmote Sky motes [4]. We believe the best way to evaluate PLASA ef-
ficiency is to rely on typical WSNs performance metrics and compare them both in
the presence and in the absence of different security modules. Thus, we evaluated
memory occupancy, communication overhead, and energy consumption both in the
presence and in the absence of different PLASA modules.

4.1 Related work

Many solutions have been devised for WSNs security, including [41] for secure com-
munication, [73, 74, 75, 76, 77, 78] for key management, and [79, 80] for secure code
dissemination. However, the major part of security solutions for WSNs are well-suited
to particular applications or platforms, and lack the possibility to be ported, extended
or composed with others. However, only a small fraction of existing security solutions
appears to be general enough to match requirements of different applications, espe-
cially when the environment changes dynamically and presents a component-based
architecture [81, 82]. In [83] a transparent and reconfigurable security middleware is
presented. However, we believe that a performance evaluation of a tool that intro-
duces security in applications that present real-time constraints is fundamental. If se-
curity costs are not known in advance, security operations may cause an unaffordable
performance degradation and security would be left apart in these scenarios.

The current state of the art generally lacks of flexible and reconfigurable secu-
rity solutions whose costs in terms of memory, energy and network performance are
well known. The security architecture we propose in this dissertation tries to fill this

52

4.2. PLASA ARCHITECTURE

gap. Our contribution is in proposing PLASA as the evolution of STaR [84]. PLASA in-
tegrates the STaR module for secure communications and realizes a security archi-
tecture i) easy to integrate, also with legacy applications that have been designed
without taking security into account, ii) reconfigurable, both in terms of change of se-
curity algorithms in use and in terms of extensibility of PLASA’s features by means of
new modules, and iii) complete, because it embraces main security requirements (i.e.
secure bootstrap, secure communication, key management).

Finally, our work is enriched by a real implementation for real study cases. Data
collected from our experiments provides the reader with an idea of the impact of
PLASA on performance in terms of memory occupancy, communication overhead
and energy consumption. We believe this is an important aspect to be considered
when deciding if a security architecture is affordable for resources available on certain
devices (e.g. battery-powered sensor nodes). Knowing the cost of security in hetero-
geneous object systems is vital, because it prevents resource constrained portions of
the network from a collapse due to lack of resources to support security.

4.2 PLASA architecture

Figure 4.1: PLASA component overview.

PLASA consists of four main components, i) the Authentication module, ii) the
KeyDB, iii) the Key Management module, and iv) the Secure Communication module.
Figure 4.1 shows these modules stay between the application and the communication
stack, but the structure can be easily moved between any other layers of the network
stack.

53

CHAPTER 4. PLASA

The Authentication module is responsible for secure bootstrapping of sensor
nodes after deployment. The Authentication module objective is to assure that only
authorized nodes can access network communication. Since communications are se-
cured by means of cryptographic keys, the Authentication module aims to distribute
cryptographic keys to authorized nodes. In order to distribute such keys in a secure
manner, the Authentication module relies on a pre-shared secret that is generally
loaded into each network member before network deployment.

The KeyDB is organized as a distributed database to store and retrieve crypto-
graphic keys. It acts as a bridge between different modules of PLASA that access
the KeyDB to perform different security operations. As shown in Figure 4.1, its design
allows to setup, exchange and refresh cryptographic keys without either creating mul-
tiple copies of the same key or causing extra overhead due to key exchange from one
module to another. The KeyDB module of each node consists of a Key Table. Entries
of the Key Table have the same structure: i) the KeyID field, used to identify the key
within the Table, ii) the key field, storing the cryptographic key, and iii) the Flags field,
used to specify some characteristics of the key usage (e.g. pairwise key, group key,
key encryption key etc.). Please note that, in our implementation, critical races are
automatically avoided by TinyOS. As a consequence, we do not have problems in
controlling access to the KeyDB from different modules.

The Key Management module is responsible for refreshing or renewing crypto-
graphic keys periodically or on demand when certain events happen. As shown in
Figure 4.1, this module includes two submodules: i) the server, acting as a Key Man-
ager that broadcasts cryptographic keys to be renewed according to the Key Manage-
ment protocol, and ii) the client, receiving updates from the Key Manager and taking
appropriate actions. The major part of network nodes that implement the Key man-
agement module act as clients, while those implementing the server part are special
entities, and in general have no other roles.

4.2.1 STaR module

The Secure Communication module is called STaR (Security Transparency and Re-
configurability). STaR is the heart of PLASA, and extends a preliminary work pre-
sented in [84]. STaR secures communications with high adaptivity, thanks to three
layers of data abstraction: i) traffic flows, ii) security policies, and iii) labels.

A traffic flow is a set of application messages handling the same data or provid-
ing the same service. A security policy determines what kind of security algorithm is
applied by STaR to a certain traffic flow. A label determines the mapping between a
traffic flow and a security policy. All packets belonging to a given traffic flow can be
associated to a common label. Thanks to the label, incoming packets can be unse-
cured upon being received, according to the security policy associated to the traffic
flow they belong to. The STaR component intercepts both incoming and outgoing traf-
fic, segments it into traffic flows, and secures or unsecures them according to the
corresponding security policies.

54

4.2. PLASA ARCHITECTURE

STaR provides transparency of security because exports the same interface of
the underlying communication stack. Also, STaR assures reconfigurability by allowing
users to dynamically change, enable and disable security policies. STaR modular de-
sign allows to i) extend it with any other module, ii) move STaR between any layers of
the network stack, iii) adapt its interfaces to any communication paradigm.

Figure 4.2: Example of packet processed by STaR.

Figure 4.2 shows a packet processed by STaR. Packets arrive at STaR with a
header and a payload. Then, STaR builds and inserts the STaR Control Field between
the header and the payload of the packet. The STaR Control Field carries i) the Label
subfield, which contains the label associated to the traffic flow of the packet, ii) the
PolicyID subfield, which contains the identifier of the security policy associated to the
label, and iii) the Age subfield, which specifies the age of the mapping of the label to
the policy ID. According to the security policy in use, a packet can have its payload
encrypted, can be appended with an authentication trailer, or can have both payload
and authentication trailer encrypted.

Figure 4.3: STaR architecture.

55

CHAPTER 4. PLASA

As shown in Figure 4.3, the STaR component consists in 5 sub-components,
namely StarConfig, StarFlowClassifier, StarToApplication, StarToCommunication, and
StarEngine. The StarFlowClassifier classifies packets into traffic flows, and deter-
mines the associated label. Its implementation consists in a mapping of traffic flows
to labels. Application traffic flows can be divided in many ways (e.g. active message
types, destination address etc.). The StarConfig component allows users to dynami-
cally enable/disable security policies, and change their association to traffic flows, thus
providing reconfigurability at runtime. The StarToApplication component provides the
application with the same communication interface exported by the communication
stack. The StarToCommunication component makes it possible to connect STaR to
the underlying communication stack. The StarEngine component encapsulates the
mechanism to process security policies and the needed security algorithms.

STaR modularity eases the porting of STaR onto different communication stacks.
A different communication stack requires to customize the StarToCommunication and
StarToApplication components, while other components remain unmodified. Although
the application developer is not required to change the application code and/or be-
havior, she has certain obligations in order to exploit STaR, namely i) implementation
of security policies; ii) traffic segmentation; iii) association of security policies to traffic
segments; and, iv) STaR initialization.

STaR security services

As described in Section 4.2.1, STaR relies on packet labels to protect multiple traffic
flows at the same time. All packets belonging to a given packet flow can be associated
to a common label, and secured before being transmitted, according to a specified
security policy. Incoming packets can be unsecured upon being received, according
to the security policy associated to the traffic flow they belong to.

STaR is responsible for securing/unsecuring packets and mapping flow labels into
security policies. These tasks are totally transparent to the application. The applica-
tion can still rely on the original communication interface provided by the available
communication stack, and does not require to be modified. In order to manage as-
sociations between traffic flows and security policies, STaR maintains two tables: i) a
Security Policy Table (SPT), and ii) a PolicyDB.

The SPT is formatted as follows. The Label field is one byte in size. Thus,
STaR manages up to 256 different traffic flows at the same time. The PolicyID field
specifies the security policy to be adopted for a given traffic flow. PolicyID entries in
the SPT refer to security policies specified in the PolicyDB by the specific STaR imple-
mentation. The Active field indicates whether the security policy associated to a given
label has to be applied or not to packets belonging to such traffic flow. The Active field
is set to TRUE by default in all entries. SPTs of all network nodes are supposed to be
initialized in the same way at the network startup.

The PolicyDB is formatted as follows. PolicyID values in the PolicyDB have to
match PolicyID entries of the SPT to correctly retrieve the security policy implemen-

56

4.2. PLASA ARCHITECTURE

tation provided by STaR. The EntryPoint field contains a reference to the code section
which implements the policy (e.g. a C++ function pointer).

STaR communication support

The following communication functions are provided.

bool send(packet, size);

Provide the packet packet of size size to STaR. Return TRUE in case of success,
FALSE otherwise.

bool receive(packet, size);

Provide the application with the packet packet of size size coming from STaR. Return
TRUE in case of success, FALSE otherwise.

int retrieveLabel(packet);

Return the label associated to the traffic flow which the packet packet belongs to.

Policy retrievePolicy(label);

Return the security policy associated to label. Return an error code if the Active field
in the SPT is set to FALSE, or the policy is not present in the PolicyDB.

The application developer must determine the best security policy to protect each
traffic flow, and bind each one of them to a specific label value. Specifically, the re-
trieveLabel function must implement the criteria according to which it is possible to
infer which traffic flow a given packet belongs to.

Packet P is transmitted according to the following steps. The application provides
STaR with packet P , through the send function. Then, STaR retrieves the label L
associated to packet P through the retrieveLabel function, and the associated security
policy SP through the retrievePolicy function. Then, STaR builds a one byte field, fills it
with the label L, and inserts it between the header and the payload of packet P . Then,
packet P is secured, according to the security policy SP . Finally, STaR provides the
secured packet P to the communication stack, to deliver it to the recipient node(s). The
label must never be encrypted, in order to assure that packet P is correctly unsecured
at the recipient side. However, the label can be authenticated, in order to guarantee
that it has been actually generated by the STaR component. Figure 4.4 shows an
outgoing packet processed by STaR.

Packet P is received according to the following steps. STaR receives the secured
packet P from the communication stack, and retrieves the label L from the additional
label, which can then be removed. Then, STaR retrieves the security policy SP asso-
ciated to label L, and unsecures packet P , according to SP . Finally, STaR provides
the unsecured packet to the application. Figure 4.5 shows an incoming packet pro-
cessed by STaR.

57

CHAPTER 4. PLASA

Figure 4.4: Outgoing packet processing.

Figure 4.5: Incoming packet processing.

STaR dynamic reconfiguration

STaR dynamic reconfiguration exploits the injection in the network of a small STaR con-
trol packet that changes the security policy associated to a certain label.

Figure 4.6 shows the format of a STaR control packet. The Reconfiguration info
payload consists in an Action field that identifies the kind of action required by the
control packet. Following fields represent the STaR Control Field of packets belonging
to the flow whose policy has to be enabled, disabled or changed, according to the
Action field. Note that this packet carries its own STaR Control Field, because it has
to be at least authenticated. In case the STaR control packet is not authenticated, an

58

4.2. PLASA ARCHITECTURE

Figure 4.6: STaR control packet format.

adversary might inject fake packets to force STaR to associate the no_security policy
to all labels, forcing all network nodes to switch to unsecured communication.

Even if the STaR control packet is a very short packet which is sent broadcast, it
may happen that a network node misses it, so missing the policy reconfiguration. In
order to avoid this, STaR provides a policy reconfiguration recovery procedure. Every
time a node receives a packet, STaR checks whether the label/policy ID association
carried within the STaR Control Field matches the association specified in the SPT for
the same label. In case of mismatch, it compares the Age subfield carried within the
STaR Control Field, with the one in the SPT. If the SPT Age field is greater than the
Age value of the packet, it means that the sender of the packet missed the STaR con-
trol packet. In this case the receiver retransmits a STaR control packet, to allow the
sender to update the SPT. Otherwise, if the Age value of the packet is greater than
the SPT Age field, it means that the receiver of the packet missed the STaR control
packet. In this case, the receiver just updates its SPT entry according to information
carried within the STaR Control Field.

STaR control packets retransmission is broadcast by default, because the STaR-
Communication module relies on communication paradigms that are logically broad-
cast. If the STaRCommunication module supports unicast communication, STaR mod-
ular structure allows to substitute the module that implements policy reconfigura-
tion recovery procedure by sending a unicast packet, thus avoiding broadcasts.
Please note that choosing broadcast communication is the most feasible way to make
STaR as general as possible, while STaR modularity allows to customize the compo-
nent to achieve better performance.

The following three functions are implemented in the StarConfig module and man-
age policy update procedures.

int enablePolicy(label);

Search the SPT entry related to label label. If a match is found, set to TRUE the
corresponding Active field. Once the policy is active, STaR starts applying such a
security policy to all packets belonging to the traffic flow associated to label label.
Return zero in case of success, an error code otherwise.

int disablePolicy(label);

59

CHAPTER 4. PLASA

Search the SPT entry related to label label. If a match is found, set to FALSE the
corresponding Active field. Then STaR stops applying such a security policy to all
packets belonging to the traffic flow associated to label label. Return zero in case of
success, an error code otherwise.

int changePolicy(label, newPolicy);

Write newPolicy in the PolicyID field of the SPT entry related to label label. The Active
field of the SPT entry remains unchanged. Return zero in case of success, an error
code otherwise.

Thanks to the STaR configuration interface, the application is allowed to change
security settings at runtime. Also, STaR can dynamically change its behavior even in
software platforms which does not allow for dynamically loading/unloading modules,
such as TinyOS [3]. This is possible by filling all the implemented SPT entries and
activating/deactivating them, by simply calling the configuration interface functions.

If the operating system allows for changing some program modules at runtine, it is
possible to add and remove policies and traffic flows, in order to match new security
requirements more effectively.

The following four functions can be implemented only if the operating system al-
lows for dynamically changing the program loaded on sensor nodes.

void addPolicy(PolicyID, EntryPoint);

Add the policy identified by PolicyID to the PolicyDB. EntryPoint specifies the code
section to be executed to apply the specified policy.

void removePolicy(PolicyID);

Remove the policy identified by PolicyID from the PolicyDB.

void addFlow(label);

Add a flow with ID label to the SPT. Firstly, verify it is not a copy of another flow, then
set the PolicyID field to UNDEFINED and the Active field to FALSE. These fields will
be set by a policy association.

void removeFlow(label);

Remove the flow identified by label from the SPT.

4.2.2 Authentication module

The Authentication module maintains the Neighbors Table to keep track of neighbors
discovered by each network node during the bootstrapping phase. The structure of
this table is the following. The nodeID field is the unique ID of the discovered neighbor,
the Trusted flag indicates whether the cryptographic keys associated to him have been
successfully authenticated or not, finally, the keyID is used to access he Key Table to
retrieve keys from the KeyDB module.

60

4.2. PLASA ARCHITECTURE

The only interface function of the Authentication module is the nodeInit function.
This function initializes the node with its unique identifier. Generally, the cryptographic
material required by the secure bootstrapping protocol is generated starting from a
pre-shared secret installed on the KeyDB module.

int nodeInit(nodeID);

Initialize the node with the identifier provided as input by nodeID and generate cryp-
tographic material needed by the protocol. Return zero in case of success, an error
code otherwise.

4.2.3 KeyDB module

The KeyDB module maintains a set of keys within the Key Table. To assure the max-
imum flexibility, we implemented the functions to get and set cryptographic keys pro-
viding the Flags input variable. The right usage of cryptographic keys is managed
comparing the Flags parameter provided as input and the Flags field specified in the
Key Table.

void setKey(KeyID, Key, Flags);

Associate the pairwise key Key to the entry identified by KeyID, specifying the pro-
vided Flags in the corresponding field of the Key Table.

Key getKey(KeyID, Flags);

Access the Key Table looking for the provided KeyID. If Flags provided as input match
the corresponding Flags field, return the key Key, otherwise return an error code.

4.2.4 Key management module functions

This module has not specific data structures because it relies on the KeyDB module
to store, retrieve, refresh or delete cryptographic keys. The operations of the client
submodule are different from those of the server submodule.

Server operations are described as follows.

int initKey(nodeID);

Trigger the initialization of node nodeID with some cryptographic material generated
according to the protocol. Return zero in case of success, an error code otherwise.

int updateKey(nodeID);

Trigger a key refresh of node nodeID with some cryptographic material generated
according to the protocol. Return zero in case of success, an error code otherwise.

Client operations are described as follows.

int requestKey(keyID);

61

CHAPTER 4. PLASA

Ask to the Key Manager to (re)send the key identified by keyID, to recover from key
losses. Return zero in case of success, an error code otherwise.

int updateKey(keyID);

Manages a key refresh request from the key manager by updating the key identified
by keyID, according to the protocol. Return zero in case of success, an error code
otherwise.

4.3 PLASA performance evaluation

We implemented the PLASA components [72] for TinyOS 2.x, which is currently avail-
able at [3], with reference to the Tmote Sky motes [4] and the CC2420 chipset [31]. As
to security algorithms supported by STaR, we have implemented i) the Skipjack en-
cryption module [85], ii) an authentication algorithm that uses SHA-1 [86] to compute
the message digest and then symmetric key encryption for authentication (hereafter
SHA-1-based authentication, for short), and iii) a module providing hardware security
by means of the CC2420 chipset. The CC2420 chipset provides security primitives for
both encryption and authentication relying on the AES encryption algorithm [29].

4.3.1 Memory occupancy

The amount of ROM memory available on Tmote Sky motes is 48 KB, and may rep-
resent a severe constraint while dealing with complex modules like those composing
PLASA. In order to evaluate memory consumption on Tmote Sky motes, we consid-
ered the impact of single modules on TinyOS image size.

Memory Memory
occupancy (bytes) occupancy (%)

Authentication
2720 5.67

module
STaR 1610 3.35

StarEngine
1748 3.64

(Skipjack)
StarEngine

3442 7.17
(SHA-1-based authentication)

StarEngine
1444 3.01

(HW AES-128)
KeyDB

198 0.41
module

Rekeying
288 0.60

client

Table 4.1: Detailed memory occupancy.

62

4.3. PLASA PERFORMANCE EVALUATION

 0

 10000

 20000

 30000

 40000

 50000

 60000

CTP Device AM Device

a
v
a

ila
b

le
 R

O
M

 (
b

y
te

s
)

Tmote Sky memory footprint

Application and TinyOS Stack
Authentication module
STaR module
Skipjack submodule
SHA-1 submodule
Hardware AES-128 submodule
KeyDB submodule
Rekeying client
Unallocated memory

40.13%

5.67%

3.35%

3.64%

7.17%

3.01%
0.41%
0.60%

36.02%

25.42%

5.67%

3.35%

3.64%

7.17%

3.01%
0.41%
0.60%

50.73%

Figure 4.7: PLASA memory footprint.

63

CHAPTER 4. PLASA

Table 4.1 and Figure 4.7 show the percentages of Tmote Sky ROM occupied by
the RadioCountToLeds application, comparing the CTP routing protocol implementa-
tion and the ActiveMessage implementation. If we sum the contributions of the STaR,
Skipjack, SHA-1 and Hardware AES-128 modules, we observe that STaR implemen-
tation totally requires the 17.17% of the overall memory available on a Tmote Sky
mote. Similarly, if we sum the contributions of all PLASA modules, we observe that a
full implementation of PLASA requires the 23.85% of the overall memory available on
a Tmote Sky mote. The application together with the TinyOS stack using CTP rout-
ing requires the 40.13% of the available memory, and leaves the 36.02% of 48 KB
still available for other uses. Similarly, the application together with the TinyOS stack
using ActiveMessages requires the 25.42% of the available memory, and leaves the
50.73% of 48 KB still available for other uses. Please note that reported percentages
are referred to the amount of Tmote Sky memory required by single PLASA modules
and is not influenced by the communication paradigm (ActiveMessages or CTP). We
believe that this amount of memory is reasonable with respect to the available mem-
ory. Also, our study case shows that PLASA modular implementation allows for saving
memory by loading only a few of the available modules, provided that it is well known
what modules are needed.

4.3.2 PLASA communication and processing overhead

In our analysis, we assumed that PLASA is operating on top of the 2.4 GHz physical
layer, with a 250 Kb/s bit rate [31]. We modeled the impact of security considering two
main aspects: i) the network performance degradation due to security processing and
transmission of extra bytes in each packet to guarantee security, and ii) the extra en-
ergy consumption, due to extra processing and extra transmissions. We evaluated the
security processing overhead by means of experiments, while the extra transmission
overhead and extra energy consumption have been computed analytically.

The PLASA processing overhead delay (dproc) is the extra time required by the
PLASA module to perform the required security operations. This delay has been eval-
uated experimentally for each of the involved security features of our PLASA TinyOS
implementation. In order to increase the accuracy of our results, we performed 10
repetitions of 20 transmissions for each experiment. Results are averaged over all the
different repetitions. We also report the standard deviation we derived from the in-
dependent replication method. The transmission overhead (dtx) has been evaluated
analytically, considering a 250 Kb/s bit rate [31]. Specifically, we have considered the
time required to transmit the additional bytes added by PLASA for each of the involved
security features and each of its modules.

Table 4.2 provides an overview of dproc contributions for PLASA modules. For
each row in the table, we report the amount of time required by each PLASA module
to perform its operations. The value of the secure bootstrapping entry is related to
the whole protocol and, since it runs just once after deployment, we consider such a

64

4.3. PLASA PERFORMANCE EVALUATION

PLASA module dproc (µs) Standard deviation (µs)
Secure bootstrapping 98804.8 12987.93

STaR 96 0
STaR Skipjack encryption 1217.6 7.16

STaR SHA-1-based
33212.8 30.97

authentication
STaR Skipjack encryption

34318.4 54.42
and SHA-1-based authentication
STaR hardware AES-128-based

216 14.22
encryption and authentication

Rekeying 924.8 22.98

Table 4.2: PLASA dproc contributions for PLASA modules.

contribution affordable. The dproc contributions of STaR software implemented algo-
rithms (from third to fifth rows) are due to the algorithms and are not due to STaR.
On the other hand, the contribution of STaR reported in second line and is just the
delay added by the labelling mechanism. The dproc contribution of STaR hardware
implemented algorithm (sixth row) is considerably lower than those of software imple-
mentations, and can substitute software algorithms when the processing delay cannot
exceed some timing constraints. Finally, we believe that also the value reported for
rekeying (seventh row) is affordable.

In order to evaluate the transmission overhead analytically, we have considered
the time required to transmit different kinds of packets at different stages of the
PLASA secured WSN application, with a bit rate of 250 Kb/s.

PLASA module dtx (µs) Extra bytes
Secure bootstrapping 2976 93

STaR 32 1
STaR Skipjack encryption 256 8

STaR SHA-1-based
640 20

authentication
STaR Skipjack encryption

896 28
and SHA-1-based authentication

STaR hardware AES-128
512 16

encryption and authentication
Rekeying 1504 47

Table 4.3: PLASA dtx contributions for PLASA modules.

Table 4.3 provides an overview of the transmission overhead, in different PLASA ex-
ecution phases. As already observed for the processing overhead, the considerable

65

CHAPTER 4. PLASA

delays of the STaR encryption and authentication policy are due to the standard
SHA-1-based authentication output size, which is 20 bytes long. In fact, the actual
PLASA contribution to the transmission delay is just 32 µs, that is the time required
to transmit the one byte STaR Control Field added to the original packet. We believe
that this delay is affordable, since it is due to the increase of just one byte to the
original packet size. Considering a 250 Kb/s bit rate [31], the transmission overhead
increase for the SHA-1-based authentication field can be evaluated analytically as
dtx = 20·8

0.250 = 640µs. If the application developer finds unaffordable such an increase
in the transmission delay, it is possible to define security policies which truncate the
hashing field to 4, 8 or 16 bytes in size. Considering a 250 Kb/s bit rate, this would
save 512 µs, 384 µs and 256 µs during packet transmission, respectively. Hash field
truncation is a widely adopted method in WSNs, because it allows for increasing per-
formance without serious risks of collisions [7, 41]. Also in this case, the value of the
secure bootstrapping entry is related to the whole protocol and, since it runs just once
after deployment, we consider such a contribution as affordable. The dtx contribution
of rekeying packets is not negligible. However, these packets are transmitted for peri-
odic key refresh only. The rekeying period can be tuned in order to trade-off security
and performance.

4.3.3 PLASA energy consumption

Energy consumption has been evaluated analytically, considering single energy con-
tributions. We expressed energy consumption contributions as Ei = Pi · di. Let di be
the delay due to the considered operation i. Let Pi = Vi · Ii be the single power contri-
bution, i.e. the product between voltage and current of the Tmote sky processing unit
and CC2420 components. The values of absorbed current referring to the Tmote sky
processing unit and CC2420 components are taken from the respective datasheets
[4, 31]. The only exception is the value of the absorbed current during hardware se-
curity operations that has been taken from [17].

Table 4.4 provides an overview of energy contributions for PLASA modules.
Considerable contributions in per packet energy consumption for both processing
and transmission are due to the standard encryption and authentication algorithms.
Note that, while hardware security improves network performance, it has compara-
ble values from the energy consumption standpoint. This is due to the fact that the
CC2420 chipset consumes more current than the Tmote Sky processing unit. On the
other hand, since hardware security is faster than software security, the reduced time
of usage balances the increase of current consumption, allowing us to obtain energy
consumptions that are comparable in hardware and software security operations.

The total STaR contribution to per packet energy consumption (second row) is just
103.68 + 1002.24 = 1105.92 nJ.

Similarly to network performance case, the value of the secure bootstrapping entry
is related to the whole protocol and, since it runs just once after deployment, we

66

4.4. PLASA INTEGRATION STUDY CASE

PLASA module
Processing Transmission

Pproc = 1.08mW Ptx = 31.32mW
dproc(µs) Eproc (nJ) dtx(µs) Etx (nJ)

Secure bootstrapping 98804.8 106709.18 2976 93208.32
STaR 96 103.68 32 1002.24

STaR SkipJack encryption 1217.6 1315.01 256 8017.92
STaR SHA-1-based authentication 33212.8 35869.82 640 20044.8

STaR SkipJack encryption
34318.4 37063.87 896 28062.72

and SHA-1-based authentication
Rekeying 924.8 2.81 1504 47105.28

PLASA module
Processing Transmission

Pproc = 38.14mW Ptx = 31.32mW
dproc(µs) Eproc (nJ) dtx(µs) Etx (nJ)

STaR hardware AES-128
216 8238.24 512 16035.84

encryption and authentication

Table 4.4: PLASA energy consumption contributions.

consider a total contribution of 106709.18 + 93208.32 = 199917.50 nJ as affordable.
The energy contribution of rekeying packets is 2.81 + 47105.28 = 47108.09 nJ. We
believe that this value is affordable because this packet is transmitted for periodic key
refresh only. Also, the rekeying period can be tuned in order to trade-off security and
energy consumption.

4.4 PLASA integration study case

The modular structure of PLASA allows for integrating the whole architecture or sin-
gle modules in any network stack and application scenario. A user who wants to use
PLASA needs to integrate PLASA’s modules into the program running on each com-
ponent of the network. Since PLASA is highly modular, it is possible to evaluate case
by case what modules have to be instantiated, thus saving some memory on resource
constrained network components (e.g. sensor nodes). Although the application devel-
oper is not required to change the application code and/or behavior, she has certain
obligations in order to exploit PLASA, namely i) instantiation and linking of needed
PLASA modules, ii) PLASA modules initialization to rely on the right communication
paradigm, iii) if STaR is present, traffic segmentation into data flows and association
of security policies to traffic segments.

In the following, we report PLASA interface functions and data structures, pro-
viding some information about the modules they belong to. We put emphasis on the
adaptability and modularity of PLASA presenting two study cases. The first use case
demonstrates that the whole PLASA architecture can be integrated into a COS appli-
cation. Here we use all PLASA’s modules to secure a two-phase sensed data collec-
tion application. Also, we will use STaR to protect communications involving different
layers of the network stack.

67

CHAPTER 4. PLASA

4.4.1 PLASA to protect a COS from scratch

This study case integrates all PLASA modules with an application with many sender
nodes that just send or forward messages to a destination base station. We consid-
ered a real data collection application scenario that relies on cooperation between
an Unmanned Aerial System (UAS) and a WSN. The application scenario and the
mobility model of the UAS are very similar to those reported in [87]. The application
involves three types of actors: i) Sensor node (SN) which senses the environment and
sends data to an aggregator, ii) Cluster Head (CH) which collects data from SNs and
aggregates them, and iii) Unmanned Aerial System (UAS) whose flight plan is to fly
over CHs. The UAS has an on-board sensor that communicates with CHs to collect
aggregated data.

Since the entire traffic in the ground network is forwarded to the CH, the application
design fits well the Collection Tree Protocol (CTP) routing protocol [23]. CTP creates
a routing tree whose root is the CH. STaR can be transparently integrated with both
CTP routing tree building phase and CTP communication paradigm. Also, we include
the PLASA Authentication, KeyDB and Key Management modules to have a complete
PLASA implementation.

Figure 4.8: PLASA secured COS scenario.

Figure 4.8 shows the application scenario we are considering. The application
consists of six phases: i) the secure bootstrapping phase, ii) the discovery phase, iii)
the routing tree building phase, iv) the data aggregation phase, v) the data collection
phase, and vi) the rekeying phase . Phases i), ii) and iii) take place once, after net-

68

4.4. PLASA INTEGRATION STUDY CASE

work deployment. However, phase ii) may be repeated after changes in the network
topology. Phases iv) and v) repeat in loop during the entire network lifetime. Finally,
phase vi) periodically overlaps phases iv) and v) to refresh cryptographic keys.

The secure bootstrapping phase just performs the secure bootstrapping algorithm
integrated in the PLASA Authentication module, supported by the PLASA KeyDB mod-
ule. At the end of this phase, all network members share a group key that is stored
in the PLASA KeyDB module, and is used to secure messages exchanged during the
discovery phase and the routing tree building phase.

The discovery phase is in its turn divided in two subphases. Firstly, each CH adver-
tises himself and SNs collect information to decide the best CH to be associated with.
Then, each SN chooses its CH and advertises this choice broadcasting a message.
At the end of this phase, clusters are created. Two types of messages are exchanged
in this phase: i) Advertisements sent by the CHs to SNs, to advertise themselves
as CHs, and ii) Associations sent by SNs to the CH they are associated with. Com-
munications are secured by means of STaR, using the key exchanged in the secure
bootstrapping phase.

Advertisements and Associations are logically mapped onto two different data
flows. Thus, they can be associated to two different security policies to secure them
appropriately. The threat for both Advertisements and Associations is represented by
an adversary claiming to be a regular CH or a regular SN, respectively. A malicious
CH may create a Denial of Service, because SNs associate to the malicious CH,
while the regular CH fails in creating a cluster. On the other hand, a malicious SN
may associate to a CH becoming member of a regular cluster, possibly injecting fake
messages in the cluster. We authenticate both messages by means of the SHA-1-
based authentication algorithm. Since CH and SNs share the cryptographic key used
to create the Message Authentication Code (MAC), once they correctly verify the MAC
of messages, they can assume messages have been sent by a regular CH or SN.

The routing tree building phase consists in the classical CTP messages ex-
changes to build the routing tree. Possible threats in this phase is an adversary cheat-
ing its Received Signal Strength Indicator (RSSI) to create a wormhole or advertising
itself as the root of the tree, preventing the root node from receiving packets. In order
to avoid this, we need routing messages to be authenticated, so that only messages
sent by trusted members of the network can contribute to create the routing tree.

Once that the authenticated routing tree has been built, sensor nodes start send-
ing messages to the base station. This messages not only suffer from the same
threats we have described for the routing tree building phase, but may also carry
sensitive data, that should not be overheard by malicious nodes. For this reason, we
aim at guaranteeing both authenticity and confidentiality for this kind of messages.
Authenticity is provided by the SHA-1-based authentication algorithm, while confiden-
tiality is assured by the Skipjack encryption algorithm [85]. Thanks to encryption, even
if malicious nodes intercept data messages, they cannot retrieve information carried
within them.

69

CHAPTER 4. PLASA

During the data aggregation phase, SNs sense data and stores them. Periodically,
each CH asks SNs belonging to his cluster for sensed data and collects their answers.
Two types of messages are exchanged in this phase: i) Beacons sent by the CH
to SNs, to ask for data, and ii) Replies sent by SNs to CH to report sensed data.
Finally, each CH aggregates the Replies he receives and creates an Aggregated data
message. In this phase communications are secured by means of STaR.

Beacons are broadcast messages transmitted by the CH, they do not carry any
sensitive information, just inform sensor nodes of the presence of a CH asking for
sensed data. The threat for such a message is represented by an adversary claiming
to be a regular CH. This may create a Denial of Service, because sensor nodes send
data to the malicious CH, while the regular CH does not get any data. This Denial
of Service attack can be avoided guaranteeing that Beacons are transmitted by the
regular CH. We authenticate Beacons with the SHA-1-based authentication algorithm.

Replies are unicast messages carrying information about data sensed by a sen-
sor node of the network. These messages not only suffer from the same threat we
described for Beacons, but may also carry sensitive data. To prevent these messages
from being overheard by the aforementioned malicious CH, we guarantee both au-
thenticity and confidentiality with the SHA-1-based authentication algorithm and the
Skipjack encryption algorithm, respectively.

During the data collection phase, every time the UAS flies over a CH, sends a mes-
sage asking for Aggregated data. Once the CH receives the request, answers with the
Aggregated data message he has prepared. Two types of messages are exchanged
in this phase: i) Beacons sent by the UAS on-board sensor to CHs, to ask for data, and
ii) Aggregated data sent by the CH to the sensor node which stays on the UAS, when
the UAS is close enough to allow communication between the CH and the on-board
sensor node. In this phase, communications are secured by means of STaR. Bea-
cons are logically the same message exchanged during the secure data aggregation
phase, they only differ in sender and receiver. As a consequence, these messages
are authenticated with the same method described above. Aggregated data suffer
from the same threats as Replies, so we applied the same policy to guarantee both
authenticity and confidentiality. However, these messages have also some time con-
straints, so we use the CC2420 microcontroller [31] to rely on a STaR security policy
for high-performance hardware encryption and authentication.

Finally, we have the rekeying phase, performed by the PLASA Rekeying module,
supported by the PLASA KeyDB module. In long lived networks, an adversary might
record messages exchanged within the network. Thus, she would aim at recovering
cryptographic keys by cryptanalyzing secured data or building a dictionary for a dic-
tionary attack. In order to avoid this, the Key Manager wakes up the PLASA Rekeying
module by periodically broadcasting messages to force network nodes to update their
cryptographic keys. If the rekeying period is well tuned, recording message for crypt-
analysis or dictionary attacks, turns out to be useless.

70

4.4. PLASA INTEGRATION STUDY CASE

PLASA integration

To use PLASA to protect a COS, we performed some application-specific operations.
We instantiated PLASA KeyDB and PLASA Authentication modules and wired those
components to the TinyOS Boot module, so that these components start before any
other application module. Also, we instantiated three STaR modules. Since STaR is
a generic nesC module [88], it can have many instances without any interference
between them. Note that STaR tables of one instance are completely independent
from those of the other instance. Thus, they can be filled with different policies.

The first STaR instance has to protect routing messages. This module has its Star-
ToCommunication and StarToApplication components wired to modules responsible
for building the CTP tree. We relied on hardware authentication primitives provided by
the CC2420 chipset [31] to achieve high efficiency when securing routing messages.
On the other hand, we used software encryption and authentication policies to save
some energy when securing exchange of data messages.

The second and third STaR instances have to protect application data. The sec-
ond instance has its StarToCommunication and StarToApplication components wired
to communication modules responsible for Beacons and Replies exchange. The third
one has its StarToCommunication and StarToApplication components wired to mod-
ules responsible for UAS requests and Aggregated data exchange.

We segmented traffic into data flows developing the StarFlowClassifier module.
We referred to the TinyOS Active Message types [3] to recognize the message types
described before. Then, in order to associate security policies to traffic segments, we
parsed each application packet to retrieve the Active Message type field. Finally, we
used the StarFlowClassifier module to instruct STaR to use the authentication_only
Label for Beacons and the encryption_and_authentication Label for Replies and Ag-
gregated Data packets.

To complete the integration process, we wired TinyOS modules so that STaR stays
between the data application modules and the rest of communication stack. Devel-
oping the StarFlowClassifier module we accomplish traffic segmentation into data
flows. We used the StarFlowClassifier module to instruct STaR to use the authentica-
tion_only label for Beacons and the encryption_and_authentication label for Replies
and Aggregated Data packets.

71

72

5

Conclusion

In this Ph.D. dissertation, we have considered and evaluated the importance of secu-
rity in Wireless Sensor Networks (WSNs). We have focused on the impact of security
on performance, that is a fundamental aspect when we consider a network involv-
ing resource-constrained devices such as sensors. Security operations are generally
resource greedy in terms of memory and computation capabilities. On the contrary,
sensors are limited in terms of memory capacity, computational capabilities, and also
battery lifetime.

As a consequence, any security solution for WSNs needs to keep into account
the cost in terms of memory, computation and battery lifetime, so making it possible
to trade-off effectiveness and efficiency. Knowing in advance the costs of different
security policies allows to switch from a security policy to another for a better response
to environmental changes or attacks. Thus, it is easier to provide applications with the
security features they need, also increasing users’ trust in secure applications.

In this Ph.D. dissertation, we have addressed the above mentioned issues, and
provided the following contributions to WSN security.

• Analysis and performance evaluation of IEEE 802.15.4 security services. We have
shown that security mechanisms and options as provided by the standard cause
the increase of frame length (communication overhead) and require additional
computations (computing overhead) for security processing. We have shown the
relationship between the computing and communication overhead and the secu-
rity parameters, namely security level and key identification mode. In addition, we
have shown that the greatest cost has to be paid when we switch from unsecured
traffic to secured traffic. However, when using hardware-based cryptography, the
chosen security service has little, or even negligible, impact on performance. On
the contrary, when using software-based cryptography, the chosen security ser-
vice and the payload size has a considerable impact on performance.

• An IEEE 802.15.4 compliant countermeasure against selective Denial of Service.
We have presented and discussed Selective Jamming Resistant GTS (SJRG),
our standard-compliant solution to the GTS-based selective jamming attack, able

73

CHAPTER 5. CONCLUSION

to cope with both the intelligent and the sniper attacks. Both attacks aim at dis-
rupting communications by selectively jamming contention free Slots. SJRG relies
on IEEE 802.15.4 security services, and provides a two steps countermeasure
against selective jamming that reduces the attack success rate, forcing the at-
tacker to pick the target Slot in a random way. We have implemented SJRG for
the TinyOS platform on Tmote Sky motes, and evaluated it on a realistic applica-
tion scenario. In particular, we have shown that i) the attack success rate can be
reduced to 13.8%; ii) SJRG results in an additional memory consumption which
is definitely affordable; iii) the network performance degradation due to SJRG is
practically negligible; and iv) the per packet energy consumption is affordable and
mostly due to the IEEE 802.15.4 security sublayer contributions.

• A modular security architecture for Cooperating Objects Systems, namely PLASA.
PLASA is designed to be integrated in heterogeneous objects application scenar-
ios. It provides secure communications, key management and secure bootstrap-
ping implemented in a transparent, reconfigurable and modular architecture. The
secure communication module, namely STaR, has been designed from scratch
and presents some interesting characteristics. It protects multiple traffic flows at
the same time, according to different security policies. PLASA is transparent to
the application, which can rely on the same communication interface already in
use. Also, PLASA is modular because it is possible to integrate an application
only with some modules of the whole PLASA architecture. We have considered
our implementation of PLASA for Tmote Sky motes, and provided a performance
evaluation in terms of memory occupancy, communication overhead, and energy
consumption. Our results show that PLASA is efficient as well as affordable even
in the considered resource scarce hardware platform. In fact, the heaviest impact
on performance is due to the adopted standard security algorithms, and not to the
presence of PLASA.

We believe that these contributions represent a valid tool to provide WSNs with
security features that guarantee network sustainability, and hope they will be a first
step towards further achievements in this field.

74

References

1. Cardenas A.A., Roosta T., Sastry S., “Rethinking security properties, threat models, and
the design space in sensor networks: a case study in SCADA systems,” Ad Hoc Networks,
vol. 7, no. 8, pp. 1434–1447, 2009.

2. Daidone R., Dini G., Tiloca M., “Open Source Toolset for IEEE 802.15.4 and ZigBee,”
2010. [Online]. Available: http://www.open-zb.net/

3. TinyOS Working Group, “Tinyos home page,” http://www.tinyos.net/, 2012. [Online].
Available: http://www.tinyos.net/

4. Moteiv Corporation, “Tmote iv low power wireless sensor module,” Nov
2006. [Online]. Available: http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_
sky_datasheet.pdf

5. Sokullu R., Dagdeviren O., Korkmaz I., “On the IEEE 802.15.4 MAC Layer Attacks: GTS
Attack,” in Proceedings of the 2nd International Conference on Sensor Technologies and
Applications, SENSORCOMM ’08, Aug 2008, pp. 673–678.

6. Sokullu R., Korkmaz I., Dagdeviren O., “GTS Attack: An IEEE 802.15.4 MAC Layer Attack
in Wireless Sensor Networks,” International Journal On Advances in Internet Technologies,
vol. 2, no. 1, pp. 104–114, 2009.

7. IEEE, IEEE Std. 802.15.4-2006, IEEE Standard for Information technology - Telecom-
munications and information exchange between systems - Local and metropolitan area
networks - Specific requirements Part 15.4: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs), Institute of Electrical and Electronics Engineers, Inc., New York, Sep 2006.

8. Lee J.S., “Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area
networks,” IEEE Transactions on Consumer Electronics, vol. 52, no. 3, pp. 742–749, Aug
2006.

9. Mišić J., Shafi S., Mišić V.B., “The impact of MAC parameters on the performance of
802.15.4 PAN,” Ad Hoc Networks, vol. 3, no. 5, pp. 509 – 528, 2005.

10. Ramachandran I., Das A.K., Roy S., “Analysis of the contention access period of IEEE
802.15.4 MAC,” ACM Transactions on Sensor Networks (TOSN), vol. 3, no. 1, Mar 2007.

11. Chen F., Xiaolong Y., German R., Dressler F., “Performance impact of and protocol inter-
dependencies of IEEE 802.15.4 security mechanisms,” in Proceedings of the 6th IEEE In-
ternational Conference on Mobile Adhoc and Sensor Systems MASS ’09, 2009, pp. 1036–
1041.

12. Sastry N., Wagner D., “Security considerations for IEEE 802.15.4 networks,” in Proceed-
ings of the 3rd ACM workshop on Wireless security WiSe ’04. New York, NY, USA: ACM,
2004, pp. 32–42.

75

http://www.open-zb.net/
http://www.tinyos.net/
http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_datasheet.pdf
http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_datasheet.pdf

References

13. Xiao Y., Chen H.H., Sun B., Wang R., Sethi S., “MAC security and security overhead anal-
ysis in the IEEE 802.15.4 wireless sensor networks,” EURASIP Journal on Wireless Com-
munications and Networking, pp. 81–81, Apr 2006.

14. Chang C.C., Nagel D.J., Muftic S., “Balancing security and energy consumption in wireless
sensor networks,” in Mobile Ad-Hoc and Sensor Networks, ser. Lecture Notes in Computer
Science, H. Zhang, S. Olariu, J. Cao, and D. Johnson, Eds. Springer Berlin Heidelberg,
2007, vol. 4864, pp. 469–480.

15. Guimaraes G., Souto E., Sadok D., Kelner J., “Evaluation of security mechanisms in wire-
less sensor networks,” in Proceedings of the Systems Communications, 2005, 2005, pp.
428–433.

16. Law Y.W., Doumen J., Hartel P., “Survey and benchmark of block ciphers for wireless sen-
sor networks,” ACM Transactions on Sensor Networks (TOSN), vol. 2, no. 1, pp. 65–93,
Feb 2006.

17. Lee J., Kapitanova K., Son S.H., “The price of security in wireless sensor networks,” Com-
puter Networks, vol. 54, no. 17, pp. 2967–2978, Dec 2010.

18. Zhu J., Leina G., Xinfang Z., “Implementation and Time Performance Analysis of Security
Suite in LR-WPAN 802.15.4,” in Proceedings of the 4th International Conference on Wire-
less Communications, Networking and Mobile Computing, 2008. WiCOM ’08, 2008, pp.
1–5.

19. Alcaraz C., Lopez J., Roman R., Chen H.H., “Selecting key management schemes for WSN
applications,” Computers & Security, vol. 31, no. 38, pp. 956–966, Nov 2012.

20. Dini G., Savino I.M., “S2RP: a Secure and Scalable Rekeying Protocol for Wireless Sensor
Networks,” in Proceedings of the 3rd IEEE International Conference on Mobile Adhoc and
Sensor Systems MASS ’06, 2006, pp. 457–466.

21. Liu A., Ning P., “TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wire-
less Sensor Networks,” in Proceedings of the International Conference on Information Pro-
cessing in Sensor Networks, 2008. IPSN ’08, 2008, pp. 245–256.

22. ZigBee Alliance, ZigBee Document 053474r17, ZigBee Specification, ZigBee Alliance, Jan
2008.

23. Gnawali O., Fonseca R., Jamieson K., Moss D., Levis P., “Collection Tree Protocol,” in
Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys’09), Nov 2009.

24. Hauer J.H., Daidone R., Severino R., Büsch J., Tiloca M., Tennina S., “Poster Abstract: An
Open-Source IEEE 802.15.4 MAC Implementation for TinyOS 2.1,” in Proceedings of the
8th European Conference on Wireless Sensor Networks EWSN, Feb 2011.

25. Zheng J., Lee M.J., Anshel M., “Toward Secure Low Rate Wireless Personal Area Net-
works,” IEEE Transactions on Mobile Computing, vol. 5, no. 10, pp. 1361 –1373, Oct 2006.

26. Ganesan P., Venugopalan R., Peddabachagari P., Dean A., Mueller F., Sichitiu M., “Ana-
lyzing and modeling encryption overhead for sensor network nodes,” in Proceedings of the
2nd ACM International conference on Wireless sensor networks and applications WSNA
’03. New York, NY, USA: ACM, 2003, pp. 151–159.

27. Jinwala D., Patel D., Dasgupta K., “Optimizing the block cipher and modes of operations
overhead at the link layer security framework in the wireless sensor networks,” in Pro-
ceedings of the 4th International Conference on Information Systems Security ICISS ’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 258–272.

28. IEEE, IEEE Std. 802.15.4-2003, IEEE Standard for Information technology - Telecom-
munications and information exchange between systems - Local and metropolitan area
networks - Specific requirements Part 15.4: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs), Institute of Electrical and Electronics Engineers, Inc., New York, Oct 2003.

29. National Institute of Standards and Technology, “Federal information processing standards
publication 197, specification for the advanced encryption standard (aes),” Nov 2001.

76

References

30. Passing M., Dressler F., “Experimental performance evaluation of cryptographic algorithms
on sensor nodes,” in Proceedings of the 3rd IEEE International Conference on Mobile
Adhoc and Sensor Systems MASS ’06, 2006, pp. 882–887.

31. Texas Instruments, “Texas instruments cc2420 2.4 ghz ieee 802.15.4 / zigbee ready
rf transceiver,” http://focus.ti.com/lit/ds/symlink/cc2420.pdf, 2012. [Online]. Available:
http://focus.ti.com/lit/ds/symlink/cc2420.pdf

32. “TinyOS security algorithms repository.” [Online]. Available: http://sourceforge.net/projects/
tinyossecurity/files/

33. Daidone R., Dini G., Tiloca M., “On experimentally evaluating the impact of security on
IEEE 802.15.4 networks,” in Proceedings of the 2011 International Conference on Dis-
tributed Computing in Sensor Systems and Workshops DCOSS ’11, Jun 2011, pp. 1–6.

34. Camtepe S.A., Yener B., “Key management in wireless sensor networks,” in Cryptology
and Information Security Series, Wireless Sensor Network Security, ser. The Cryptology
& Information Security Series (CISS), J. Lopez and J. Zhou, Eds. IOS Press, 2008, pp.
110–141.

35. Xiao Y., Rayi V.K., Sun B., Du X., Hu F., Galloway M., “A survey of key management
schemes in wireless sensor networks,” Computer Commununications, vol. 30, no. 11-12,
pp. 2314–2341, Sep 2007.

36. Amini F., Khan M., Mišić J., Pourreza H., “Performance of IEEE 802.15.4 Clusters with
Power Management and Key Exchange,” Journal of Computer Science and Technology,
vol. 23, pp. 377–388, 2008.

37. Mišić J., “Cost of secure sensing in IEEE 802.15.4 networks,” IEEE Transactions on Wire-
less Communications, vol. 8, no. 5, pp. 2494–2504, 2009.

38. Dini G., Savino I.M., “LARK: A Lightweight Authenticated ReKeying Scheme for Clustered
Wireless Sensor Networks,” ACM Transactions on Embedded Computing Systems, vol. 10,
no. 4, pp. 1–35, Nov 2011.

39. Dini G., Tiloca M., “HISS: A HIghly Scalable Scheme for Group Rekeying,” The Computer
Journal, 2012.

40. Zhu S., Setia S., Jajodia S., “LEAP+: Efficient security mechanisms for large-scale dis-
tributed sensor networks,” ACM Transaction on Sensor Networks, vol. 2, no. 4, pp. 500–
528, Nov 2006.

41. Karlof C., Sastry D., Wagner D., “Tinysec: a link layer security architecture for wireless sen-
sor networks,” in Proceedings of the 2nd International conference on Embedded networked
sensor systems SenSys ’04. New York, NY, USA: ACM, 2004, pp. 162–175.

42. Aziz A., Diffie W., “Privacy and authentication for wireless local area networks,” IEEE Per-
sonal Communications, vol. 1, no. 1, pp. 25–31, 1994.

43. Perrig A., Stankovic J., Wagner D., “Security in wireless sensor networks,” Communications
of the ACM - Wireless sensor networks, vol. 47, no. 6, pp. 53–57, Jun 2004.

44. Bougard B., Catthoor F., Daly D.C., Chandrakasan A., Dehaene W., “Energy Efficiency
of the IEEE 802.15.4 Standard in Dense Wireless Microsensor Networks: Modelling and
Improvement Perspectives,” in Proceedings of the Conference on Design, Automation and
Test in Europe DATE 2005. IEEE Computer Society, Apr 2005, pp. 196–201.

45. “TinyOS security algorithms repository.” [Online]. Available: http://sourceforge.net/projects/
tinyossecurity/files/

46. “Network Simulator Ns2.” [Online]. Available: http://www.isi.edu/nsnam/ns/
47. Anastasi G., Conti M., Di Francesco M., “A Comprehensive Analysis of the MAC Unreliabil-

ity Problem in IEEE 802.15.4 Wireless Sensor Networks,” IEEE Transactions on Industrial
Informatics, vol. 7, no. 1, pp. 52–65, 2011.

48. Koubaa A., Alves M., Tovar E., “GTS allocation analysis in IEEE 802.15.4 for real-time
wireless sensor networks,” in Proceedings of the 20th International Parallel and Distributed
Processing Symposium, Apr 2006.

77

http://focus.ti.com/lit/ds/symlink/cc2420.pdf
http://sourceforge.net/projects/tinyossecurity/files/
http://sourceforge.net/projects/tinyossecurity/files/
http://sourceforge.net/projects/tinyossecurity/files/
http://sourceforge.net/projects/tinyossecurity/files/
http://www.isi.edu/nsnam/ns/

References

49. Daidone R., Dini G., Tiloca M., “A solution to the gts-based selective jamming attack on
ieee 802.15.4 networks,” Wireless Networks, Springer, 2013.

50. Wood A.D., Stankovic J.A., “Denial of service in sensor networks,” Computer, vol. 35,
no. 10, pp. 54–62, Oct 2002.

51. Raymond D.R., Midkiff S.F., “Denial-of-Service in Wireless Sensor Networks: Attacks and
Defenses,” IEEE Pervasive Computing, vol. 7, no. 1, pp. 74–81, January–March 2008.

52. Noubir G., Lin G., “Low-power DoS attacks in data wireless LANs and countermeasures,”
ACM SIGMOBILE Mobile Computing and Communications Review, vol. 7, pp. 29–30, Jul
2003.

53. Lazos L., Liu S., Krunz M., “Mitigating control-channel jamming attacks in multi-channel ad
hoc networks,” in Proceedings of the 2nd ACM conference on Wireless network security
WiSec ’09. New York, NY, USA: ACM, 2009, pp. 169–180.

54. Xu W., Ma K., Trappe W., Zhang Y., “Jamming sensor networks: attack and defense strate-
gies,” IEEE Network, vol. 20, no. 3, pp. 41–47, May–June 2006.

55. Xu W., Wood T., Trappe W., Zhang Y., “Channel surfing and spatial retreats: defenses
against wireless denial of service,” in Proceedings of the 3rd ACM workshop on Wireless
security WiSe ’04. New York, NY, USA: ACM, 2004, pp. 80–89.

56. Xu W., Trappe W., Zhang Y., Wood T., “The feasibility of launching and detecting jamming
attacks in wireless networks,” in Proceedings of the 6th ACM International symposium on
Mobile ad hoc networking and computing MobiHoc ’05. New York, NY, USA: ACM, 2005,
pp. 46–57.

57. Pickholtz R.L., Schilling D.L., Milstein L.B., “Theory of Spread-Spectrum Communications -
A Tutorial,” IEEE Transactions on Communications, vol. 30, no. 5, pp. 855–884, May 1982.

58. Anderson R.J. , Security Engineering: A Guide to Building Dependable Distributed Sys-
tems. New York, NY, USA: John Wiley & Sons, Inc., 2001.

59. Woo A., Tong T., Culler D., “Taming the underlying challenges of reliable multihop rout-
ing in sensor networks,” in Proceedings of the 1st International conference on Embedded
networked sensor systems SenSys ’03. New York, NY, USA: ACM, 2003, pp. 14–27.

60. Proano A., Lazos L., “Selective jamming attacks in wireless networks,” in 2010 IEEE Inter-
national Conference on Communications, May 2010, pp. 1–6.

61. Law Y.W., Hartel P., Den Hartog J., Havinga P., “Link-layer jamming attacks on S-MAC,” in
Proceedings of the Second European Workshop on Wireless Sensor Networks, January–
February 2005, pp. 217–225.

62. O’Flynn C.P., “Message Denial and Alteration on IEEE 802.15.4 Low-Power Radio Net-
works,” in 2011 4th IFIP International Conference on New Technologies, Mobility and Se-
curity (NTMS), Feb 2011, pp. 1–5.

63. Wood A.D., Stankovic J.A., Zhou G., “DEEJAM: Defeating Energy-Efficient Jamming in
IEEE 802.15.4-based Wireless Networks,” in 4th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks, Jun 2007, pp.
60–69.

64. Menezes A.J., Van Oorschot P.C., Vanstone S.A., Handbook of Applied Cryptography.
CRC Press, 2001.

65. CONET, “Cooperating objects network of excellence, european commission, 7th frame-
work programme, grant agreement n. 224053,” http://www.cooperating-objects.eu/, 2008.

66. PLANET, “Platform for the deployment and operation of heterogeneous networked co-
operating objects, european commission, 7th framework programme, grant agreement n.
257649,” http://www.planet-ict.eu/, 2010.

67. Buttyan L., Gessner D., Hessler A., Langendoerfer P., “Application of wireless sensor net-
works in critical infrastructure protection: challenges and design options [security and pri-
vacy in emerging wireless networks],” IEEE Wireless Communications, vol. 17, no. 5, pp.
44–49, Oct 2010.

78

References

68. Albano M., Chessa S., Di Pietro R., “Information assurance in critical infrastructures via
wireless sensor networks,” in Proceedings of the 4th International Conference on Informa-
tion Assurance and Security ISIAS ’08, 2008, pp. 305–310.

69. Crossbow Technology Inc., “MPR-MIB Users Manual,”
http://bullseye.xbow.com:81/Support/, Jun 2007. [Online]. Available: http:
//bullseye.xbow.com:81/Support/

70. Zoelertia, “Zoelertia Z1 Datasheet,” http://zolertia.com/sites/default/files/Zolertia-Z1-
Datasheet.pdf, Mar 2010. [Online]. Available: http://zolertia.com/sites/default/files/
Zolertia-Z1-Datasheet.pdf

71. Viega J., Evans D., “Separation of concerns for security,” in Proceedings of the ICSE Work-
shop on Multidimensional Separation of Concerns in Software Engineering, 2000, pp. 126–
129.

72. Daidone R., Dini G., Tiloca M., “STaR source code,” Nov 2012.
73. Wong C.K., Gouda M., Lam S.S., “Secure group communications using key graphs,”

IEEE_J_NET, vol. 8, no. 1, pp. 16–30, Feb 2000.
74. Dini G., Tiloca M., “Considerations on security in zigbee networks,” in Proceedings of the

2010 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy
Computing SUTC ’11, Jun 2010, pp. 58–65.

75. Maerien J., Michiels S., Huygens C., Joosen W., “MASY: MAnagement of Secret keYs for
federated mobile wireless sensor networks,” in Proceedings of the 6th IEEE International
Conference on Wireless and Mobile Computing, Networking and Communications, Oct
2010, pp. 121–128.

76. Zhong S., Chuang L., Fengyuan R., Yixin J., Xiaowen C., “An efficient scheme for secure
communication in large-scale wireless sensor networks,” in Proceedings of the WRI In-
ternational Conference on Communications and Mobile Computing CMC ’09, vol. 3, Jan
2009, pp. 333–337.

77. Garcia-Morchon O., Baldus H., “The ANGEL WSN Security Architecture,” in Proceedings
of the 2009 3rd International Conference on Sensor Technologies and Applications SEN-
SORCOMM ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 430–435.

78. Gu W., Dutta N., Chellappan S., Xiaole B., “Providing end-to-end secure communications
in wireless sensor networks,” IEEE Transactions on Network and Service Management,
vol. 8, no. 3, pp. 205–218, Sep 2011.

79. Hyun S., Ning P., Liu A., Du W., “Seluge: Secure and dos-resistant code dissemination in
wireless sensor networks,” in Proceedings of the 2008 International Conference on Infor-
mation Processing in Sensor Networks, Apr 2008, pp. 445–456.

80. Lanigan P.E., Gandhi R., Narasimhan P., “Sluice: Secure dissemination of code updates in
sensor networks,” in Proceedings of the 26th IEEE International Conference on Distributed
Computing Systems, Jul 2006, pp. 53–62.

81. Dini G., Savino, I.M., “A Security Architecture for Reconfigurable Networked Embedded
Systems,” International Journal of Wireless Information Networks, vol. 17, pp. 11–25, 2010.

82. Matthys N., Huygens C., Hughes D., Michiels S., Joosen W., “A component and policy-
based approach for efficient sensor network reconfiguration,” in Proceedings of the 2012
IEEE International Symposium on Policies for Distributed Systems and Networks, Jul 2012,
pp. 53–60.

83. Liu Z., Peng D., “A security-supportive middleware architecture for pervasive computing,”
in Proceedings of the 2nd IEEE International Symposium on Dependable, Autonomic and
Secure Computing, 2006, pp. 137–144.

84. Daidone R., Dini G., Tiloca M., “STaR: Security Transparency and Reconfigurability for
Wireless Sensor Networks programming,” in Proceedings of the 2nd International Confer-
ence on Sensor Networks SENSORNETS ’13, Feb 2013.

85. U.S. National Security Agency (NSA), “Skipjack and kea algorithm specifications,”
May 1998. [Online]. Available: http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/
skipjack.pdf

79

http://bullseye.xbow.com:81/Support/
http://bullseye.xbow.com:81/Support/
http://zolertia.com/sites/default/files/Zolertia-Z1-Datasheet.pdf
http://zolertia.com/sites/default/files/Zolertia-Z1-Datasheet.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf

86. Eastlake D., Jones P., “Rfc 3174 - us secure hash algorithm 1 (sha1),”
http://tools.ietf.org/html/rfc3174, Sep 2001. [Online]. Available: http://tools.ietf.org/html/
rfc3174

87. De Dios J.R.M., Lferd K., De San Bernabé A., Núñez G., Torres-González A., Ollero, A.,
“Cooperation Between UAS and Wireless Sensor Networks for Efficient Data Collection
in Large Environments,” Journal of Intelligent and Robotic Systems, vol. 70, no. 1-4, pp.
491–508, 2013.

88. “nesC: A Programming Language for Deeply Networked Systems.” [Online]. Available:
http://nescc.sourceforge.net/

80

http://tools.ietf.org/html/rfc3174
http://tools.ietf.org/html/rfc3174
http://nescc.sourceforge.net/

Acknowledgment

For my Ph.D. dissertation and for the time I spent as a Ph.D student I would like to
thank:

• My advisor, Prof. Gianluca Dini for having taught me to approach research with
method and passion, for having encouraged me to meet high targets, improving
my skills from both human and professional standpoint.

• My family for having supported me during these years and for believing in me.
• Prof. Giuseppe Anastasi, for his precious support during the work we have made

in cooperation.
• Ofelia, Selene and Alessandro, because just a few are friends for real, because

friends do not judge you, because they are close to you in spite of distance.
• Dario, because his irony keeps both my feet on the ground.
• Gabriela M., for sharing not only a flat, but the energy to cope with daily difficulties.
• The H2Ogym’s angels. Gabriela P., Lucia, Rossella and Viola, for our good time,

before, during and after trainings, and for the friendship that derived from this.
• Pietro and Ilaria, because their trainings not only improved my physical and mental

health, but also lightened some difficult periods.
• People I have worked with in the PLANET project.
• People I have worked with in the CONET network of excellence.
• Colleagues that have been present always or just for a while, that are near or far

away. Pericle Perazzo, Nilo Redini, Giacomo Tanganelli, Daniel Cesarini, Valerio
Luconi, Giovanni Nardini, Angelica Lo Duca, Francesco Giurlanda, Marco Tiloca,
Andrea Saracino, Alessandro Pischedda, Domenico De Guglielmo, Luca Cas-
sano, Stefano Abate, Stefano Campanelli, Carlo Vallati, Antonio Virdis, Maria An-
tonietta La Polla, Chiara Orsini, Fabio Pezzoni, Valerio Arnaboldi, Lorenzo Valerio,
Davide Di Baccio, Simone Martini, Adriano Fagiolini, Adriano Faggiani, Alessandro
Improta, Giovanni Stea, Mario Cimino, Eleonora D’Andrea, Hakjeon Bang, Sena
Efsun Cebeci, for having made the Ph.D. “journey” happier.

• Swimming, because without that kind of experiences I would not have deeply
known sacrifice, determination, victory, defeat, and, above all, passion.

81

82

Ringraziamenti

Per questa Tesi di Dottorato e per il tempo trascorso insieme durante il percorso vorrei
ringraziare:

• Il mio advisor. Il Prof. Gianluca Dini, per avermi trasmesso passione e metodo nel
fare ricerca e per avermi sottoposto sfide sempre nuove, così da ampliare le mie
capacità sia dal punto di vista scientifico che umano.

• La mia famiglia, per avermi supportata e per aver creduto in me, sempre.
• Ofelia, Selene e Alessandro, perché i veri amici sono pochi, perché non ti giudi-

cano, perché sanno essere vicini a dispetto della distanza.
• Dario, perché la sua ironia riesce a tenermi coi piedi saldamente per terra.
• Gabriela M., per aver condiviso non solo un appartamento, ma anche l’energia

per affrontare le difficoltà quotidiane.
• Le H2Ogym’s angels. Gabriela P., Lucia, Rossella e Viola, per le risate prima,

durante e dopo le lezioni in piscina e per la bella amicizia che ne è nata.
• Pietro e Ilaria, perché non solo hanno migliorato la mia salute sia fisica che men-

tale con i loro allenamenti, ma hanno anche alleggerito i momenti pesanti con la
loro simpatia.

• Le persone con cui ho lavorato per il progetto PLANET.
• Le persone con cui ho lavorato per la rete d’eccellenza CONET.
• Colleghi stabili, di passaggio, vicini e lontani. Pericle Perazzo, Nilo Redini, Gia-

como Tanganelli, Daniel Cesarini, Valerio Luconi, Giovanni Nardini, Angelica Lo
Duca, Francesco Giurlanda, Marco Tiloca, Andrea Saracino, Alessandro Pisched-
da, Domenico De Guglielmo, Luca Cassano, Stefano Abate, Stefano Campanelli,
Carlo Vallati, Antonio Virdis, Maria Antonietta La Polla, Chiara Orsini, Fabio Pez-
zoni, Valerio Arnaboldi, Lorenzo Valerio, Davide Di Baccio, Simone Martini, Adri-
ano Fagiolini, Adriano Faggiani, Alessandro Improta, Giovanni Stea, Mario Cimino,
Eleonora D’Andrea, Hakjeon Bang, Sena Efsun Cebeci, per aver reso più felice il
“viaggio” da allieva di Dottorato.

• Il nuoto, perché senza determinate esperienze non avrei conosciuto così profon-
damente sacrificio, determinazione, vittoria, sconfitta e, soprattutto, passione.

83

	Introduction
	The IEEE 802.15.4 security sublayer
	Related work
	IEEE 802.15.4: an overview
	IEEE 802.15.4 security sublayer
	Security operations
	The CONET open implementation of IEEE 802.15.4

	Evaluation
	Analysis
	Latency and goodput
	Per-packet energy consumption
	Evaluation of parameters
	Analytical results
	Experimental validation of the analytical model

	Simulation analysis
	Experimental evaluation of memory overhead

	Selective Denial of Service in IEEE 802.15.4 networks
	Wireless Denial of Service: the jamming attack
	IEEE 802.15.4 MAC overview
	Guaranteed Time Slot (GTS)
	Security services

	GTS-based selective jamming attack
	Selective Jamming Resistant GTS (SJRG)
	Discussion on dictionary attack

	SJRG implementation
	SJRG evaluation
	Effectiveness
	Memory footprint
	Network performance
	Energy consumption
	On scalability

	PLASA
	Related work
	PLASA architecture
	STaR module
	STaR security services
	STaR communication support
	STaR dynamic reconfiguration

	Authentication module
	KeyDB module
	Key management module functions

	PLASA performance evaluation
	Memory occupancy
	PLASA communication and processing overhead
	PLASA energy consumption

	PLASA integration study case
	PLASA to protect a COS from scratch
	PLASA integration

	Conclusion
	References

