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Abstract

Herd behavior is widely believed to play a crucial role in financial markets and

particularly when the market is in stress. This work analyses the phenomenon of

herd behavior from both a theoretical and an empirical point of view. We apply

the approach by Hwang and Salmon (2004), based on the cross-sectional standard

deviations of the betas, to analyse herd behavior in the Italian Stock Exchange in

the period January 1998 - December 2012. We find that herd behavior towards

the market portfolio is significant and persistent, independently from and given

the particular state of the market, and it shows a positive correlation with the

FTSE MIB. Another remarkable result, given that herd behavior can lead to

significant mispricing, is that herd behavior is never greater than the 40% of its

maximum potential value during the sample period. Further, we examine herd

behavior towards SMB and HML factors and find evidence of significant periods

of herd behavior towards SMB and HML.
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Preface

Herd behavior occurs when individuals imitate more or less blindly the decisions of

others. There are many social and economic situations in which we are influenced in our

decision making by what others do. One of the most famous anecdotal evidence of fads

is the “beauty contest”1. Keynes described the action of rational market participants

using an analogy based on a fictional newspaper contest, in which participants have to

choose between six photographs of women the most beautiful face. Those who picked

the most popular face are then eligible for a prize. Keynes wrote:

”It is not a case of choosing those [faces] that, to the best of one’s judg-

ment, are really the prettiest, nor even those that average opinion genuinely

thinks the prettiest. We have reached the third degree where we devote

our intelligences to anticipating what average opinion expects the average

opinion to be. And there are some, I believe, who practice the fourth, fifth

and higher degrees.” (Keynes. The General Theory of Employment Interest

and Money.).

Herd behavior is widely believed to be a crucial element of behavior in financial markets.

Indeed, as Shiller wrote in his book Irrational Exuberance, if the investors were all

independent of each other prices would not have been affected by a faulty thinking.

However, if a large number of people shares a faulty thinking, then this can lead to

stock market booms and busts2.

In the past decades there has been an increasing interest in herd behavior in financial

markets. In fact, many researchers have attempted to find theoretical explanations

and empirical evidence of herd behavior. In the thesis we provide an overview of the

theoretical and empirical literature of herd behavior, then we use the measure proposed

by Hwang and Salmon (2004) in order to detect herd behavior in the Italian stock

market in the period January 1998 - December 2012. This approach to measuring herd

1Keynes, J. M. (1964). The general theory of employment, interest and money. New York: Har-
court, Brace and World.

2Shiller, R. J. (2005). Irrational exuberance (2nd ed.). Broadway Books, p. 157.
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behavior is based on deviations from the CAPM prices and it captures market-wide

herding. In other words, this measure aims to analyse the collective behavior of all

market participants towards the market views. For the three factor model where the

factors are the market excess return, the SMB and HML factors (SMB and HML stand

for “small [cap] minus big” and “high [book/price] minus low”, these factors measure the

historic excess returns of small caps and high book-value-to-price ratio stocks over the

market as a whole) the herding measure is simply calculated from the relative dispersion

of the betas on each factor for all the assets in the market. For instance, when herd

behavior towards the market portfolio arises, the cross-sectional standard deviation of

the estimated betas will diminish so that traders herd around the market consensus.

Further, the measure captures adjustments in the cross-sectional standard deviation of

the betas caused by herd behavior rather than adjustments due to fundamentals. In

fact, it takes the underlying movement in the market as given.

We have found that herd behavior towards the market portfolio is significant and

persistent independently from and given the particular state of the market and it shows a

positive correlation with the FTSE MIB. We have also examined herd behavior towards

SMB and HML factors and found significant evidence of herd behavior towards SMB,

while herd behavior towards the HML factor is significant and positive correlated with

the FTSE MIB only in the period from January 1998 to December 2005.

The thesis has been organised in the following way. Chapter 1 gives a brief overview

of the evolution of decision theory. Chapter 2 and Chapter 3 review the theoretical

research on rational and non rational herd behavior. Chapter 4 examines some empirical

measures of herd behavior in financial markets. Then, Chapter 5 reports the results

of our empirical analysis of herd behavior in the Italian Stock Exchange. Chapter 6

contains our conclusions. Lastly, in the appendix in Chapter 7 a brief treatment of the

Kalman filter and smoothing is rendered.
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Chapter 1

Introduction

Economics, like any other social science, has as ultimate aim to develop theories in

order to help us better understand the world we live in1. In order to explain the

complexity of economic phenomena economic theories proceed on the basis of a number

of assumptions or premises.

One of the most important assumption of economic theory is the rationality of

economic agents. In everyday speech, people are called reasonable if it is possible to

reason with them, if their preferences are in line with their interests and their values.

On the other hand, for economists and decision theorists, rationality relates to the

internally consistency of a person’s beliefs and preferences2. In order to guarantee the

satisfaction of the hypothesis of rationality, economists assume that the preferences

satisfies certain standard properties.

Consider X as the consumption set, x, y and z as basket of goods in X. We

read x � y “x is weakly preferred to y”. An ordering � of strict preference can be

defined simply by defining x � y to mean not x � y. We read x � y as “x is strictly

preferred to y”. Similarly, indifference is defined by x ∼ y if and only if x � y and

y � x. The consumer is assumed to have preferences on the consumption bundles in

X. Economists want the preferences to order the set of bundles. Here, the assumptions

on these preferences:

COMPLETENESS. For all x and y in X , either x � y or x � y or both.

REFLEXIVITY. For all x in X , x � x.

TRANSITIVITY. For all x, y and z in X , if x � y and y � z, then x � z .

1Wilkinson, N. and Klaes, M. (2012). An introduction to behavioral economics (2nd ed.). Palgrave
Macmillan, p. 2.

2Kahneman, D. (2011). Thinking, fast and slow. Penguin Books, p. 411
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1. Introduction

MONOTONICITY. If x ≥ y, then x � y .

CONVEXITY. Given x, y and z in X. If x ∼ y and z = λx+(1−λ)y with 0 < λ < 1,

then z � x and z � y.

CONTINUITY. For all y in X, the sets {x : x � y) and {x : x � y) are closed sets.

It follows that {x : x � y) and {x : x ≺ y) are open sets.

The first two assumptions state that the consumer is able to express his preferences

about basket of goods, and the third assumption is necessary for preference maximiza-

tion. If preferences were not transitive, there would be sets of bundles with no best

elements.

Monotonicity asserts that if consumers could dispose of unwanted goods, without

sustaining further costs, they would prefer basket of goods with a greater quantity of

at least one good where the quantity of the other good remains unchanged.

The assumption of convexity implies that economic agents prefer averages to ex-

tremes quantity of a certain good. Finally, the assumption of continuity allows to

eliminate certain discontinuous behavior.3

1.1 Lottery and the Expected Value Criterion

Previously, we have briefly treated the consumers’ preferences under conditions of cer-

tainty. However, many choices made by economic agents take place under conditions

of uncertainty.

When there are risky outcomes, agents could make their decisions according to the

expected value criterion. In other words, they choose higher expected value investments.

For instance, suppose there is a gamble in which the probability of getting a $100

payment is 2% and the alternative is getting nothing. Then the gamble expected value

is $2. If we allow an agent to choose between this gamble and a certain payment of

$1.50, according to the expected value theory the agent will choose the $100-or-nothing

gamble.

Unfortunately, the expected value criterion can lead to some paradoxical results.

1.1.1 St. Petersburg paradox

Consider a game in which a fair coin is tossed at each stage. The pot is started at 1

dollar and is doubled every time a head appears. The game ends and the player wins

3Varian, H. R. (1992). Microeconomic analysis (3rd ed.). Norton & Company, pp. 94-96.
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1.2. Expected Utility Theory

the amount of money in the pot when the first tail appears. Hence, the player wins $1

if a tail appears on the first toss, $2 if a tail appears on the second toss, and so on. In

other words, the player wins 2k−1 dollars, where k indicates the number of heads that

are tossed before the first tail appears. Now, we compute the expected value of the

game.

E[X] =
1

2
· 1 +

1

4
· 2 +

1

8
· 4 +

1

16
· 8 + ... =

1

2
+

1

2
+

1

2
+

1

2
+ ... =∞

Assuming the game can continue till infinite. According to the expected value

criterion, people should pay any price to enter the game. The paradox is the discrepancy

between the price people seem willing to pay to participate to the game and the price

suggested by the expected value criterion4.

A solution to the St. Petersburg Paradox was proposed by Bernoulli. He argued

that the utility function used in real life considers the expected utility of a gamble as

finite, even if its expected value is infinite. Thus he hypothesized decreasing marginal

utility of increasingly larger amounts of money5.

1.2 Expected Utility Theory

In Economics, Decision Theory, and Game Theory the expected utility theory is related

to people’s preferences with respect to choices that have uncertain outcomes. The Von

Neumann-Morgenstern utility theorem provides necessary and sufficient “rationality”

axioms under which the expected utility hypothesis holds. This theory claims that

if certain axioms are satisfied, the subjective value associated with a gamble by an

individual is equal to the statistical expectation of that individual’s valuations of the

outcomes of that gamble.

Theorem. Expected Utility Theorem

A preference relationship (�) satisfies the axioms of reflexivity, transitivity, conti-

nuity, independence6 and the Archimedean property7 if and only if ∃ U : X → R such

that p � q if and only if

4Bernoulli, D. Originally published in 1738; translated by Dr. Louise Sommer. (1954). Exposition
of a new theory on the measurement of risk. Econometrica, 22, pp. 33-36.

5Ibid.
6Independence Axiom. If p � q, then ∀r ∈ P and ∀α ∈ (0, 1]
α · p+ (1− α) · r � α · q + (1− α) · r
7Archimedean Property. If p � q � r , then there exists a probability α ∈ (0, 1)

(1− α) · p+ α · r � q � α · p+ (1− α) · r
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1. Introduction

∑
xi∈supp(p)

p(xi) · U(xi) >
∑

xi∈supp(q)

q(xi) · U(xi)

where:

� p(xi) is the probability of occurrence of prize xi in lottery P;

� supp(p) is the set of all possible prizes of lottery P;

� q(xi) is the probability of occurrence of prize xi in lottery Q;

� supp(p) is the set of all possible prizes of lottery P;

� U(xi) is the utility associated with the prize xi.

This theory has helped to explain some popular choices that contradict the expected

value criterion. The expected utility theory states that rational agents act as though

they were maximizing expected utility. Further, it takes account for the possibility

that people may be risk averse, that is individual would not accept a fair gamble (a

fair gamble has an expected value of zero). Risk aversion implies that economic agents

utility functions are concave and show decreasing marginal wealth utility. The risk

attitude is directly related to the curvature of the utility function. In fact, the utility

function is linear for risk neutral agents, convex for risk seeking individuals and concave

for risk averse individuals8.

1.3 Prospect Theory

Prospect theory was developed by Daniel Kahneman, a professor at Princeton Univer-

sity’s Department of Psychology, and Amos Tversky in 1979.

Prospect theory describes how individuals choose between probabilistic risky al-

ternatives, where the probabilities of outcomes are known. The theory describes the

decision processes in two stages: editing and evaluation. During the first stage, the pos-

sible outcomes of a decision are ordered with respect to certain heuristic. In particular,

agents set a reference point, decide which outcomes they consider equivalent, and then

consider lesser outcomes as losses and greater ones as gains. In other words, the editing

phase wants to alleviate any framing effects and to resolve isolation effects that are

the propensity of individuals to isolate consecutive probabilities rather than treating

8Neumann, J. and Morgenstern, O. (1953). Theory of games and economic behavior. Princeton,
NJ. Princeton University Press.
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1.3. Prospect Theory

them together. In the evaluation phase, agents compute a value based on the potential

outcomes and their associated probabilities, and then choose the alternative that gives

a higher utility. Under Expected Utility Theory, people can not change risk preference

unless there would be a violation of axioms and thus the predicted outcome would be

wrong. In contrast, Prospect Theory does not assume agents to behave always in the

same way, but to behave accordingly to their preferences when facing gains or losses.

Figure 1.3.1: Value Function

Source: Kahneman, D., and Tversky, A. (1979). pp. 263-91.

The value function (Figure 1.3.1) is s-shaped, it is defined on deviations from the

reference point, and it is generally concave for gains and convex for losses. This shape of

the value function implies that individuals are loss averse. Differently, according to the

expected utility theory, rational agents are indifferent to the reference point. In fact,

individuals only care about absolute wealth, not relative wealth in any given situation9.

Figure 1.3.2 presents an individual’s “indifference map” for two goods.

All locations on an indifference curve are equally attractive, this is literally what

indifference means. Hence, we can say A ∼ B (A is indifferent to B). However, the

indifference curves do not indicate individual’s current income and leisure (the reference

point).

9Kahneman, D., and Tversky, A. (1979). Prospect theory: An analysis of decision under risk.
Econometrica, 47(2), pp. 263-91.
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1. Introduction

Figure 1.3.2: Indifference Map

Source: Kahneman. (2011). p. 289.

In order to better appreciate the power that the reference point exerts on choices,

Kahneman in his book Thinking Fast and Slow, gives an interesting example.

Consider Albert and Ben, “hedonic twins” who have identical tastes and

currently hold identical starting jobs, with little income and little leisure

time (point 1 in figure 1.3.2). The firm offers them two improved positions,

A and B, and lets them decide who will get a raise of $ 10,000 (position A)

and who will get an extra day of paid vacation each month (position B). As

they are both indifferent, they toss a coin. Albert gets the raise, Ben gets

the extra leisure. Some time passes as the twins get accustomed to their

positions. Now the company suggests they may switch jobs if they wish.

The standard theory represented in the figure assumes that preferences do not change

over time. Position A and B are equally attractive for both twins. Thus, Albert and

Ben are indifferent to switch position or remain where they are. In sharp contrast,

prospect theory states that both twins will definitely prefer do not change job. This

preference for the status quo is due to loss aversion.10

10Kahneman. (2011). op.cit., pp. 289-91.
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1.4. Econs and Humans

1.4 Econs and Humans

In 2008 the economist Richard Thaler and the jurist Cass Sunstein published a book,

“Nudge”, which introduced several new words into the language, including the terms

Econs that is referred to the homo economicus, described by economic theories, and

Humans. Unlike the Econs, Humans have a limited view of the world because of the

information available at a given moment, and therefore they cannot be as consistent

as Econs. To qualify as Econs, people are required to make unbiased forecasts, which

means that the forecasts does not have to be necessarily correct. However, it cannot

be systematically wrong in a predictable direction. Instead, Humans predictably err.

Consider for example, the “planning fallacy” that is the systematic tendency toward

unrealistic optimism about the time it takes to complete projects.11

In addition, Econs communicate with others only if they can gain something, they

care about their reputations, and they will learn from others if actual information can

be obtained. Humans, on the other hand, are frequently nudged12 by other Humans.

Social influences can occur because other persons’ actions and thoughts reveal in-

formation about what might be best to do or think, or because people prefer conformity

in order to avoid negative judgement or curry other people favour.13

1.5 Behavioral Finance

In finance, the efficient-market hypothesis (EMH) claims that financial markets are

“informationally efficient”. This means that one cannot consistently achieve returns in

excess of average market returns, given the information available at the moment the

investment is made. There exists three major versions of this hypothesis: “weak”, “semi-

strong”, and “strong”. The weak-form EMH asserts that prices on traded assets already

reflect all past publicly available information. The semi-strong-form EMH states both

that prices reflect all publicly available information and that they instantly change when

new public information arrive. On the other hand, the strong-form EMH states that

prices instantly reflect even hidden or “insider” information14.

11Thaler, R. H. and Sunstein, C. R. (2008). NUDGE: Improving decisions about health, wealth,
and happiness. Yale University Press, p. 7.

12A nudge, as Thaler and Sunstein use the term in their book “NUDGE: Improving decisions about
health, wealth, and happiness”, is any aspect of the choice architecture that alters people’s behavior in
a predictable way without forbidding any options or significantly changing their economic incentives.

13Ibid., pp. 53-54.
14Fama, E.F. (1970). Efficient capital markets: A review of theory and empirical work. Journal of

Finance, 25(2), p. 383.
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1. Introduction

The efficient-market hypothesis has been disputed by investors and researchers both

empirically and theoretically. From the empirical side, one of the most discussed facts

is that stock prices exhibit more volatility than fundamentals or expected returns do.

Some non traditional model for return determination has been introduced in order

to explain stock price volatility. In “fads” interpretations of the excess of volatility,

noise trading by naive investors plays a significant role in stock price determination15.

Shiller (1984) and DeBondt and Thaler (1985) argue that psychological and sociological

evidence shows that investors follow“irrational” trading rules and overreact to the news.

Potentially, this behavior generates wide variations in expected returns and traditional

models for return determination becomes inadequate.

Another interpretation is that while some fraction of trading is done by the noise

traders (naive traders that make their decisions following some rules of thumb), another

fraction of trading is done by sophisticated investors who ensure that there are no

extraordinary expected returns once risk is accounted for16.

1.6 Herd Behavior

Observing human society it is easy to note that people who communicate regularly with

one another think similarly17.

Herd behavior occurs when people mimic what others do even when, their private

information suggests doing something quite different18. This behavior can explain some

economic phenomena like price bubbles. In fact, if the investors were all independent

of each other, any faulty thinking would have no effect on prices. However, if a large

numbers of people share a faulty thinking, then this can indeed be the source of stock

market booms and busts.19

There are a lot of social and economic situations in which we are influenced in

our decision making by what others do. Consider for example the choice between two

restaurants (A and B) that are in front of each other and that are both more or less

unknown to us. Assume that there is a population of 100 people who are facing such

a choice and 99 of them have received signals that B is better and only one person has

15West, K. D. (1988). Bubbles, fads, and stock price volatility tests: A partial evaluation. Journal
of Finance, 43, 639-60.

16Ibid.
17Shiller, R. J. (1995). Conversation, Information and Herd Behavior. Rhetoric and Economic

Behavior, 85(2), p. 181.
18Banerjee, A. V. (1992). A simple model of herd behavior. The Quarterly Journal of Economics,

107(3), p. 798.
19Shiller, R. J. (2005). op.cit., p. 157.
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1.6. Herd Behavior

received a signal that favors A. Moreover, the prior probabilities are 51% for restaurant

A being the better and 49% for restaurant B being the better.

People arrive at the restaurants in sequence and the first person who face the choice

has signal A. Clearly, she will go to A. The second person will now know that the first

person had signal A, while his signal is B. Since the signals are of equal quality, she will

choose by prior probabilities and go to A. The third person is in the same situation as

that of the second person, hence she will make the same choice and so on. At the end

everyone go to restaurant A even if, considering the aggregate information, restaurant

B is almost certainly better20.

Herd behavior can occur for several reasons. Firstly, others can have more or more

accurate information and their actions reveal their information. Secondly, and this is

relevant only for money managers who invest on behalf of others, imitation could be

rewarded by the compensation scheme or and terms of employment. Thirdly, individuals

may prefer conformity. In addition, it is important to distinguish between intentional

and spurious herd behavior. The former is the result of the intent by investors to

imitate the actions of other’s, and it may lead to inefficient market outcomes. Spurious

herding, on the other hand, is a situation where groups face similar information sets

and decision problems and then they make similar decisions. Thus, this is an efficient

outcome21.

In the following we will focus on herd behavior generated by imperfect information.

Other causes of herd behavior include behavior that is not fully rational. This is the

case of noise traders, who decide on the base of what they observe in the market. In

fact, in the absence of any piece of such information they necessarily have to rely on

what others do22.

20Banerjee, A. V. (1992). art.cit., pp. 798-99.
21Bikhchandani, S. and Sharma, S. (2000). Herd behavior in financial markets: A review. IMF

Working Paper, pp. 3-4.
22Lux, T. (1995). Herd behavior, bubbles and crashes. The Economic Journal, 105, p. 882.
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Chapter 2

Rational Herd Behavior Models

2.1 Introduction

This chapter provides an overview of the theoretical research on rational herd behavior

that started with the seminal papers by Bikhchandani et al. (1992) (section 2.2), and

Banerjee (1992) (section 2.3). These papers discussed herd behavior in an abstract

framework, where agents with private information make their decisions in sequence.

They pointed that, after a finite number of agents have chosen their actions, all following

agents will ignore their personal information and herd. This is an important result

as they provided a rational interpretation for the herd-like behavior we observe in

consumers’ and investors’ decisions. Then, section 2.4 presents the paper by Zhiyong

et al. (2010). This paper dealt with the role of ambiguity in herd behavior, and

showed that herd does not occur when informed traders and market makers have the

same ambiguity aversion. Finally, section 2.5 discusses the paper by Avery and Zemsky

(1998) who explained herd behavior in a model where stock prices are endogenous. This

model showed that when informed traders have private information on only a single

dimension of uncertainty, herd behavior do not occur. Herd behavior arises when there

are two dimensions of uncertainty, and it can lead to a significant short-run mispricing

when a third dimension of uncertainty occurs1.

2.2 Informational Cascade

Bikhchandani et al. (1992) analysed a sequential decision model where individuals will

rapidly converge on one action on the basis of only little information.

1Avery, C. and Zemsky, P. (1998). Multidimensional uncertainty and herd behavior in financial
markets. The American Economic Review, 88(4), p. 724.
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2. Rational Herd Behavior Models

An informational cascade occurs when, after having observed the actions of the

preceding individual, it is optimal for an individual to imitate the actions of others

without regard to his private information2.

Assume that there is a sequence of individuals, each deciding whether to adopt or

reject some behavior. The cost of adoption is the same for all individuals, C = 1
2
. The

gain of adopting V , is also the same for all individuals and V ∈ [0, 1], with equal prior

probability 1
2
.

Each individual can observe the actions of others (the ordering of individuals is

exogenous and it is common knowledge), and a conditionally independent signal (either

Good, G or Bad, B) about value. If V = 1, signal G is observed with probability p > 1
2
,

and B is observed with probability 1− p. Similarly, if V = 0, signal G is observed with

probability 1− p, and B is observed with probability p > 1
2
3. Applying Bayes rule, the

posterior probability of V = 1 after observing a signal G is4

Prob[V = 1|G] =
Prob[G|V = 1] · Prob[V = 1]

Prob[G|V = 1] · Prob[V = 1] + Prob[G|V = 0] · Prob[V = 0]

p · 0.5
p · 0.5 + (1− p) · 0.5

= p > 0.5

Thus, the first individual adopts if his signal is G and rejects if it is B. The second

individual can observe the first individual’s action. If the first individual adopted, the

second individual adopts if his signal is G. However, if his signal is B he adopts with

probability 1
2
. The third individual is faced with three situations: (1) both predecessors

have adopted, the third individual will adopt and an UP cascade will starts, (2) both

predecessors have rejected, the third individual will reject and a DOWN cascade will

starts, (3) one has adopted and the other rejected. The third individual is in the same

situation of the first individual and he will take his decision on the base of his signal.

Then, the fourth individual will be in the same situation as the second individual, the

fifth as the third, and so forth.

Cascades tend to start sooner when individuals have more precise signals. More

precisely, accurate signals increase the probability to end up in the correct cascade.

Moreover, the probability of not being in a cascade falls exponentially with the number

of individuals5.

2Bikhchandani, S., Hirshleifer, D. and Welch, I. (1992). A theory of fads, fashion, custom, and
cultural changes as informational cascades. Journal of Political Economy, 100(5), p. 994.

3Ibid., p. 996.
4Bikhchandani, S. and Sharma, S. (2000). art.cit., p. 6.
5Bikhchandani, S., Hirshleifer, D. and Welch, I. (1992). art.cit., p. 997.
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2.3. A Simple model

In this model herd behavior always implies an informational cascade.

Definition 1. An informational cascade occurs in period t when

P [ht|V,Ht] = P [ht|Ht] ∀V, ht

where ht is the action taken by the trader who arrives at time t and Ht denotes the

publicly observable history of trades up until time t.

In an informational cascade, no new information reaches the market because the

distribution over the observable actions is independent of the state of the world. In

particular, this happens when the actions of all informed traders are independent of

their private information6.

The problem with cascade is that they prevent the aggregation of information. When

an individual takes an action that is uninformative to others, it creates a negative ex-

ternality. If a number of early individuals would make the altruistic choice of following

their signal, this behavior would ultimately lead to almost perfectly accurate decisions.

Instead, individuals act in their own self interest, imitate what others do creating neg-

ative externality that leads to an inefficient outcome7.

2.3 A Simple model

Banerjee (1992) discussed a sequential decision model in which each decision maker ob-

serves the action adopted by the previous decision makers and then decide to follow his

private information or ignoring it and mimic what others do. This behavior is rational

as previous decision makers could have some important information. Banerjee showed

that the decision rules that are chosen by optimizing individuals will be characterized

by herd behavior.

Consider a population of N agents each of whom maximizes the identical risk-neutral

utility function Von Neumann Morgenstern defined on the space of asset returns.

The decision is between a set of assets indexed by numbers [0, 1]. Call the ith asset

a(i). Let us assume that there is a unique asset i∗ that has positive return, while the

others have return equal to zero. Of course, everybody, given these payoffs, would want

to invest in i∗8.

There is a probability α that each person receives a signal telling her that the true

i∗ is i′. The signal could be false with probability 1−β. If it is false, then it is assumed

6Avery, C. and Zemsky, P. (1998). art.cit., p. 728.
7Bikhchandani, S. and Sharma, S. (2000). art.cit., pp. 8-9.
8Banerjee, A. V. (1992). art.cit., pp. 802-03.
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2. Rational Herd Behavior Models

that it is uniformly distributed on [0,1] and therefore gives no information about what

i∗ really is. The individuals take their decisions sequentially; each person can observe

the choice made by the previous person.

After everybody has made her choice, all the alternatives that have been chosen are

tested and those who have chosen the alternative that is true receive their rewards.

Here, some assumptions are made to minimize the possibility of herd behavior.

ASSUMPTION A. If a decision maker does not have a signal and everyone else has

chosen i = 0, she will choose i = 0.

ASSUMPTION B. Decision makers will decide to follow their own signal, whenever they

are indifferent between following their own signal and following someone

else’s choice.

ASSUMPTION C. A decision maker will choose to follow the decision maker who has

the highest value of i, when she is indifferent between following more than

one of the previous decision makers9.

If the first decision maker’s has a signal, she will certainly follow her signal. Otherwise,

if she has no signal, by ASSUMPTION A she will choose i = 0.

If the second investor has no signal, she will imitate the first decision maker and

invest in the same asset. However, if she has a signal and the first person has not chosen

i = 0, by ASSUMPTION B she will follow her own signal.

If the third decision maker has no signal by ASSUMPTION C she chooses to follow

the previous decision maker who has the highest value of i. However, if she has a signal

i′ she will follow it, unless both people before her have chosen the same option and this

option is neither i = 0 nor i = i′.

Whenever some person’s signal matches the choice made by one of her predecessors,

she should always follow her signal. This follows from the fact that the probability that

two people should get the same signal and yet both be wrong is approximately equal

to zero10.

Under assumptions A, B and C, the unique Nash equilibrium decision rule that

everyone will adopt is the following:

1. If the first decision maker has a signal, she will follow her own signal. Otherwise

she will choose i = 0.

9Ibid.
10Ibid., pp. 804-05.
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2.4. Ambiguity Aversion

2. For k > 1, if the kth decision maker has a signal, she will choose to follow her

own signal either if and only if her signal matches some option that has already

been chosen or if no option other than i = 0 has been chosen by more than one

person.

3. Assume that the kth decision maker has a signal. If any option other than the

one with the highest i has been chosen by more than one person, the decision

maker will choose this option, unless her signal matches one of the other options

that has already been chosen. In this case she chooses the latter option.

4. Assume that the kth decision maker has a signal. If the option with the highest

i has been chosen by more than one person and no other option (except i = 0)

has been chosen by more than one person, she will choose this option unless her

signal matches one of the options already chosen. In this case she chooses the

latter option.

5. Assume that the kth decision maker has no signal. Then she will choose i = 0 if

and only if everyone else has chosen i = 0. Otherwise, she will choose the option

with the highest value of i that has already been chosen unless one of the other

options (excluding i = 0) has been chosen by more than one person. In this case,

she chooses the latter option11.

The equilibrium decision rule in the above model is characterized by extensive herd

behavior; agents abandon their own signals and follow others even when they are not

completely sure that the other person is right. In addition, it can happen that no one

in the population chooses the right option, while if all the decision makers took their

decisions without observing the choices made by others, some people will always end

up choosing the correct option12.

2.4 Ambiguity Aversion

Zhiyong et al. (2010) investigated the relationship between ambiguity aversion and herd

behavior.

The concept of ambiguity is quite different from that of risk. The distinction between

them is that risk refers to situations where the perceived likelihoods of events can be

represented by a unique probability distribution, whereas if there is ambiguity, not only

11Ibid., pp. 806-07.
12Ibid., p. 808.
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2. Rational Herd Behavior Models

is the outcome of an act uncertain but also the expected payoff of the action, since the

probability distribution of the possible events is unknown.

People differ in their attitudes towards ambiguity. The majority of decision makers

are ambiguity averse, evaluating an act by the minimum expected value that may be

associated with it and thereby being more cautious when the probability distribution is

undefined, differently a significant minority of decision makers appear to be ambiguity-

loving that is exactly the opposite13.

In order to understand the effect of ambiguity aversion on herd behavior, the

Bikhchandani, Hirshleifer, and Welch (BHW) assumptions are extended in the following

ways:

1. V follows the binary distribution of {bj, gj}, where gj > bj ≥ 0, j = 1, 2, ..., K

and C =
(gj+bj)

2
;

2. the binary distributions are different if the distribution types are different, then

we have gj1 6= gj2 and bj1 6= bj2 when j1 6= j2

3. the probability for the j-th distribution type to occur is qj; the probability for V

to be bj or gj is 0.5 at time 0. The probability for V to be bj or gj can be any

number between 0 and 1 after time 0. As long as this probability deviates from

0.5, different distributions will have different means due to the fact that gj1 6= gj2

and bj1 6= bj2 , ∀ j1 6= j2. Thus the model will not lose generality by assuming C is

constant across j14.

It is also assumed that asset prices are determined by competitive market makers and

an infinite number of traders who trade sequentially. As before, t = 0, 1, 2, ... represents

the t-th trading period, and Ht represents the historical public information prior to

period t. There are two groups of traders in the market, the informed traders and the

noise traders. The behavior of noise traders is considered exogenous. Further, informed

traders can be divided into N categories according to their attitudes towards ambiguity.

As in BHW model, every informed trader receives a signal (note that the signal

cannot be observed by market makers or other traders) that could be either G (Good

news) or B (Bad news). When V = gj, G is observed with probability p > 1
2
, and B

is observed with probability 1− p. Similarly, if V = bj, G is observed with probability

1− p, and B is observed with probability p > 1
2
. Each informed trader can observe his

signal and previous traders actions.

13Zhiyong Dong, Qingyang Gu, and Xu Han. (2010). Ambiguity aversion and rational herd be-
haviour. Applied Financial Economics, 20, p. 332.

14Ibid., p. 334.
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2.4. Ambiguity Aversion

Definition 2. The i-th trader with private information xi engages in herd behavior at

time t if he buys when Vi,0(xi) < Vm,0 < Vm,t or if he sells when Vi,0(xi) > Vm,0 > Vm,t;

and buying (or selling) is strictly preferred to other actions.

Where Vi,0(xi) is the estimate of the asset return at time t of an informed trader i

with private information xi, Vm,0 is the expectation of asset value by market maker at

time 0, and Vm,t is the expected value of the asset return by market maker in period t.

Herd behavior by a trader satisfies three properties. First, the signal received by

the informed trader Vi,0(xi) < Vm,0 incentive to sell. Second, the history of trading

must be positive, Vm,0 < Vm,t. Finally, given the historical and the private information,

informed traders are willing to buy the asset, which is Vm,t < Vi,t(xi).

The signal contains bad news that incentive to sell. However, after having observed

the trading history, the signal constitutes positive information, causing their evaluation

to exceed asset price Vm,t in period t, such that they follow the historical trend ignoring

their own information15.

In this model a function Φ that characterizes traders’ attitudes towards ambiguity

is introduced. Φ is assumed to be increasing ( Φ′ > 0) and concave (Φ′′ < 0) in order

to focus on the case of ambiguity aversion.

Proposition 3. Given Φ′ > 0, if all informed traders and market makers share the

same value function and have the same level of ambiguity aversion, herd behavior will

never occur16.

Proof. Denote πvj ,t as the probability of V = vj, given the historical transaction infor-

mation and distribution type j, (πvj ,t = P (V = vj|Ht)).

Let g and b denote different values of vj, which implies πbj ,t = 1− πgj ,t . Recalling

the assumption that the probability for V to be bj or gj is 0.5 at time 0, this implies

that πgj ,t = πg,t, and πbj ,t = πb,t, regardless of the distribution type j, with 0 < πg,t < 1

and 0 < πb,t = 1− πg,t < 1. Moreover, since market makers and informed traders have

the same degree of ambiguity aversion, it is applicable to use Φ to denote their value

functions. When traders receive bad news in period t, they estimate the asset value to

be

Vi,t(B) = Φ−1

{∑
j

qjΦ[Ej(V |Ht, x = B)]

}
15Avery, C. and Zemsky, P. (1998). art.cit., p. 728.
16Zhiyong Dong, Qingyang Gu, and Xu Han. (2010). art.cit., p. 335.
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2. Rational Herd Behavior Models

= Φ−1

{∑
j

qjΦ

[
gj

(1− p)πg,t
(1− p)πg,t + p(1− πg,t)

+ bj
p(1− πg,t)

(1− p)πg,t + p(1− πg,t)

]}
(2.4.1)

When traders receive bad news in period t, they estimate the asset value to be

Vi,t(G) = Φ−1

{∑
j

qjΦ[Ej(V |Ht, x = G)]

}

= Φ−1

{∑
j

qjΦ

[
gj

pπg,t
pπg,t + (1− p)(1− πg,t)

+ bj
(1− p)(1− πg,t)

pπg,t + (1− p)(1− πg,t)

]}
(2.4.2)

The expectation of asset value by the market maker in period t is

Vm,t = Φ−1

{∑
j

qjΦ[gjπg,t + bj(1− πg,t)]

}
(2.4.3)

To prove the absence of herd behavior it is only necessary to show that Vi,t(B) <

Vm,t < Vi,t(G), which guarantees that traders will follow their private information in-

stead of the historical trend. As Φ and Φ−1 are increasing functions, it is sufficient to

compare Ej(V |Ht) and Ej(V |Ht, x = B) in order to verify Vm,t − Vi,t(B) > 0

Ej(V |Ht)−Ej(V |Ht, x = B) = [gjπg,t + bj(1− πg,t)]−
[
gj(1− p)πg,t + bjp(1− πg,t)

(1− p)πg,t + p(1− πg,t)

]

=
πg,t(gj − bj)(2p− 1)(1− πg,t)

(1− p)πg,t + p(1− πg,t)
(2.4.4)

Given gj > bj, 0.5 < p < 1, 0 < πg,t < 1, it is clear that Vm,t − Vi,t(B) > 0. Thus

Vm,t > Vi,t(B).

Similarly it can be proved that Vi,t(G) > Vm,t

Ej(V |Ht, x = G)−Ej(V |Ht) =

[
gjpπg,t + bj(1− p)(1− πg,t)
pπg,t + (1− p)(1− πg,t)

]
− [gjπg,t + bj(1− πg,t)]

=
πg,t(gj − bj)(2p− 1)(1− πg,t)

(1− p)πg,t + p(1− πg,t)
> 0

17

17Ibid., p. 336.
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2.4. Ambiguity Aversion

The situation is different if the degree of ambiguity aversion vary amongst traders.

The coefficient for absolute ambiguity aversion −Φ′′/Φ′ is used to characterize

traders and market maker’s attitudes towards ambiguity.

Lemma 4. Functions Φ1 and Φ2 are defined within real domain and have continuous

first-order and second order derivatives. If Φ′1 > 0, Φ′2 > 0, Φ′′1 < 0, Φ′′2 < 0 and

−Φ′′1/Φ
′
1 < −Φ′′2/Φ

′
2, then for any different real numbers x1, x2, ω1 and ω2 where x1 <

x2, ω1 > 0, ω2 > 0 and ω1 + ω2 = 1, the following inequality holds:

Φ−11 (ω1Φ1(x1) + ω2Φ1(x2)) > Φ−12 (ω1Φ2(x1) + ω2Φ2(x2)) (2.4.5)

For x1 < x2 < ... < xn, ω1 > 0, ω2 > 0, ..., ωn > 0, where
∑n

i=1 ωi = 1, the

following inequality holds18:

Φ−11

(
n∑
i=1

ωiΦ1(xi)

)
> Φ−12

(
n∑
i=1

ωiΦ2(xi)

)
(2.4.6)

Herd behavior can occur when informed traders and market makers have different

degrees of ambiguity aversion.

Proposition 5. Assume that there is one type of informed traders whose value functions

are denoted as Φ1. The market maker’s value function is denoted as Φ2. Both Φ1

and Φ2 have continuous first-order and second-order derivatives. If Φ′1 > 0, Φ′2 > 0,

Φ′′1 < 0, Φ′′2 < 0 and −Φ′′1/Φ
′
1 < −Φ′′2/Φ

′
2, which means the absolute ambiguity aversion

coefficient of informed traders is always less than that of the market maker, buying herd

may occur in the market19.

Proof. Denote V1,t as the informed traders’ certainty equivalent asset value in period

t based on the private signal x and V2,t as that of the market maker’s based on the

public information prior to period t. As long as the probability for V2,t < V1,t(B) is

positive under the condition V1,0(B) < V2,0 < V2,t, buying herd can occur. First, it can

be shown that V1,0(B) < V2,0 < V2,t is possible. The proof of Proposition 3 shows that

V2,0 = Φ−12

{∑
j

qjΦ2[0.5gj + 0.5bj]

}

= Φ−12

{∑
j

qjΦ2[C]

}
= C (2.4.7)

18Ibid.
19Ibid., pp.336-37
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2. Rational Herd Behavior Models

From Equation 2.4.4 we have

V1,0(B) = Φ−11

{∑
j

qjΦ1[Ej(V |H0, x = B)]

}

= Φ−11

{∑
j

qjΦ1

[
gj

0.5(1− p)
0.5(1− p) + 0.5p

+ bj
0.5p

0.5(1− p) + 0.5p

]}
< C (2.4.8)

Therefore, it is true that V1,0(B) < V2,0. Also, as long as there are more buy-in

traders than sell-out traders in the market prior to period t, the price in period t would

be expected to increase, which is V2,t > V2,0. Given πg,0 = 0.5, this implies πg,t > 0.5

The second step is to prove the existence of V2,t < V1,t(B). Recall the assumption

gj1 6= gj2 , bj1 6= bj2when j1 6= j2. Under the condition πg,t > 0.5, ξ = gjπg,t + bj(1− πg,t)
are positive numbers that differ with j. Arrange ξ in an increasing sequence, C < ξ1 <

ξ2 < ... < ξk. From Equation 2.4.1, it is clear that Ej(V |Ht, x = B) > C, ∀j, as long

as πg,t > p. Define ψ = Ej(V |Ht, x = B) and arrange ψ in an increasing sequence

C < ψ1 < ψ2 < ... < ψk. Proposition 3 leads to the conclusion that ξj > ψj, ∀j.
Applying Lemma 4 we obtain

Φ−11

(∑
j

qjΦ1(ξj)

)
> Φ−12

(∑
j

qjΦ2(ξj)

)
(2.4.9)

To prove the possibility of herd behavior, the only thing remaining is to show the

existence of positive ψj (ξj > ψj,∀j) , such that

Φ−11

(∑
j

qjΦ1(ψj)

)
> Φ−12

(∑
j

qjΦ2(ξj)

)
(2.4.10)

Since both Φ1 and its inverse function are strictly increasing and continuous func-

tions, there always exists δ > 0 such that Φ−11

(∑
j qjΦ1(ξj − δ)

)
> Φ−12

(∑
j qjΦ2(ξj)

)
.

As long as there are ψjsuch that max(ξj − ψj) < δ, inequality (2.4.10) will hold. By

Equation 2.4.4 in Proposition 3,

ξj − ψj = Ej(V |Ht)− Ej(V |Ht, x = B)

=
πg,t(gj − bj)(2p− 1)(1− πg,t)

(1− p)πg,t + p(1− πg,t)
(2.4.11)
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The last step is to find some parameters such that max
[
πg,t(gj−bj)(2p−1)(1−πg,t)

(1−p)πg,t+p(1−πg,t)

]
< δ.

Since gj, bj are exogenous parameters and can be any positive numbers, so appropriate

gj and bj can always be found20.

It is sufficient only a small number of informed traders having different coefficients

for absolute ambiguity aversion from that of market makers to generate herd behavior21.

2.5 Multidimensional Uncertainty

Avery and Zemsky (1998) proposed a model in which herd behavior arises only in the

presence of two dimensions of uncertainty, and it can lead to a significant short-run

mispricing when a third dimension of uncertainty occurs.22

In the preceding discussion the cost of taking an action is fixed ex-ante and it remains

so. This assumption is relaxed in Avery and Zemsky (1998).

Suppose that after a trader has made a decision to buy or sell, the asset price

adjusts to take into consideration the information revealed by this action. In a setting

with competitive market makers, the stock price will always be the expected value of

the investment conditional on all publicly available information. Therefore, investors

without private information will be indifferent between buying or selling. Further, the

action of any informed trader will reveal their own information. As a consequence herd

selling or buying never occurs.

As BHW, this model considers an asset which value V can either be 0 or 1. Informed

traders observe a signal which can be G or B. When V = 1, G is observed with

probability p > 1
2
, and B is observed with probability 1 − p. Similarly, if V = 0.

Prices are set by a competitive market maker. If the first trader buys, the asset price

will increase to E(V |x = G) = 2p − 1. Then, the second investor will deduce the

previous trader signal from his action. If the second trader has private signal B then

his posterior expected value is 0 which is less than 2p − 1. If, instead he observes G,

then his posterior expected value of V is 2p−1
p2+(1−p)2 which is greater than 2p− 1. Hence,

the second investor will follow his private signal. Consequently, herd behavior will not

occur when the asset price adjusts to reflect available information23.

Now, it is considered the case that investors have private information about two

dimensions of uncertainty. In addition to information related to value uncertainty, there

20Ibid.
21Ibid.
22Avery, C. and Zemsky, P. (1998). art.cit., p. 724.
23Bikhchandani, S. and Sharma, S. (2000). art.cit., p. 9.
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2. Rational Herd Behavior Models

is a second dimension of uncertainty called event uncertainty. That is the trader has

private information that there has been a shock to the underlying value of the asset,

while the market maker does not. The information asymmetry gives the investors

an advantage in interpreting the history of trades. When event uncertainty appears

together with value uncertainty, herd behavior arises and resembles an information

cascade in fact the market does not learn the efficient price. However, the effect of

this herd behavior is bounded and the impact on pricing may be small if the bound is

small24.

Then, Avery and Zemsky consider a third dimension of uncertainty that is com-

position uncertainty. There is composition uncertainty when in the market there are

investors of different types and their probability is not common knowledge.25 Suppose

there are investors of type H and L. Type H has very accurate information and type

L has very noisy information. Further, it is supposed that the two types of traders in

the population is not common knowledge. A sequence of identical decisions may arise

naturally in a well-informed market. In addition, a sequence of identical decisions is also

natural in a poorly informed trader because of herd behavior by type L investors who

mistakenly believe that most of the other investors are of type H. Thus, informationally

inefficient herd behavior may occur and can lead to price bubbles and mispricing when

the accuracy of the information with market participants is not common knowledge.

Traders may imitate the behavior of an initial group of investors in the erroneous belief

that this group knows something26.

24Avery, C. and Zemsky, P. (1998). art.cit., p. 731-32.
25Ibid., 735.
26Bikhchandani, S. and Sharma, S. (2000). art.cit., p. 9-10.

36



Chapter 3

Non Rational Herd Behavior

Models

3.1 Introduction

This Chapter is mainly concerned with the determination of the behavior of noise

traders who do not have access to information about fundamental values. Following

others’ opinion in this case is not irrational as in the absence of any piece of information

they necessarily have to rely on what others do1.

In the following section an application of epidemic models to interpersonal commu-

nication is discussed. These models can help us to better understand the transmission

of attitudes between traders. Then, in section 3.3 we analyse the paper by Lux (1995),

which dealt with a formalization of contagion.

3.2 Epidemic models applied to interpersonal

communication

Interpersonal and interactive communications have a powerful impact on our behavior.

The mathematical theory of the spread of disease has been used by epidemiologists to

predict the course of infection and mortality.

In the simplest epidemic model, it is assumed that the disease has a given infection

rate (i), which is the rate at which the disease spreads from contagious people to

susceptible people, and a given removal rate (r), which is the rate at which an infected

people cease to be contagious.

1Lux, T. (1995). art.cit., p. 882.
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3. Non Rational Herd Behavior Models

If r = 0, the number of infected people after the introduction of one contagious

person increase till the entire population is infected.

If 0 < r < i, the course of epidemics will be bell shaped: the number of infective

will at first rise from zero, peak and then drop back to zero.

If r > i, the epidemic will never get started.

When epidemic models are applied to predict the course of interpersonal communi-

cation; the infection rate is the rate of communication of ideas and the removal rate is

the rate of forgetting or of losing interest2.

Economist Alan Kirman (1993) used epidemic models to study the behavior of ants

in exploiting food sources, and he noted that the model is also relevant to stock market

changes. It has been found experimentally that ants, when presented with two identi-

cal food sources near their nest, tend to exploit them in an asymmetric way. Kirman

observed that ants individually recruit other ants by contact and following or by laying

a chemical trail, which is the ant equivalent of word-of-mouth communication. Kirman

showed that if there is randomness in the recruitment process, the experimentally ob-

served phenomena can be explained in terms of a simple epidemic model. Although

epidemic models and ant behavior are of theoretical interest, they appear to be less ac-

curate for modeling social processes. One reason is that interpersonal communication

is more imprecise and variable than the spread of disease or other biological processes.

However, epidemic models are still helpful in understanding the kinds of things that

can bring about changes in market prices3.

3.3 An elementary formalization of contagion

The behavior of noise traders was formalized by Lux (1995) by referring to the concept

of synergetics. Synergetics’ basically consists of a probabilistic, macroscopic approach

to the analysis of the dynamics of multi-component systems with interactions among

the units constituting the system4.

Lux assumed that there exists a fixed number of speculative traders 2N . These can

either be optimistic or pessimistic about the future development of the market.

Moreover, n+indicates the number of optimistic traders and n− the number of pes-

simistic traders. Obviously, n+ + n− = 2N . The “neutral” subject is not considered.

Defining n ≡ n+−n−
2

and x ≡ n
N

. Where x is an index describing the average opinion of

2Shiller, R. J. (2005). op.cit, pp. 164-65.
3Ibid., pp. 165-66.
4Lux, T. (1995). art.cit., p. 883.
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3.3. An elementary formalization of contagion

speculative investors, x ∈ [−1,+1] and x = 0 means that there exists an equal number

of optimistic and pessimistic individuals. On the contrary, x > (<) 0 exhibit more or

less predominant optimism (pessimism).

In case of a high portion of optimistic traders, it would be very probable that the

few remaining pessimistic ones would also change their attitude. Hence there exists a

probability p+− for a pessimistic trader to become optimistic and vice versa p−+(p+− >

0, p−+ > 0). With contagion both probabilities should depend on the actual distribution

of attitudes5.

p+− = p+−(x) = p+−

( n
N

)
, p−+ = p−+(x) = p−+

( n
N

)
. (3.3.1)

The existence of financial gurus is excluded by this formulation, as all individuals

can influence one particular trader in the same way. Another simplifying assumption is

that each speculator can change his opinion only once at any one time.

From this it is possible to determine the change in time of the number of optimistic

traders

dn+

dt
= n−p+− − n+p−+

and pessimistic speculators

dn−
dt

= n+p−+ − n−p+−

Then,

dx

dt
=

1

2N

(
dn+

dt
− dn−

dt

)
=

1

N
(n−p+−(x)− n+p−+(x))

Noting that N − n = n− and N + n = n+, we can write

dx

dt
=

1

N
[(N − n)p+−(x)− (N + n)p−+(x)]

= [(1− x)p+−(x)− (1 + x)p−+(x)] (3.3.2)

In order to grasp the very idea of contagion p+− > p−+ when the prevailing dis-

position of the population is already optimistic (x > 0) and vice versa6. Moreover,

Lux assumed that the relative change in the probability to switch from pessimism to

5Ibid., p. 884.
6Ibid.
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3. Non Rational Herd Behavior Models

optimism increases linearly with changes in x, dp+−
p+−

= adx. Symmetric behavior in both

directions leads to dp−+

p−+
= −adx.

Then, we have

p+−(x) = veax, p−+(x) = ve−ax (3.3.3)

Here, a gives a measure of herd behavior and v is a variable for the speed of change.

When x = 0 ⇒ p+− = p−+ = v > 0. This means changes of attitudes occur due to

personal circumstances not comprised in the model.

With this specification of transition rates the time development of the mean value

of the index x becomes:

dx

dt
=
[
(1− x)veax − (1 + x)ve−ax

]
from the definition of hyperbolic sine and cosine, it is possible to derive the following

identities ex = Cosh(x) + Sinh(x), e−x = Cosh(x)− Sinh(x).

Thus, we can write7

dx

dt
= 2v[Sinh(ax)− xCosh(ax)] = 2v[Tanh(ax)− x]Cosh(ax). (3.3.4)

Figure 3.3.1: Pure contagion dynamics

Source: Lux, T. (1995). p. 886.

Proposition 6. (i) For a ≤ 1, (3.3.4) possesses a unique stable point at x = 0. (ii)

For a > 1, the equilibrium x = 0 is not stable and there exists two additional stable

equilibrium, say x+ > 0, x− < 0 exist (x+ = −x−).8

7Ibid., p. 885.
8Ibid.
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3.3. An elementary formalization of contagion

The results are proved by considering the equilibrium condition Tanh(ax) = x.

Proposition 6 says that if the herd effect is relatively weak (a ≤ 1), then all defection

into one direction will die out in the course of events and the system will return to a

state where there is an equal number of optimistic and pessimistic individuals (x = 0).

For a > 1, on the other hand, small deviations from the balanced state are sufficient

to make a majority of traders bullish or bearish through mutual infection. Hence, the

equilibrium x = 0 is unstable9.

9Ibid.
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Chapter 4

Herding Measures

4.1 Introduction

Several measures already exist to investigate herd behavior in financial markets although

most empirical study do not test a particular theoretical model directly. Excluding the

paper by Cipriani and Guarino (2014) that introduces a theoretical model of herd

behavior and then tests it empirically, in general there still exists a gap between the

theoretical and empirical literature.

Empirical investigations of herd behavior in financial markets have branched into

two paths. The first track focuses on co-movement behavior based on the measurement

of dynamic correlations1. Contagion is defined by Forbes and Rigobon (2002) as signif-

icant increases in cross-market co-movements, while interdependence is considered any

continued market correlation at high levels 2, the existence of contagion must involve

evidence of a dynamic increment in correlations. Contagion, as opposed to ‘interde-

pendence’, conveys the idea that there are breaks in the international transmission

mechanism due to financial panics, herd behavior or switches of expectations across

instantaneous equilibrium. Studying the international transmission of shocks from the

Hong Kong stock market crisis in October 1997, Corsetti et al. (2005) found that the

strong result of “no contagion, only interdependence” obtained by previous contribu-

tions is quite dubious for a number of countries, and they found evidence of “some

contagion, some interdependence”. Chiang et al. (2007) identified two different phases

of the Asian crises. The first phase entails a process of increasing volatility in stock

returns due to contagion spreading from the earlier crisis-hit countries to other coun-

1Chiang, T. C. and Zheng, D. (2010). An empirical analysis of herd behavior in global stock
markets. Journal of Banking and Finance, 34(8), pp. 1911-1921.

2Forbes, K.J. and Rigobon, R. (2002). No contagion, only interdependence: Measuring stock
market co-movements. Journal of Finance, 57(5), pp. 2223-24.
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4. Herding Measures

tries. In this phase, investor trading activities are governed mainly by local information.

However, in the second phase, as the crisis grew in public awareness, the correlations

between stock returns and their volatility are consistently higher, as evidenced by herd

behavior. Boyer et al. (2006) found that, in emerging stock markets, there is greater

co-movement during high volatility periods, signifying that crises stretch through the

holdings of international investors are mainly due to contagion rather than changes in

fundamentals.

In the second path of empirical work on herd behavior we can distinguish between

measures of herding by individuals or small-group of investors and market-wide herding.

The former analyse the tendency of individuals or group of investors such as fund

managers and financial analysts to imitate each other and trade the same asset at the

same time. In this case, it is necessary to have detailed records of investors’ trading

activities. On the other hand, measures of market-wide herding aim to analyse the

collective behavior of all participants towards the market views and therefore buying

or selling a particular asset at the same time. Chang et al. (2000) found considerable

evidence of herd behavior in South Korea and Taiwan. However, there was no evidence

of herd behavior in the United States, Hong Kong and Japan. A study by Demirer

and Kutan (2006), which examined data from individual firms and at the sector level,

found persistent herd behavior in Chinese markets and suggested that the dispersions of

equity returns are significantly higher during periods of large changes in the aggregate

market price.

In the following we report some empirical measures of both herding by individuals

or small group of investors, and market-wide herding.

4.2 Measures of Herding by Individuals or Small

Group of Investors

4.2.1 Lakonishok, Shleifer and Vishny measure

Lakonishok et al. (LSV) (1992) used the data on holdings of 769 tax-exempt funds, and

they concluded that money managers in their sample do not exhibit significant herd

behavior. Their criterion is based on trades conducted by an homogenous group of fund

managers over a period of time. Let B(i, t) (S(i, t)) be the number of fund managers

who buy (sell) the asset i in quarter t and H(i, t) be the measure of herd behavior in

stock i of the quarter t. LSV define H(i, t) as follow:
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4.2. Measures of Herding by Individuals or Small Group of Investors

H(i, t) = | p(i, t)− p(t) | − AF (i, t) (4.2.1)

where p(i, t) = B(i,t)
B(i,t)+S(i,t)

, and p(t) is the average of p(i, t) over all assets i that were

traded by at least one fund manager. AF (i, t) is the adjustment factor and it accounts

for the fact that under the null hypothesis of no herd behavior | p(i, t)− p(t) | is greater

than zero. AF (i, t) is defined as follows:

AF (i, t) = E[| p(i, t)− p(t) |]

note that the expectation is calculated under the null hypothesis that B(i, t) follows

a binomial distribution with parameter p(t).

Under the null hypothesis of no herd behavior the probability of a randomly chosen

fund managers being net buyer of stock i is p(t). If B(i, t) + S(i, t) is large then under

the null hypothesis p(i, t) will tend to p(t) and AF (i, t) will be close to zero. The

adjustment factors is included in the herding measure to take account for the bias in

| p(i, t)−p(t) | for stock-quarters which are traded by a small number of participants. If

H(i, t) is significantly different from zero, this result should be interpreted as evidence

of herd behavior3.

The main drawbacks of this criterion are that it does not take account for the quan-

tity of stock investors buy or sell, moreover it is not possible to identify intertemporal

trading patterns4.

4.2.2 Portfolio Change Measure

Wermers (1995) developed a new measure of herd behavior, called portfolio-change mea-

sure (PCM) of correlated trading, which captures both the direction and the intensity

of trading by investors. The cross correlation PCM of lag τ between portfolio I and J

is defined as follows:

ρ̂I,Jt,τ ≡

(
1
Nt

)∑Nt
n=1(∆w̃

I
n,t)(∆w̃

J
n,t−τ )

σ̂I,J(τ)
(4.2.2)

where ∆w̃In,t and ∆w̃Jn,t−τ are respectively, the change in portfolio I’s weight of

n during the period, quarter, [t− 1, t], and the change in portfolio J ’s weight of

n during the period, quarter, [t− τ − 1, t− τ ], Nt is the number of stocks in the

3Lakonishok, J., Shleifer, A. and Vishny, R. W. (1992). The impact of institutional trading on
stock prices. Journal of Financial Economics, 32, pp. 29-30.

4Bikhchandani, S. and Sharma, S. (2000). art.cit., p. 18.
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intersection of the set of tradable securities in portfolio I during period [t− 1, t],

and the set of tradable securities in portfolio I during period [t− τ − 1, t− τ ], and

σ̂I,J(τ) = 1
T

∑
t

{
1
Nt

[∑
n

(
∆w̃In,t

)2∑
n

(
∆w̃Jn,t−τ

)2] 1
2

}
is the time series average of the

product of the cross-sectional standard-deviations.

Using the PCM measure, Wermers found evidence of a significant level of herd

behavior by mutual funds. He randomly splits his sample of mutual funds into two

groups and then used the PCM measure of correlated trading to compare the revisions

of the net asset value weighted portfolios of the two groups.

4.3 Market-wide herding measures

4.3.1 Cross-sectional Standard Deviation

Christie and Huang (1995) suggested that under the traditional definition of herd be-

havior, an intuitive measure of its market impact is dispersion. To measure the return

dispersion, they proposed the cross-sectional standard deviation (CSSD) method, which

is expressed as:

CSSDt =

√√√√∑N
i=1(Ri,t −Rm,t)2

(N − 1)
(4.3.1)

where N is the number of firms in the portfolio, Ri,t is the observed stock return of

industry i at time t, and Rm,t is the cross-sectional average stock of N returns in the

portfolio at time t5.

Dispersions quantify the average proximity of individual returns to the mean. They

are bounded from below at zero when all returns move in perfect union with the market.

As individual returns begin to vary from the market return, the level of dispersion

increases.

During periods of extreme market movements, investors are more likely to suppress

their own information, and to mimic collective actions in the market. Individual stock

returns under these conditions tend to cluster around the overall market return then,

dispersions tend to decrease.

Differently, the rational asset pricing models predict that, during periods of market

stress, large changes in the market return would translate into an increase in dispersion,

because individual assets differ in their sensitivity to the market return. In other words,

5Christie, W. G., and Huang, R. D. (1995). Following the pied piper: Do individual returns herd
around the market?. Financial Analysts Journal, pp. 31-37.
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4.3. Market-wide herding measures

dispersion in factor sensitivities will repel individual returns away from the market.

Thus, herd behavior and rational asset pricing models offer conflicting predictions for

the behavior of dispersions during periods of market stress6.

Christie and Huang empirically examined whether equity return dispersions are

significantly lower than average during periods of extreme market movements. They

estimated the following empirical specification:

CSSDt = α + β1D
L
t + β2D

U
t + εt (4.3.2)

where DL
t = 1, if the market return on day t lies in the extreme lower tail of the

distribution, and equal to zero otherwise; and DU
t = 1, if the market return on day t

lies in the extreme upper tail of the distribution, and equal to zero otherwise.

The dummy variables are designed to capture differences in investor behavior in

extreme up or down versus relatively normal markets. The presence of negative and

statistically significant β1 and β2 coefficients should be interpreted as evidence of herd

behavior. Christie and Huang used one or five percent of the observations in the upper

and lower tail of the market return distribution to define extreme price movement days7.

Christie and Huang empirical evidence showed that dispersions increase significantly

during periods of large absolute price changes supporting the predictions of rational

asset pricing models, and suggesting that herd behavior is not an important factor in

determining equity returns during periods of market stress8.

4.3.2 Cross-sectional Absolute Deviation

Chang et al. (2000) proposed an alternative measure of dispersion. The return disper-

sion is measured by the cross-sectional absolute deviation (CSAD):

CSADt =
1

N

N∑
i=1

|Ri,t −Rm,t| (4.3.3)

where N is the number of firms in the portfolio, Ri,t is the observed return on asset

i at time t, and Rm,t is the return on the market portfolio at time t.

TheCSAD is not a measure of herd behavior, instead the relationship between

CSADt and Rm,t is used to detect herd behavior9. In order to detect herd behavior,

Chang et al. proposed the following specification:

6Ibid., p. 32.
7Ibid., p. 33.
8Ibid., pp. 36-37.
9Chang, E. C., Cheng, J.W., Khorana, A. (2000). An examination of herd behavior in equity

markets: An international perspective. Journal of Banking and Finance, 24, p. 1654.
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4. Herding Measures

CSADt = α + γ1|Rm,t|+ γ2R
2
m,t + εt (4.3.4)

Chang et al. noted that rational asset pricing models predict that equity return

dispersions are an increasing and linear function of the market return. If market par-

ticipants tend to follow aggregate market behavior and ignore their private information

during periods of large average price movements, then the relation between dispersion

and market return will no longer be linear and increasing. Instead, the relation could

become non-linearly increasing or even decreasing. For this reason, a non-linear market

return, R2
m,t, is included in the econometric model, and a significantly negative coeffi-

cient γ2 in the empirical test would be consistent with the occurrence of herd behavior.

To allow for the possibility that the degree of herd behavior may be asymmetric in

the up-versus the down-market, Chang et al. run the following empirical specification10

CSADUP
t = α + γUP1 |RUP

m,t|+ γUP2 (RUP
m,t)

2 + εt

CSADDOWN
t = α + γDOWN

1 |RDOWN
m,t |+ γDOWN

2 (RDOWN
m,t )2 + εt

Chang et al. empirical analysis showed that during periods of extreme price move-

ments, equity return dispersions for the US, Hong Kong and Japan actually tend to

increase rather than diminuish, hence providing evidence against the presence of any

herd behavior. However, for South Korea and Taiwan they found evidence of herd

behavior during both extreme up and down price movement days. The differences in

return dispersions across the developed and emerging markets may partly be the result

of incomplete information disclosure in the emerging markets11.

4.3.3 Beta Herding

Hwang and Salmon (2004) developed a new approach to measuring market-wide herding

based on observing deviations from the equilibrium expressed by CAPM prices. By

conditioning on the observed movements in fundamentals it is possible to separate

adjustment to fundamentals news from herd behavior due to market sentiment and

hence extract the latent herding component in observed asset prices.

Beta herding measures the behavior of traders who follow the performance of the

market, or other macroeconomic factors, and hence buy or sell individual assets at the

same time disregarding the underlying risk-return relationship.

10Ibid., p. 1655-57.
11Ibid., p. 1677.

50



4.3. Market-wide herding measures

When investors herd toward the performance of the market portfolio, the CAPM

betas for individual assets will be biased and the cross-sectional dispersion of the indi-

vidual betas smaller than it would be in equilibrium.

Consider the following CAPM in equilibrium

Et[ri,t] = βi,m,tE[rm,t],

where ri,t is the excess return on asset i, rm,t is the excess return on the market

portfolio and βi,m,t is the systematic risk measure.

The conventional CAPM assumes that the betas does not change over time. Al-

though, there is considerable empirical evidence that shows the betas are not constant,

even if this evidence does not suggest that the betas change over time in equilibrium. A

significant proportion of the betas time-variation reflects changes in investor sentiment

and equilibrium betas generally vary very slowly as firms evolve.

When herd behavior arises, market participants’ beliefs shift so as to follow the

performance of the overall market more than they should in equilibrium, they disregard

the equilibrium relationship (β) and will try to harmonise the return on individual

assets with that of the market12.

When there is herd behavior towards the market portfolio and the equilibrium rela-

tionship no longer holds; both the beta and the expectation of the asset i’s return will

be biased. Hwang and Salmon assumes that E[rm,t] is set by a common market-wide

view and the investor first forms a view of the market as a whole and then considers

the value of the individual asset. Then, in the presence of herd behavior towards the

market portfolio, the following relationship is assumed to hold:

Eb
t [ri,t]

Et[rm,t]
= βbi,m,t = βi,m,t − hm,t(βi,m,t − 1)

where Eb
t [ri,t] is the market’s biased short run conditional expectation on the excess

returns of asset i, βbi,m,t is the biased beta of asset i at time t, and hm,t is a latent

herding parameter that changes over time. Note that hm,t process must be stationary

around zero for the CAPM equilibrium to exist.

If hm,t = 0⇒ βbi,m,t = βi,m,t there is no herd behavior, on the contrary if hm,t = 1⇒
βbi,m,t = 1 there is perfect herd behavior toward the market portfolio, in general when

0 < hm,t < 1 some degrees of herd behavior exists.

12Hwang, S. and Salmon, M. (2004). Market stress and herding. Journal of Empirical Finance, 11,
pp. 590-91.
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Consider the case of βi,m,t > 1 and thus Et[ri,t] > Et[rm,t], the equity is herded

toward the market portfolio so that Et[ri,t] > Eb
t [ri,t] > Et[rm,t]. Therefore, the equity

looks less risky than it should. The opposite, if βi,m,t < 113.

As, βi,m,t and hm,t are not observable, Hwang and Salmon proposed to use the

cross-sectional standard deviation of the individual asset betas.

Stdc(β
b
i,m,t) =

√
Ec[(βbi,m,t − Ec[βbi,m,t])2]

=
√
Ec[(βi,m,t − hm,t(βi,m,t − 1)− 1)2] =

√
Ec[(βi,m,t − 1)2](1− hm,t)

Stdc(β
b
i,m,t) = Stdc(βi,m,t)(1− hm,t) (4.3.5)

where Ec[.] and Stdc(.) represents the cross-sectional expectation and standard de-

viation, respectively, and Ec[β
b
i,m,t] = 1.

As Stdc(βi,m,t) can not change significantly within a short time interval, any signif-

icant changes in Stdc(β
b
i,m,t) over a short time period will be attributed to changes in

hm,t
14.

To extract hm,t from Stdc(β
b
i,m,t), Hwang and Salmon took logarithms of equation

(4.3.5)

log[Stdc(β
b
i,m,t)] = log[Stdc(βi,m,t)] + log(1− hm,t)

As Stdc(βi,m,t) can vary slowly, it is assumed:

log[Stdc(βi,m,t)] = µm + νm,t (4.3.6)

where µm = E[log[Stdc(βi,m,t)]] and νm,t ∼ iid(0, σ2
m,v). The model is formalized in

the following state-space form

log[Stdc(β
b
i,m,t)] = µm +Hm,t + νm,t (4.3.7)

Hm,t = φHm,t−1 + ηm,t

whereHm,t = log(1−hm,t), and it follows an autoregressive process, ηm,t ∼ iid(0, σ2
m,η).

The authors estimated the model using the Kalman filter.

13Ibid.
14Ibid. pp. 589-592.
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A significant σ2
m,η can be interpreted as the existence of herd behavior and a signif-

icant φ as a support for this particular autoregressive structure. Another restriction is

that the process of herd behavior should be stationary, hence |φ| < 1 is required.

The Stdc(β
b
i,m,t) is expected to change over time in response to herd behavior in the

market. However, it is necessary to check if the herd behavior extracted from Stdc(β
b
i,m,t)

is robust in the presence of market variables or variables reflecting macroeconomic

fundamentals. If Hm,t becomes insignificant after having included these variables in the

model, then changes in Stdc(β
b
i,m,t) are due to changing in fundamentals instead of herd

behavior.

Some alternative models:

1. This model includes market volatility (σm,t) and returns (rm,t) as independent

variables in the measurement equation,

log[Stdc(β
b
i,m,t)] = µm +Hm,t + cm1lnσm,t + cm2rm,t + νm,t (4.3.8)

Hm,t = φHm,t−1 + ηm,t

2. This model adds SMB and HML factors of Fama and French (1993) as further

independent variables in (4.3.8).

log[Stdc(β
b
i,m,t)] = µm+Hm,t+ cm1lnσm,t+ cm2rm,t+ cm3SMBt+ cm4HMLt+νm,t

(4.3.9)

Hm,t = φHm,t−1 + ηm,t

3. The most general model is given by adding macroeconomic variables, such as the

dividend price ratio (DPt), the relative treasury bill rate (RTBt), the term spread

(TSt), and the default spread (DSt).

log[Stdc(β
b
i,m,t)] = µm +Hm,t + cm1lnσm,t + cm2rm,t+

+cm5DPt + cm6RTBt + cm7TSt + cm8DSt + νm,t (4.3.10)

Hm,t = φHm,t−1 + ηm,t

The measurement of herd behavior towards other factors can be investigated using the

standard linear factor model.

ri,t = αbi,t +
K∑
k=1

βbi,k,tfk,t + εi,t, i = 1, ..., N and t = 1, ..., T
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where αbi,t is an intercept that changes over time, βbi,k,t are the biased coefficients

under herd behavior on factor k at time t, fk,t is the realized value of factor k at time

t, and εi,t is mean zero with variance σ2
ε
15.

Herd behavior towards factor k at time t, hk,t, can then be captured by

βbi,k,t = βi,k,t − hk,t(βi,k,t − Ec[βi,k,t])

Thus, with the same assumption as before, the model can be written:

log[Stdc(β
b
i,k,t)] = µk +Hk,t + νk,t (4.3.11)

Hk,t = φHk,t−1 + ηk,t

where µk = E[log[Stdc(βi,k,t)]] ,ηm,t ∼ iid(0, σ2
m,η), νk,t ∼ iid(0, σ2

k,v), and Hk,t =

log(1− hk,t).16

Hwang and Salmon (2004) applied their approach to the US, and South Korean

stock market and found that herd behavior toward the market portfolio showed signif-

icant movements and persistence even when the level of market volatility and returns

was taken into account. Macro factors were found to offer almost no help in explaining

these herding patterns. They also found evidence of herd behavior towards the market

portfolio both when the market was rising and when it was falling. In addition, they

examined herding relationships between different countries and found that herd behav-

ior towards the market portfolio between US and South Korea was not significantly

correlated. Finally, they have shown that in the US market there were relatively few

periods in the entire sample that herd behavior, while present in the market, was a

major concern.

4.3.4 Quantile Regression

Saastamoinen (2008) investigated herd behavior in the Finland stock market. He ap-

plied the methodology of Chang et al. (2000) to daily closing price quotes for the

large-capital companies in the OMXH.

The main contribution of this paper is the application of quantile regression (QR)

to the analysis of stock returns dispersion. He argued that there are several reasons to

use quantile regression in attempts to detect herd behavior in equity markets. First,

financial data usually are not normally distributed. Second, since the market stress

15Ibid. pp. 592-593.
16Ibid.
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models are prevalent in the empirical literature of herd behavior in financial markets,

QR is a versatile tool in analyzing extreme quantiles of return distribution. Third,

Christie and Huang noted that the method based on CSSD is sensitive to outliers,

while QR is not sensitive to outliers17.

Saastamoinen found statistically significant negative coefficient up to the first quar-

tile (25%) of stock returns distribution. After this, the coefficient remained negative

but statistically insignificant almost up to the median. A possible explanation for this

could be that stock sell-offs disturb the information set of investors, who then cut their

losses or consolidate earnings by selling when other investors sell too. One cause for

this finding could be the observation period, which coincides with an economic expan-

sion and a bull market. Overall, this might constitute the evidence of herd behavior.

However, this is just speculation because there is no control device that would implicate

herd behavior as the causal factor18.

4.4 Cipriani and Guarino (2014)

Cipriani and Guarino (2014) develop a theoretical model of herd behavior in financial

markets that can be estimated with financial market transaction data. This methodol-

ogy permits to measure the quantitative importance of herd behavior, to identify when

it happens, and to assess the informational inefficiency that it generates.

Their theoretical model is built on the work of Avery and Zemsky (1998) (see section

2.5), which shows that herd behavior occurs if there is multidimensional uncertainty

and more precisely when there is event uncertainty in addition to value uncertainty.

Cipriani and Guarino estimated the model using data for a NYSE stock (Ashland

Inc.) in 1995 and identified the periods in each trading day when informed traders herd.

They found that herd behavior was present in the market and fairly pervasive on some

trading days. Moreover, herd behavior generated important informational inefficiencies.

In the following the theoretical model proposed by Cipriani and Guarino (2014) and

its estimation method will be discussed.

4.4.1 The Theoretical Model

An asset is traded by a sequence of traders who interact with a market maker. Trading

days are indexed by d = 1, 2, 3, . . . . Time within each day is discrete and indexed by

17Saastamoinen, J. (2008). Quantile regression analysis of dispersion of stock returns - evidence of
herding?. Discussion Papers, No. 57. University of Joensuu, Economics, p. 10.

18Ibid., p. 14.
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t = 1, 2, 3, . . . .

The fundamental asset value in day d is denoted by Vd. The asset value does not

change during the day but it can change from one day to the next. At the beginning

of the day, the asset value remains the same as in the previous day ( Vd = vd−1) with

probability 1−α , and it changes with probability α. In each day d, the value of the asset

in the previous day d − 1, vd−1 , is known to all market participants. When the asset

value changes from one day to the other, an information event occurred and the asset

value will decrease to vLd = vd−1−λL with probability 1−δ in case of bad informational

event, and increase to vHd = vd−1 + λH with probability δ in case of good informational

event, where λL > 0 and λH > 019. Informational events are independently distributed

over the days of trading. Finally, (1=δ)λL = δλH is assumed to guarantee that the

closing price is a martingale20.

The asset is traded in a specialist market. A market maker, who interacts with a

sequence of traders, set the asset price. At any time t = 1, 2, 3, . . . during the day a

trader is randomly chosen and it can choose among to buy, sell, or not to trade (the

trader’s action space is A = {buy, sell, no trade}). Each trade consists of the exchange

of one unit of the asset for cash. The symbol Xd
t indicates the action of the trader at

time t in day d, and Hd
t is the history of trades and prices until time t− 1 of day d.

At any time t of day d, when the market maker posts the asset prices, he must take

account for the possibility of trading with investors who have some private information

on the asset value. He will set different prices for buying and for selling, thus there will

be a bid-ask spread21. The ask price (the price at which a trader can buy) at time t

is denoted by adt and bdt is the bid price (the price at which a trader can sell) at time

t in day d. Due to (unmodeled) potential competition, the market maker makes zero

expected profits when he sets the ask and bid prices equal to the expected value of the

asset conditional on the information available at time t and on the chosen action

19Cipriani, M., and Guarino, A. (2014). Estimating a structural model of herd behavior in financial
markets. American Economic Review, 104(1), p. 228.

20An adapted process V is a martingale if

E(Vd | Fd−1) = Vd−1

where Vd−1 is known in day d and Fd−1 is the information available at time d−1. As E(Vd | Fd−1) =
(vd−1 + λH)δ + (vd−1 − λL)(1− δ), if V is a martingale it will be verified:

(vd−1 + λH)δ + (vd−1 − λL)(1− δ) = vd−1

the above equation is true if and only if (1=δ)λL = δλH . Thus, this condition guarantees that the
closing price is a martingale.

21Glosten, L. R., and Milgrom, P.R. (1985). Bid, ask, and transaction prices in a specialist market
with heterogeneously informed traders. Journal of Financial Economics, 14(1), pp. 71-100.
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adt = E(Vd |hdt , Xd
t = buy, adt , b

d
t )

bdt = E(Vd |hdt , Xd
t = sell, adt , b

d
t )

There are a countable number of traders. Traders act in an exogenous sequential

order. Each trader is chosen to take an action only once, at time t of day d. Traders can

either be informed or noise. The former have private information on the asset value,

while the latter trade for unmodeled reasons. In no-event days, all traders in the market

are noise traders. In information-event days, at any time t an informed trader is chosen

to trade with probability µ and a noise trader with probability 1−µ, with 0 < µ < 122.

Noise traders buy with probability ε
2
, sell with probability ε

2
, and do not trade with

probability 1=ε (with 0 < ε < 1). Informed traders receive a private signal on the new

asset value and observe the previous history of trades and prices, and the current prices.

The private signal Sdt has the following value-contingent densities

gH(sdt | vHd ) = 1 + τ(2sdt − 1)

gL(sdt | vLd ) = 1− τ(2sdt − 1)

with τ ∈ (0,∞).

Given the value of the asset, the signals Sdt are i.i.d. The signals satisfy the monotone

likelihood ratio property. At each time t, the likelihood ratio after receiving the signal,
Pr(Vd=v

H
d |h

d
t , s

d
t )

Pr(Vd=v
L
d |h

d
t , s

d
t )

=
gH(sdt | vHd )

gL(sdt | vLd )
Pr(Vd=v

H
d |h

d
t )

Pr(Vd=v
L
d |h

d
t )

, is higher than that before receiving the signal

if sdt > 0.5 (“good signal”) and lower if sdt < 0.5 (“bad signal”). The parameter τ

measures the informativeness of the signals. When τ → 0, the densities are uniform,

and the signals are completely uninformative. As τ increases, the signals become more

and more informative. Given that signal structure, informed traders are heterogenous,

since they receive signal realizations with different degrees of informativeness about

the asset fundamental value. In addition to capturing heterogeneity of information

in the market, a linear density function for the signal makes it possible to compute

the traders’ strategies and the market maker’s posted prices analytically. An informed

trader’s payoff function is defined as

22Cipriani, M., and Guarino, A. (2014). art.cit., pp. 230-31.
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U(vd, X
d
t , a

d
t , b

d
t ) =


vd − adt if Xd

t = buy,

0 if Xd
t = no trade,

bdt − vd if Xd
t = sell.

An informed trader finds optimal to buy whenever E(Vd |hdt , sdt ) > adt and to sell

whenever E(Vd |hdt , sdt ) < bdt . He chooses not to trade when bdt < E(Vd |hdt , sdt ) < adt .

Otherwise, he is indifferent between buying and not trading, or selling and not trading.

Moreover, the trading decision of an informed trader can be simply characterized

by two threshold, σdt and βdt . An informed trader will buy for any signal realization

greater than βdt and sell for any signal realization smaller than σdt
23.

Definition 7. An informed trader engages in herd buying at time t of day d if

(i) he buys upon receiving a bad signal,

E(Vd |hdt , sdt ) > adt for s
d
t < 0.5

(ii) the price of the asset is higher than the price at time 1,

pdt = E(Vd |hdt ) > pd1 = vd−1

Similarly, an informed trader engages in herd selling at time t of day d if

(i) he sells upon receiving a good signal,

E(Vd |hdt , sdt ) < bdt for s
d
t > 0.5

(ii) the price of the asset is lower than the price at time 1, 24,

pdt = E(Vd |hdt ) < pd1 = vd−1

In other words, a trader herds when he trades against his own information in order

to conform to the information contained in the history of trades. At any given time t, it

is possible to detect whether an informed trader herds for a positive measure of signals

by simply comparing the two thresholds σdt and βdt to 0.5.

Definition 8. There is herd behavior at time t of day d when there is a positive measure

of signal realizations for which an informed trader either herd buys or herd sells, which

is, when

23Ibid.
24Ibid., p. 232
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σdt > 0.5 or βdt < 0.5.

Figure 4.4.1 and 4.4.2 show an example of herd buy and herd sell in a day with a

good information event25.

Figure 4.4.1: Herd buy

Source: Cipriani and Guarino. (2014), p. 234

Figure 4.4.2: Herd sell

Source: Cipriani and Guarino. (2014), p. 234

The reason why herd behavior occurs is that prices move “too slowly” as buy and

sell orders arrive in the market. Suppose that, at the beginning of an information

event day, there is a sequence of buy orders. Informed traders, knowing that there has

been an information event, attach a certain probability to the fact that these orders

come from informed traders with good signals. However, the market maker attaches a

lower probability to this event, as he takes account for the possibility that there was

no information event and that all the buys came from noise traders. Therefore, after

25Ibid., p. 233
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a sequence of buys, he will update the prices upwards, but by less than the movement

in traders’ expectations. Because traders and the market maker interpret the history

of trades differently, the expectation of a trader with a bad signal may be higher than

the ask price, in which case he herd buys.

As in Avery and Zemsky (1998) in this model herd behavior occurs because of

uncertainty on whether an information event has occurred.

The probability of herd behavior depends on the parameter values. For instance,

when α (the probability of an information event) is close to zero, the market maker has

a strong prior that information events do not occur. He barely updates the prices as

trades arrive in the market, and herd behavior arises as soon as there is an imbalance in

the order flow. On the contrary, if α is close to 1, the market maker and the informed

traders update their beliefs in a similar manner and herd behavior rarely happens26.

4.4.2 Estimation of the Theoretical Model

To estimate the herd behavior model presented above, it is necessary to specify its

likelihood function. Cipriani and Guarino write the likelihood function for the history

of trades only, disregarding bid and ask prices, as in their theoretical model there is

no public information and for this reason, there is a one-to-one mapping from trades

to prices, and adding prices to the likelihood function would be redundant. Remember

also that information events are assumed to be independent and, before the market

opens, market participants have learned the realization of the previous day’s asset

value. Because of this, the probability of the sequence of trades in a day depends only

on the value of the asset that day27. Therefore, the likelihood of a history of trades over

multiple days can be written as

L(Φ;
{
hd
}D
d=1

) = Pr(
{
hd
}D
d=1
|Φ) =

D∏
d=1

Pr(hd|Φ)

where hd is the history of trades at the end of a trading day d, and Φ ≡ {α, δ, µ, τ, ε}
is the vector of parameters.

As the sequence of trades, and not just the number of trades, conveys information,

Cipriani and Guarino focus on the probability of a history of trades in a single day.

Therefore, it is necessary to compute the probability of a history of trades recursively

26Ibid., p. 233-35.
27Ibid.
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Pr(hd|Φ) =
t∏

s=1

Pr(xds|hds, Φ)

where Pr(xdt |hdt , Φ) depends on the measure of informed traders who buy, sell, or

do not trade after a given history of trades hdt . Using the law of total probability, at

each time t, Pr(xdt |hdt , Φ) is computed in the following way:

Pr(xdt |hdt , Φ) = Pr(xdt |hdt , vHd , Φ)Pr(vHd |hdt , Φ)

+Pr(xdt |hdt , vLd , Φ)Pr(vLd |hdt , Φ)

+Pr(xdt |hdt , vd−1, Φ)Pr(vd−1|hdt , Φ)

Consider first the probability of an action conditional on a good-event day in order

to show how to compute these probabilities. For the sake of exposition, let us focus

on the case in which the action is a buy order. As illustrated above, at each time t,

in equilibrium there is a signal threshold βdt such that an informed trader buys for any

signal realization greater than βdt ,

E(Vd|hdt , βdt ) = adt = E(Vd|hdt , Xd
t = buy, adt , b

d
t )

which can be written as

vd−1 + λHPr(vHd |hdt , βdt )− λLPr(vLd |hdt , βdt )

= vd−1 + λHPr(vHd |hdt , buydt )− λLPr(vLd |hdt , buydt )

or, after some manipulation, as28

Pr(vHd |hdt , βdt )− Pr(vLd |hdt , βdt )

=
δ

1− δ
(
Pr(vHd |hdt , buydt )− Pr(vLd |hdt , buydt )

)
(4.4.1)

The probabilities in this equation can easily be expressed as a function of the traders’

and market maker’s beliefs at time t - 1 and of the parameters.

Pr(vHd |hdt , βdt )

28Remember the assumption (1− δ)λL = δλH
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=
gH(βdt | vHd )Pr(vHd |hdt , Vd 6= vd−1)

gH(βdt | vHd )Pr(vHd |hdt , Vd 6= vd−1) + gL(βdt | vLd )Pr(vHd |hdt , Vd 6= vd−1)

and Pr(vHd |hdt , buydt )

=
Pr(buydt | vHd , hdt )Pr(vHd |hdt )

Pr(buydt | vHd , hdt )Pr(vHd |hdt ) + Pr(buydt | vd−1, hdt )Pr(vd−1|hdt ) + Pr(buydt | vLd , hdt )Pr(vLd |hdt )

By substituting these expressions into (4.4.1) βdt can be computed. It is important to

note first that the above expressions themselves contain the probabilities of a buy order

by an informed trader in a good, bad, and no-event day; all these probabilities obviously

depend on the threshold βdt itself (as illustrated below). That is, the threshold is a fixed

point. Second, at time t = 1, the prior beliefs of the traders and of the market maker

are a function of the parameters only. Therefore, it is possible to compute βd1 as the

solution to equation (4.4.1), and from βd1 , the probability of a buy order at time 1. After

observing xd1, the market maker’s and traders’ beliefs are updated, the same procedure

for time 2 is repeated, and βd2 and the probability Pr(buyd2 |xd1, vHd ) are computed. This

procedure is repeated recursively for each time t, always conditioning on the previous

history of trades. Note that in order to maximize the likelihood function, the thresholds

βdt (and the analogous threshold σdt ) have to be computed for each trading time in each

day of trading, for each set of parameter values29.

Once solved for βdt , the probability of a buy order in a good-event day can be

computed. Let us focus on the case in which τ ∈ [0, 1); that is let us concentrate on

the case of bounded beliefs. In this case,

Pr(buydt |hdt , vHd ) = µ
´ 1
βdt

(1 + τ(2sdt − 1))dsdt + (1− µ)
(
ε
2

)

=
(
τ(1− βd2t ) + (1− τ)(1− βdt )

)
µ+ (1− µ)

( ε
2

)
By following an analogous procedure, it is possible to compute σd1 and the probability

of a sell order in a good-event day,

Pr(selldt |hdt , vHd ) =
(

(1− τ)σdt + τσd
2

t

)
µ+ (1− µ)

( ε
2

)
The probability of a no-trade is just the complement to the probabilities of a buy

and of a sell.

29Cipriani, M., and Guarino, A. (2014). art.cit., p. 236-37.
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The analysis for the case of a bad information event (Vd = vLd ) follows the same

steps. The case of a no-event day (Vd = vd−1) is easier, since the probability of a

buy or of a sell is ε
2

and that of a no-trade is 1 − ε. Also the case of unbounded

beliefs, where τ ≥ 1, can be dealt with in a similar manner. The only changes are

the extremes of integration when computing the probability of a trade. Finally, to

compute Pr(xdt |hdt , Φ), the conditional probabilities of Vd given the history until time t

is needed, which is Pr(Vd = v|hdt , Φ) for v = vLd , vd−1, v
H
d . These can also be computed

recursively by using Bayes’s rule.

Then, Cipriani and Guarino estimated the parameters through maximum likelihood,

using both a direct search method (Nelder-Mead simplex) and the Genetic Algorithm30.

30Ibid., p. 238-39.
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Chapter 5

An Estimate for the Italian Stock

Exchange

5.1 Methodology

We use the approach proposed by Hwang and Salmon (2004) (see section 4.3.3) to detect

herd behavior in the Italian stock market in the period from January 1998 to December

2012. We have decided to adopt this measure because of its empirical and theoretical

properties in the sense that this measure automatically conditions on fundamentals and

can also measure herd behavior towards other factors. In addition, the influence of time

series volatility is accounted automatically by this measure.

Firstly, we calculate the OLS estimate of betas using daily data over monthly inter-

vals in the Fama and French three factors model (FF model)

ritd = αit + βimt(rmtd − rftd) + βiStSMBtd + βiHtHMLtd + εitd

where td denotes day d in month t. The estimated betas are then used to create a

monthly time series of the cross section standard deviation of the betas

̂
Stdc(β̂bikt) =

√√√√∑Nt
i=1

(
β̂bikt − β̂bikt

)2
Nt

,

where β̂bikt is the OLS estimate of the biased betas relative to the factor k with

k = m, S, H, β̂bikt = 1
Nt

∑Nt
i=1 β̂

b
ikt and Nt is the number of equities in month t.

Then, we estimate the following state space models by using the Kalman Filter
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log[Stdc(β
b
i,m,t)] = µm +Hm,t + νm,t

Hm,t = φHm,t−1 + ηm,t
(1)

log[Stdc(β
b
i,m,t)] = µm +Hm,t + cm1lnσm,t + cm2rm,t + νm,t

Hm,t = φHm,t−1 + ηm,t
(2)

log[Stdc(β
b
i,m,t)] = µm +Hm,t + cm1lnσm,t + cm2rm,t + cm3SMBt + cm4HMLt + νm,t

Hm,t = φHm,t−1 + ηm,t
(3)

where lnσm,t denotes the log-market volatility calculated using squared daily returns

as in Schwert (1989) and rm,t is the market excess return. The unknown parameters

are estimated by maximum likelihood1.

5.2 Data and Descriptive Statistics

We use daily data from 1 January 1998 to 31 December 2012 to investigate herd behavior

in the Italian Stock Exchange. We have calculated the herding measure considering 262

stocks and we have used the FTSE MIB index and the Bank of Italy BOT to calculate

the excess market return .

As Hwang and Salmon (2004), we have decided to use Fama and French’s SMB and

HML factors. SMB and HML stand for “small [cap] minus big” and “high [book/price]

minus low”, these factors measure the historic excess returns of small caps and high

book-value-to-price ratio stocks over the market as a whole. The SMB and HML factors

are calculated using the method described in Fama and French (1993). At the end of

June every year, all stocks are ranked on size. The market capitalization (ME) median

is used to split the stocks into two groups, small and big (S and B). The stocks are also

split into three book-to-market (BE-ME) equity groups, bottom 30% (Low), middle

40% (Medium) and top 30% (High) of the ranked values of BE-ME. As Fama and

French, we do not use negative-BE firms when calculating the breakpoints for BE-ME

or when forming the size-BE/ME portfolios. Six portfolios are constructed (SL, SM,

SH, BL, BM and BH) from the intersection of the two ME and the three BE-ME groups.

Daily value-weighted returns on the six portfolios are calculated. Then SMB and HML

are obtained as follows
1All the calculations and estimates are made using R. In the estimate of the state space model we

use package dlm.
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SMB =
1

3
(SL+ SM + SH)− 1

3
(BL+BM +BH) ,

HML =
1

2
(SH +BH)− 1

2
(SL+BL) .

Table 5.1 reports some statistical properties of the excess market return and the

SMB and HML factor returns. As can be seen, the three distributions are leptokurtic

and positively skewed (except the market excess return).

Market Excess Return SMB HML

Mean -0.00022 0.00009 0.00076

Standard Deviation 0.01565 0.01233 0.02610

Skewness -0.06751 15.86206 50.98766

Excess Kurtosis 4.31075 634.7973 2976.297

Correlation Matrix
Market Excess Return SMB HML

Market Excess Return 1

SMB -0.53830 1

HML 0.06857 0.50131 1

Table 5.1: Statistical Properties of the Excess Market Returns and Fama-French’s SMB
and HML Factor Returns

5.3 Empirical Results

5.3.1 Properties of the Cross-Sectional Standard Deviations

of Betas

Table 5.2 illustrates some statistical properties of the estimated cross-sectional standard

deviation of the betas.

As can be seen, the
̂

Stdc(β̂bikt) are positively skewed, and leptokurtic. In addition,

the Jarque Bera statistics for normality indicates that the cross-sectional standard de-

viation of betas and their logarithm are not Gaussian, except the Log-cross sectional

standard deviation of betas on HML factor.

5.3.2 Herd Behavior towards the Market Portfolio

We first investigate herd behavior towards the market portfolio in the period from

January 1998 to December 2012. The results of Model 1 are given in the first column

67



5. An Estimate for the Italian Stock Exchange

Cross-Sectional Standard Deviations of OLS Betas

Market Returns SMB HML

Mean 0.9064 1.3195 0.9264

Standard Deviations 0.4158 0.6147 0.2478

Skewness 4.3576 4.6733 1.1747

Excess Kurtosis 31.3046 34.2908 2.4770

Jarque Bera Statistics (p-value) 7919.52 (<2.2e-16) 9474.123 (<2.2e-16) 87.4143 (<2.2e-16)

Log-Cross-Sectional Standard Deviations of OLS Betas

Market Returns SMB HML

Mean -0.1638 0.2130 -0.1094

Standard Deviations 0.3369 0.3299 0.2553

Skewness 1.1388 1.3355 0.1500

Excess Kurtosis 2.9330 3.6858 0.6009

Jarque Bera Statistics (p-value) 103.4253 (<2.2e-16) 155.3972 (<2.2e-16) 3.3831 (0.1842)

Table 5.2: Properties of the Cross-Sectional Standard Deviation of Betas

of Table 5.3, the results of Model 2 and 3 in the second and third column. We can

see immediately that Hmt is highly persistent with φ̂m large and significant and the

proportions of signal are also of a similar order of magnitude indicating that herd

behavior explains around 12% of the total variability in Stdc(β
b
imt). Moreover, the

estimates of σmη (the standard deviation of ηmt ) are significant and thus we can conclude

that there is herd behavior towards the market portfolio.

Model 2 takes the level of market volatility and returns into account. Note that the

significance of the two market variable coefficients should be interpreted as adjustment

in the mean level (µm) of log(Stdc(β
b
imt)) in the measurement equation and not as herd

behavior, this permits us to examine the degree of herd behavior given the state of the

market. The sign of the two coefficients is interesting; in fact log(Stdc(β
b
imt)) decreases

as market volatility rises but increases with the level of market returns. So when the

market becomes riskier and is falling, Stdc(β
b
imt) decreases, while it increases when the

market becomes less risky and rises. Using the definition of herd behavior of Hwang and

Salmon (2004), which is a reduction in Stdc(β
b
imt) due to the Hmt process, these results

suggest that herd behavior is significant and exists independently from and given the

particular state of the market.

Model 3 includes the SMB and HML factors as explanatory variables with results

very similar to those of Models 1 and 2, and the estimated coefficients on SMB and

HML are found not to be significant. The Akaike Information Criterion2 (AIC) selects

Model 2.

2Akaike derived an asymptotically unbiased estimator of expected Kullback-Leibler information as
follows:
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Further, the Jarque Bera normality test illustrates that the residuals of the Kalman

filter are not normal in the three models analysed.

Herd Behavior Towards the Market Portfolio
Period: January 1998 - December 2012

Model 1 Model 2 Model 3
µ -0.125 -0.747 ** -1.452

φ 0.983 ** 0.992 ** 0.998 **

σmv 0.287 ** 0.254 ** 0.264 **

σmη 0.041 ** 0.036 ** 0.037 **

log − V m - -0.115 ** -0.158 **

rm − rf - 26.234 ** 0.108

SMB - - -0.025

HML - - 0.059
σmη

sd

(
Log

(
̂

Stdc(β̂bimt)

)) 0.122 0.107 0.110

Correlation with the

Market Index

0.647 ** 0.709 ** 0.718 **

AIC -237.224 -275.026 -255.721

Jarque Bera Test for
Kalman Filter

residuals

(p-value)

89.082

(<2.2e-16)

580.695

(<2.2e-16)

332.057

(<2.2e-16)

** represents significance at 5% level

Table 5.3: Herd Behavior Towards the Market Portfolio (Jan.1998-Dec.2012)

Figure 5.3.1 shows the evolution of the FTSE MIB and of the herding measure

hmt = (1 − eHmt) calculated with the betas of the FF model using Model 1, 2 and 3.

First, we can note that the difference between Models 1 and 2 does not seem to be

large. In addition, we can see that the largest value of hmt is far less than one (bounded

above roughly by 0.4 and below roughly by -0.8) which indicates that there was never

an extreme degree of herd behavior towards the market portfolio during our sample

period. We should also note that the confidence intervals only indicate two periods in

Model 1 and three periods in Model 2 where herd behavior is significantly different from

zero with a 95% confidence interval. In Model 1 these periods are from January 1998 to

June 1999 and then from May 2010 to the end of the sample, in Model 2 from January

AIC = −2log(L(θ̂) |x) + 2K

where K is the number of parameters. (Anderson, D.R. (2008). Model based inference in the life
sciences - A primer on evidence. Springer, p. 60)

We have not used the second order variant of AIC, AICc = AIC + 2K(K+1)
n−K−1 , as the sample size (n)

is large and there is not a big difference between them.
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5. An Estimate for the Italian Stock Exchange

1998 to January 2000, between August 2003 and January 2008 and then from February

2010 to the end of the sample period. At the beginning of 2009 herd activity began to

decrease and finally adverse herd behavior towards market portfolio took over in June

2009. Differently, in Model 3 hmt is always negative and significantly different from zero

with a 95% confidence interval. The first high level or peak in herd behavior can be

found around the end of 1998 and the beginning of 1999. herd behavior decreases from

1998 to January 2000, then it is almost steady in the period 2000 - 2004 and during

2007 it starts to decrease again.

We can also observe that the correlation between hmt and the FTSE MIB is around

0.65. This means that herd behavior is likely to increase in bull markets and decrease

during periods of bear markets.

Then, we investigate herd behavior towards the market portfolio dividing the sample

period into two sub-periods, from January 1998 to December 2005 and from January

2006 to December 2012. The results of Model 1 are presented in the first two columns

of Table 5.4, the results of Model 2 and 3 are reported from column 3 to 6. As can be

noted, Hmt is highly persistent with φ̂m large and significant in each sub-period. The

proportions of signal in Model 2 and 3 are of a similar order of magnitude and higher in

the first period than in the second, indicating that herd behavior explains around 14%

of the total variability in Stdc(β
b
imt) in the first period and around 12% in the second

interval. Moreover, the estimates of σmη (the standard deviation of ηmt ) are significant

at 10% level in the period from January 1998 to December 2005 and at 5% significance

level in the second sub-period and thus we can conclude that there is herd behavior

towards the market portfolio. Differently, the estimates of σmη are not significant in the

period from January 2006 to December 2012 in Model 1. Another interesting result is

that the correlation of hmt with the FTSE MIB is positive in the second interval, while

it is not significantly different from zero in the first period.

In addition, Model 2 is again selected by the AIC value in the first sub-period, while

Model 3 is chosen for the second sub-period.

Furthermore, the Jarque Bera normality test shows that the residuals of the Kalman

filter are not normal in the three models analysed, with the exception of Model 1 during

the first sub-period.

Figure 5.3.2 displays the evolution of the herd behavior measure hmt calculated with

the betas of the FF model using Models 1, 2 and 3 in the two sub-periods. We can first

note that the difference between the three Models does not seem to be large. In the first

period the confidence intervals indicate that herd behavior is never significantly different

from zero with a 95% confidence interval, except from February 1998 to January 1999 in
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5. An Estimate for the Italian Stock Exchange

Model 1. Differently, in the second period we can see that herd behavior is significantly

different from zero between March 2007 and March 2009 and from April 2012 to the

end of the sample period in Model 1. In Model 2 and 3 herd behavior is significantly

different from zero only at the beginning and at the end of the sample period. As can

be seen from the graph, adverse herd behavior towards market portfolio characterizes

the period from January 2010 to the end of the sample period.

5.3.3 Herd Behavior towards Size Factors

We have also carried out the same analysis in order to investigate herd behavior towards

SMB factor. Table 5.5 reports the maximum likelihood estimates for the state space

model parameters. As can be seen, the standard deviations of the herding error (σSη)

are significantly non-zero for all of the models, suggesting that there was herd behavior

towards SMB in the Italian stock market. Moreover, we can see immediately that HSt

is highly persistent with φ̂St high and significant, herd behavior towards SMB factor

explains nearly 10% of the total variability in Stdc(β
b
iSt). In addition, as in the case

of herd behavior towards the market portfolio, we find that market volatility and the

market return level are significant with negative and positive signs, respectively, while

the coefficients on SMB and HML are not significant in Model 3. Again, the AIC

criterion selects Model 2 as the best model.

Furthermore, the Jarque Bera normality test does not allow us to not reject the null

hypothesis of normality of the Kalman filter residuals in the three models analysed.

Then, we plot herd behavior towards SMB, hSt = (1− eHSt), in Figure 5.3.3. Note

that the herd behavior movements towards SMB obtained from Model 1 and 2 are not

so different from those implied by Model 3. We can see that the largest value of hSt

is far less than one (bounded above roughly by 0.4 and below roughly by -0.6) which

indicates that there was never an extreme degree of herd behavior towards SMB factor

during our sample period. In addition, using a 95% confidence level, we can identify

only few interesting periods with hSt significantly different from zero. In many cases,

these periods are coincident with those of hmt in Figure 5.3.2. These are January 1998

- June 2001, January 2010 - December 2012, and in Model 2 and 3 January 2003 -

June 2006. Thus, when there is herd behavior towards the market portfolio we are also

likely to observe herd behavior towards SMB and vice versa. In fact, as herd behavior

towards the market portofolio, hSt is positive correlated with the FTSE MIB.

Now, we investigate herd behavior towards the SMB factor dividing the sample

period into two sub-periods, from January 1998 to December 2005 and from January

2006 to December 2012. The results of Model 1 are illustrated in the first two columns
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5.3. Empirical Results

Herd Behavior Towards the SMB Factor
Period: January 1998 - December 2012

Model 1 Model 2 Model 3
µ 0.243 -0.186 -0.299

φ 0.990 ** 0.991 ** 0.992 **

σSv 0.276 ** 0.259 ** 0.264 **

σSη 0.031 ** 0.032 ** 0.032 **

log − V m - -0.077 ** -0.099 **

rm − rf - 17.298 ** 0.113

SMB - - -0.053

HML - - 0.010
σSη

sd

(
Log

(
̂

Stdc(β̂biSt)

)) 0.094 0.097 0.097

Correlation with the

Market Index

0.679 ** 0.731 ** 0.745 **

AIC -255.819 -275.026 -261.763

Jarque Bera Test for
Kalman Filter

residuals

(p-value)

186.089

(<2.2e-16)

447.105

(<2.2e-16)

341.966

(<2.2e-16)

** represents significance at 5% level

Table 5.5: Herd Behavior Towards the SMB Factor (Jan.1998-Dec.2012)

of Table 5.6, the results of Model 2 and 3 are reported from columns 3 to 6. As can

be noted, HSt is highly persistent with φ̂S large and significant in each sub-period and

σSη significantly different from zero, except in Model 1 in the period January 2006 -

December 2012. The proportions of signal in Model 2 and 3 are of a similar order

of magnitude and higher in the first period than in the second, indicating that herd

behavior explains around 13% of the total variability in Stdc(β
b
iSt) in the first period

and around 12% in the second interval.

The Jarque Bera normality test suggests that the residuals of the Kalman filter are

not normal in the three models analysed.

Figure 5.3.4 shows the evolution of the herding measure hSt calculated with the

betas of the FF model using Models 1, 2 and 3 in the two sub-periods. We can first

note that the difference between the three Models does not seem to be large. In the

first period the confidence intervals indicate that herd behavior is significantly different

from zero with a 95% confidence interval from June 1998 to May 2000 in Model 1 and

in the period September 1998 - January 2000 in Model 2 and 3. Differently, in the

second period we can see that herd behavior is never significantly different from zero in

Model 1 and between January 2006 and July 2007 and from January 2011 to the end
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of the sample period in Model 2 and 3. The period from January 2010 to the end of

the sample period is characterized by adverse herd behavior towards SMB factor.

Further, herd behavior towards the SMB factor is correlated with the FTSE MIB

with a level around 0.52 in the first period and around 0.60 in the second sub-period.

5.3.4 Herd Behavior towards Value Factors

We have also investigated herd behavior towards HML factor (HHt). Table 5.7 reveals

that there is significant herd behavior in the Italian stock market towards HML. As

opposed to the previous two sets of results, Stdc(β
b
iHt) is now not explained by the level

of market returns. In addition, HHt is highly persistent with a proportion of signal

around 12% in Model 1 and around 15% in Model 2 and 3.

Moreover, the Jarque Bera normality test do not reject the null hypothesis of nor-

mality only for Model 1. Again, Model 2 is selected by the AIC value.

Herd Behavior Towards the HML Factor
Period: January 1998 - December 2012

Model 1 Model 2 Model 3
µ -0.120 * -0.503 ** -0.468 **

φ 0.968 ** 0.958 ** 0.958 **

σHv 0.225 ** 0.216 ** 0.214 **

σHη 0.032 ** 0.039 ** 0.040 **

log − V m - -0.068 ** -0.062 **

rm − rf - 2.501 5.554

SMB - - 10.369

HML - - -3.827
σHη

sd

(
Log

(
̂

Stdc(β̂biHt)

)) 0.125 0.153 0.157

Correlation with the

Market Index

0.389 ** 0.579 ** 0.563 **

AIC -327.970 -333.513 -330.841

Jarque Bera Test for
Kalman Filter

residuals

(p-value)

4.286 (0.117) 9.562 (0.008) 10.015

(0.007)

** represents significance at 5% level, * represents significance at 10% level

Table 5.7: Herd Behavior Towards the HML Factor (Jan.1998-Dec.2012)

Figure 5.3.5 reports the evolution of the herding measure towards the HML factor

hHt = (1 − eHHt) in Model 1, 2 and 3. We can see that there was never an extreme

degree of herd behavior towards HML factor. In fact, using a 95% confidence level, we
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5. An Estimate for the Italian Stock Exchange

can identify only a few interesting periods with hHt significantly different from zero.

These are January 1998 - June 2000, and in Model 2 and 3 also from June 2012 to the

end of the sample period. In addition, the correlation of hHt with the market index is

positive, but less pronounced.

Then, we investigate herd behavior towards the HML factor dividing the sample

period into two sub-periods, from January 1998 to December 2005 and from January

2006 to December 2012. We can easily note that HHt is highly persistent with φ̂H large

and significant and σHη significantly different from zero in the first period, while φ̂H is

not significant in the second sub-period and σHη is significantly different from zero only

in Model 1. These results suggest that there is evidence of herd behavior towards HML

factors only in the first period analysed.

In addition, the Jarque Bera normality test indicates that the residuals of the

Kalman filter are normal only in the second sub-period analysed. Further, the AIC

value selects Model 1 for the first interval and Model 2 for the second one.

Figure 5.3.6. shows the evolution of herd behavior towards the HML factor when

we divide the sample period into two sub-periods. As can be seen, the plot relative to

the second period confirms the evidence of no herd behavior.

5.3.5 Relationship between Herd Behavior towards different

factors

In this section we investigate the relationships between herding patterns towards market

portfolio, SMB and HML. Table 5.9 and 5.10 present the correlation matrices of herd

behavior towards different factors obtained from models selected by the AIC criterion.

As revealed by the data in Table 5.9, hmt is positive correlated to some degree with both

hSt and hHt . An interesting observation is that hmt and hSt show almost perfect positive

correlation. These results suggest that herd behavior towards the market portfolio is

likely to be accompanied by either herd behavior towards SMB or herd behavior towards

HML.

When we divide the sample period into two sub-periods we can immediately note

that from 2006 to 2012 hHt is not correlated with herd behavior towards the other

factors (in fact there was no evidence of herd behavior towards the HML factor in

that period), while in the first sub-period it shows a correlation of nearly 0.90 with

hSt. These results suggest that herd behavior towards HML, when it arises, is likely to

be accompanied by herd behavior towards SMB or herd behavior towards the market

portfolio.
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5. An Estimate for the Italian Stock Exchange

Herding towards Herding towards Herding towards

Market Portfolio SMB factor HML factor

Herding towards Market Portfolio 1

Herding towards SMB factor 0.931 ** 1

Herding towards HML factor 0.453 ** 0.599 ** 1

** represents significance at 5% level

Table 5.9: Correlation between herd behavior towards different factors

I period: January 1998 - December 2005
Herding towards Herding towards Herding towards

Market Portfolio SMB factor HML factor

Herding towards Market Portfolio 1

Herding towards SMB factor 0.426 ** 1

Herding towards HML factor 0.308 ** 0.887 ** 1

II period: January 2006 - December 2012
Herding towards Herding towards Herding towards

Market Portfolio SMB factor HML factor

Herding towards Market Portfolio 1

Herding towards SMB factor 0.985 ** 1

Herding towards HML factor 0.120 0.085 1

** represents significance at 5% level

Table 5.10: Correlation between herd behavior towards different factors (I period: 1998
- 2005, II period: 2006 - 2012)
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5.3. Empirical Results

Figure 5.3.1: Herd Behavior Towards the Market Portfolio (Jan.1998 - Dec.2012)
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5. An Estimate for the Italian Stock Exchange

Figure 5.3.2: Herd Behavior towards the Market Portfolio (Jan.1998 - Dec.2005 and
Jan.2006 - Dec.2012)
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5.3. Empirical Results

Figure 5.3.3: Herd Behavior Towards the SMB Factor (Jan.1998-Dec.2012)
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5. An Estimate for the Italian Stock Exchange

Figure 5.3.4: Herd Behavior towards the SMB Factor (Jan.1998 - Dec.2005 and Jan.2006
- Dec.2012)
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5.3. Empirical Results

Figure 5.3.5: Herd Behavior Towards the HML Factor (Jan.1998-Dec.2012)
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5. An Estimate for the Italian Stock Exchange

Figure 5.3.6: Herd Behavior towards the HML Factor (Jan.1998 - Dec.2005 and
Jan.2006 - Dec.2012)
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Chapter 6

Conclusion

In the recent years there has been many theoretical and empirical contributions into

the causes and effects of herd behavior in financial markets.

The theoretical papers generally offer models that provide an explanation of why

agents can rationally choose to imitate the actions of others. We discussed the papers by

Bikhchandani et al. (1992) and Banerjee (1992). They showed that the herd behavior of

consumers and investors is rational under the condition that other decision makers have

more or more accurate information. In addition, they demonstrated that herd behavior

can lead to an inefficient equilibrium. Zhiyong et al. (2010) showed that herd behavior

does not occur when informed traders and market makers have the same ambiguity

aversion (there is ambiguity when the outcome of an act is uncertain and the probability

distribution of the possible events is unknown). Then, Avery and Zemsky (1998) proved

that herd behavior arises only in the presence of two dimensions of uncertainty. Other

authors, like Kirman (1993) and Lux (1995), dealt with the determinant of the behavior

of traders who do not have access to information about fundamental values.

The empirical papers generally investigate whether too many agents appear to take

the same action. The thesis has analysed some of the available empirical measures

of herding by individuals or small group of investors and measures of market wide

herding. Within the former, we analysed the Lakonishok et al. (1992) criterion which

is based on trades conducted by a subset of market participants over a period of time,

and the portfolio-change measure (PCM) proposed by Wermers (1995), this measure

captures both the direction and intensity of trading by investors. Christie and Huang

(1995) discussed a method for measuring market-wide herding which investigates the

magnitude of cross-sectional standard deviation (CSSD) of individual stock returns

during large price changes. Later, Chang et al. (2000) proposed an alternative measure

of dispersion based on the cross-sectional absolute deviation (CSAD). Recently, a paper
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6. Conclusion

by Cipriani and Guarino (2014) contributed to the reduction of the gap between the

theoretical and empirical literature that exists in this area. Indeed, they proposed an

empirical test of a theoretical model of herd behavior.

In our empirical analysis we applied the approach to measuring and testing herd

behavior proposed by Hwang and Salmon (2004) to investigate herd behavior in the

Italian Stock Exchange for the period January 1998 - December 2012. We decided

to adopt this measure because of its empirical and theoretical properties in the sense

that this measure automatically conditions on fundamentals and can also measure herd

behavior towards other factors, such as the market excess return, SMB and HML factors.

In addition, the influence of time series volatility is accounted automatically by this

measure.

We found that herd behavior towards the market portfolio was significant and per-

sistent independently from and given the particular state of the market as expressed

in market volatility and return. We have also found that herd behavior towards the

market portfolio was positive correlated with the FTSE MIB in the period from Jan-

uary 2006 to December 2012, which means that herd behavior is likely to increase when

the market is rising. Perhaps more importantly, given that herd behavior can lead to

significant mispricing, it is interesting to note that in the Italian stock market there

were only three periods in the sample when herd behavior was statistically significant

and it was never greater than the 40% of its maximum potential value. We have also ex-

amined herd behavior towards SMB and HML factors and found evidence of significant

periods of herd behavior towards SMB factors and evidence of herd behavior towards

HML only in the period January 1998 - December 2005. Further, we have found that

herd behavior towards different factors shows a positive and high correlation coefficient,

which means that for example herd behavior towards the market portfolio is likely to

be accompanied by either herd behavior towards SMB or herd behavior towards HML.

Limitations of the current study are that we have estimated the monthly time series

of the betas with daily return over monthly intervals, a period that is too short to reduce

the influence of unusual good or bad events of the company on the betas. Further, in

our analysis we have found that the majority of the Kalman filter residuals were not

normally distributed. However, it is important to highlight that even when the error

terms are not normally distributed if we restrict the attention to linear estimator the

Kalman filter minimizes the mean square error of the estimate1.

Finally, as a future direction for research, it would be worthwhile to use a robust

1Hamilton, J. D. (1994). State-space models. In R. F. Engle and D. L. McFadden (Eds.), Handbook
of econometrics (Vol. IV, Chap. 50). Elsevier Science B.V., p. 3053.

86



regression approach to calculate the betas and to use a non-Gaussian and nonlinear

state space model to investigate herd behavior in financial markets.
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Chapter 7

Appendix A

7.1 Kalman Filter

Filtering aims to update the knowledge about the system as each observation yt comes

in. On the other hand, smoothing allow to base the estimation of quantities of interest

on the entire sample y1, ..., yn.

Consider the linear Gaussian state space model

yt = Ztαt + εt εt ∼ N(0, Ht), (7.1.1)

αt+1 = Ttαt +Rtηt ηt ∼ N(0, Qt), α1 ∼ N(a1, P1), (7.1.2)

where yt is a p × 1 vector of observations and αt is an unobserved m × 1 vector.

Equation 7.1.1 is called the observation equation, whereas equation 7.1.2 is called the

state equation. The matrices Zt, Tt, Rt, Ht and Qt are assumed to be known and

the error terms εt and ηt are assumed to be serially independent and independent of

each other at all time points. Moreover, the initial state vector α1 is assumed to be

independent of ε1, ..., εn and η1, ..., ηn
1.

The objective of the Kalman filter is to obtain the conditional distribution of αt+1

given Yt for t = 1, ..., n where Yt = {y1, ..., yn} . Since all distributions are assumed to

be normal, the conditional distribution of αt+1 given Yt will be normal.

It is assumed that αt given Yt−1 is N(at, Pt). Now at+1 and Pt+1 are calculated

recursively from at and Pt.

at+1 = E[Ttαt +Rtηt |Yt] = TtE[αt |Yt], (7.1.3)
1Durbin, J. and Koopman, S.J. (2001). Time series analysis by state space methods. Oxford

University Press, p. 38.
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7. Appendix A

Pt+1 = V ar(Ttαt +Rtηt |Yt) = TtV ar(αt |Yt)T ′t +RtQtR
′
t, (7.1.4)

Define the one-step forecast error of yt given Yt−1, vt = yt − E[yt |Yt−1] = yt −
E[Ztαt + εt |Yt−1] = yt − Ztat.

E[αt |Yt] = E[αt |Yt−1, vt] = E[αt |Yt−1] + Cov(αt, vt)[V ar(vt)]
−1vt =

= at +MtF
−1
t vt, (7.1.5)

where

Mt = Cov(αt, vt) = E[(αt − at)(Ztαt + εt − Ztat)′ |Yt−1]

= E[(αt − at)(αt − at)′Z ′t |Yt−1] = PtZ
′
t

and

Ft = V ar(vt) = V ar(Ztαt + εt − Ztat) = ZtPtZ
′
t +Ht

Ft it is assumed non singular. Substituting (7.1.5) in (7.1.3) gives

at+1 = Tt(at +MtF
−1
t vt) = Ttat +Ktvt, (7.1.6)

with Kt = TtMtF
−1
t = TtPtZ

′
tF
−1
t .

V ar(αt |Yt) = V ar(αt |Yt−1, vt) = V ar(αt |Yt−1)−Cov(αt, vt)[V ar(vt)]
−1Cov(αt, vt)

′ =

= Pt −MtF
−1
t M ′

t = Pt − PtZ ′tF−1t ZtPt. (7.1.7)

substituting in (7.1.4) gives

Pt+1 = Tt(Pt − PtZ ′tF−1t ZtPt)T
′
t +RtQtR

′
t = TtPtL

′
t +RtQtR

′
t, (7.1.8)

with Lt = Tt −KtZt.

The recursion (7.1.8) and (7.1.6) constitute the Kalman filter for the model2.

When the observations are univariate, the standardized innovations, defined by v̄t =

vt/
√
Ft , are a Gaussian white noise. Hence, if the model is correct, the sequence

v̄1, ..., v̄t computed from the data should look like a sample of size t from a standard

2Ibid., pp. 64-67.
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normal distribution3. However, it is important to note that when the error terms are

not normally distributed and we restrict the attention to estimates which are linear

in the yt’s the Kalman filter minimizes the mean square error of the estimate of each

component of αt+1
4.

It was assumed that the matrices Zt, Tt, Rt, Ht, Qt and a1, P1 were known, however

in practical works the model usually depends on unknown parameters. These param-

eters can be estimated by maximum likelihood. For the linear Gaussian model the

likelihood function can be calculated by a routine application of the Kalman filter5.

Here, the log-likelihood function

logL(y) = −np
2
log2π − 1

2

n∑
t=1

(
log|Ft|+ v′tF

−1
t vt

)
.

7.1.1 State smoothing

Smoothing enables us to estimate αt given the entire sample y1, ..., yn. The vector y

is used to denote the stacked vector (y′1, ..., y
′
n)′, note that y is fixed when Yt−1 and

vt, ..., vn are fixed. Therefore we have

α̂t = E[αt | y] = E[αt |Yt−1, vt, ..., vn]

= at +
n∑
j=t

Cov(αt, vj)F
−1
j vj, (7.1.9)

for t = 1, ..., n, with Cov(αt, vj) = Cov(αt, v
′
j) = E[αt(Zj(αj−aj)+εj)′] = E[αt(αj−

aj)
′]Z ′j, j = t, ..., n.

Moreover,

E[αt(αt − at)′] = E {E[αt(αt − at)′ | y]} = Pt

E[αt(αt+1 − at+1)
′] = E {E[αt(Ttαt +Rtηt − Ttat −Ktvt)

′ | y]} =

= E {E[αt(Ttαt +Rtηt − Ttat −KtZt(αt − at)−Ktεt)
′ | y]} =

= E {E[αt(Lt(αt − at) +Rtηt −Ktεt)
′ | y]} = PtL

′
t

3Petris, G., Petrone S., and Campagnoli, P. (2007). Dynamic linear model with R. Springer.
4Hamilton, J. D. (1994). op.cit., p. 3053.
5Durbin, J. and Koopman, S.J. (2001). op.cit., p. 138.
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...

E[αt(αn − an)′] = PtL
′
t...L

′
n−1.

Substituting in (7.1.9) gives

α̂n = an + PnZ
′
nF
−1
n vn,

α̂n−1 = an−1 + Pn−1Z
′
n−1F

−1
n−1vn−1 + Pn−1L

′
nZ
′
nF
−1
n vn,

α̂t = at + PtZ
′
tF
−1
t vt + PtL

′
tZ
′
t+1F

−1
t+1vt+1 + ...+ PtL

′
t...L

′
n−1Z

′
nF
−1
n vn,

The smoothed state vector can be expressed as follows

α̂t = at + Ptrt−1 (7.1.10)

where rt−1 = Z ′tF
−1
t vt + L′tZ

′
t+1F

−1
t+1vt+1 + ...+ L′tL

′
t+1...L

′
n−1Z

′
nF
−1
n vn

6.

6Durbin, J. and Koopman, S.J. (2001). pp. 70-71.
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