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Abstract— The fundamental nature of sliding mode control
is described. Emphasis is placed upon presenting a constructive
theoretical framework to facilitate practical design. The devel-
opments are illustrated with numerical examples throughout.

I. INTRODUCTION

Sliding mode control evolved from pioneering work in
the 1960’s in the former Soviet Union [1], [2], [3], [4].
It is a particular type of Variable Structure System (VSS)
which is characterised by a number of feedback control
laws and a decision rule. The decision rule, termed the
switching function, has as its input some measure of the
current system behaviour and produces as an output the
particular feedback controller which should be used at that
instant in time. In sliding mode control, Variable Structure
Control Systems (VSCS) are designed to drive and then
constrain the system state to lie within a neighbourhood of
the switching function. One advantage is that the dynamic be-
haviour of the system may be directly tailored by the choice
of switching function - essentially the switching function is
a measure of desired performance. Additionally, the closed-
loop response becomes totally insensitive to a particular class
of system uncertainty. This class of uncertainty is called
matched uncertainty and is categorised by uncertainty that is
implicit in the input channels. Large classes of problems of
practical significance naturally contain matched uncertainty,
for example, mechanical systems [5], [6], and this has fuelled
the popularity of the domain.

A disadvantage of the method has been the necessity to
implement a discontinuous control signal which, in theoreti-
cal terms, must switch with infinite frequency to provide total
rejection of uncertainty. Control implementation via approx-
imate, smooth strategies is widely reported [7], but in such
cases total invariance is routinely lost. There are some impor-
tant application domains where a switched control strategy
is usual and desirable, for example, in power electronics,
and many important applications and implementations have
been developed [8],[9],[10]. More recent contributions have
extended the sliding mode control paradigm and introduced
the concept of higher order sliding mode control where one
motivation is to seek a smooth control that will naturally and
accurately encompass the benefits of the traditional approach
to sliding mode control [11].

A simple example is the scaled pendulum

ÿ =−a1 sin(y)+u (1)
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where y denotes the angular position and u denotes the
control, or torque, applied at the suspension point. The scalar
a1 is positive and when a1 = 0 the dynamics (1) collapse to
the case of a nominal double integrator. An alternative inter-
pretation of equation (1) is that the case a1 = 0 corresponds
to a nominal system and the term −a1 sin(y) corresponds to
bounded uncertainty within the nominal dynamics. Define
a switching function, s which represents idealised dynamics
corresponding to a first order system with a pole at −1

s = ẏ+ y (2)

In the sliding mode, when s = 0, the dynamics of the
system are determined by the dynamics ẏ=−y, a free system
where the initial condition is determined by (y(ts), ẏ(ts)),
where ts is the time at which the sliding mode condition,
s = 0 is reached. Defining the sliding mode dynamics by
selecting an appropriate sliding surface is termed as solving
the existence problem. A control to ensure the desired sliding
mode dynamics are attained and maintained is sought by
means of solving the reachability problem. A fundamental
requirement is that the sliding mode dynamics must be
attractive to the system state and there are many reachability
conditions defined in the literature [3], [4], [12]. Using the
so called η−reachbility condition:

sṡ <−η |s| (3)

it is straightforward to verify that the control

u =−ẏ−ρsgn(s) (4)

for ρ > a1 +η where η is a small positive design scalar
ensures the reachability condition is satisfied. Figure 1 shows
the response of the system (1) with the control (4) in the
nominal case of the double integrator, when a1 = 0 and
in the case of the pendulum, when a1 = 1. The transient
onto the desired sliding mode dynamic is different in each
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Fig. 1: Phase plane portrait showing the response of the
double integrator (a1 = 0) and the scaled pendulum system
(a1 = 1) with initial conditions y(0) = 1, ẏ(0) = 0.1
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case, but once the sliding mode is reached both systems
exhibit the dynamics of the free first order system with a
pole at −1. Note that the trajectories appear smooth as the
discontinuous sgn(s) function in (4) is approximated by the
smooth approximation s

|s|+δ where δ > 0 is small and in the
simulations was taken as δ = 0.01.

This tutorial paper seeks to introduce sliding mode control.
Particular emphasis is placed on describing constructive
frameworks to facilitate sliding mode control design. The
paper is structured as follows. Section II formulates the
classical sliding mode control paradigm in a state space
framework and introduces some of the defining characteris-
tics of the approach. A framework for synthesis of classical
sliding mode controllers is described in Section III and
Section IV presents a tutorial design example. Section V
introduces the concepts of higher order sliding mode control.

II. CLASSICAL SLIDING MODE CONTROL

Consider the following uncertain dynamical system

ẋ(t) = Ax(t)+Bu(t)+ f (t,x,u)

y(t) = Cx(t) (5)

where x ∈ IRn, u ∈ IRm and y ∈ IRp with m ≤ p ≤ n rep-
resent the usual state, input and output. The exposition is
deliberately formulated as an output feedback problem in
order to describe the constraints imposed by the availability
of limited state information but the analysis collapses to state
feedback when C is chosen as the identity matrix. Assume
that the nominal linear system (A,B,C) is known and that the
input and output matrices B and C are both of full rank. The
system nonlinearities and model uncertainties are represented
by the unknown function f : IR+× IRn× IRm → IRn, which is
assumed to satisfy the matching condition whereby

f (t,x,u) = Bξ (t,x,u) (6)

The bounded function ξ : IR+× IRn× IRm → IRm satisfies

∥ξ (t,x,u)∥< k1∥u∥+α(t,y) (7)

for some known function α : IR+× IRp → IR+ and positive
constant k1 < 1. The intention is to develop a control law
which induces an ideal sliding motion on the surface

S = {x ∈ IRn : FCx = 0} (8)

for some selected matrix F ∈ IRm×p. A control law compris-
ing linear and discontinuous feedback is sought

u(t) =−Gy(t)−νy (9)

where G is a fixed gain matrix and the discontinuous vector
is given by

νy =

{
ρ(t,y) Fy(t)

∥Fy(t)∥ if Fy ̸= 0
0 otherwise

(10)

where ρ(t,y) is some positive scalar function.
The motivating example presented in Section I clearly

demonstrates that two systems with different dynamics, the
double integrator and the scaled pendulum, exhibit the same

first order dynamics when in the sliding mode. It is thus
intuitively obvious that the effective control action experi-
enced by what are two different plants must be different. The
so-called equivalent control represents this effective control
action which is necessary to maintain the ideal sliding motion
on S . The equivalent control action is not the control action
applied to the plant but can be thought of as representing,
on average, the effect of the applied discontinuous control.

To explore the concept of the equivalent control more
formally, consider equation (5) and suppose at time ts the
systems states lie on the surface S defined in (8). It is
assumed an ideal sliding motion takes place so that FCx(t) =
0 and ṡ(t) = FCẋ(t) = 0 for all t ≥ ts. Substituting for ẋ(t)
from (5) gives

Sẋ(t) = FCAx(t)+FCBu(t)+FC f (t,x,u) = 0 (11)

for all t ≥ ts. Suppose the matrix FC is such that the square
matrix FCB is nonsingular. This does not present problems
since by assumption B and C are full rank and F is a design
parameter that can be selected. The corresponding equivalent
control associated with (5) which will be denoted as ueq to
demonstrate that it is not the applied control signal, u, is
defined to be the solution to equation (11):

ueq(t) = −(FCB)−1FCAx(t)−ξ (t,x,u) (12)

from (6). The necessity for FCB to be nonsingular ensures
the solution to (11), and therefore the equivalent control, is
unique. The ideal sliding motion is then given by substituting
the expression for the equivalent control into equation (5):

ẋ(t) =
(
In −B(FCB)−1FC

)
Ax(t) (13)

for all t ≥ ts and FCx(ts) = 0. The corresponding motion is
independent of the control action and it is clear that the effect
of the matched uncertainty present in the system has been
nullified. The concept of the equivalent control enables the
inherent robustness of the sliding mode control approach to
be understood and it is clear from (12) why the total insen-
sitivity to matched uncertainty holds when sliding motion
is exhibited. Reconsider the perturbed double integrator in
equation (1), this time it will be assumed that a1 = 0 and that
the system is subject to the persisting external perturbation
−0.1sin(t). Figure 2 shows a plot of 0.1sin(t) in relation to
the smooth control signal applied to the plant. It is seen that
the applied (smooth) control signal replicates very closely
the applied perturbation, even though the control signal is
not constructed with a priori knowledge of the perturbation.
This property has resulted in great interest in the use of
sliding mode approaches for condition monitoring and fault
detection [13]. A key feature of the sliding mode control
approach is the ability to specify desired plant dynamics by
choice of the switching function. Whilst sliding s = FCx = 0
for all t > ts and it follows that exactly m of the states can be
expressed in terms of the remaining n−m. It can be shown
that the matrix (13) defining the equivalent system dynamics
has at most n − m nonzero eigenvalues and these are the
poles of the reduced order dynamics in the sliding mode.
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Fig. 2: The relationship between the smooth control signal
applied and the external perturbation once the sliding mode
is reached

An alternative interpretation is that the poles of the sliding
motion are the invariant zeros of the triple A,B,FC.

III. CANONICAL FORM FOR DESIGN

This section will consider synthesis of a sliding mode
control for the system in (5). It is assumed that p ≥ m
and rank(CB) = m where the rank restriction is required for
existence of a unique equivalent control. The first problem
which must be considered is how to choose F so that the
associated sliding motion is stable. A control law will then
be defined to guarantee the existence of a sliding motion.

A. Switching Function Design

In view of the fact that the outputs will be considered, it
is first convenient to introduce a coordinate transformation
to make the last p states of the system the outputs. Define

Tc =

[
NT

c
C

]
(14)

where Nc ∈ IRn×(n−p) and its columns span the null space of
C. The coordinate transformation x 7→ Tcx is nonsingular by
construction and, as a result, in the new coordinate system

C =
[

0 Ip
]

From this starting point a special case of the so-called
regular form defined for the state feedback case [14] will
be established. Suppose

B =

[
Bc1
Bc2

]
↕n−p

↕p

Then CB = Bc2 and so by assumption rank(Bc2) = m. Hence
the left pseudo-inverse B†

c2 = (BT
c2Bc2)

−1BT
c2 is well defined

and there exists an orthogonal matrix T ∈ IRp×p such that

T TBc2 =

[
0

B2

]
(15)

where B2 ∈ IRm×m is nonsingular. Consequently, the coordi-
nate transformation x 7→ Tbx where

Tb =

[
In−p −Bc1B†

c2
0 T T

]
(16)

is nonsingular and the triple (A,B,C) is in the form

A =

[
A11 A12
A21 A22

]
B =

[
0

B2

]
C =

[
0 T

]
(17)

where A11 ∈ IR(n−m)×(n−m) and the remaining sub-blocks in
the system matrix are partitioned accordingly. Let

p−m↔ m↔[
F1 F2

]
= FT

where T is the matrix from equation (15). As a result

FC =
[

F1C1 F2
]

(18)

where

C1
∆
=

[
0(p−m)×(n−p) I(p−m)

]
(19)

Therefore FCB=F2B2 and the square matrix F2 is nonsingu-
lar. By assumption the uncertainty is matched and therefore
the sliding motion is independent of the uncertainty. In
addition, because the canonical form in (17) can be viewed
as a special case of the regular form normally used in
sliding mode controller design, the reduced-order sliding
motion is governed by a free motion with system matrix
As

11
∆
=A11 −A12F−1

2 F1C1 which must therefore be stable. If
K ∈ IRm×(p−m) is defined as K = F−1

2 F1 then

As
11 = A11 −A12KC1 (20)

and the problem of hyperplane design is equivalent to a
static output feedback problem for the triple (A11,A12,C1).
Appealing to established results from the wider control
theory, it is necessary that the pair (A11,A12) is controllable
and (A11,C1) is observable. It is straightforward to verify that
(A11,A12) is controllable if the nominal matrix pair (A,B)
is controllable. To investigate the observability of (A11,C1)
partition the submatrix A11 so that

A11 =

[
A1111 A1112
A1121 A1122

]
(21)

where A1111 ∈ IR(n−p)×(n−p) and suppose the matrix pair
(A1111,A1121) is observable. It follows that

rank
[

zI −A11
C1

]
= rank

 zI −A1111 A1112
A1121 zI −A1122

0 Ip−m


= rank

[
zI −A1111

Ao
1121

]
+(p−m)

for all z ∈ C and hence from the Popov-Belevitch-Hautus
(PBH) rank test and using the fact that (A1111,A1121) is
observable, it follows that

rank
[

zI −A11
C1

]
= n−m

for all z ∈ C and hence (A11,C1) is observable. If the
pair (A1111,A1121) is not observable then there exists a



Tobs ∈ IR(n−p)×(n−p) which puts the pair into the following
observability canonical form:

TobsA1111T−1
obs =

[
Ao

11 Ao
12

0 Ao
22

]
A1121T−1

obs =
[

0 Ao
21

]
where Ao

11 ∈ IRr×r, Ao
21 ∈ IR(p−m)×(n−p−r), the pair (Ao

22,A
o
21)

is completely observable and r ≥ 0 represents the number
of unobservable states of (A1111,A1121). The transformation
Tobs can be embedded in a new state transformation matrix

Ta =

[
Tobs 0

0 Ip

]
(22)

which, when used in conjunction with Tc and Tb from
equations (14) and (16), generates the required canonical
form.

1) Canonical Form for Sliding Mode Control Design:
Let (A,B,C) be a linear system with p > m and rank(CB) =
m. Then a change of coordinates exists so that the system
triple with respect to the new coordinates has the following
structure:

• The system matrix can be written as

A f =

[
A11 A12
A21 A22

]
(23)

where A11 ∈ IR(n−m)×(n−m) and the sub-block A11 when
partitioned has the structure

A11 =

 Ao
11 Ao

12
0 Ao

22
Am

12

0 Ao
21 Am

22

 (24)

where Ao
11 ∈ IRr×r, Ao

22 ∈ IR(n−p−r)×(n−p−r) and Ao
21 ∈

IR(p−m)×(n−p−r) for some r ≥ 0 and the pair (Ao
22,A

o
21)

is completely observable.
• The input distribution matrix has the form

B f =

[
0

B2

]
(25)

where B2 ∈ IRm×m and is nonsingular.
• The output distribution matrix has the form

C f =
[

0 T
]

(26)

where T ∈ IRp×p and is orthogonal.
In the case where r > 0, it is necessary to construct a
new system (Ã11, B̃1,C̃1) which is both controllable and
observable with the property that

λ (As
11) = λ (Ao

11)∪λ (Ã11 − B̃1KC̃1)

Partition the matrices A12 and Am
12 as follows

A12 =

[
A121
A122

]
and Am

12 =

[
Am

121
Am

122

]
(27)

where A122 ∈ IR(n−m−r)×m and Am
122 ∈ IR(n−p−r)×(p−m). Form

a new sub-system (Ã11,A122,C̃1) where

Ã11
∆
=

[
Ao

22 Am
122

Ao
21 Am

22

]
C̃1

∆
=

[
0(p−m)×(n−p−r) I(p−m)

]
(28)

The spectrum of Ao
11 represents the invariant zeros of the

nominal system (A,B,C).
From discussion of the canonical form it follows that there

exists a matrix F defining a surface S which provides a
stable sliding motion with a unique equivalent control if and
only if

• the invariant zeros of (A,B,C) lie in C−
• the triple (Ã11, B̃1,C̃1) is stabilisable by output feedback.

The first condition ensures that any invariant zeros, which
will appear within the poles of the reduced order sliding
motion, are stable. The second condition ensures the reduced
order sliding mode dynamics are rendered stable by the
choice of sliding surface. Although these conditions may
appear restrictive, techniques such as sliding mode differ-
entiators [15], or other soft sensors, and the availability of
inexpensive hardware sensors can be helpful in ensuring
sufficient information is available to tailor the reduced order
dynamics in the sliding mode.

B. Reachability of the Sliding Mode

Having established a desired sliding mode dynamics by
selecting K1 ∈ IRm′×(p−m) such that Ã11 − B̃1K1C̃1 is stable
and providing any invariant zeros are stable, it follows that

λ (A11 −A12KC1) = λ (Ao
11)∪λ (Ã11 − B̃1K1C̃1)

and so the matrix A11 −A12KC1 determining the dynamics
in the sliding mode is stable. Choose

F = F2
[

K Im
]

T T

where nonsingular F2 ∈ IRm×m must be selected. Introduce a
nonsingular state transformation x 7→ T̄ x where

T̄ =

[
I(n−m) 0
KC1 Im

]
(29)

and C1 is defined in (19). In this new coordinate system the
system triple (Ā, B̄,FC̄) has the property that

Ā =

[
Ā11 Ā12
Ā21 Ā22

]
B̄ =

[
0

B2

]
FC̄ =

[
0 F2

]
(30)

where Ā11 = A11 −A12KC1 and is therefore stable. An alter-
native description is that by an appropriate choice of F a
new square system (Ā, B̄,FC̄) has been synthesised which is
minimum phase and relative degree 1.

Let P be a symmetric positive definite matrix partitioned
conformably with the matrices in (30) so that

P =

[
P1 0
0 P2

]
(31)

where the symmetric positive definite sub-block P2 is a
design matrix and the symmetric positive definite sub-block
P1 satisfies the Lyapunov equation

P1Ā11 + ĀT
11P1 =−Q1 (32)



for some symmetric positive definite matrix Q1. If F ∆
=BT

2P2
then the matrix P satisfies the structural constraint PB̄ =
C̄TFT For notational convenience let

Q2
∆
= P1Ā12 + ĀT

21P2 (33)

Q3
∆
= P2Ā22 + ĀT

22P2 (34)

and define

γ0
∆
= 1

2 λmax
(
(F−1)T(Q3 +QT

2Q−1
1 Q2)F−1) (35)

The symmetric matrix L(γ) ∆
=PA0 + AT

0P where A0 = Ā −
γB̄FC̄ is negative definite if and only if γ > γ0. A control
law to induce sliding on S is given by equations (9-10) with
G= γF and γ > γ0 where γ0 is defined in (35). The uncertain
system (5) is quadratically stable and an ideal sliding motion
is induced on S .

IV. NUMERICAL EXAMPLE
Consider the nominal linear system representing the longi-

tudinal dynamics of a fixed wing Unmanned Aerial Vehicle
(UAV) developed for medium-range autonomous flight mis-
sions including search and rescue, weather monitoring, aerial
photography and reconnaissance [16]. The states represent
deviations from nominal forward speed u (m/s), vertical
velocity w (m/s), pitch rate q (rad/s) and pitch angle θ(rad)
and the control signal is the elevator deflection η (rad) [16]:

A =


−0.218 −0.225 4.990 −9.184
−0.137 −0.233 10.592 −2.984

0.009 −0.070 −3.282 −0.566
0 −0.002 0.969 −0.014


BT =

[
1.754 2.301 −4.741 −0.063

]
(36)

The poles of the open-loop system are located at
−2.778,−0.044± 0.1587 j,−0.881. Consider first the situ-
ation where the pitch angle, θ only is measured.

Cθ =
[

0 0 0 10
]

(37)

In this case a single-input single-output system results and
there are no degrees of freedom available to design the
sliding surface, which in this case is wholly defined by the
output equation. The dynamics in the sliding mode are given
by the transmission zeros of the triple (A,B,Cθ ) which can
be computed to be −76.331,−0.419,−0.056.

Consider now the case where both u and θ are measured:

Cu,θ =

[
1 0 0 0
0 0 0 10

]
(38)

In this case the system has no transmission zeros, the number
of measurements exceeds the number of controls and there
is some design freedom available to tailor the sliding mode
dynamics. In the canonical form (23-26)

A f =


0.091 −8.832 −0.739 −22.594
0.592 0.279 −2.292 1.157

0. 10.803 −0.329 27.555
−0.194 −1.429 0.879 −3.788


BT

f =
[

0 0 0 −1.864
]

C f =

[
0 0 0.338 −0.941
0 0 0.941 0.338

]
(39)
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Fig. 3: Variation in the closed-loop poles with the switching
surface parameter K

From (23) and (28)

A11 =

 0.091 −8.832 −0.739
0.592 0.279 −2.292

0 10.803 −0.329


AT

12 =
[
−11.401 27.719 3.106

]
C1 =

[
0 0 1

]
(40)

The design requirement is to determine K such that
A11 − A12KC1 has desired dynamics. The root locus plot
for the sub-system (40) is shown in Figure 3. The loca-
tion of the open-loop pole at −0.140 which moves to the
zero at 0.140 limits the acceptable dynamic performance;
as gain is increased the system becomes unstable. Select-
ing K = 1 prescribes the poles of the sliding motion at
−0.1149,−1.1043,−26.2944 and thus improves the stability
margin of the initial design whilst reducing the speed of the
fastest pole. In the original coordinates

F =
[

11.252−23.832
]

(41)

Figure 4 show the response of θ , η and s using the control
(9-10) with G = γF and γ = 123.0.
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V. HIGHER ORDER SLIDING MODES

Thus far the focus has been on enforcing a sliding mode on
S by applying a discontinuous injection to the ṡ dynamics.
As has been previously mentioned, a key disadvantage is
the fundamentally discontinuous control signals result. The
concept of Higher Order Sliding Modes (HOSM) generalise
the sliding mode control concept so that the discontinuity
acts on higher order derivatives of s and the applied control is
smooth. In general, if the control appears on the rth derivative
of s, the rth order ideal sliding mode is defined by:

s = ṡ = s̈ = ....= s(r−1) = 0 (42)

In fact if the control is implemented with sample period
T , | s |= O(T r),...| s(r−1) |= O(T r). The total invariance to
matched uncertainty exhibited by the traditional sliding mode
control holds for higher order sliding modes as well as finite
time convergence to the sliding surface. Perhaps the most
commonly implemented higher order sliding mode control is
the super-twisting algorithm which is a second order sliding
mode control. Consider the sliding variable dynamics

ṡ = ϕ(s, t)+ γ(s, t)ust (43)

with |ϕ | ≤ Φ and 0 ≤ Γm ≤ γ(s, t)≤ ΓM . The super-twisting
controller is defined by

ust = u1 +u2 (44)

u̇1 =

{
−ust if |ust |>U
−W sgn(s) if |ust | ≤U

u2 =

{
−λ |s0|0.5sgn(s) if |s|> s0

−λ |s|0.5sgn(s) if |s| ≤ s0

The constants W and λ satisfy

W >
Φ
Γm

λ 2 ≥ 4Φ
Γ2

m

ΓM(W +Φ)

Γm(W −Φ)
(45)

with U the maximum magnitude of the control and s0 a
boundary layer around the sliding surface s. For the scaled
pendulum system (1) with sliding surface (2):

ṡ = ẏ−a1 siny+u (46)

Define
u =−ẏ+ust (47)

With a1 = 1, Φ= 1.1, ΓM = 1.1 and Γm = 0.9, the parameters
in the super-twisting algorithm are selected as λ = 79.5, W =
1.3, U = 10 and s0 = 0.01 and the phase portrait is as shown
in Figure 5.

VI. CONCLUSIONS

This paper has introduced sliding mode control. Canonical
forms to facilitate design have been described and numerical
examples have been presented to reinforce the theoretical
discussions. Due to space available much has been omitted.
Of particular importance is the case of digital implementa-
tion, or indeed digital design, of sliding mode controllers. In
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Fig. 5: Phase plane portrait of (1) with a1 = 1, y(0) =
1, ẏ(0) = 0.1 and the super-twisting controller

continuous time, discontinuous control strategies fundamen-
tally rely upon very high frequency switching to ensure the
sliding mode is attained and maintained. The introduction of
sampling is disruptive. For example, switching of increasing
amplitude can take place about the sliding surface. Reviews
of the discrete time sliding mode control paradigm can be
found in [17] [18].
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