
Dipartimento di fisica “Enrico Fermi”

Scuola di dottorato in scienze di base “Galileo Galilei”

Dottorato di ricerca in fisica

Maggio 2014

Tesi di dottorato

Touschek lifetime studies and optimization
of the ESRF: present and upgraded lattice

Candidato:

Nicola Carmignani
Relatore:

Prof. Franco Cervelli

Correlatori:

Dott. Laurent Farvacque
Dott. Pantaleo Raimondi



ii



Contents

Introduction 1

1 The European Synchrotron Radiation Facility 5

1.1 Upgrade program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Touschek effect in electron storage rings 13

2.1 Spin polarization in electron storage rings . . . . . . . . . . . . . . . 17

3 Touschek lifetime parameters measurements 23

3.1 RF voltage calibration factor measurement . . . . . . . . . . . . . . . 26

3.2 Bunch length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Momentum acceptance simulation . . . . . . . . . . . . . . . . . . . . 36

4 Lifetime measurements 51

4.1 Vacuum lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Spin polarization time . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Touschek lifetime vs RF voltage . . . . . . . . . . . . . . . . . . . . . 56

4.4 Touschek lifetime with physical apertures . . . . . . . . . . . . . . . . 59

5 Optimization and testing of alternate sextupole setting 63

5.1 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Results of optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Bunch lengthening and intrabeam scattering for the ESRF low

emittance upgrade lattice 73

6.1 Bunch lengthening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Intrabeam scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Touschek lifetime for the new lattice 81

Conclusions 87

iii



A Overview of beam physics in electron storage rings 89

A.1 Linear and nonlinear dynamics . . . . . . . . . . . . . . . . . . . . . 90

A.2 Equilibrium beam sizes with radiation . . . . . . . . . . . . . . . . . 97

A.3 Current dependent effects . . . . . . . . . . . . . . . . . . . . . . . . 101

A.3.1 Longitudinal wakefield and bunch lengthening . . . . . . . . . 101

A.3.2 Intrabeam scattering . . . . . . . . . . . . . . . . . . . . . . . 104

B Spin depolarization code 107

C Momentum compaction factor measurements 115

D Dynamic aperture with synchrotron oscillations 117

List of tables 121

List of figures 128

Bibliography 133

iv



Introduction

The lifetime of the electron beam in a storage ring is a measure of how fast

the electrons are being lost. This is an important parameter in third generation

synchrotron light sources for a number of reasons. First of all, the intensity of

radiation seen in an experiment, at the end of a beamline, is proportional to the

electron beam current. Further, as the current changes, there are important effects

on the x-ray optics along the beamline. Changes in heat-load can effect the transport

and focusing properties of the beamline. For these reasons, more electrons must be

injected when the current drops below some threshold value.

The electron beam lifetime determines the injection frequency. If the lifetime is

long enough, the injections can be done less frequently. The injection disturbs the

stability of the stored beam, it increases the radiation losses and it increases the

energy consumption of the facility, because the linac and the synchrotron booster

must be turned on during the injection.

When the lifetime is too short, the top-up injection is needed. The top-up in-

jection is a very frequent injection of electrons into the storage ring, one every few

minutes, and it is done without interrupting the x-ray flux and the users’ experi-

ments. Top-up injection needs a high injection efficiency.

In the ESRF storage ring, the top-up injection is not used now. In the low

emittance ESRF upgrade storage ring, the top-up injection will be used, because

the very low horizontal emittance, from the actual εx = 4 nm to εx = 150 pm, will

result in a very short Touschek lifetime.

The Touschek effect is the main limitation in the beam lifetime in third gener-

ation synchrotron light sources. It is a single scattering between two electrons of

the bunch. The collision can transfer momentum from transverse to longitudinal

motion and both the electrons can exceed the momentum acceptance, in which case

they are lost. The Touschek scattering probability is larger when the charge density

is high, so when emittances and β functions are small and the current is high.

The Touschek effect depends on many electron beam and machine parameters:

the RF voltage, the bunch current, the bunch length, the beam emittances and the
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momentum acceptance.

The small horizontal emittance storage rings, necessary to have a high brilliance

x-ray source, have small β-functions and horizontal dispersion and strong focusing

magnets. The natural chromaticity of low emittance rings is very high and strong

sextupole magnets are needed to correct it.

High nonlinear fields from sextupoles cause a high amplitude-dependent tune

variation. The large tune shift with amplitude causes many resonance crossings

for off-axis particles and therefore a small dynamic aperture. The small dynamic

aperture causes a small injection efficiency.

The positive chromaticity, needed for the bunch stability, and the strong non-

linear fields give large tunes variation with momentum. This can cause the strong

resonance crossing of off-momentum particles and therefore a small momentum ac-

ceptance. The small momentum acceptance causes a short Touschek lifetime.

Momentum acceptance is determined by RF voltage and longitudinal dynamic

acceptance, which depends on the sextupole setting.

A model able to predict the Touschek lifetime, given the lattice, the current, the

emittances, the RF voltage, the size of the vacuum chamber, is useful to optimize the

parameters of the present ESRF lattice and the new low emittance ESRF upgrade

lattice.

In this thesis, a model able to predict lifetime of the beam has been developed

and tested with measurements and it has been used to optimize parameters and

sextupole settings. The model is also used for the new lattice lifetime studies.

In chapter 1, a brief description of the ESRF facility and on its upgrade program

is given.

In chapter 2, the Touschek lifetime derivation, from the Møller scattering differ-

ential cross section, is presented. The effects of the spin polarization in the Touschek

lifetime are also treated.

In chapter 3, the measurements of some parameters, relevant for the Touschek

lifetime, done for the ESRF storage ring, are reported. The RF voltage calibra-

tion factor between the readout value and the real voltage applied to the cavity is

measured from the synchrotron tune and the synchronous phase measurements. A

bunch lengthening with current model, derived from measurements, is presented.

The momentum acceptance computation, using a 6-D particle tracking code, is de-

scribed.

In chapter 4, the lifetime measurements are described: the vacuum lifetime,

that must be measured before all the Touschek lifetime measurements; the effect of

the spin polarization on the Touschek lifetime and the spin polarization time; the

2



Touschek lifetime versus the RF voltage; the Touschek lifetime versus the horizontal

scraper position.

In chapter 5, the optimization of the sextupole setting is described: the multi-

objective generic algorithm used is described, the results of the optimization and

the measurements are reported.

In chapters 6 and 7, the Touschek lifetime model, described in previous chapters,

is used to study the Touschek lifetime of the low emittance ESRF upgrade lattice.

The bunch length model and the emittance growth due to the intrabeam scattering

are used to predict the Touschek lifetime of the new lattice for different modes.

In first appendix, an overview of the beam physics in an electron storage ring is

given. In the first section, the single particle dynamics without synchrotron radiation

is treated. In the second section, the effects of synchrotron radiation on the single

particle dynamics are reported. In the third section two current dependent effects,

related to the beam lifetime, are treated: the bunch lengthening effect due to the

longitudinal wakefield and the intrabeam scattering.

In second appendix, a matlab code, developed during the thesis work and used

to simulate the spin depolarization with a kicker, is described.

In third appendix, two possible momentum compaction factor measurements are

presented.

In fourth appendix, the effect of synchrotron motion on the dynamic aperture

computation is described.
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Chapter 1

The European Synchrotron

Radiation Facility

The European Synchtotron Radiation Facility (ESRF) is a laboratory with third

generation synchrotron light source, located in Grenoble, France. It is supported by

19 countries.

The ESRF started operations in 1994. About 6000 researchers from around the

world visit the ESRF every year. More than 21700 scientific papers, based on work

carried out at the ESRF, have been published since the foundation. The facility

guarantees a high reliability. In 2012, the beam availability was more than 98% of

the time scheduled for the users [1]. The facility provides 42 X-rays beamlines, with

a wide range of spectra from undulators and bending magnets.

The ESRF accelerator complex is composed of a linear accelerator, a synchrotron

booster and a storage ring. The linear accelerator accelerates electrons up to

200 MeV, the booster then accelerates the electrons up to 6.04 GeV. The stor-

age ring does not change the beam energy, except to replenish that which is lost to

synchrotron radiation.

An aerial view of the ESRF is shown in figure 1.1.

The orbit of the electrons in the storage ring has a circumference of 844 m. The

ring is composed of 32 double bend achromat cells, each with two bending magnets,

six quadrupole magnets and seven sextupole magnets.

Three sextupoles are placed in the high dispersion area, between the two dipoles,

and they are used to correct the chromaticity. Four sextupoles are placed in low

dispersion areas and they are used as harmonic sextupoles, to control the non-linear

geometric effects.

In the ring, there are seven sextupole families and it is not possible to change

gradients of some sextupoles without changing the family gradient.
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Figure 1.1: Aerial view of the European Synchrotron Radiation
Facility.
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At the end of every cell, in the straight sections, there are the undulators. Un-

dulators produce synchrotron radiation, along with the bending magnets.

The horizontal emittance of the beam in the storage ring is about εx = 4 nm.

In figure 1.2 the beta functions and the horizontal dispersion of two cells are

shown.
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Figure 1.2: Beta functions and horizontal dispersion in two cells of
the ESRF storage ring. Blue magnets are the dipoles, red magnets
are the quadrupoles and green magnets are the sextupoles.

The β functions and the dispersion have a periodicity of two cells. Two adjacent

cells have a mirror symmetry structure. Half of the straight sections have a low

horizontal beta function (βx ' 33 cm), half of them have a high horizontal beta

function (βx ' 36 m). The horizontal dispersion is slightly different in high beta

and low beta straight sections.

There are four RF cavities which can provide a total RF voltage up to around

9 MV. The harmonic number is 992, which determines the maximum number of

bunches that can be stored. The frequency of the RF cavity is 992 times the electron

revolution frequency.

fRF = h f0 ' 353 MHz (1.1)

The number of bunches and the current per bunch can be changed in order to

have different operation modes for different experiments. The filling modes, with

the total current, the number of bunches, the current per bunch, the electric charge

per bunch, the number of electrons per bunch and a typical value of the lifetime are

shown in table 1.1.
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Table 1.1: Operation modes used at ESRF.

Mode I (mA) nb Ib (mA) Qb (nC) Nb(×109) LT (h)

Multi-bunch (uniform) 200 992 0.202 0.568 3.54 60

Multi-bunch (7/8) 200 868 0.230 0.649 4.05 55

16 bunches 92 16 5.62 15.8 98.8 10

4 bunches 40 4 10 28.1 176 6

A list of parameters of the ESRF storage ring is shown in table 1.2.

Table 1.2: Parameters for ESRF lattice, in multi-bunch mode.

Parameter Value

Energy [GeV] 6.04

Circumference [m] 844.391

Beam current [mA] 200

νx 36.44

νy 13.39

νz 0.00543

α 1.78 · 10−4

τx, τy, τs [ms] 6.97, 6.98, 3.49

U0 [MeV] 4.88

Vrf [MV] 8

h 992

εx [pm rad] 4000

εy [pm rad] 4

σδ 1.03 · 10−3
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1.1 Upgrade program

An upgrade program of the ESRF is under study. A new low-emittance lattice

will replace the present double-bend achromat one [2].

The new lattice project must satisfy some requirements. The horizontal emit-

tance must be reduced from the 4 nm of the present lattice, to less than 200 pm.

The insertion device source points must be in the same positions, in order to use the

present beamlines, and the bending magnet beamlines must be used, therefore the

number of cells must be 32, as it is in the present ESRF storage ring. The present

filling modes, described in table 1.1, must be provided. The injector of the new

storage ring must not be changed. The energy loss per turn must be reduced, in

order to reduce the operation costs.

The linear lattice functions of the low-emittance upgrade lattice are shown in

figure 1.3. The periodicity of the linear lattice functions is one cell.
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Figure 1.3: Beta functions and horizontal dispersion in one cell of
the S28 version of the low-emittance ESRF upgrade lattice.

In order to have a small horizontal emittance, many other light sources have

also proposed an upgrade with a multi bend achromat cell structure, such as the 7-

bend achromat of MAX IV, the light source under construction in MAX-lab, Lund,

Sweden [3].

In high energy large storage rings, like the ESRF one, the 7 bend scheme gives

very weak dipoles and so a very small dispersion function. In order to correct the

chromaticity, the sextupole strengths must be very high. A variation on the multi-

bend scheme, inspired by the Super-B lattice [4], is used for the ESRF upgrade.
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Between dipoles 1 and 2 and between dipoles 6 and 7, the distance is larger and

the dispersion function grows. The sextupoles for the chromaticity corrections are

placed in the dispersion bumps. With this scheme, a lower strength of the sextupoles

is possible, compared with the normal multi-bend achromat scheme. The layout of

the cell is called hybrid multi-bend lattice (HMB).

The three central dipoles have a quadrupolar defocusing field, i.e. the field has a

transverse gradient. The other four quadrupoles have a longitudinal field gradient.

The injection of the beam into the storage ring is done in one of the straight

sections. The low emittance and the low β functions are such that the dynamic

aperture, i.e. the area in the transverse plane where a particle without transverse

momentum can be injected without being lost, is too small. Two modified cells

are designed for the injection region. The horizontal β function of the injection

straight section is larger than the standard one, to satisfy the dynamic aperture

requirements.

In figure 1.4, the two injection sections are shown.
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Figure 1.4: Beta functions and horizontal dispersion in the two
injection cells of the S28 version of the low-emittance ESRF upgrade
lattice.

In table 1.3 some parameters for the new low emittance lattice are shown.

The injection system of the new storage ring, i.e. the booster and the linac,

will not be changed. The injection frequency will be higher than now, because the

lifetime will be shorter.
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Table 1.3: Parameters for ESRF upgrade lattice, version S28.

Parameter value

Energy [GeV] 6.00

Circumference [m] 843.991

Beam current [mA] 200

νx 75.60

νy 27.60

νz 0.00345

α 8.95 · 10−5

τx, τy, τs [ms] 9.03, 13.9, 9.46

U0 [MeV] 2.45

Vrf [MV] 6

h 992

εx [pm rad] 150

εy [pm rad] 5

σδ 9.13 · 10−4
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Chapter 2

Touschek effect in electron storage

rings

The electrons in a stable beam in a high energy particle accelerator can be

lost due to the scattering with residual gas molecules in the beam pipe (elastic

or inelastic scattering) or due to the scattering with other electrons of the beam

(Touschek effect).

The two effects may be combined in terms of the total lifetime as follows:

1

τ
=

1

τv
+

1

τt
(2.1)

where τt is the Touschek lifetime and τv is the vacuum lifetime.

Vacuum lifetime depends on the residual gas pressure inside the beam pipe. It

varies with time, because the pressure is not constant during the machine operation

and it is higher after the shutdowns. In third generation synchrotron light sources,

vacuum lifetime is generally longer than Touschek lifetime.

The Touschek effect is a single scattering between two electrons of the bunch.

The collision can transfer momentum from transverse to longitudinal motion and

both the electrons can exceed the longitudinal acceptance, in which case they are

lost.

The high density of particles into a small bunch increases the probability of

collisions between particles. The elastic scattering between electrons is called Møller

scattering. The Møller differential cross section is given at leading order by [5]:

dσ

dΩ
=

4r2
0

β4

(
4

sin4 θ
− 3

sin2 θ

)
(2.2)

In high energy accelerators, in the bunch frame, the transverse oscillation energy

is larger than the longitudinal one. A collision can transfer momentum from trans-
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verse to longitudinal motion and the electron can exceed the longitudinal acceptance

limit.

The Møller cross section can be integrated on the solid angles which give a

momentum deviation larger than the momentum aperture of the ring in a certain

position. We note that it is assumed that the electron spin has been averaged over

in the formula for the cross section. In the case where the beam is polarized, there

is a correction term which we consider later.

The resulting Touschek lifetime, in non-relativistic approximation, with a flat

beam, i.e. with a very small vertical oscillation, has been derived by Bruck [6] [7].

1

τ
=

〈
re

2cNb

8πσxσyσlγ2

1

δ3
acc

D(ε)

〉
(2.3)

where re is the classical electron radius, c is the speed of light, Nb is the number of

electrons per bunch, σx, σy and σl are the bunch width, height and length, γ is the

Lorentz factor, δacc is the momentum acceptance. D(ε) is defined as:

D(ε) =
√
ε

[
−3

2
e−ε +

ε

2

∫ ∞
ε

lnu

u
e−udu+

1

2
(3ε− ε ln ε+ 2)

∫ ∞
ε

e−u

u
du

]
(2.4)

where the parameter ε is:

ε =

(
δacc
γσ′x

)2

(2.5)

and

σ′x =

√
εx
βx

(2.6)

For the ESRF storage ring, assuming βx = 1 m, the value of ε is given by:

ε =
δ2
acc

0.57
(2.7)

The function D(ε) is shown in figure 2.1. The function 1
δ3acc

D(ε) for the ESRF

lattice is shown in figure 2.2.

Beam sizes, β functions and momentum acceptance are not constant along the

ring, so the total lifetime has to be obtained averaging equation (2.3) on the whole

ring.

Assuming a small variation of δacc along the ring, a scaling law for the Touschek

lifetime can be obtained from equation (2.3):

τt ∝
√
εyσz

Ib
δ3
acc (2.8)
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A more precise result has been obtained by Piwinski [8] [9]. Piwinski derivation

is valid for a general case, with arbitrary energies in the rest frame of the colliding

particles and arbitrary transverse beam envelops.

The inverse of Touschek lifetime derived by Piwinski is given by:

1

τ
=

〈
r2
ocNb

8πγ2σs
√
σ2
xσ

2
y − σ4

pD
2
xD

2
yτm

F (τm, B1, B2)

〉
(2.9)

where σp is the energy spread, σs is the bunch length, Dx and Dy are the dispersion

functions, σx and σx are the beam sizes defined by:

σx =
√
εxβx + σ2

pD
2
x (2.10)

σy =
√
εyβy + σ2

pD
2
y (2.11)

and

τm = β2δ2
acc (2.12)

the function F (τm, B1, B2) is:

F (τm, B1, B2) =
√
π (B2

1 −B2
2)τm∫ ∞

τm

[(
2 +

1

τ

)2(
τ/τm
1 + τ

− 1

)
+ 1−

√
1 + τ√
τ/τm

− 1

2τ

(
4 +

1

τ

)
ln
τ/τm
1 + τ

]

e−B1τI0 (B2τ)

√
τdτ√

1 + τ
(2.13)

where I0 is the modified Bessel function. The functions B1 and B2 are given by:

B1 =
β2
x

2β2γ2σ2
xβ

(
1− σ2

hD̃
2
x

σ2
xβ

)
+

β2
y

2β2γ2σ2
yβ

(
1−

σ2
hD̃

2
y

σ2
yβ

)
(2.14)

B2
2 = B2

1 −
β2
xβ

2
yσ

2
h

β4γ4σ4
xβσ

4
yβσ

2
p

(
σ2
xσ

2
y − σ4

pD
2
xD

2
y

)
(2.15)

D̃x and D̃y are given by:

D̃x = αxDx + βxD
′
x (2.16)

D̃y = αyDy + βyD
′
y (2.17)
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where D′x and D′y are the slopes dispersion functions. σh is defined by:

1

σ2
h

=
1

σ2
pσ

2
xβσ

2
yβ

(
σ̃2
xσ

2
yβ + σ̃2

yσ
2
xβ − σ2

xβσ
2
yβ

)
(2.18)

σxβ, σ̃x, σyβ and σ̃y are defined:

σxβ =
√
εxβx (2.19)

σ̃x =

√
σ2
x + σ2

p

(
D2
x + D̃2

x

)
(2.20)

σyβ =
√
εyβy (2.21)

σ̃y =

√
σ2
y + σ2

p

(
D2
y + D̃2

y

)
(2.22)

β and γ are the relativistic factors, βx, βy, αx and αy are the Twiss functions.

Beam sizes, β functions, momentum acceptance are not constant along the ring,

so the total lifetime has to be obtained averaging equation (2.9) on the whole ring.

2.1 Spin polarization in electron storage rings

The polarization of an electron beam is the average value of the vertical spin of

the electrons.

An electron beam with an initial random distribution of the spin becomes po-

larized over time due to the Sokolov-Ternov effect [10] [11]. A little fraction of the

photons emitted as synchrotron radiation causes a spin-flip to the electrons.

The transition rates between the two possible spin status are:

W↑↓ =
5
√

3

16

reγ
5~

me

〈
1

ρ3

〉(
1 +

8

5
√

3

)
(2.23)

and

W↓↑ =
5
√

3

16

reγ
5~

me

〈
1

ρ3

〉(
1− 8

5
√

3

)
(2.24)

where re is the electron classical radius, γ is the Lorentz relativistic factor, ~ is the

reduced Planck constant, me is the electron mass, ρ is the instantaneous bending

radius of dipoles. The symbol ↑ denotes a spin along the magnetic field and the

symbol ↓ denotes a spin opposite to the magnetic field.

These two transition rates are different and so an unpolarized beam becomes
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polarized. The maximum value of polarization achievable is given by:

PST =
W↑↓ −W↓↑
W↑↓ +W↓↑

=
8

5
√

3
' 0.9238 (2.25)

where PST is called the Sokolov-Ternov level of polarization.

The polarization follows an exponential law:

P (t) = PST
(
1− e−t/τp

)
(2.26)

The exponential time constant for the polarization effect is given by:

τ−1
p = W↑↓ +W↓↑ =

5
√

3

8

re~γ5

me

〈
1

ρ3

〉
(2.27)

The average of 1/ρ3 is given by:〈
1

ρ3

〉
=

1

C

∮
1

ρ3(s)
ds (2.28)

where C is the total length of the ring and s is the longitudinal coordinate.

Spin depolarization

The spin of the electrons does a precession around the magnetic field of the

dipoles, following the Thomas-BMT equation.

The number of total precessions done by the electrons in a revolution time is the

spin tune and it is given by:

νspin =
g − 2

2
γ (2.29)

where γ is the Lorentz relativistic factor and a = g−2
2

is the electron anomalous

magnetic dipole moment. Its value is [12]:

a =
g − 2

2
= (1.15965218076± 0.00000000027)× 10−3 (2.30)

The precession frequency of the electron spin is proportional to the beam energy:

fspin = f0 νspin = f0 a γ (2.31)

where f0 is the revolution frequency.

If a vertical kick, from an horizontal magnetic field, is applied to the beam, the

electron spin vector is rotated by an angle, around the magnetic field direction, given
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by:

θspin = νspin θk (2.32)

where θk is the kick given by the kicker to the beam in radians.

The kicker can be powered with an angular frequency resonant with the spin

tune:

ωdep = (νspin ±m)ω0 (2.33)

where m is an integer and ω0 = 2πf0.

The rotation angle given to the spin vector, as a function of time, is:

θspin(t) = |Aspin cos (ωdept)| (2.34)

where Aspin = Ak νspin is the maximum rotation angle given by the kicker to the

spin vector and Ak is the amplitude in radiants of the kick.

Assuming a beam without energy spread, with nominal energy, it can be depo-

larized if the spin vectors receive a rotation angle of π/2. This is achieved when the

sum of the angles given to the spins is π/2:

N∑
n=1

θspin(nT0) =
π

2
(2.35)

The function θspin(t) is the absolute value of a sinusoidal function, its average

value can be computed:

〈θspin〉 =
2Aspin
π

(2.36)

The number of turns needed to depolarize the beam, in the simple assumption

of beam without energy spread, is given by:

N =
π/2

〈θspin〉
=

π2

4Aspin
=

π2

4Akνspin
(2.37)

In electron storage rings, the beam has an energy spread and electrons suffer

synchrotron oscillations. The spin tune is not constant, it oscillates with energy and

there is a spin tune spread. The depolarization of a polarized electron beam can

be studied only with a simulation. A simple spin tracking simulation program has

been developed and is described in Appendix B.

Either the experimental results from different electron storage rings (LEP [13],

SLS [14], Australian Synchrotron [15], Spear3 [15]) and the simulations show that

the beam depolarization in real cases, with synchrotron oscillations, is possible only

if the frequency of the kicker is in a narrow interval around the value of ωdep, defined
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in equation (2.33).

The size of the spin depolarization resonance has been studied with deuteron

beams at COSY synchrotron, experimentally and with simulations [16]. In heavy

particles beam, the synchrotron oscillations can be switched off, turning off the

cavity, because the synchrotron radiation is negligible. In these experiments, it is

confirmed that without synchrotron oscillations the resonance is broadened by the

energy spread; with synchrotron oscillations the resonance becomes much narrower,

even with energy spread.

Effect of spin polarization on Touschek lifetime

The Møller cross section is smaller if the beam is polarized [17] [18] [19]. When

the beam is polarized, the Touschek lifetime is longer.

An expression for the effect of the polarization on Touschek lifetime is given in

[20]. In particular, if P is the polarization, the Touschek lifetime is given by:

1

τt(P )
=

1

τt(0)
+

〈
R(ε)

1

τt(0)

〉
P 2 (2.38)

where

R(ε) =
F (ε)

C(ε)
(2.39)

with

C(ε) = ε

∫ ∞
ε

1

u2

((u
ε

)
− 1

2
ln
(u
ε

)
− 1

)
e−udu (2.40)

and

F (ε) = − ε
2

∫ ∞
ε

1

u2
ln
(u
ε

)
e−udu (2.41)

The quantity ε is given by:

ε =

(
δacc
γσx′

)2

(2.42)

where δacc is the momentum acceptance, γ is the Lorentz relativistic factor, σx′ is

the standard deviation of the beam distribution in horizontal angle.

The value of −F (ε)/C(ε) as a function of ε is shown in figure 2.3.

Effect of spin polarization in Touschek lifetime of ESRF storage ring

In the ESRF storage ring there are 64 compound dipoles, with a hard component

and a soft one. The lengths and bending radii are:

LH = 2.1573 m ρH = 23.37 m (2.43)
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Figure 2.3: Function −R(ε) = −F (ε)/C(ε).
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LS = 0.2927 m ρS = 49.61 m (2.44)

The length Arc of the curvilinear trajectory of the particles, given the length

L of the rectangular bending magnet and the curvature radius ρ of the particle, is

given by:

Arc = 2ρ arcsin
L

2ρ
(2.45)

The average of the third power of the bending radius is given by:〈
1

ρ3

〉
=

64

C

(
ArcH
ρ3
H

+
ArcS
ρ3
S

)
= 1.2997× 10−5 m−3 (2.46)

Using equations (2.27) and (2.46), the inverse of the polarization time can be

computed. The polarization time (in minutes) for the ESRF storage ring is:

τp = 15.75 min (2.47)

Using the Sokolov-Ternov level of polarization, S = 0.9238, the beam sizes of

the ESRF storage ring and a constant value of the momentum acceptance, the

functions C and F in equations (2.40) and (2.41) have been computed by mean of

mathematica [21] and the lifetime increase has been computed. In table 2.1, the

increasing in Touschek lifetime for three different constant momentum acceptance

are shown. We have assumed the maximum polarization PST .

Table 2.1: Touschek lifetime increase due to spin polarization, for
five different constant momentum acceptances, for the ESRF stor-
age ring.

δacc (%) Lifetime increase (%)

1.5 12.20

2.0 13.75

2.5 15.09

3.0 16.27

3.5 17.30
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Chapter 3

Touschek lifetime parameters

measurements

The Touschek lifetime scales with bunch current, beam vertical emittance, bunch

length and momentum acceptance, as derived in previous chapter:

τt ∝
√
εyσz

Ib
δ3
acc (3.1)

where εy is the vertical emittance, σz is the root mean square bunch length, Ib is

the bunch current and δacc is the momentum acceptance.

In this chapter, the measurements of all the relevant parameters for the Touschek

lifetime are discussed.

The vertical emittance can be measured using the x-ray pinhole cameras installed

in the storage ring [22]. They are used to detect the bending magnets synchrotron

radiation. The vertical emittance depends on the coupling between the horizontal

and the vertical motion, that may be controlled using skew quadrupoles correctors,

and on vertical dispersion. In exactly planar machine, in absence of coupling sources,

the vertical dispersion is zero, because there are not vertical bending magnets, how-

ever, magnets misalignments produce non-zero vertical bending fields and vertical

dispersion.

Vertical emittance can be increased applying an oscillating horizontal magnetic

field, in a range of frequency that includes the vertical betatron oscillation frequency.

This can be done using a vertical kicker.

The bunch current can be measured using the beam position monitors. In the

ESRF storage ring, there are 224 beam position monitors: 7 per cell. The number

of bunches depends on the operation mode and can be 4, 16, 868 or 992 (table 1.1).

During machine dedicated times, it can be varied between 1 and 992, that is the
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harmonic number of the RF cavity and the number of buckets. The total current

is the sum of all the bunch currents. We assume throughout this thesis that the

charge per bunch is the same in all bunches: Itot = Nb · Ib, where Nb is the number

of bunches, Ib is the current per bunch and Itot is the total current.

The zero-current bunch length is related to the energy spread of the electron

beam and it is derived in the appendix A, in section A.2. The value is given by:

σz0 =
Cα

2πνs
σδ (3.2)

where C is the ring circumference, α is the momentum compaction factor, νs is the

synchrotron tune and σδ is the equilibrium energy spread.

The synchrotron tune depends on the RF voltage as follows:

νs =

√
heVRFη cosφs

2πβ2E0

(3.3)

where h is the harmonic number, e is the electron charge, η is the phase-slip factor,

φs is the synchronous phase, β is the relativistic factor and E0 is the electron energy.

The phase-slip factor and the synchronous phase, as written in the appendix A,

are given by:

η =
1

γ2
− α (3.4)

φs = π − arcsin

(
U0

eVRF

)
(3.5)

where γ is the Lorentz relativistic factor and U0 is the energy loss per turn.

The interactions between the bunch and the vacuum chamber is responsible for

the bunch lengthening.

The effect of the vacuum chamber can be described by an impedance and the

relevant quantity for the lengthening effect is the parameter Zn. The lengthening

is current dependent, as explained in appendix A, section A.3.1. The lengthening

effect is given by:

(
σz
σz0

)
=

3

√√
3
√

27Q2 − 4 + 9Q
3
√

18
+

3

√
2
3

3

√√
3
√

27Q2 − 4 + 9Q
(3.6)

where σz/σz0 is the bunch lengthening, Q = ∆
4
√
π

and

∆ =
αeIb
E0ν2

s

(
c

ω0σz0

)3

Zn (3.7)
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where c is the speed of light and ω0 is the revolution angular frequency (ω0 = 2π c
C

).

The bunch length can be measured using a streak camera.

A streak camera is an instrument able to measure the time structure of an ultra

fast x-ray signal, in the range of picoseconds. The output is a picture where the

spatial intensity is proportional to the time intensity of the original signal [23].

The x-rays hit the photo-cathode causing the emission of photo-electrons. The

photo-electrons are bent by a time dependent electric field and the electrons goes

into the detector screen in a position that depends on the arrival time.

The bunch length measurements done at ESRF, using a streak camera, in order

to measure the parameter Zn are shown in section 3.2.

The momentum acceptance is the maximum possible momentum displacement

of a particle following scattering, without losing it. This quantity is different in

different position of the ring, because the dispersion and the beta functions are not

constant. In particular, if we consider linear motion, then the transverse action of a

particle following a scatter with momentum change δ (see section A.1 of appendix

A) is:

∆Jx = Hδ2 (3.8)

where H is called the curly-H function and it is given by:

H(s) = γx(s)D
2
x(s) + 2αx(s)Dx(s)D

′
x(s) + βx(s)D

′2
x (s) (3.9)

where βx, αx and γx are the horizontal Twiss functions and Dx and D′x are the

horizontal dispersion and its derivative.

The positive and negative momentum acceptance can also be different, because

of the nonlinear dispersion, i.e. the dependence of the closed orbit on the square of

the momentum displacement.

The momentum acceptance δacc is a function of the position along the ring and

it cannot be directly measured. It is not constant along the ring: it depends on

the position in the cell. However, sometimes a useful single quantity is used: the

Touschek relevant effective lattice momentum acceptance (TRELMA) [24]. The

TRELMA is the value of constant momentum acceptance that must be chosen to

have the same Touschek lifetime that we have with the real momentum acceptance.

The momentum acceptance is limited by two effects: the longitudinal bucket size,

which is related to the accelerating voltage, and the dynamic momentum aperture,

which depends on the nonlinear dynamics and in particular on the sextupole setting.

25



The longitudinal bucket size, or RF acceptance, is given by:

δRF =
2νs
hα

√
1−

(π
2
− φs

)
tan(φs) (3.10)

where νs is the synchrotron tune, given in equation (3.3), h is the cavity harmonic

number, α is the momentum compaction factor and φs is the synchronous phase,

defined in equation (3.5).

Both the bunch length and the momentum acceptance depend on the voltage

applied to the accelerating cavity. In order to have a model able to predict the

Touschek lifetime, the RF voltage must be known.

Some measurements done at ESRF on 2011 showed that the readout value of

the RF voltage was slightly different from the value applied to the cavity [25].

A calibration factor k can be defined as follows:

VRF = kVro (3.11)

where VRF is the voltage applied to the cavity that gives the acceleration to the

beam and Vro is the readout value of the voltage from the high level application in

the control room.

In the first section of this chapter, the measurements done in 2011, 2013 and

2014 to understand the voltage calibration are presented. Similar measurements

have been done at LEP [26].

In the second section, the bunch length measurements done in order to obtain

the bunch lengthening model with current are shown.

In third section, the momentum acceptance computations, using a 6-D particle

tracking program, are shown.

3.1 RF voltage calibration factor measurement

The electrons in a storage ring does a longitudinal motion, called synchrotron

motion. The frequency of the longitudinal motion in units of revolution frequency,

the synchrotron tune, is derived in appendix A and it is given by:

νs =

√
−eVRF

E0

hα

2π
cosφs (3.12)

where e is the electron charge, VRF is the RF voltage, h is the harmonic number of

the cavity, α is the momentum compaction factor, E0 is the electron beam energy

and φs is the synchronous phase.
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The synchronous phase is the relative phase between the beam and the cavity

and it is given by:

φs = π − arcsin

(
U0

eVRF

)
(3.13)

where U0 is the energy loss per turn.

Using equations 3.12 and 3.13, the frequency of the synchrotron oscillations can

be written:

fs = fRF

√
α

2πhE0

(
VRF

2 − U0
2
)1/4

(3.14)

where fRF is the RF cavity frequency.

The synchrotron tune and the synchronous phase depend on the RF voltage and

they can be used to measure the RF voltage calibration factor.

Synchrotron tune measurement

The synchrotron tune can be measured exciting the electrons longitudinally with

the bunch by bunch longitudinal feedback and measuring the sidebands of an har-

monic of the revolution frequency. The resolution on synchrotron tune measurement

is better than 1 %.

In figure 3.1, the synchrotron oscillation frequency measurements performed in

2011 and 2013 are plotted together with the expected value (red line). The expected

value is computed using formula of equation (3.14), assuming the calibration of the

RF voltage k = 1 and using the nominal values of the ring parameters (U0, α, E0).

All these measurements have been done with undulator gaps opened, in order to

lose energy only for synchrotron radiation due to the dipole magnets.

The measurement of July 2011 was close to the expected value of the synchrotron

tune, while the measurements of February 2011 and the two of 2013 are very similar

but far from the expected value.

The synchrotron tune measurements can be fitted in order to obtain the RF

voltage calibration factor.

Equation 3.14 can be written, using equation 3.11:

fs = fRF

√
α

2πhE0

(
k2Vro

2 − U0
2
)1/4

(3.15)

A two parameters fit of the measured synchrotron tune versus the readout value

of the RF voltage can be done.

If we assume to know the energy E0 of the beam, and therefore the mean energy

loss per turn U0, we can fit the synchrotron tune and find the best values for the

calibration factor k and the momentum compaction factor α.
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Figure 3.1: Synchrotron oscillations frequency versus readout value
of RF voltage. The expected value, red line, is compared with four
different measurements done in 2011 and 2013, with different total
currents and filling patterns.

The fit of the measurements taken in April 16 2013, compared with the expected

values, is shown in figure 3.2.

In table 3.1 the results of the fit for all the measurements of 2011 and 2013 are

shown, together with the total current and the number of bunches.

The fit gives a momentum compaction factor not compatible with the one of the

perfect machine model, that is α = 1.78 10−4 (table 1.2), but smaller.

From measurement of July 2011, the calibration factor obtained from the fit is

compatible with 1, but for all other measurements it is not. The measurements

of July 2011 have been performed at very low current (10 mA) and the calibration

could be different in that regime, due to the very low cavity beam-loading.

In April 23 2013, a measurement with very low current has been tried again, but

the minimum value of the current, in order to read a signal of the synchrotron tune,

was 15 mA.

The momentum compaction factor can be different with respect to the perfect

machine one, because it depends on the bending angles, including the ones from the

quadrupole misalignments and the orbit correctors. The orbit correction has been
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Figure 3.2: Synchrotron oscillations frequency versus read out value
of the RF voltage, measured in April 16 2013, compared with the
expected value. The blue line is a fit, with α and k as free param-
eters.

computed before all the measurements and therefore it was different in different

measurements.

The ESRF lattice error model includes the gradient errors and the tilt of quadrupole

and dipole magnets and it is obtained fitting the measurement of the response ma-

trix. These errors can predict the horizontal and vertical β-beating, i.e. the variation

of the β function with respect of the nominal ones, the horizontal and vertical dis-

persion and the coupling between horizontal and vertical motion. The error model

assumes the orbit to be exact.

The momentum compaction factor predicted by the ESRF error model is larger

than the nominal one, that can be computed from the perfect machine model, of

about 3− 5%.

Random misalignments of quadrupoles and sextupoles have been simulated, in

order to understand the smaller momentum compaction factor obtained from the

synchrotron tune measurements.

Some different random misalignments in quadrupole and sextupoles have been

added to the perfect machine, an orbit correction has been performed, using the

horizontal and vertical orbit correctors, using the Accelerator Toolbox of Matlab
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Table 3.1: synchrotron tune measurements for RF voltage calibra-
tion of 2011 and 2013.

Date Itot (mA) Nb k α(10−4)

February 2011 32 661 0.949± 0.005 1.712± 0.009

July 2011 10 661 0.998± 0.009 1.74± 0.01

April 16 2013 32 992 0.953± 0.005 1.674± 0.007

April 23 2013 15 992 0.942± 0.016 1.75± 0.02

[27]. The momentum compaction factor has been computed for 50 different seeds

of random misalignments. In figure 3.3, the 50 momentum compaction factors com-

puted for different random misalignments are shown and compared with the value of

the perfect machine. This kind of error model gives a lower momentum compaction

factor than the perfect machine one, but still larger than the one obtained from the

synchrotron tune measurements.

The root mean square value of the misalignments distributions is 50µm in hori-

zontal and vertical, for both quadrupoles and sextupoles.

A measurement of the momentum compaction factor could help to understand

the RF calibration. In the appendix C, two possible momentum compaction factor

measurements are described.

Synchronous phase measurement

Using the bunch by bunch feedback, the measurement of the phase between the

beam and the master clock is possible. In April 16 2013, this measurement has been

performed.

The synchronous phase is defined as the phase between the beam and the signal

into the cavity. It can be used to measure the RF voltage calibration factor, because

it depends on the RF voltage as follows:

φs = π − arcsin

(
U0

eVRF

)
(3.16)

The measurement has been done with all gaps opened, in order to have a known

energy loss per turn.

The measured phase differs from the synchronous phase of a constant value and

it is defined with an opposite sign. The measurements are fitted with function 3.17,

with two degrees of freedom: an additive phase φ0 and the RF voltage calibration

factor k.
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Figure 3.3: Momentum compaction factors for 50 different set of
misalignment errors in quadrupoles and sextupoles. The red line
shows the value of the momentum compaction factor of the perfect
machine.

φ = φ0 + arcsin

(
U0

ekVro

)
(3.17)

The results of the fit are:

φ0 = (61.0± 0.4)◦ (3.18)

k = 0.949± 0.007 (3.19)

The calibration factor is compatible with the one obtained from the synchrotron

tune measurements, assuming the nominal beam energy.

A different method for the phase measurement, using the beam position monitor

data, has been recently developed at ESRF [28] and it can be also used to measure

the RF voltage calibration factor.

The measured phase differs from the synchronous phase of a constant value. The

measurements are fitted with function of equation 3.20, with two degrees of freedom:

an additive phase φ0 and the RF voltage calibration factor k.
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Figure 3.4: Measurement of phase between the beam and the mas-
ter clock, fitted with function 3.17, with two free parameters: an
additive phase and the RF voltage calibration factor.

φ = φ0 − arcsin

(
U0

ekVro

)
(3.20)
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Figure 3.5: Measurement of phase between the beam and the mas-
ter clock, measured using BPM signals on February 2013. Mea-
surements are fitted with function 3.20, with two free parameters:
an additive phase and the RF voltage calibration factor.

The results of the fit are:

φ0 = (104.9± 0.3)◦ (3.21)

k = 0.947± 0.004 (3.22)

From the synchrotron tune and synchronous phase measurements, we can derive

the RF voltage calibration factor:

k = 0.949± 0.003 (3.23)
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3.2 Bunch length

Current dependent bunch lengthening effect has been observed and measured at

ESRF [29] [30]. This effect is due to longitudinal impedance, via the potential well

effect, as described in section A.3.1.

Bunch length as a function of bunch current and RF voltage has been measured

in 2011 with a streak camera.

An example of an image from the ESRF streak camera is shown in figure 3.6.

From this image, the rms bunch length can be obtained.

Figure 3.6: Streak camera picture of the synchrotron radiation.
The time is the vertical direction.

In figure 3.7 the density profile of the electron bunch, with four different beam

settings, is shown.

In 2011, some bunch length measurements with different bunch currents (from

0.012 mA to 5.8 mA) and with two different RF voltages (6.0 MV and 8.0 MV, read-

out values) have been performed.

An analysis of those measurements has been done in order to have a simple

model to know the bunch length as a function of bunch current and RF voltage.

In previous analyses of the bunch length data, the standard deviation of the

34



0 100 200 300 400 500 600
−50

0

50

100

150

200

Time (ps)

C
h

a
rg

e
 d

e
n

s
it
y
 (

a
u

)

 

 

Vrf=8MV; Ib=0.25mA

Vrf=8MV; Ib=5.85mA

Vrf=6MV; Ib=0.25mA

Vrf=6MV; Ib=5.8mA

Figure 3.7: Bunch time structure for four different beam settings.

distribution was computed assuming a gaussian distribution and computing the rms

from the full width half maximum value, using the relation:

FWHM = 2

√
−2 ln

1

2
σ (3.24)

where FWHM is the full width half maximum and σ is the standard deviation of

the gaussian distribution.

This assumption is correct when the current is low, but when current is too large

the bunch is not gaussian but asymmetric, as we can see from the bunch profiles of

figure 3.7, and the equation 3.24 is no longer valid.

In order to compute the standard deviation of the bunch density, the tails of the

distribution have been removed, because at large distance from the mean the noise

can affect the standard deviation computation disproportionately.

The current dependent bunch lengthening effect can be computed solving the

Haissinski equation (see appendix A, section A.3.1), for example with the haissinski

module of elegant, or using the approximated formula of equation 3.6. For a purely
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inductive impedance, the two result are very similar.

The RF voltage calibration factor from the synchrotron tune measurements has

been used for this study (k = 0.95).

The bunch length measurements are shown in figure 3.8. With a purely inductive

impedance Zn = 0.7 Ω, the computed bunch lengthening match quite well both sets

of measurements, at 6.0 MV and 8.0 MV, readout values.
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Figure 3.8: Bunch length measurements and model, assuming a
purely inductive impedance, computed with formula of equation
3.6, for different currents and RF voltages. For both the measure-
ments and the model, the RF voltage is assumed to be the readout
value.

3.3 Momentum acceptance simulation

Touschek lifetime can be computed with the Piwinski formula, equation (2.9),

using the program touschekLifetime, distributed with elegant [31].

The momentum acceptance is needed in both the Piwinski and Bruck formulas
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and it can be computed with a 6-D particle tracking code like elegant, AT [27] or

MAD-X [32].

Two functions, δp(s) and δn(s), represent the maximum positive and negative

momentum displacement at a position s around the ring. The function momen-

tum aperture of elegant allows to compute those two quantities around the ring, in

any position chosen by the user. The method used is described in [33]. Essentially,

for each chosen longitudinal position, an on axis particle, with a momentum dis-

placement δ, is tracked for a given number of turns. If the particle is not lost for all

the turns, δ is increased. The function initially uses large steps of δ, to find approx-

imate boundary. Then, a fine search of the boundary between the values of δ where

the particles are lost and the values where the particles are stable is performed.

δp(s) and δn(s) are generally different and they must be independently computed.

The closed orbit of particles with positive or negative energy displacements are not

symmetric, due to the nonlinear dispersion.

In figure 3.9, the closed orbit for some positive and negative momentum displace-

ments in two ESRF cells, computed with elegant, are shown. The closed orbit with

negative values of δ is larger than the one with positive values of δ.

Longitudinal motion

The longitudinal motion may have a significant effect in the simulation of the

momentum acceptance [34]. If the synchrotron radiation is on, at least one cavity

must be defined in the lattice, in order to provide the energy loss per turn. In this

case, we include the effects of radiation damping and synchrotron oscillations. Note

that we do not consider quantum fluctuations from the radiation.

In figure 3.10, the oscillations and damping of the energy in the ESRF storage

ring are shown for four electrons with different initial energy. The synchrotron

period is about 200 turns and the longitudinal damping period is about 1200 turns.

In figures 3.11 and 3.12, the momentum acceptance computed in two cells of

the ESRF lattice is shown for some different numbers of turns: in figure 3.11 the

synchrotron radiation was turned off and the cavities were switched off; in figure

3.12 the synchrotron radiation was on and there were two RF cavities in the lattice

that provide the energy lost.

As we can see from the figures, a too small number of turns gives an higher

momentum acceptance and therefore an overestimation of the Touschek lifetime.

From figure 3.12, we can see that the difference in momentum acceptance between

512 turns and 2048 turns are quite small. 512 turns are used for all momentum

acceptance simulations in this thesis.
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Figure 3.9: Closed orbit in the ESRF storage ring for 7 different
electron momentum displacements. The asymmetry is due to the
nonlinear dispersion.
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Figure 3.10: Momentum deviation versus number of turns, for four
different electrons with different starting δ value: 0, 0.005, 0.01 and
0.02.
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Figure 3.11: Momentum acceptance computed in two cells of the
ESRF lattice with some different numbers of turns. Without syn-
chrotron motion.
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Figure 3.12: Momentum acceptance computed in two cells of the
ESRF lattice with some different numbers of turns. With syn-
chrotron motion and synchrotron radiation.
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Physical apertures

In the storage ring model, the physical apertures can be defined. The physical

aperture in a position of the ring is the size of the vacuum chamber. During the

tracking, a particle is considered lost if one of the horizontal or vertical coordinates

is larger than the size of the vacuum chamber in that position.

In figure 3.13, the physical apertures of the ESRF storage ring are shown as a

function of the longitudinal coordinate along one cell.

Figure 3.13: Horizontal and vertical semi-axis of the ESRF elliptical
vacuum chamber as a function of the position in one cell.

Some other positions of the ring have smaller physical apertures: the injection

septum, in the straight section of cell 4, and the absorbers of second dipoles of cell

16 and 30.

The septum is located in the internal side of the ring. The distance between

the septum and the beam is 19.52 mm. The two absorbers are close to the dipoles,

in the external side of the ring. The external radius of the beam pipe near these

absorbers is 19 mm.

Adding the physical apertures to the lattice, the momentum acceptance become

smaller and therefore the Touschek lifetime become shorter. In figure 3.14, the
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momentum acceptance of the ESRF lattice is shown with and without the physical

apertures. The momentum acceptance is computed with elegant, with 512 turns,

including longitudinal motion and synchrotron radiation.

In figure 3.15, the Touschek scattering rate of the ESRF lattice is shown, with

and without the physical apertures. The scattering rate is the number of particles

lost due to Touschek scattering per unit of time in a certain position of the ring and

it depends on the local beam size and on the local momentum aperture. We note

that it is sharply peaked in the region with small βx and βy, i.e. in the low beta

straight sections. Since most of the scattering occurs at this regions, the momentum

acceptance is most significant at this positions.

Figure 3.14: Momentum aperture of the ESRF multi-bunch lat-
tice computed in 8 cells, with physical apertures (blue lines) and
without physical apertures (red lines).
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Figure 3.15: Inverse of Touschek lifetime of the ESRF lattice com-
puted in 8 cells, with physical apertures (blue line) and without
physical apertures (red line).
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Additional physical limitations can be added to the model, in order to simulate

the presence of the scrapers. The scrapers are defined in elegant as rectangular

collimators, where the sizes of the rectangle can be independently defined.

In figure 3.16, the momentum acceptance for different value of the internal

scraper position, computed with elegant, is shown.

An experiment was performed to measure the Touschek lifetime versus scraper

position. The results, described in chapter 5, indicate that the modeling of apertures

and their effect on momentum acceptance are quite accurate.

Figure 3.16: Momentum acceptance in 8 cells of ESRF storage ring,
with different values of internal scraper position.
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Errors

A good model of the machine, with field errors to reproduce β-beating, horizontal

and vertical dispersion and coupling is needed to have a good prediction of Touschek

lifetime.

The β-beating is the variation on the β functions of the real machine with respect

to the ones of the perfect machine and it is defined as:

βbeat(s) =
βem(s)− βpm(s)

βpm(s)
(3.25)

where βem(s) is the β function (horizontal or vertical) of the machine with errors

and βpm(s) is the β function of the perfect machine.

At ESRF, an error model is obtained from the measurement of the response

matrix and from the measurement of the horizontal and vertical dispersion. The

error model is used to compute the normal and skew quadrupole corrections.

In figure 3.17, the β-beating obtained from the model of the ESRF lattice with

errors, measured on July 02 2013, is shown, together with the vertical dispersion.
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Figure 3.17: Horizontal and vertical β-beating and vertical disper-
sion of the ESRF lattice with errors measured on July 02 2013.
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In figure 3.18, the momentum acceptances for the perfect lattice and for the lat-

tice with errors are compared. For the lattice with errors, the momentum acceptance

is smaller.

Figure 3.18: Momentum acceptance in 2 cells of ESRF storage
ring, for the perfect machine (in red) and for the machine with
quadrupole gradient errors, dipole field errors, quadrupole tilts and
dipole tilts, corrected with quadrupole and skew quadrupole cor-
rectors.

RF voltage

The momentum acceptance is limited by two effects: the longitudinal bucket size,

which is related to the accelerating voltage, and the dynamic momentum aperture.

The longitudinal bucket size, or RF acceptance, is given by:

δRF =
2νs
hα

√
1−

(π
2
− φs

)
tan(φs) (3.26)

where νs is the synchrotron tune, h is the cavity harmonic number, α is the mo-

mentum compaction factor and φs is the synchronous phase, defined in equation

(A.82).
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In figure 3.19, the RF acceptance of equation (3.10) is shown as a function of

the RF voltage, for the ESRF storage ring.

6 7 8 9 10
Vrf HMV L
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Figure 3.19: RF acceptance as a function of RF voltage for the
ESRF storage ring.

In figure 3.20, the simulated momentum acceptance with different RF-voltage is

shown. The simulation is done with elegant, including synchrotron radiation.

For low RF-voltage, the momentum acceptance is limited by the size of the

longitudinal bucket and it is defined by the value of the voltage; for higher RF

voltage, the momentum acceptance is limited by the dynamic acceptance, defined

by the nonlinear dynamics.

The RF-acceptance obtained from the tracking is slightly different from the one

of equation 3.26. In particular, it is asymmetric, because the bucket itself it asym-

metric.
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Figure 3.20: Momentum acceptance computed in 8 cells of the
ESRF storage ring for different RF-voltage, from 5.5 MV and
9.5 MV.
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Chapter 4

Lifetime measurements

The signal from the beam position monitors is proportional to the beam current

and can be used for a current measurement. The variation of current is used for the

lifetime measurement.

In the ESRF storage ring there are 7 beam position monitors per cell, i.e. 224

in all the ring.

A series of Touschek lifetime measurements were carried out during machine ded-

icated time (MDT) shifts in 2013. In this chapter, the results of these measurements

are described.

Using the theory and measurements described in preceding chapters, we can

compare the measured lifetime to the expected value, given the beam conditions.

We find that the careful work modeling the momentum acceptance pays off, since

we are able to predict the correct lifetime for a range of beam parameters.

In the first section, the measurement of the vacuum lifetime is shown. The vac-

uum lifetime must be measured every time we want a Touschek lifetime measure-

ment. In the second section, the measurement of the effects of the spin polarization

on the Touschek lifetime are shown. In the third section, the measurements of the

Touschek lifetime at different RF-voltages are shown. In the fourth section, the

measurements of Touschek lifetime with different physical apertures are shown.

4.1 Vacuum lifetime

The vacuum lifetime depends on the scattering of the electron with residual gas

molecules in the beam pipe. The scattering rate depends on the residual pressure

inside the beam pipe [35].

Vacuum lifetime measurement can be done by increasing the Touschek lifetime,

without changing the gas scattering rate, i.e. without changing the total current.
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The gas scattering rate does not depend on the beam emittance, therefore a simple

method to measure the vacuum lifetime is to measure the total beam lifetime for

many different vertical emittances.

From equation (3.1), we see that the inverse of Touschek lifetime is proportional

to the inverse of square root of vertical emittance:

1

τt
= K

1
√
εy

(4.1)

where K is the proportionality factor. The total lifetime as a function of the vertical

emittance can be written:
1

τ
(εy) = K

1
√
εy

+
1

τv
(4.2)

The total lifetime can be measured for many different values of vertical emittance,

without changing other parameters, and the vacuum lifetime can be obtained from

a linear fit between 1/τ and 1/
√
εy.

At ESRF, the vertical emittance can be easily increased using a white noise ver-

tical shaker, where the range of frequency includes the vertical betatron oscillation

frequency. This method does not change the coupling between horizontal and verti-

cal motion and it does not change horizontal emittance. Vertical emittance can be

varied within a large range of values, from a minimum of εy ' 4 pm up to a few nm.

A measurement of the vacuum lifetime, for three different bunch currents and

filling modes, in order to have the same total current of 32 mA, is reported in figure

4.1. The results of the measurements are reported in table 4.1.

Table 4.1: vacuum lifetime measurements for three different bunch
currents.

Ib (mA) Itot (mA) Nb τv(h)

2.0 32 16 900± 200

1.0 32 32 700± 100

0.037 32 868 770± 90

Vacuum lifetime depends on total beam current, but it does not depend on bunch

current, so we perform all measurements on a given day with the same total current,

even for different filling patterns.

The vacuum lifetime measurement is done before all lifetime measurements, so

that the Touschek lifetime may be inferred from the total lifetime.
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Figure 4.1: Inverse beam lifetime versus inverse square root of ver-
tical emittance for three different bunch currents. Measurements of
April 2 2013.
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4.2 Spin polarization time

As described in section 2.1, the Touschek lifetime depends on the spin polariza-

tion.

The polarization follows an exponential law, equation (2.26):

P (t) = PST
(
1− e−t/τp

)
(4.3)

and the Touschek lifetime depends on the polarization value S, equation (2.38)

1

τt(P )
=

1

τt(0)
+

〈
R(ε)

1

τt(0)

〉
P 2 (4.4)

where R(ε) is defined in equation 2.39, P is the vertical spin polarization, τt is the

Touschek lifetime.

A procedure able to depolarize completely the beam has been defined using the

considerations in section 2.1.

Using a kicker with frequency scanned from 249 kHz to 253 kHz in 40 s, with

10 ms steps, powered with a voltage of 0.5 V, the beam is completely unpolarized1.

The complete depolarization has been proved experimentally: if the procedure

is applied twice, after the second time the lifetime doesn’t change.

In order to verify the polarization time and the effect of the polarization on the

Touschek lifetime, a long measurement has been done in November 2013.

The beam has been injected with 16 bunches and 2 mA per bunch. The vacuum

lifetime has been measured. After a complete depolarization procedure, the lifetime

has been measured every 30 s for 67 min. For each lifetime measurement, also the

beam current has been measured.

In figure 4.2, the decay of the current during the measurement is shown.

The Touschek lifetime with 16 bunches of 2 mA and a vertical emittance of 5 pm is

about 12 h, so the lifetime is dominated by the Touschek effect, because the vacuum

lifetime has been measured and it was more than 600 h.

As we can see from figure 4.2, the total beam current changed during the mea-

surement from a starting value of about 31 mA to about 28.4 mA.

During the measurement, the Touschek lifetime changes due to three effects: the

current reduction, the bunch shortening due to the current reduction and the spin

polarization. In order to see the effect of the polarization, the Touschek lifetime

1Calibration suggests that 0.5 V corresponds to a kick of 1µrad. This does not agree with the
results of the simple simulation described in the appendix. Further work is necessary to clarify
this point.
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Figure 4.2: Current decay during the polarization measurement
over 67 min.

has been rescaled to the value it would have at 31 mA, considering both the current

reduction and the bunch shortening.

In figure 4.3, four different lifetime values are shown. The blue points are the

measured total lifetimes; the cyan points are the Touschek lifetimes; the green points

are the Touschek lifetimes rescaled to the initial current; the red points are the

Touschek lifetimes rescaled to the initial current and bunch length.

The Touschek lifetime measured and rescaled to the initial current and bunch

length has been fitted, according to equation 4.4, with the function:

τt(t) =

[
1

τt0
− 1

DTL

[
1− exp

(
−t− dt

τp

)]2
]−1

(4.5)

where τt0, DTL, dt and τp are free parameters.

The results of the fit gives a polarization time:

τp = (15.9± 0.6) min (4.6)

and the lifetime increase with the total polarization can be computed:

∆τt
τt

= lim
t→+∞

τt(t)− τt(dt)
τt(dt)

=

1
τt0− 1

DTM

− τt0
τt0

= 0.150± 0.005 (4.7)
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Figure 4.3: Total lifetime and Touschek lifetime variation in 67 min.
The blue points are the measured total lifetimes; the cyan points
are the Touschek lifetimes; the green points are the Touschek life-
times rescaled to the initial current; the red points are the Touschek
lifetimes rescaled to the initial current and bunch length.

The value of the polarization time obtained from the fit is compatible with the

theoretical one, given in section 2.1, equation (2.47):

τp−theo = 15.75 min (4.8)

The value of the increase of Touschek lifetime is compatible with a complete

polarization, up to the Sokolov-Ternov level, and a constant momentum acceptance

of 2.5 % (see table 2.1).

4.3 Touschek lifetime vs RF voltage

In April 02 2013, the Touschek lifetime at different RF-voltages, for three differ-

ent beam current and vertical emittance has been measured.
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The measurements have been done with the beam parameters of table 4.2.

Table 4.2: Beam parameters for Touschek lifetime measurements.

Ib (mA) Itot (mA) Nb εy(pm rad)

2.0 32 16 50

1.0 32 32 100

0.037 32 868 10

The total lifetime has been measured varying the RF voltage, from 9 MV to

5.4 MV. The vertical emittance has been increased with a white noise shaker. At

each measurement, the beam has been depolarized with an oscillating horizontal

magnetic field, as was described in section 4.2.

In figures 4.4, 4.5 and 5.7, the measured Touschek lifetime for the three different

beam settings are shown, compared with the simulated values. In the horizontal

axis, the readout value of the RF voltage is reported for both the measured and the

simulated Touschek lifetime.
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Figure 4.4: Measured and simulated Touschek lifetime with Ib =
2 mA, εy = 50 pm rad.

The simulation includes the bunch lengthening effect, due to the high current

per bunch, and the RF-voltage calibration obtained from previous measurements,

with a calibration factor k = 0.95.
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Figure 4.5: Measured and simulated Touschek lifetime with Ib =
1 mA, εy = 100 pm rad.
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Figure 4.6: Measured and simulated Touschek lifetime with Ib =
0.037 mA, εy = 10 pm rad.
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The measured values of the Touschek lifetime are obtained from the measurement

of the total lifetime and the vacuum lifetime. The measurement is rescaled to the

nominal value of current and vertical emittance, because during the measurement the

current was not constant. Some injections have been done during the measurements,

when the total current was reduced of about 10 %.

The measurements with many bunches have higher uncertainties, because the

Touschek lifetime is long and the error on vacuum lifetime measurement is dominant.

We have a good agreement between measurements and simulations in the region

with high RF voltage, we do not perfectly agree in the low voltage region, where

the momentum acceptance is dominated by the RF acceptance.

4.4 Touschek lifetime with physical apertures

The effect of physical apertures on the Touschek lifetime has been studied at

ESRF with simulations and experiments.

Some measurements of Touschek lifetime changing the horizontal scraper po-

sitions were done, in order to confirm the Touschek lifetime model with physical

apertures.

The horizontal scrapers in the ESRF storage ring are near the injection sep-

tum, in the high β straight section. Internal and external scrapers can be closed

independently.

The horizontal scrapers are usually used to kill the beam. When the scrapers

position is about 1 mm from the beam trajectory, the lifetime is a few minutes.

Both the internal and the external scrapers have been moved from 20 mm to

2 mm from the center of the beam.

The measurements have been done with a high bunch current, 2 mA per bunch,

in order to be in a Touschek dominated regime. The total current was 64 mA, in 32

bunches. During the measurement, several new injections have been performed, in

order to kept the beam current between 60 mA and 64 mA. The vertical emittance

have been increased up to εy = 10 pm rad with a white noise vertical shaker. The

beam has been depolarized every two lifetime measurements.

The vacuum lifetime has been measured by increasing the vertical emittance with

the white noise shaker before the Touschek lifetime measurements. The vacuum

lifetime was more than 800 h.

In figures 4.7 and 4.8 the Touschek lifetimes versus the horizontal scraper posi-

tion, external and internal, are shown.

A good agreement between the Touschek lifetime simulations and the measure-
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ments has been obtained when the scraper is closer than 15 mm.
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Figure 4.7: Measured and simulated Touschek lifetime versus inter-
nal scraper position.

In the ESRF storage ring, 64 beam loss monitors are installed. At each step of

the measurements, the beam loss monitors signals has been stored.

In figure 4.9, the beam losses stored by the beam loss monitors during the Tou-

schek lifetime measurements are shown for four different positions of the internal

scraper.

The scrapers are in the injection cell (the number 4). When the scrapers are

closed, the losses measured in beam loss monitor number 7, the one near the scrapers,

are larger. More losses than the average value are measured in cells 16, 19 and 26.

It is not clear why many losses are concentrated in those cells. When the scrapers

are closed, the losses are mostly in cell 4.
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Figure 4.8: Measured and simulated Touschek lifetime versus ex-
ternal scraper position.
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Figure 4.9: Beam losses stored by the beam loss monitors during
the Touschek lifetime measurements for different internal scraper
positions.
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Chapter 5

Optimization and testing of

alternate sextupole setting

In previous chapters, the model used to predict the Touschek lifetime has been

presented, together with the measurements done to confirm the model. The agree-

ment between measurements and simulations of Touschek lifetime, varying some

beam parameters, RF voltage, physical apertures, beam current and vertical emit-

tance, is seen to be quite good for the nominal sextupole setting, after all effects are

taken into account.

Once the model can predict the Touschek lifetime of the beam, a new sextupole

setting, giving a longer Touschek lifetime, maintaining a sufficiently large injection

efficiency, has been searched for.

The momentum acceptance simulation needs several hours of computer time,

therefore a direct optimization of the momentum acceptance needs a very large

computer power.

At ESRF there is a cluster with 850 processor cores that have been used for

this purpose. The multi-objective optimizer geneticOptimizer, distributed with

elegant, has been used [34].

In order to maintain a large injection efficiency, the dynamic aperture must be

sufficiently large. Thus, in addition to optimizing the momentum acceptance, the

dynamic aperture is also optimized.

The dynamic aperture is defined as the area in x − y plane where a particle

without transverse momentum can be injected and stored in the storage ring.

The dynamic aperture can be computed by tracking particles at different x− y
coordinates, without transverse momentum, for many turns.

Particles are tracked starting from many points in n lines from the origin (0, 0) to

(xmax cos θn, ymax sin θn). Where xmax and ymax are chosen by the user and −π/2 ≤
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θn ≤ π/2.

Usually, in the ESRF lattice, the RF cavity is not necessary in the dynamic

aperture computations. However, in particular in the ESRF upgrade lattice, the

effect of the cavity is not always negligible, because off axis particles arrived to the

cavity with a slightly wrong phase and get a different acceleration. This effect is

explained in the appendix D.

In figure 5.1, the dynamic aperture of the nominal ESRF storage ring lattice,

in the injection straight section, computed with elegant, including longitudinal

motion and synchrotron radiation, is shown.

The dynamic aperture is limited by the injection septum, at x = −1.95 cm.

Figure 5.1: Dynamic aperture of the nominal ESRF lattice, calcu-
lated tracking particles in 17 lines, for 512 turns.

In this chapter, the algorithm used to optimize the sextupole setting, the results

of the optimizations and the test measurements are presented.

5.1 Optimization algorithm

The script geneticOptimizer is a multi-objective optimizer, is distributed with

elegant and it is written in Tcl script language.

64



The algorithm changes some magnet strengths in the lattice, satisfying some con-

straints, and it runs elegant in order to compute some quantities to be minimized

or maximized.

The optimizer has been used in this thesis work in order to find a sextupole

setting that gives a longer Touschek lifetime and a larger dynamic aperture. The

Touschek lifetime and the dynamic aperture need a few hours of computer time

to be computed and the optimizer generates some thousands of different sextupole

settings, therefore a large computer power is needed for the optimization.

The algorithm generates a number of initial different sextupole settings (N)

varying the magnets strengths randomly in a gaussian distribution around a given

initial sextupole setting. The standard deviation of the gaussian distributions can

be set by the user. The script submits N jobs to the cluster in order to evaluate

the Touschek lifetime and the dynamic aperture of the N sextupole settings with

elegant.

The script choses the best P sextupole settings, which are called parents, com-

putes new sextupole settings and submits new jobs to the cluster. The new sextupole

settings are computed mixing the sextupole strengths of the parents and adding some

random variations.

In the multi-objective optimization problems, a solution that maximize all the

objective functions may not exist. A solution is called non-dominated, or Pareto

optimal, if none of the objective functions can be increased without decreasing some

of the others. The parents are chosen from the non-dominated solutions of the

optimization.

The algorithm never stops. During the run, the user can view the status of the

optimization and can stop the optimization.

Some constraints can be defined, such as the values of the horizontal and vertical

chromaticity. The chromaticities can be set to the desired values changing two

sextupole strengths.

5.2 Results of optimization

In the ESRF cells, there are 7 sextupoles and two of them are used to change

the chromaticity. In cells 15, 16, 22, 23, 29 and 30 there are some sextupoles with

individual power supplies.

The variables changed during the optimization are the strengths of the harmonic

sextupoles: the ones in the standard cells and the independent ones. The chromatic-

ity sextupoles have been used to set the horizontal and vertical chromaticities to the
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nominal values. A multi-objective optimization, with two objectives, has been per-

formed. The two chosen quantities to be maximized have been the dynamic aperture

area and the Touschek lifetime.

The optimization procedure has generated about 2500 different sextupole set-

tings, running 100 parallel jobs for a few days.

In figure 5.2, the dynamic aperture and the Touschek lifetime for a fraction of

all the sextupole settings found in the optimization are shown. The Pareto optimal

solutions are the blue points.

Figure 5.2: Touschek lifetime and dynamic aperture for many dif-
ferent sextupole settings found in the optimization. The red point
is the original lattice value, the blue points are the non-dominated,
or Pareto optimal, solutions. Touschek lifetime is computed in low
current per bunch mode, with low vertical emittance.

The sextupole setting number 2163 has been chosen, because it produce a longer

lifetime in the simulation and a slightly larger dynamic aperture, and therefore a

larger injection efficiency.

The sextupole strengths of the 2163 lattice, compered with the nominal strengths,

are shown in table 5.1.

The momentum acceptance, used for the Touschek lifetime computation, and the

66



Table 5.1: Sextupole strengths of nominal lattice and optimized
lattice number 2163.

Sextupole nominal lattice optimized lattice

name K2 [m−3] K2 [m−3]

S4 6.3558 6.6107

S6 -8.4172 -8.8501

S13 -4.5315 -3.7767

S19 22.1320 21.7148

S20 -20.8919 -20.9639

S22 -4.9234 -5.0428

S24 6.7633 6.7367

S4 (cells 15, 16, 29, 30) 12.3622 13.1149

S22 (cells 22, 23) -5.6013 -6.3673

S24 (cells 22, 23) 13.8812 16.7559

dynamic apertures are computed with elegant, using the β-functions modulations

measured during the machine dedicated time of April 02 2013.

In figures 5.3 and 5.4, the Touschek lifetime for the nominal lattice and for the

optimized one are shown for different RF voltages.

The Touschek lifetime of the optimized lattice, including the physical apertures,

is longer than the one of the nominal lattice by a factor of 20 − 25%. The same

increased lifetime has been obtained using different β-function modulations, as can

be seen in figures 5.5 and 5.6.

We note in particular that the physical apertures play a very important role in

determining the lifetime in these calculations. To illustrate this point, we show the

value of the computed lifetime with the same sextupole settings, but without physical

apertures. In particular, we find that without physical apertures, the lifetime of the

optimized lattice is not much longer than the one of the nominal lattice.
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Figure 5.3: Touschek lifetime versus RF voltage for nominal sex-
tupole setting. In red, the Touschek lifetime is computed removing
the physical apertures from the lattice. β-functions modulations
measured in April 02 2013.

Figure 5.4: Touschek lifetime versus RF voltage for optimized sex-
tupole setting number 2163. In red, the Touschek lifetime is com-
puted removing the physical apertures from the lattice. β-functions
modulations measured in April 02 2013.

68



Figure 5.5: Touschek lifetime versus RF voltage for nominal sex-
tupole setting. In red, the Touschek lifetime is computed removing
the physical apertures from the lattice. β-functions modulations
measured in July 02 2013.

Figure 5.6: Touschek lifetime versus RF voltage for optimized sex-
tupole setting number 2163. In red, the Touschek lifetime is com-
puted removing the physical apertures from the lattice. β-functions
modulations measured in July 02 2013.
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Lifetime measurement with different sextupole setting

In July 2013, the optimized lattice number 2163 has been tried in the ESRF

storage ring.

The measurements have been performed at 2 mA per bunch. The lifetime mea-

surements have been been done as described in chapter 4.

The lifetime of the nominal lattice has been measured for different RF volt-

ages and then the sextupole currents have been changed and the lifetime has been

measured again.

At low RF voltages, the Touschek lifetime is the same for the two lattices, because

the momentum acceptance is limited by the RF acceptance and not by the dynamic

acceptance.

At 8 MV, the lifetimes of the two sextupole settings are different, but with the

nominal lattice the lifetime results longer than with the optimized lattice.

It’s not clear from the model why the lifetime results shorter with the new

sextupole setting. Possibly the coupling between horizontal and vertical motion is

not perfectly modeled, therefore the effect of the vertical apertures is not well taken

into account. Without the physical apertures, the lifetimes of the two sextupole

settings are very similar.

A measurement of the Touschek lifetime versus vertical scraper position could

be done to understand the vertical apertures model.

As a side note, the injection efficiency with the new sextupole settings was sig-

nificantly larger than the one of the nominal lattice, also at first injection, without

orbit corrections.

Clearly, further modeling work and measurements are necessary to find sextupole

settings that improve the ESRF lifetime.
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Figure 5.7: Measured Touschek lifetimes for nominal multi-bunch
sextupole setting and for the new J2163 sextupole setting.
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Chapter 6

Bunch lengthening and intrabeam

scattering for the ESRF low

emittance upgrade lattice

As discussed in chapter 1, an upgraded lattice for ESRF is currently under study.

We would like to apply the same modeling work used on the current ESRF lattice

to this upgraded lattice. In addition, we find that due to the lower emittance, the

effect of intrabeam scattering must also be included.

In this chapter, the bunch lengthening due to the potential well effect and the

Intrabeam scattering are studied for the ESRF upgrade low emittance lattice, in

order to know the bunch lengths and the emittances for Touschek lifetime studies.

Bunch length varies with current mostly due to the potential well effect and

partially due to the Intrabeam scattering. Emittances vary with current due to

Intrabeam scattering. The values of bunch length and emittances for different RF

voltages and bunch current, which varies for different operation modes, will be

estimated.

The operation modes of the ESRF upgraded lattice are assumed to be the same

as the present ESRF storage ring (table 1.1).

6.1 Bunch lengthening

An estimation of the impedance of the new lattice has not been done, so here

the same value of impedance found in section 3.2 for the present ESRF storage ring,

Zn = 0.7 Ω, is assumed.

As written in section A.3.1, the bunch lengthening effect can be approximated,
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in case of purely inductive impedance, by this equation:

(
σz
σz0

)
=

3

√√
3
√

27Q2 − 4 + 9Q
3
√

18
+

3

√
2
3

3

√√
3
√

27Q2 − 4 + 9Q
(6.1)

with Q = ∆
4
√
π

and

∆ =
αeIb
E0ν2

s

(
c

ω0σz0

)3

Zn (6.2)

where α is the momentum compaction factor, e is the electron charge, Ib is the bunch

current, E0 is the beam energy, νs is the synchrotron tune, c is the speed of light,

ω0 is the revolution angular frequency (ω0 = 2π c
C

), σz0 is the zero current bunch

length, Zn is the impedance.

In figure 6.1 the bunch lengthening in the ESRF storage ring and in the new

lattice are shown. The RF voltage is assumed to be 8 MV for the ESRF storage ring

and 4, 5 or 6 MV for the new lattice.
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Figure 6.1: Bunch lengthening due to the potential well effect, as-
suming a purely inductive impedance Zn = 0.7 Ω, for present ESRF
storage ring and for S28 version of new low emittance lattice.

We notice that the lengthening effect is higher in the new lattice, compared with

the present machine, however, the zero current bunch length is smaller than in the

present machine.
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6.2 Intrabeam scattering

Let us now consider the effect of intrabeam scattering (IBS) on the beam emit-

tances. We start by examining how the IBS scattering rate varies around the ring.

As an example, we take Qb = 16.2 nC, which gives a bunch length from potential

well effect of about σz = 14 mm, we take a vertical emittance of εy0 = 7.3 pm,

assuming this comes only from coupling, this implies a horizontal emittance of εx0 =

146 pm.

Using the IBSEmittance code, we find a final horizontal emittance of εx =

170.1 pm and a growth rate of 1
Tx

= 32.8 s−1. We can see that equation (A.89) is

satisfied. In figure (6.2) the growth rates are plotted around the ring.

Figure 6.2: IBS emittance growth rates around the ring computed
by IBSEmittance.

Figures 6.3 and 6.4 show the results of the IBS computations. In the first

the equilibrium horizontal emittance growth computed via the Elegant module

is shown, for the second figure, the code of T. Demma has been used. We show the

results for several different vertical emittance values. We note quite good agreement

for the larger emittances, but less good for the smaller values, between the two

codes. This is expected given the approximation used in Demma’s code.
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Figure 6.3: Horizontal emittance growth with Elegant.

In figure 6.5, the equilibrium bunch length is shown as a function of bunch charge,

for different vertical emittances. We can see that the impedance effect is dominant,

with only a small additional growth coming from the IBS.

In figure 6.6 we show the time evolution of the horizontal emittance for different

initial values. This is simply to check the code and also to understand the time scale

over which IBS equilibrium is established.

For these studies we have assumed that the vertical emittance comes entirely

from coupling, i.e. the vertical dispersion is zero. Further we assume the case with

the tunes near a difference resonance, where ε = εx + εy is constant as the coupling

0 5 10 15 20 25 30

1.0

1.1

1.2

1.3

1.4

Bunch Charge HnCL

Ε
x�

Ε
x0

70pm

32pm

16pm

8 pm

4 pm

2 pm

Figure 6.4: Horizontal emittance growth with Demma’s code.
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Figure 6.5: Bunch length due to impedance and IBS as a function
of bunch current for some different values of vertical emittance.

is varied.

Reference [36] gives a factor rε =
εy0,k
εy0

which determines how much vertical

emittance comes from coupling. Elegant forces rε = 1, Demma’s code allows the

value to be set. The factor rε has been set rε = 1 in these calculations, which implies

that the vertical emittance growth is equal to the horizontal emittance growth.
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Figure 6.6: Emittance evolution to the equilibrium, computed with
IBSEmittance module of elegant.

For Touschek lifetime computation, we now assume we will be able to reduce the

vertical emittance down to 5 pm, by reducing the coupling with skew quadrupole

correctors. The emittance growths for different vertical emittance is computed for

the four different bunch currents with elegant. The results of the computation is

shown in figure 6.7. The bunch length including the potential well effect is included

in the computation and is computed assuming 5 MV RF voltage.

In figure 6.8, the equilibrium horizontal emittance after IBS versus the vertical

equilibrium emittance after IBS is shown for the higher current per bunch mode, for

three different RF voltages: 4 MV, 5 MV and 6 MV
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Figure 6.7: Horizontal emittance after IBS versus vertical emittance
after IBS, computed with IBSEmittance module of elegant.
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Figure 6.8: Horizontal emittance after IBS versus vertical emit-
tance after IBS, for 10 mA per bunch mode, for three different RF
voltages.
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Chapter 7

Touschek lifetime for the new

lattice

In chapter 6, the bunch length and the emittance growths have been computed

for the new low emittance ESRF upgrade lattice. In this chapter, those results are

used to compute the lifetime of the lattice for the four different filling modes.

If figure 7.1, the RF acceptance versus RF voltage for the present and new lattice

is shown.
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RF Voltage HMV L
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ESRF

S28

Figure 7.1: Momentum acceptance due to RF cavity for present
ESRF lattice and for version S28 of the ESRF upgrade lattice.
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The momentum acceptance of the perfect lattice, including the injection section

with the high horizontal β-function, has been computed with the 6D particle track-

ing code AT, for some different RF voltages. The synchrotron radiation has been

included. In figure 7.2 the momentum acceptance is shown.
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Figure 7.2: Momentum acceptance computed with 6D particle
tracking, using AT, with different RF voltages. The momentum ac-
ceptance has been computed after all elements with non-zero length.
Version S28 of the new low emittance lattice, without errors, has
been used.

The impact of magnet field errors and misalignments on the momentum accep-

tance and on the Touschek lifetime has also been studied. Four lattices with random

misalignments of quadrupoles and sextupoles and random field errors of quadrupoles

and sextupoles have been produced [37] and they are used for the Touschek lifetime

studies.

In figure 7.3, the momentum acceptance for the lattice with injection section and

with errors is shown.
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Figure 7.3: Momentum acceptance computed with 6D particle
tracking, using AT, with different RF voltages. The momentum ac-
ceptance has been computed in all elements with non zero length.
Version S28 of the new low emittance lattice, with quadrupoles and
sextupoles misalignments and field errors has been used. The scat-
tering rate is the probability of Touschek scattering and it is the
inverse of the beam size, in arbitrary units.

The Touschek lifetime for three different filling modes, for a range of RF volt-

ages, from 2.5 MV to 7.0 MV, have been computed, including the bunch lengthening

due to the potential well effect1 and including the horizontal emittance growth due

to intrabeam scattering. The vertical emittance is fixed to 5 pm. The momentum

acceptance has been computed for the perfect machine and for the lattice with

quadrupoles and sextupoles random field errors and misalignments, with four dif-

ferent seeds.

In figures 7.4, 7.5 and 7.6, the Touschek lifetimes versus RF voltage are shown

for the perfect machine and for the machine with four different set of errors.

From the Touschek lifetime versus RF voltage plots, we can see that in the

1Recall that the bunch lengthening is dependent on the longitudinal impedance Zn. If this
value is different, this will effect the lifetime results.
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Figure 7.4: Touschek lifetime versus RF voltage in uniform multi-
bunch mode, with 0.230 mA per bunch.

machine with errors the maximum lifetime is achieved with an RF voltage between

4 MV and 4.5 MV.
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Figure 7.5: Touschek lifetime versus RF voltage in uniform multi-
bunch mode, with 5.62 mA per bunch.
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Figure 7.6: Touschek lifetime versus RF voltage in uniform multi-
bunch mode, with 10 mA per bunch.

85



As a final parametric study, we compute the Touschek lifetime as a function of

horizontal emittance. The results are shown in figure 7.7. The Touschek lifetime for

various horizontal emittances has been computed, using the momentum acceptance

of the S28 lattice with errors.

We are in the regime where the horizontal emittance growth increases the Tou-

schek lifetime.

Figure 7.7: Touschek lifetime versus horizontal emittance, with con-
stant vertical emittance of 5 pm. The minimum value is at 65 pm.
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Conclusions

In this thesis a model able to predict the Touschek lifetime of the ESRF storage

ring, including the momentum acceptance computation by particle tracking, has

been presented.

In order to predict the Touschek lifetime, the RF voltage must be known within

a small uncertainty. The calibration factor between the read-out value of the RF

voltage and the real accelerating voltage given to the cavity has been measured,

by measuring the synchrotron tune and the synchronous phase for various RF volt-

ages. It was found to be approximately 0.95, although it was not consistent for all

measurements.

From the synchrotron tune measurements, we have an indication that the mo-

mentum compaction factor of the machine is smaller than the value of the perfect

machine, due to the effect of magnets alignment errors. Two possible measurements

of the momentum compaction factor are presented and will be performed in next

future.

The bunch length measurements, done for different RF voltages and currents,

have been processed, in order to deduce the impedance of the vacuum chamber.

A purely inductive impedance model (which may be derived from a broad-band

resonator model), with an impedance Zn = 0.7 Ω, agrees with bunch length mea-

surements and it is used for the Touschek lifetime modeling.

The momentum acceptance simulation procedure has been defined. The size

of the vacuum chamber is taken in account in the simulation. This is seen to be

an important consideration which substantially impacts the momentum acceptance

results.

The vacuum lifetime measurement procedure has been defined. The vacuum

lifetime must be measured before all the Touschek lifetime measurements.

The effect of the spin polarization on the Touschek lifetime at ESRF has been

studied. The polarization time has been measured (τp = 15.9 ± 0.6 min) and it

agrees with the theoretical value. A depolarization procedure has been defined and

it is now used before all Touschek lifetime measurements.
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The spin depolarization has been studied also with a dedicated software, de-

veloped during the thesis work. Some measurements of the spin depolarization

resonances, in order to measure the beam energy and the momentum compaction

factor, have been tried and will be done in the future.

The Touschek lifetime for different currents and RF voltages has been measured

and a good agreement between the simulations and the measurements has been

found.

In order to confirm the momentum acceptance model with physical apertures,

the Touschek lifetime varying the scrapers positions has been measured. A good

agreement between the simulations and the measurements has been found.

An optimization of the sextupole setting, based on Touschek lifetime and dy-

namic aperture computation with tracking, has been performed. The algorithm

used found a sextupole setting with both longer Touschek lifetime and larger dy-

namic aperture, and therefore a higher injection efficiency. With the sextupole

setting found, the observed injection efficiency has been larger than the one with

the nominal sextupole setting. The measured Touschek lifetime with the optimized

sextupole setting disagreed with the simulation and it was slightly shorter than the

one measured with the nominal setting. The reason of the disagreement is not clear,

but probably the physical apertures model in the vertical plane and the linear and

non-linear coupling are not perfect. A measurement of Touschek lifetime changing

vertical scraper positions can be done in future. Other sextupole settings, more

similar to the nominal one, can also be tried in the future.

In last chapters of the thesis, the Touschek lifetime of the new low emittance

ESRF upgraded lattice has been studied. The bunch lengthening due to impedance

has been computed for different operation modes and emittance growth due to in-

trabeam scattering has been studied. Touschek lifetimes for the four different modes

that will be provided with the upgrade lattice have been studied, for different RF

voltages, including emittance growth due to intrabeam scattering and bunch length

due to impedance. It is found that an RF voltage between 4 MV and 4.5 MV may

be optimal as far as lifetime considerations are concerned.
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Appendix A

Overview of beam physics in

electron storage rings

The motion of a charged particle in an electro-magnetic field is determined by

the Lorentz force:
d~p

dt
= e

(
~E + ~v × ~B

)
(A.1)

where ~p is the electron momentum, e is the electron charge, ~E is the electric field,

~v is the electron velocity and ~B is the magnetic field.

In circular electron storage rings, the magnetic field is used to guide the particles

in the desired path, whereas the electric field is used to provide to the electrons the

energy lost due to synchrotron radiation.

The reference trajectory of the electrons is defined by a succession of bending

magnets and straight sections. In the bending magnets the magnetic field is uniform,

aligned with the vertical direction. The motion of the electrons in the bending

magnets is along an arc of a helix.

A particle with the exact momentum ~p0 travels along the reference trajectory,

losing energy in dipoles and regaining it in the RF cavity. An electron storage

ring is designed so that the particle motion is a small deviation from the reference

trajectory.

A particle traveling in the reference trajectory is called the reference particle.

The phase space coordinate of a particle in a storage ring can be expressed with

a 6 dimensional vector:

(x, x′, y, y′, ct, δ) (A.2)

where x and y are the horizontal and vertical deviation from the reference trajectory,

x′ = dx
ds

and y′ = dy
ds

are the horizontal and vertical slopes with respect to the

reference trajectory, s is the curvilinear coordinate along the reference trajectory, c
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is the speed of light, t is the difference between the travel time of the particle and the

one of the reference particle and δ = dp/p0 is the fractional momentum deviation.

In this chapter, some basic concepts of particle accelerator physics are described.

In the first section, the linear and nonlinear dynamics of electrons in a stor-

age ring, assuming no synchrotron radiation, are described. In the second section,

the effects of synchrotron radiation and accelerating cavity are presented. In the

third section, some relevant current dependent effects are shown: the bunch length-

ening with current, the Touschek scattering and the intrabeam scattering. These

phenomena are treated with more details in references [38], [7] and [11].

A.1 Linear and nonlinear dynamics

In a storage ring, the particle focusing is provided by quadrupole magnets. The

magnetic field of a perfect quadrupole magnet is:

By(x) = g x Bx(y) = g y (A.3)

where g is the quadrupole gradient. The quadrupole gradient is defined by:

g ≡ ∂By

∂x
=
∂Bx

∂y
(A.4)

The quadrupole gradient can be normalized to the strength of the bending mag-

net field and therefore to the beam momentum. The quantity K1 can be defined:

K1 =
g

Bρ
(A.5)

where Bρ is the beam magnetic rigidity and it is given by:

Bρ [T m] =
p0

e
' 3.33564 · E0 [GeV] (A.6)

The basic structure of a storage ring is a sequence of dipoles, that are used to

bend the trajectory, and quadrupoles, that are used to focus the beam. The sequence

of dipoles and quadrupoles is the linear lattice of an accelerator.

The trajectory of a particle with exact nominal momentum in a storage ring with

a periodic linear lattice is described by the equation of motion:

d2w

ds2
+Kw(s)w = 0 (A.7)
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where w is x or y, Kw(s) is the focusing strength given by the quadrupoles and the

dipoles and it is a function of the position around the ring. The periodicity of Kw(s)

is the length of the ring. Kx(s) and Ky(s) are given by:

Kx(s) = − 1

ρ2(s)
−K1(s) (A.8)

Ky(s) = K1(s) (A.9)

The solution of the equation (A.7) is given by:

w(s) = a
√
βw(s) cos (ψw(s) + ψ0) (A.10)

where a and ψ0 are constant given by the initial particle conditions. This is a pseudo-

harmonic oscillation, called betatron oscillation, with varying amplitude
√
βw. β also

determines the wavelength of betatron oscillation.

ψw(s) =

∫ s

s0

ds

βw(s)
(A.11)

The integral of the phase advance of the betatron oscillation in a complete turn

around the ring is the betatron tune (νx and νy) of the ring.

νw =

∮
ds

βw(s)
(A.12)

β functions are defined by the linear lattice. Two other functions can be defined

from the β: α and γ:

αw(s) = −1

2

dβw(s)

ds
γw(s) =

1 + α2
w(s)

βw(s)
(A.13)

Given a position in the ring, the phase space trajectory of a particle is an ellipse

defined by:

γxx
2 + 2αxxx

′ + βxx
′2 = 2Jx (A.14)

γyy
2 + 2αyyy

′ + βxy
′2 = 2Jy (A.15)

where Jx and Jy are the horizontal action and the vertical action. For linear uncou-

pled motion, these quantities are invariant around the ring.

In figure A.1, the horizontal phase space ellipse is shown.

Two important quantities in electron storage rings can now be defined: the
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Figure A.1: Horizontal phase space ellipse.

horizontal and vertical emittances (εx and εy):

εx = 〈Jx〉 εy = 〈Jy〉 (A.16)

where the average is on the particles of the beam. In this section, the horizontal and

vertical motion are assumed to be uncoupled, so the averages are just over horizontal

or vertical phase space, e.g.:

〈Jx〉 =

∫
dxdx′Jx (x, x′) ρ (x, x′) (A.17)

where ρ (x, x′) is the distribution of the electrons. The radiation damping and

diffusion effects lead to a gaussian distribution, which is given by:

ρ(x, x′) =
1

2πε
exp

(
−Jx
ε

)
=

1

2πε
exp

(
−γx

2 + αxx′ + βx′2

2ε

)
(A.18)

Chromatic effects

Now the effect of a slightly different momentum of a particle is described. The

particle beams in storage rings are not exactly monochromatic. This has several

consequences.

First, the deflection of an electron with a different momentum in a magnetic field

is different from the one of a particle with the nominal momentum.

This effect is captured by the dispersion function D(s), which is defined by the
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linear lattice. The function δD(s) is the offset of the trajectory of a particle with

relative momentum displacement δ from the reference path of particles with nominal

momentum.

Second, the quadrupoles focusing effect for particles with wrong energy is also

different. A particle with a higher energy will get a weaker focusing and so a smaller

tune. The chromaticity is defined as the tune change per unit relative momentum

change.

ξx =
dνx
dδ

ξy =
dνy
dδ

(A.19)

The natural chromaticity is the chromaticity of the linear lattice, without cor-

rections, and it is always negative for both horizontal and vertical planes. It can be

computed with an integral around the ring:

ξx,nat =
1

4π

∮
βx(s)Kx(s)ds (A.20)

ξy,nat =
1

4π

∮
βy(s)Ky(s)ds (A.21)

To perform a chromaticity correction, a magnet with a focusing gradient which

is a linear function of δ is needed. This can be achieved by using a sextupole magnet

in a dispersive region.

The magnetic field of a perfect sextupole magnet is:

By(x, y) =
1

2
m
(
x2 − y2

)
Bx(x, y) = mxy (A.22)

where m is the sextupole gradient, that is defined by:

m =
∂2By

∂x2
(A.23)

The sextupole gradient can be normalized to the magnetic rigidity of the beam.

The quantity K2 can be defined:

K2 =
m

Bρ
(A.24)

The quadrupole gradient of a perfect sextupole, as a function of horizontal posi-

tion, is given by:

g(x) =
∂By

∂x
= mx (A.25)

The horizontal position of a particle with a relative momentum displacement δ
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is:

x(s, δ) = xβ(s) +D(s)δ (A.26)

x′(s, δ) = x′β(s) +D′(s)δ (A.27)

where xβ is the betatron displacement of the particle, x′β is the betatron slope of

the particle and D′(s) is the derivative of the dispersion function with respect to

the position along the ring.

The focusing effect of a sextupole placed in a dispersive region, as a function of

δ, is:

∆Kx(s) = K2(s)D(s)δ ∆Ky(s) = −K2(s)D(s)δ (A.28)

and so the value of the chromaticity with the correction can be computed with the

integrals:

ξx =
1

4π

∮
βx(s) [Kx(s) +K2(s)D(s)δ] ds (A.29)

ξy =
1

4π

∮
βy(s) [Ky(s)−K2(s)D(s)δ] ds (A.30)

The horizontal and vertical actions can be written considering independently the

betatron coordinate and the dispersive coordinate, using equations (A.14), (A.15),

(A.26) and (A.27).

2Jx = γxx
2
β + 2αxxβx

′
β + βxx

′2
β +Hxδ

2 (A.31)

where Hx is called the curly-H function. Its value is given by:

Hx(s) = γx(s)D
2
x(s) + 2αx(s)Dx(s)D

′
x(s) + βx(s)D

′2
x (s) (A.32)

Longitudinal motion

An ultrarelativistic electron in a storage ring emits synchrotron radiation. The

instantaneous radiated power is given by:

Pγ =
2

3
remec

3β
4γ4

ρ2
(A.33)

where re is the classical electron radius, me is the electron mass, c is the speed of

light, β and γ are the relativistic factors, ρ is the bending radius.

The integral of the instantaneous radiated power in a revolution time is the
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energy loss per turn. Its value is given by:

U0 =

∮
Pγdt =

2

3
remec

2β3γ4

∮
ds

ρ2
(A.34)

The energy loss must be compensated by an accelerating element: the radio

frequency cavity. The frequency of the cavity must be a harmonic of the beam

revolution frequency. The voltage applied to the cavity is:

V = VRF sin (hω0t+ φs) (A.35)

where VRF is the peak value of the RF cavity voltage, h is the harmonic number,

ω0 = 2πf0 = 2π βc
C

is the revolution angular frequency, C is the ring length, φs is

the synchronous phase and t is the difference between the travel time of the particle

and the one of the reference particle.

The synchronous phase has the value such that the average energy given to the

beam is the energy loss per turn:

∆E = eVRF sinφs = U0 (A.36)

where e is the electron charge.

Two quantities are useful to understand the longitudinal motion of the electrons

in a storage ring: the momentum compaction factor α and the phase-slip factor η.

The momentum compaction factor is the variation of path length with relative

momentum deviation and it is given by:

α =
dC/C

δ
(A.37)

The momentum compaction factor is a geometric factor, related with the disper-

sion function:

α =
1

C
I1 (A.38)

where I1 is the first synchrotron radiation integral:

I1 =

∮
D(s)

ρ
ds (A.39)

The phase-slip factor η is the relation between the revolution period of a particle

and its relative momentum variation. The revolution time changes due to the length-

ening of the trajectory when the momentum is increased and due to the change in
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the particle velocity. The second effect is negligible in an ultrarelativistic regime.

η =
df/f

δ
=

1

γ2
− α (A.40)

The momentum compaction factor is usually positive. The phase-slip factor can

be negative or positive. In an ultrarelativistic electron storage ring, it is negative,

because the change in electron velocity is negligible. The transition energy is the

energy such that the phase-slip factor changes the sign:

γt =
1√
α

(A.41)

A particle with a slightly larger momentum will do a revolution in a longer

time (or shorter if γ < γt) than the nominal revolution period. This particle will

arrive later to the cavity and will receive a smaller acceleration. This effect causes

an oscillation in momentum and in phase respect to the cavity. The longitudinal

oscillation is called synchrotron oscillation.

φ̈+ Ω2
sφ = 0 (A.42)

where Ωs is the synchrotron frequency and φ is the phase distance with the syn-

chronous phase. Its value is given by:

φ = hω0 t (A.43)

The synchrotron angular frequency has this value:

Ωs = ω0 νs = ω0

√
heVRFη cosφs

2πβ2E0

(A.44)

where h is the harmonic number, e is the electron charge, η is the phase-slip factor,

φs is the synchronous phase, β is the relativistic factor, E0 is the electron energy.

νs is called synchrotron tune.

In analogy with the transverse case, a longitudinal β function can be defined:

βz =
C α

2πνs
(A.45)

where C is the ring circumference, α is the momentum compaction factor and νs is

the synchrotron tune.
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The longitudinal action Jz and the longitudinal emittance εz can also be defined:

2Jz =
1

βz
(ct)2 + βzδ

2 (A.46)

εz = 〈Jz〉 (A.47)

Also in the longitudinal direction, the beam is gaussian (ignoring potential well

effects, considered later) in the same form of equation (A.18).

A.2 Equilibrium beam sizes with radiation

As written in the previous section, electrons perform longitudinal (or synchrotron)

oscillations and transverse (or betatron) oscillations. In this section, the damping

and diffusion effects from radiation are presented. These effects cause the achieve-

ment of the equilibrium emittances.

The derivative of the emittances with respect to the time has two components:

the damping and the diffusion. A general equation can be written:

dεw
dt

= − 2

τw
εw + dw (A.48)

where w can be x, y or z, τw are the horizontal, vertical and longitudinal damping

times and dw are the diffusion terms.

The equilibrium emittance is obtained when the damping effect is opposite to

the diffusion effect, i.e. when the emittance variation is zero:

εw = dw
τw
2

(A.49)

In first part of this section, the longitudinal damping time and diffusion term

will be derived. In the next part of this section the transverse damping and diffusion

will be treated.

Electrons lose energy due to synchrotron radiation and the energy is restored by

the RF cavity. The energy loss per turn is larger for higher energy particles in the

bunch. This effect causes a damping of the longitudinal oscillations. The damping

time is proportional to the derivative of the energy loss per turn with respect to the

particle energy:

τ−1
z =

1

2T0

dU0

dE

∣∣∣∣
E=E0

(A.50)

where T0 is the revolution time period, U0 is the energy loss in one turn, given in

equation (A.34), E is the energy of the particle, E0 is the nominal energy of the
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particle.

In order to compute the derivative of the energy loss per turn with respect to

the electron energy, one can integrate the radiative power of equation (A.33) with

respect to the time, considering the path lengthening with energy deviation.

The longitudinal damping time can be expressed by:

τz =
2

jz

E0

U0

T0 (A.51)

where jz is the longitudinal damping partition number, and it is given by:

jz = 2 +
I4

I2

(A.52)

where I2 and I4 are the second and fourth synchrotron radiation integrals:

I2 =

∮
1

ρ2(s)
ds I4 =

∮
Dx(s)

ρ(s)

(
1

ρ2(s)
+ 2k1(s)

)
ds (A.53)

If the synchrotron radiation were a classical process, the longitudinal action of

the electrons, and therefore the longitudinal emittance, would damp to zero.

The radiation is a quantum effect. The energy of the emitted photons is some

orders of magnitude smaller than the electrons energy. The photon emission is a

random process and the number of photons per unit time satisfies a Poisson distri-

bution.

The quantization of the photons gives a noise to the beam energy. The effect of

the noise is to increase the energy spread.

The emission of a photon with energy u changes the longitudinal action of the

electron:

∆Jz =
βz
2

(
u2 − 2uδ

)
(A.54)

Considering that the photon emission is a random effect, during the emission,

δ, and therefore ∆Jz, can be positive or negative. The average in a bunch of the

variation of Jz in a turn is positive. The longitudinal emittance increases with time

due to this effect.

The longitudinal emittance variation with respect to the time due to quantum

excitation is given by:

dεz
dt

∣∣∣∣
qe

= βz
55

32
√

3

~
mec

γ2 2

jzτz

I3

I2

(A.55)
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where I3 is the third synchrotron radiation integral and it is given by:

I3 =

∮
1

|ρ3(s)|
ds (A.56)

The longitudinal emittance reaches an equilibrium when damping and diffusion

due to quantum excitation have the same value, with opposite sign.

dεz
dt

=
dεz
dt

∣∣∣∣
qe

− 2

τz
εz = 0 (A.57)

εz =
dεz
dt

∣∣∣∣
qe

· τz
2

= βz
55

32
√

3

~
mec

γ2 I3

jzI2

(A.58)

The equilibrium energy spread is given by:

σ2
δ =

εz
βz

=
55

32
√

3

~
mec

γ2 I3

jzI2

(A.59)

The bunch length is related to the energy spread and it is given by:

σz =
Cα

2πνs
σδ (A.60)

The synchrotron radiation and the RF cavity cause also a damping of the beta-

tron oscillations.

The radiation is emitted in a cone with a small angle 1/γ with respect to the

velocity. The electric field of the accelerating cavity is longitudinal. A fraction of

the transverse momentum is given to the emitted photon and the cavity provide to

the electrons only longitudinal momentum.

At each emitted photon, the vertical electron action is reduced. The effect on the

horizontal action is more complicated, because horizontal motion is strongly coupled

with longitudinal motion due to the dispersion.

The vertical damping time is given by:

τy = 2
E0

U0

T0 (A.61)

The horizontal damping time is given by:

τx =
2

jx

E0

U0

T0 (A.62)
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where jx is the horizontal damping partition number and it is given by:

jx = 2− I4

I2

(A.63)

The diffusion of longitudinal emittance due to quantum excitation causes a dif-

fusion of transverse emittances, because the longitudinal motion is coupled with the

transverse motion.

The horizontal diffusion term is given by:

dx =
2

jxτx

55

32
√

3

~
mec

γ2 I5

I2

(A.64)

and the derivative of the horizontal emittance with respect to the time is given by:

dεx
dt

= − 2

τx
εx + dx (A.65)

where τx is the horizontal damping time, jx is the horizontal damping partition

number, ~ is the reduced planck constant, me is the electron mass, c is the speed

of light, γ is the Lorentz relativistic factor, I2 and I5 are the second and the fifth

synchrotron radiation integrals. I5 is given by:

I5 =

∮
Hx(s)

|ρ3(s)|
ds (A.66)

Hx(s) is the horizontal curly-H function, defined in equation (A.32).

The equilibrium is reached when the damping effect is equal to the quantum

excitation:

εx =
1

jx

55

32
√

3

~
mec

γ2 I5

I2

(A.67)

A small horizontal emittance can be achieved with a lattice where I5 is minimized,

i.e. where the curly-H function is small in the bending magnets.

In a planar storage rings, without vertical bending magnets, the vertical dis-

persion function is zero. Nevertheless, in real storage rings, the vertical dispersion

function is not zero, because vertical misalignments of quadrupoles give vertical kicks

to the beam and vertical dispersion. A vertical curly-H function can be defined and

the equilibrium vertical emittance can be computed. Vertical emittance is typically

some orders of magnitude smaller than the horizontal one.

We have treated the uncoupled case in this section. The effect of x-y coupling

is to make the invariant action a combination of horizontal and vertical. We note,

however, that an emittance evolution equation of the form of (A.49) still holds.
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A.3 Current dependent effects

When the current of the beam is increased, some collective effects are no longer

negligible, which can change the beam sizes from those given in previous section.

Here two effects are presented: the interactions of the electrons with the beam

pipe (bunch length through the impedance) and the intrabeam scattering. Another

collective effect, the Touschek scattering, is presented in chapter 1.

A relativistic particle inside a conductive vacuum chamber creates a longitudinal

electric field, the longitudinal wakefield, that accelerates other particles of the beam.

This effect causes the lengthening of the bunch and it may also cause instabilities

and other bunch distortions. The intrabeam scattering is a multi-particle scattering

that increases the size of the bunch transversally and longitudinally.

A.3.1 Longitudinal wakefield and bunch lengthening

Considering a particle traveling in the accelerator, the longitudinal accelerating

voltage seen by a test charge at a fixed distance to the particle with charge q, per

unit of charge, can be written:

W‖ = −1

q

∮
E‖

(
s, t =

s

βc
+ τ

)
ds (A.68)

where E‖ cannot be computed analytically, but it can be estimated numerically with

dedicated software. This is called wake function. The value depends on the shape

and material of the vacuum chamber and other elements the beam encounters on

its circuit.

The total accelerating voltage seen by a particle in the bunch can be obtained

convolving the single particle wake function with the bunch linear density λ(τ):

V (τ) = −Q
∫ +∞

−∞
W (τ − τ ′)λ (τ ′) dτ ′ (A.69)

where Q is the total bunch charge and the bunch linear density is normalized to 1:∫ +∞

−∞
λ(t)dt = 1 (A.70)

The Fourier transformations of W‖(τ) and λ(τ) are given by:

Z‖(ω) =

∫ +∞

−∞
W‖(τ)e−iωτdτ (A.71)
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and

I(ω) = Q

∫ +∞

−∞
λ(τ)e−iωτdτ (A.72)

In frequency domain, the convolution become a product:

V (ω) = −I(ω)Z‖(ω) (A.73)

Z‖(ω) is called the longitudinal impedance.

A model often used to describe the impedance of an accelerator is a broad band

resonator with low quality factor Q, typically Q = 1. The impedance can be ex-

pressed as a function of the shunt impedance RS, the resonance frequency ωr and

the quality factor Q.

Z‖(ω) =
RS

1 + iQ (ωr/ω − ω/ωr)
(A.74)

A quantity of interest for the longitudinal instabilities is Z‖(ω)/ω, and in par-

ticular its limit when ω → 0.

Zn = −Im

[
lim
ω→0

Z‖(ω)

ω

]
=

RS

ωrQ
(A.75)

A simpler model used to compute the bunch lengthening effect is a purely in-

ductive impedance.

Given a wakefield, the Haissinski equation describes the bunch lengthening. The

Haissinki equation is given by [11]:

λ(τ) = K exp

[
−U0(τ)− ξ

∫ τ

−∞
dt V (t)

]
(A.76)

where K is a normalization constant defined in order to have:∫ +∞

−∞
λ(t)dt = 1 (A.77)

U0(τ) is the parabolic potential due to the linearization of the RF accelerating

voltage:

U0(τ) =
τ 2

2σ2
z

(A.78)

ξ is a constant defined by:

ξ =
2πIb

hVRF cosφs
(A.79)

The effect of an impedance can be computed solving numerically the Haissinski

equation [39]. This is done for example in the haissinski module of elegant [31].
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An impedance model is required for the input to compute the distribution.

An example of the bunch lengthening effect from this code is shown in figure A.2,

with the resultant bunch density and wake function for bunch current of 5.75 mA

and an inductive impedance of Zn = 1.4 Ω.

Figure A.2: Equilbrium bunch density and wake function from
haissinski module using a purely inductive impedance.

In addition to fully solving the Haissinski equation, a simple analytical expression

exists when the impedance is inductive. In particular, the bunch length is given by

this formula [40] [29]: (
σz
σz0

)3

−
(
σz
σz0

)
=

∆

4
√
π

(A.80)

Here σz is the increased bunch length and σz0 is the zero current bunch length.

The parameter ∆ is given by:

∆ = − 2πIbZn

VRFh cosφs

(
ασδ
νs

)3 (A.81)

where Ib is the bunch current, Zn is the inductive impedance, VRF is the maxi-

mum RF voltage, h is the harmonic number, φs is the synchronous phase, α is the

momentum compaction factor, σδ is the energy spread and νs is the synchrotron
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tune.

The synchronous phase is given by:

φs = π − arcsin

(
U0

eVRF

)
(A.82)

where U0 is the energy loss per turn and e is the charge of an electron.

The zero current synchrotron tune is given by (see equation A.44):

νs =

√
−eVrf
E0

hα

2π
cosφs (A.83)

where E0 is the electron energy.

The zero current bunch length may be related to the energy spread via equation

A.60:

σz0 =
Cα

2πνs
σδ (A.84)

where C is the machine circumference.

Given these expressions, one can show that ∆ may also be written (as given in

[40])

∆ =
αeIb
E0ν2

s

(
c

ω0σz0

)3

Zn (A.85)

where c is the speed of light and ω0 is the revolution angular frequency (ω0 = 2π c
C

).

The cubic equation (A.80) has three solutions, one of which is real, and is as

follows:

(
σz
σz0

)
=

3

√√
3
√

27Q2 − 4 + 9Q
3
√

18
+

3

√
2
3

3

√√
3
√

27Q2 − 4 + 9Q
(A.86)

with Q = ∆
4
√
π
.

A plot of this solution is given in figure A.3.

A.3.2 Intrabeam scattering

The next effect considered is the intrabeam scattering, in which multiple scat-

tering of the electrons off each other result in a growth of the beam sizes.

The IBS growth rate is defined as:

1

Ta
=

1

εa

(
dεa
dt

)
IBS

(A.87)
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Figure A.3: Growth in bunch length versus Q. For Vrf = 8 MV,
Zn = 0.7 Ω and the beam parameters of the ESRF storage ring,
Q = 2.347 · Ib[mA].

where the εa (a = 1, 2, 3) are the horizontal, vertical and longitudinal emittances.

Given the beam distribution, one may compute the IBS growth rates. The

damping and diffusion from synchrotron radiation will push the beam towards its

equilibrium values, and a new equilibrium will be established. In particular, the

emittance evolves in time according to

dεa
dt

= − 2

τa
(εa − εa0) +

εa
Ta

(A.88)

where the τa are the synchrotron radiation damping times, the εa0 are the equilibrium

eigenemittances due only to radiation damping and diffusion.

We solve equation (A.88) using two different codes: IBSEmittance module as-

sociated with the Elegant code and a mathematica code written by T. Demma

[41]. Elegant computes the growth rates using the formulae of Bjorken and Mt-

ingwa [42]. The code of T. Demma uses a simplified version of Bane’s high energy

approximation (see [43]).

Equation (A.88) implies that at the equilibrium the growth rates are related to

the emittance change by:
1

Ta
=

2

τa

∆εa
εa

(A.89)
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Appendix B

Spin depolarization code

A simple code able to simulate the process of spin depolarization in an electron

storage ring has been written. The code is written in matlab and it is interfaced to

the user with a python script.

The code can track the spin vector of many particles for a given number of turns.

A kicker in a certain position of the ring can be placed and the depolarization of

the bunch can be simulated, varying the signal given to the kicker.

Since the depolarization time can be order of few seconds, i.e. million of turns

in the ESRF storage ring, and since the particles to be simulated are order of 100,

the code must be used in a cluster where some hundreds of processor’s cores can be

used.

The spin of a single electron is modeled as a point in a sphere, with two angle

coordinates: θ and φ.

The effect on the spin of a single particle of a turn in the storage ring is modeled

as a rotation of the spin vector around the vertical axis by an angle θz:

θz = 2π νspin (B.1)

where νspin = aγ is the spin tune and a is the anomalous electron magnetic moment

(see section 2.1). The effect on the spin of a vertical kicker, from a horizontal

magnetic field, is modeled as a rotation around horizontal direction of an angle θx:

θx = 2πνspinθkicker (B.2)

where θkicker is the kick angle given to the electron from the kicker.

The transverse phase space coordinates of the electrons are not tracked in this

code. The energy of the electron, which determines the spin tune, performs the

synchrotron oscillations.
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The signal given to the kicker can be chosen between a single sinusoid or a

frequency modulated signal, between a given range of frequencies.

The value of the vertical polarization is defined as the average of the vertical

component of the spins of the bunch of electrons. The number of particles to be

simulated can be chosen by the user. After some tests, 100 particles have been

chosen.

The code allows to switch on and off the synchrotron oscillations and the energy

spread of the particles.

The initial value of the vertical polarization P can be chosen. The spin distri-

bution can be chosen between two:

• the spins are all up or down, without horizontal and longitudinal component,

and the average of the vectors is P ;

• the vertical component of the spin is P for each electrons and the azimuthal

angle is randomly distributed between 0 and 2π.

The vertical polarization as a function of time and of frequency of the signal

given to the kicker can be produced by the simulation code.

In figure B.1 the depolarization resonance is shown, in case with synchrotron

oscillations. The kicker signal is a sinusoid with constant frequency. Each point

represents the final polarization of the bunch after 1 million turns.

In figure B.2, the resonance of the fourth synchrotron side band is shown, in case

with synchrotron oscillations.

The code allows also to see the polarization level during the tracking process. In

figure B.3, the polarization versus number of turns is shown for some different fixed

frequencies of the kicker.

In figure B.4, the spin depolarization resonance is shown in case without syn-

chrotron oscillations. The resonance size is comparable with the tune spread due to

the energy spread. The spread in the spin tune can be computed as follows:

∆νspin = σδ · νspin0 ' 1.3 · 10−2 (B.3)

A complete depolarization procedure has been also simulated, in order to com-

pare the simulation with the experiments.

Using the procedure found experimentally, we are not able to have a complete

depolarization with the simulation. In figure B.5, the polarization versus the number

of turns is shown with frequency scanned from 249 kHz to 253 kHz, using a kicker

strength of 10µrad instead of the one found in the experiment, which was 1µrad.
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Figure B.1: Main spin depolarization resonance. The kicker
strength is 1.5µrad, the frequency is kept constant for 1 million
turns. The initial polarization is 92 %, which is the Sokolov-Ternov
level.
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Figure B.2: Fourth synchrotron side band of the spin depolarization
resonance. The kicker strength is 1.5µrad, the frequency is kept
constant for 1 million turns. The initial polarization is 0.92%, which
is the Sokolov-Ternov level.
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Figure B.3: Polarization versus number of turns for different kicker
frequencies. The kicker strength is 0.85µrad.
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Figure B.4: Main spin depolarization resonance in case without
synchrotron oscillations. The kicker strength is 15µrad in this case,
in order to have a faster depolarization. The frequency is varied
between 238 kHz and 264 kHz, in 100 steps of about 260 Hz. For
each step, the frequency is varied linearly in the range in 1 million
turns.
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and frequency scan from 249 to 253 kHz.
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Appendix C

Momentum compaction factor

measurements

The momentum compaction factor is the dependence of the beam path length

on the momentum change and it is given by:

α =
dL/L

dp/p
(C.1)

where L is the path length, p is the beam momentum.

The momentum compaction factor also determines the variation of beam mo-

mentum changing the RF cavity frequency:

df

f
= −αdp

p
(C.2)

A precise measurement of the momentum compaction factor needs a precise way

to measure the beam energy. The beam energy can be measured at different RF

frequency.

Two different methods to measure the beam energy are possible: one uses the

x-ray spectra from undulators, one uses the method of spin depolarization.

Beam energy from the undulator spectrum

The spectrum of the photon beam of an undulator consists on many peaks, at

different harmonics. The photon energy of the nth harmonic, at an observation

angle θ, is given by:

En(θ) =
0.95E2

0 n

λu (1 +K2/2 + γ2θ2)
(C.3)
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where E0 is the energy of the electron beam in GeV, λu is the undulator magnetic

period in cm, γ is the Lorentz factor of the electron beam, K is the dimensionless

parameter of the undulator and it is given by [44]:

K =
eB0λu

2πβmec
(C.4)

where B0 is the peak magnetic field of the undulator, β = v/c, c is the speed of

light, me is the electron mass.

The K parameter depends on the size of the undulator gap. An energy measure-

ment has been done at ESRF with a precision better than 0.1% [45].

Beam energy from the spin depolarization

Energy measurements using the spin depolarization have been done VEPP-4 in

Novosibirk [46], at LEP [13], at SLS [14] [47], at the Australian Synchrotron [48]

[15], at Spear3 [15] and other facilities.

A polarized beam can be unpolarized with a sinusoidal magnetic field perpen-

dicular to the dipoles field applied to the beam. The frequency must be related to

the precession frequency of the spin:

fdep = f0(n+ νspin) (C.5)

where νspin is the fractional part of the spin tune.

A polarized electron beam has a longer Touschek lifetime than an unpolarized

one, as written in section 2.1, so fdep can be changed until the lifetime become

shorter. The spin tune can be obtained and therefore the energy of the beam can

be measured.

Although attempts have been made to measure the energy with resonant depo-

larization at ESRF, the results have not yet been satisfactory.
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Appendix D

Dynamic aperture with

synchrotron oscillations

The dynamic aperture is the area, in the x-y plane, in which a particle without

transverse momentum can be injected without being lost. It can be found using a

particle tracking code.

The synchrotron motion can slightly change the dynamic aperture, because off

axis particles travel on a different trajectory and they arrive to the cavity without

the exact synchronous phase. This effect is very small in the present ESRF lattice

and it is usually neglected. In figure D.1, the dynamic aperture with and without

cavity are shown for present ESRF lattice. The dynamic apertures are very similar.

In all versions of the new low emittance upgrade lattice, the effect of the syn-

chrotron oscillations in the dynamic aperture is significantly larger. In figure D.2,

the dynamic apertures with and without RF cavity are shown.

In version S28 of the low emittance ESRF upgrade lattice, the dynamic aperture

is reduced, including the longitudinal motion, by about 30 % both in horizontal and

in vertical.

Using a particle tracking code, the lengthening of the trajectory after a single

turn in the ring for different amplitudes, in horizontal and vertical, can be computed.

In figures D.3 and D.4, the difference between the length of the trajectory of

the particle and the length of the trajectory of the reference particle are shown as

a function of x and y initial coordinates, for the present ESRF lattice and for the

upgrade lattice.

The lengthening is sextupole dependent: changing the strengths of the sex-

tupoles, the trajectory lengthening changes.
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Figure D.1: Dynamic aperture of the ESRF lattice, computed with
AT, without physical apertures, without errors, without radiation,
with and without RF cavity.
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upgrade lattice, computed with AT, without physical apertures,
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Figure D.3: Trajectory lengthening versus initial x coordinate for
two different lattices: the present ESRF one and the S28 version of
the upgrade.
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two different lattices: the present ESRF one and the S28 version of
the upgrade.
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