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Abstract 
Parameter-dependent control techniques are applied to a vectored thrust, ducted fan 
engine. The synthesis technique is based on the solution of Linear Matrix Inequalities 
and produces a controller which achieves specified performance against the worst- 
case time variation of measurable parameters entering the plant in a linear fractional 
manner. Thus the plant can have widely varying dynamics over the operating range. 
The controller designed performs extremely well, and is compared to an 3fm con- 
troller. 

1 Introduction 

Recent advances in optimal control theory use linear matrix inequalities (LMIs) exten- 
sively in an attempt to develop theoretical and computational machinery for gain schedul- 
ing.13 In this paper, we present the first application of this techmque to an actual physical 
system, a ducted fan engine. By applying this technique to a specific nonlinear system, we 
hope to gain insight into its utility and, more generally, generate new ideas and insights 
into the problem of nonlinear robust control. 

A picture of the experimental system, a vectored thrust ducted fan engine, is shown 
in Figure 1. It consists of a high-efficiency electric motor with a 6-inch diameter blade, 
capable of generating up to 9 Newtons of thrust. Flaps on the fan allow the thrust to be 
vectored from side to side and even reversed. The engine is mounted on a three degree 
of freedom stand which allows horizontal and vertical translation as well as unrestricted 
pitch angle. In Choi et aL,6 a detailed description of the performance of the fan was 
given, including models for the thrust as a function of flap angle and fan speed, as well 
as some discussion of ground effects. 

In designing controllers for plants which operate over a wide dynamic range, a com- 
mon technique is to schedule various fixed-point designs. Unfortunately, there are no 
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Figure 1: Ducted fan apparatus 

known methods for scheduling such controllers which provide an a priori guarantee on 
the resulting performance or stability of the closed-loop system. Additionally, large and 
often unacceptable transients can occur when switching between controllers. Recent 
advances in optimal control theory provide a design technique which avoids these dif- 
ficulties by producing an optimal parameter-dependent controller; i.e., the controller is 
already scheduled depending on parameter values which are not known beforehand.l1l3 
The controller is optimized to provide performance against the worst-case time variation 
of the parameters. Such a controller is called a linear parameter-varying (LPV) controller. 
The controller is synthesized via an iteration which involves solving three LMIs at each 
step. 

A possible approach to control the ducted fan is to design a parameter-dependent 
controller with various measurements, such as velocity and pitch, as the parameters. 
One advantage such a controller would have over a standard gain-scheduled controller 
is that performance and stability could be guaranteed over the operating range of the 
plant, and large transients in switching are avoided. An additional advantage of LPV 
synthesis is that the controller is designed in one step, rather than designing several 
controllers and then scheduling them. The potential drawback of LPV synthesis is that 
an LPV optimal controller is optimized against a worst-case time variation of parameters, 
and this time-variation may be so unrealistic that the controller has no performance. One 
of our goals in this paper is to determine if LPV synthesis can produce controllers which 



Submitted to Int. J. o f  Robust and Nonlinear Control 

have reasonable performance, or better performance than linear controllers. 
There is a large literature on vectored propulsion systems and they are gaining popu- 

larity as a method of improving the performance capabilities of modern jet aircraft. The 
fundamental concepts in vectored propulsion are described in the book by Gal-Org (see 
also the survey articles). Most of the existing literature and experiments concentrate on 
control of full-scale jet engines and are primarily concerned with extending the flight 
envelope by extending existing (linear) control methodologies. Our goal is to explore the 
nonlinear nature of flight control systems in a laboratory setting. A similar experiment 
has been constructed by Hauser at the University of Colorado, Boulder.ll 

Although we are aware of EIPV control being applied to examples and  simulation^,^-^ 
we believe this is the first application of these techniques to a real physical example. Our 
controller performance can be compared with other linear, nonlinear, and gain scheduled 
controllers previously designed for the ducted fan.1° 

In Section 2, we describe the configuration of the ducted fan and discuss its dynamics. 
In Section 3, the derivation of the parameter-varying models is presented. Section 4 
provides a theoretical background on the parameter-varying synthesis. The experimental 
results of implementing the parameter-varying controllers are presented with analysis in 
Section 5. We conclude with a discussion of our findings and present avenues for future 
work. 

2 Description of the Fan Engine 

2.1 Hardware 

The overall experimental setup consists of a ducted fan attached to a three degree of 
freedom stand, as shown in Figure 2. The different thrust modes available are shown 
in Figure 3. The intent of the design was to have a simple ducted fan aircraft which 
could provide two dimensional vectored and reverse thrust. The aircraft is bolted to a 
rotating arm, which limits its motion to three degrees of freedom: one rotational and 
two translational, approximately on the surface of a sphere defmed by the arm. With 
this geometry, the ducted fan is completely controllable with just the vectored thrust. A 
detailed discussion of the components is available el~ewhere.~ 

The aircraft is composed of a variable speed electric motor which drives a four-blade 
propellor. The motor and propellor assembly are mounted inside a wooden duct which 
has two flaps attached at the end. The flaps provide vectored and even reverse thrust. 
The pitch stability of the fan is configurable, and can be changed from stable to unstable. 
For these experiments, the ducted fan was in a stable configuration. An optical encoder 
with an angular resolution of n / lO24 radians is mounted on each axis. 
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Figure 2: Ducted fan attached to stand. 

Figure 3: Different thrust modes for the ducted fan. 
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2.2 Software interface 

The experiment is interfaced to an 80486 computer running an MS-DOS-based real-time 
kernel called Sparrow.12 Custom hardware is used to read in joint angles via the en- 
coders and generate P W  signals for the R/C servos and a speed controller at a software 
selectable rate. Currently, the joint angles are read in at 200Hz and the PWM signals are 
output at 50Hz, the standard update rate for R/C servos. The R/C servos control the 
flap angles and the speed controller controls the motor speed, and consequently the fan 
force. The finite angular resolution of the encoders and unavoidable delay in observing 
states of the system make it desirable to run the controller as fast as possible. 

Controllers are designed and simulated using MATLAB on Sun workstations. Sparrow 
loads linear, LPV, and some types of gain-scheduled controllers directly from MATM 
data files. Once a controller is designed, it can be tested immediately. Nonlinear con- 
trollers, implemented as MATLAB S-functions, require a small mount of revision before 
they are linked to Sparrow. Further discussion on the implementation of LPV controllers 
is found in section 5. 

3 Modelling 

All controllers are designed using a first principles model of the ducted fan based on 
standard rigid body mechanics. A six state model, (al, a2, a s ,  drl ,  dr2, &3), was selected 
for the control designs. The equations of motion for the system, derived from Lagrange's 
equations, have the functional form 

M(a) iic + C(cx, dr) dr + N(a) = T(a,  F), 

where M(a) is the generalized inertia matrix, C(a, dr) is the Coriolis matrix, N(a)  is the 
matrix of gravity terms and T(a, F) is the matrix of applied joint t o r q ~ e s . ~  

The model is accurate enough for control design, although it does have limitations. 
Initial step responses on single axes compared nicely with the experiment , and a PID 
control test gave expected  result^.^ A decoupling controller, essentially a plant inversion, 
worked well.lo Nonetheless, the model omits many effects; improving the model by 
identifying and including them is an ongoing effort. Effects which are omitted include 
all actuator dynamics, sensor limitations, friction, and aerodynamic effects. The speed 
controller has about a 0.3 second lag, while the servo loop controlling flap position is 
much faster. Static friction about the a1 axis is significant. Aerodynamic effects have 
been observed in the lab during forward flight. 

The model does not include the gyroscopic terms that result from the angular mo- 
mentum of the whirling fan blade. However, a four bar mechanism constrains the fan 
to rotate about an axis that is always parallel to the ground, so the gyroscopic forces 
generated by rotation of the fan blade coupled with pitch motion are completely taken 
up by the stand and do not enter into the dynamics. Additional gyroscopic forces are 
present due to rotation about a1 coupled with the fan blade rotation. 
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The model also assumes that the commanded forces act at a fixed point on the fan. 
Experiments have shown that the distance from the fan's center of mass to the point 
at which the force acts, r, varies as the flap angle changes. Furthermore, motor speed 
and flap angle, not forces, are commanded. An experimentally determined lookup table 
maps desired forces to motor speed and flap angle. 

An examination of the nonlinear model reveals that the most significant variations in 
parameters occur as a function of 0(3 and kl. The fan is strictly proper and thus the D 
matrix of the state space model is zero. Moreover, although the rates are not measured, 
an inner loop of the software control estimates them; hence in our models C = I. The A 
and B matrices are the only matrices which have parameter variations. Their structure 

1: 0  0  
1 0  O T O  : 0  O 1 

where T is the sampling rate. Note, since one of the goals of this paper is to investigate 
the applicability general LPV techniques, we will not exploit the state feedback nature of 

0  1 O O T  
0  a42(0(31kl) a43(0(3) 1 0  0  
0  a52(&1) a53(fl3) 0 1 0  
0  ~ 6 2 ( ~ 3 , k l )  a63(@3) 0 0  1 

the problem. 

0  
b41(~3) b42(0(3) 
b51(~3) b52(@3) 
b61(0(3) b62(0(3) 

Figures 4 and 5 show the parameter dependence of one term in the A matrix and all 
terms in the B matrix, important for the simple control model we will be employing. The 
remaining variations are shown in the Appendix, in Figures 25 through 29. The depen- 
dence is obtained by linearizing the nonlinear model at various equilibrium operating 
points for different values of 0(3 and kl. Note the dependence of a42 and as;! on both 0(3 

and kl, while as2 depends only on kl; a43, a53, a63 and all terms of the B matrix depend 
only on 0(3. In Figure 5, the actual values are shown as asterisks, and the least-squares 
fit described below is the solid line. 

To construct a model of the ducted fan suitable for LPV control, we assume the sys- 
tem has the general time-varying structure shown in Figure 6, where x(k) , e (k) , y (k) , d (k) , 
and u(k) are the state, error, measurement, disturbance and input vectors, respectively. 
We assume the time-variation of the plant can be represented as a linear-fractional trans- 
formation (LFT) of a parameter and a constant matrix. Thus P(k) is given by 

where 
61 (kIIn1 

A(k) = 1 (3) 
a m  (k)In,,, 

with 1 (k) 1 I 1 for all k. The 6i are assumed to be measurable. Any rational time-varying 
system can be represented in this framework, and many others can be arbitrarily closely 
approximated. This type of system is known as a parameter-dependent LFT system. 
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Figure 4: Dependence of a52 upon a3 and &I. 
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Figure 5: Dependence of the entries of the B matrix upon a3. 
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Figure 6: Time-Varying System. - 

Figure 7: Parameter-Dependent Plant. The z-lIn, term represents the states of P, and 
the A represents the time variation of Equation 3. 

To derive the parameter dependence and fit it into this framework, each of the pa- 
rameters mentioned above is fit with a rational function of first or second order using a 
least-squares technique. Immediately some approximations are made. The dependence 
of a42 and a62 on ctl was neglected, malung them depend only on 013. The parameters 
a42, a62, b411 b52, and b6l were approximated as lines, i.e., first-order LFTs. The rest were 
approximated as second order LFTs. Assume in the following that = z-l, 62 = ctl, and 
a3 = 013, and let 

A = Idjag [62In2 , 63In,] 1 . 
The resulting model with 6-dependence, P (6), is shown in Figure 7, where nl is the size 
of the block corresponding to 61. 

A simplified model of the ducted fan is considered in this paper, for which the range 
of 013 is assumed to be from 0 radians to 1.5 radians, and the range of ctl is assumed to 
be from 0 rad/s to 1.5 rad/s. The software for implementing LPV controllers holds any 
6 at 0 if it becomes negative, and at 1.5 if it exceeds this value. The model considers 
only variations in the cross-coupling terms of the B matrix, i.e., b41, b5& and bsl, and 
the variation of a52. The other terms are assumed to be constant with the values they 
take at hover. Thus nl = 6, n2 = 2, and n3 = 2 (n3 f 3 because the fact that all three 
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Figure 8: Parameter-Dependent Controller; z - l I ~  represents the states of the controller 
and the time variations. 

are lines can be exploited to reduce the size). We refer to this model as the "simplified 
pitch-velocity model", and it is the model used in our control designs. 

4 Controller Synthesis 

This section gives anintroduction to the theoretical background for the synthesis method- 
ology. All the results are due to Packard,13 so the discussion is of a brief and general 
nature. We then discuss the synthesis for the ducted fan in detail. 

4.1 Theoretical Background 

Recall that the plant has the structure given in Figure 7. The controller we will design 
for this plant will also be parameter-dependent, depending on the same measurable ai's 
as the plant; it will thus have the form shown in Figure 8. P can be augmented to collect 
all the time-varying parameters and states together; K can then be treated as a simple 
matrix. This is depicted in Figure 9, where R is the augmented form of P, and K is a 
matrix. The problem thus appears as a robust control problem with a special structure 
on the plant and parameters. This special structure allows the problem to be cast as LMIs, 
whch can be solved using convex optimization techniques. The design objective is to 
find a controller K such that the interconnection is stable and the 4'2 - 4'2 induced norm 
from d to e is small for all allowable parameter variations A ( k )  (see Equation 3). This is 
simply a small-gain condition. Since the small-gain theorem can be quite conservative, 
we can reduce the conservatism by introducing scaling matrices from a set D which 
commutes with the set of parameter variations. 

The resulting condition is then the state-space upper bound (SSUB).14 Introducing 
the notation FI (R,  Q) = R11 + R12Q(I - R22Q)-lR21 for a block partitioned 2 x 2 matrix 
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Figure 9: Parameter-Dependent Closed-Loop System. 

R with det(I - RZ2 Q) + 0, this condition becomes (compare Lemma 3.1 in Packard13 and 
Theorem 10.4 in Packard and Doyle14): 

Theorem 1 Let R be determined as above, along with an uncertainty structure A. If there 
is a D E 2l and a stabilizing, finite-dimensional, time-invariant K such that 

then there is a y, 0 I y < 1, such that for all parameter sequences 6i(k) with IISiIIW 5 1, 
the system in Figure 9 is internally exponentially stable, and for zero initial conditions, if 
d E 42, then Ilellz 5 y Ildllz. 

Pictorially, this theorem is shown in Figure 10. The important fact about Theorem 1 
is that the synthesis of D and K to meet the objective can be cast as a computationally 
tractable convex optimization problem involving 3 LMIs. These LMIs have the following 
form: 
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Figure 10: Diagram of Theorem 1. 

where U,, V,, and E are obtained from the system realization, and X and Y are structured 
positive definite matrices. Interested readers may find the exact LMIs in Theorem 6.3 of 
Packard.13 The synthesis procedure is a y-iteration, as 3E, is. 

A few points are important inunderstanding the ramifications of employing the SSUB. 
Most importantly, this technique designs a controller optimal with respect to a time- 
varyhg perturbation with memory (the sequence A(k)  of Equation 3). The relationship 
between such an operator and a parameter useful in gain-scheduling is tenuous, at best. 
Depending on the problem, this technique could conceivably yield controllers so con- 
servative as to have no performance. Nonetheless, if a controller with acceptable per- 
formance can be designed with this technique, then it will achieve performance for all 
variations of the operating point. As a corollary of this, a time-varying operator with 
memory in general does not have a spectrum, so there is no way to "filter" it to achieve 
a closer relationship to an operating parameter. Moreover, it is interesting to contrast 
this technique with p-synthesis, where instead of the SSUB, the frequency-domain upper 
bound is usually employed; this difference reflects the different assumptions about the 
type of perturbations. 

If A is a constant value, and is "wrapped into" the plant, the resulting model becomes a 
linear model around the operating point of the A. Similarly, we can do this for controllers, 
and the LPV controller becomes a linear controller. We will refer to the linear controller 
obtained by holding A at a constant value as the LPV controller locked at the value of 
A, e.g., the LPV controller locked at hover would correspond to the A value with a3 and 
drl equal to 0. We are interested in looking at controllers locked in various positions 
because by comparing them with the full LPV controller, we hope to gain better insight 
into the nature of LPV control. 

4.2 Weight Selection 

The design process parallels classical 31, design and LTI weights were used. Using 
weights depending on parts of the A-block can enhance performan~e,~ but was not 
needed here. Both LPV and 31, synthesis produce controllers which reject disturbances. 
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Figure 11: Synthesis Structure used for designing the LPV controller. 

A tracking problem, such as the ducted fan, can be cast in this framework by rejecting 
the low frequency components of the error between the plant output and the reference. 
The tracking will become faster as higher frequencies are rejected. The synthesis struc- 
ture used is shown in Figure 11, with uncertainty and performance weights included; u, 
y, r, and n are the controls, the measurements, the reference signals the controller must 
track, and sensor noises, respectively. W, is a penalty on the control, and W, is multi- 
plicative actuator uncertainty. W, is a diagonal performance weight on the signals ax, 
a 2 ,  a 3 ,  and kl. The initial values of the weights were chosen identically to a previously 
designed 31, controller, and refined from there. 

The basic performance criteria for a controller is to track a ramp on cxl, and a step 
on a2. There is no explicit objective on cx3. The weights used in the design are shown in 
Figure 12. The shaded lines in this figure are a singular value Bode plot of the model lin- 
earized at hover. The integral action with a mode is the response of al and the response 
of a3 shares the same frequency. This mode is the "rocking mode" of the fan as it rotates 
about the a 3  axis. The slower mode is the response of cx2. There are constant weights 
on al, kl, and a3; they are shown in dashed lines (a1 and kl are identical). Constant 
weights are sufficient on cxl since it has high gain in the low frequency. Since the a 2  

channel does not have very much gain, an integral-like weight is used on it (solid line). 
Finally, we bundle all the uncertainty of the model into multiplicative uncertainty at the 
input. Due to the limitations of the model discussed in Section 3, using more precise 
uncertainty descriptions with this model are not profitable. 
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Frequency (rad/s) 

Figure 12: Bode plot of ducted fan model linearized about hover (shaded lines) with 
weights for LPV synthesis (solid and dashed lines) 
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5 Experimental Results 

The LPV controllers were implemented using Sparrow, as mentioned previously. The LPV 
package supports arbitrary scaling and offsets of the 6 parameters, and arbitrary A size. 
Thus, LPV controllers can be designed for a variety of plant parameter ranges and model 
parameterizations without requiring any software modifications. Since an LPV controller 
is an UT  on a A of measured parameters, implementing it requires a real-time matrix 
inversion. To reduce computations, though, the LFT can be eliminated using past values 
of A. This approximation allows faster sampling rates. As long as the 6-values do not 
change much between samples, the approximation is very accurate. All experiments in 
this paper were run using this approximation. 

The nominal offset forces, required to maintain equilibrium over all values of A, were 
computed a priori and stored in a lookup table. These forces are then fed directly into 
the plant, in addition to any control outputs. 

The results for implementing the LPV controller based on the simplified pitch-velocity 
model are presented in Section 5.2. For comparison, we also present results obtained 
by locking the EPV controller at hover and in forward flight, as well as for a standard 
H, controller designed previo~sly.'~ The results shown are quite representative of the 
behavior of the ducted fan, but each one represents the "best" result of a series of three 
to five tests. The results are repeatable. 

5.1 Trajectory Description 

The controllers were tested on three trajectories. Two of the trajectories are simple and 
command changes on only one axis. The third trajectory is demanding and commands 
rapid changes to the a1 and 0(2 axes simultaneously. 

The first trajectory is a one radian change on the a1 axis over 5 seconds. The second 
is a 0.1 radian step change on a2. While these trajectories are not challenging, they 
demonstrate the controllers' abilities to track each axis independently. 

The third trajectory is more complex, and satisfies the equations of motion for the 
full nonlinear modeL6 It commands the fan to fly rapidly in the positive direction. 
During forward flight, the fan achieves rates larger than 1 radian per second, over five 
times greater than during the first trajectory. While in forward flight, two a2 changes are 
commanded. The first is a smooth rise to 0.1 radians followed by a smooth drop back 
to 0 radians. The second is a smooth drop to -0.5 radians followed by a rise back to 0 
radians. 

While not immediately evident from the plots, the plant's non-minimum phase be- 
havior is shown in the nominal complex trajectory. The nominal trajectory has a small 
initial undershoot. While one would not normally command a controller to follow this 
effect, it was not removed since it satisfies the equations of motion. 
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5.2 Results 

The results upon implementing each of the controllers are presented in Figures 13 
through 24, each consisting of 6 plots. Going from left to right, the first plot presents 
the al trajectory (called "X" in the plot) in shaded lines with the system's response in 
solid lines. The second plot shows the same data, but the fan's position has vectors 
corresponding to a3 (pitch) superimposed on it, to better illustrate how the fan moves. 
The third plot shows the a2 tra~ectory (called "Y") with the system's response, and the 
fourth plot is the same as the third, with a3 vectors superimposed. The fifth plot shows 
the a3 variations. The final plot shows the commanded forces. The perpendicular force, 
ul (shaded), always has a DC component since experiments are conducted starting at 
hover. 

The performance on the cxl ramp for the 31, controller is shown in Figure 13. The 
controller performs rather slowly and with a steady state error. Notice though, that the 
deviation from 8 on a2 is almost non-existent. This controller was designed for a model 
at hover and the decoupling is evident in the commanded forces. The performance on 
the step in a2 is shown in Figure 14 and is similar, with a slow response on a2. The 
decoupling is not as effective here, ancf there is some ripple on a1 as the fan rocks. The 
response to the complex trajectory is shown in Figure 15. The controller is reasonably 
good at tracking the al reference, although again, it is slow. However, it cannot follow 
the changes in a2 very well at all, particularly the downward motion. 

The performance of the LPV controller locked at hover is shown next, in Figures 16, 
17, and 18. This controller is faster than the 31, controller, and performs very well in 
tracking a1 . The controller does not hold its position on 012 as well as the 31, controller. 
The response to the step in a2 is also faster, but the controller does not hold its position 
in al as well. On the complex trajectory, the controller tracks a1 better than the HW 
controller but there are much wilder oscillations in pitch and on a2 than in the previous 
case. The oscillations in the commanded forces are particularly alarming. 

The performance of the LPV controller locked for forward flight is shown in Fig- 
ures 19,20, and 21. Overall, the performance is very slrmlar to the LPV controller locked 
at hover. Noticeable differences are that this controller is more oscillatory on the al 
ramp, while being less oscillatory, and performing much better, on the complex trajec- 
tory. Note, the non-~ninimum phase nature of the plant is evident here in the downward 
dip of the response in Figure 19. 

The responses of the full LPV controller are shown in Figures 22, 23, and 24. The 
performance is different from either of the locked controllers. The LPV controller is much 
faster at tracking the ramp in al, at the expense of overshoot and ringing. Its maximum 
deviation from 0 on a2 is less than the maximum for either of the locked controllers, but 
it doesn't stay as close to the reference. The response of the LPV controller to the step 
in a2 is not as good as either of the locked controllers. The response rings more, and 
there is an unexplained steady state error in a1 position. We conjecture this is caused by 
an error in the force-torque table, and are currently investigating it. The LPV controller 
performs noticeably better than all previous controllers on the complex trajectory. It 
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Figure 13: Closed loop response of the H ,  controller for an cxl ramp. 
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Figure 15: Closed loop response of the H6, controller for the complex trajectory. 

is able to track the a1 reference more closely, and provides excellent tracking on cx2. 
Moreover, there is much less oscillation in the comanded forces for the LPV controller. 

Finally, the controllers are quantitatively compared based on several figures of merit, 
which have been used for other controller comparisons on the ducted fan.1° Table 1 
shows the figures of merit for the ramp in all Table 2 shows the results for the step in 
02, and Table 3 shows the results for the complex trajectory. The LPV controller locked 
at hover is called "hover" in the tables and when locked in forward flight it is called 
"forward." 

The 10-90% rise time shown is a standard figure of merit for step responses. For the 
ramp in al it provides a measure how closely the ramp follows the signal. The 90% delay 
factor is computed by measuring the difference, in seconds, between when the trajectory 
reached 90% of its final value, and when the system reached this same value. Steady state 
error is computed by averaging the absolute value of the error over the last four seconds 
of the trajectory. The remaining figures of merit (% overshoot, maximum drift in the 
constant channel, maximum pitch angle, and RMS errors in the al and a 2  channels) are 
self-explanatory. Note that the maximum pitch figure gives an indication of the gain of 
the controller. 

The figures of merit are generally consistent with the qualitative observations done 
earlier. The LPV controller has the fastest response on all trajectories, and also the most 
overshoot. Except for the Hm controller on the ramp in all all controllers have small 
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Figure 16: Closed loop response of the LPV controller locked at hover for an cxl ramp. 
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Figure 17: Closed loop response of the LPV controller locked at hover for an a2 step. 
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Figure 18: Closed loop response of the LPV controller locked at hover for the complex 
trajectory. 
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Figure 19: Closed loop response of the LPV controller locked in forward flight for an al 
ramp. 
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Figure 20: Closed loop response of the LPV controller locked in forward flight for an a2 
step. 
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Figure 21: Closed loop response of the LPV controller locked in forward flight for the 
complex trajectory. 
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Figure 22: Closed loop response of the LPV controller for an cxl ramp. 



Submitted to Int- J. of  Robust and NonZinear Control 

kvYa2b 
X position and desired X position and desired with pitch vectors - 

: : . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . .  . . . . . . . . . . .  

0 5 30 15 20 0 5 10 15 20 
Time (seconds) Time (seconds) 

Y position and desired Y position and desired with pitch vectors 

Time (seconds) 
Pitch position 

. . . . . . . . . .  ;... . . .  ..[ . . . . . . . . .  . . . . . . . . . .  

0 5 10 15 20 
Time (seconds) 

Time (seconds) 
Commanded Forces 

g 4 . . . . . . . . .  ?, . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - - 
z . . . . . . . . . . .  - 0 
g-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 

F4 -4 
0 5 10 15 20 

Time (seconds) 

Figure 23: Closed loop response of the LPV controller for an a2 step. 



Submitted to Int. J. o f  Robust and Nonlinear Control 

k v m a  
X position and desired X position and desired with pitch vectors 

. . . . . I .  

0 5 10 15 0 5 10 15 
Time (seconds) Time (seconds) 

Y position and desired Y position and desired with pitch vectors 

d 

9 
-0.2 

0 5 10 15 0 5 10 15 
Time (seconds) Time (seconds) 
Pitch position Commanded Forces 

-0 5 10 15 &O 5 10 15 
Time (seconds) Time (seconds) 

13-Dec-94 

Figure 24: Closed loop response of the LPV controller for the complex trajectory. 
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Criteria Controllers 

Table 1: Comparison of Controllers for a ramp in 011. 

Criteria Controllers 

Table 2: Comparison of Controllers for a step in 012. 

steady-state error. The 31, controller is much better at maintaining a constant reference 
on one axis while the other axis is changed. An interesting observation from Table 3 is 
that the pitch angle exceeds 7712 for both locked controllers, although not by much for 
the controller locked forward. A linear controller cannot maintain pitch angles greater 
than 7712 and still have good performance, since a sign change in the force direction 
occurs there. 

The figures of merit do not measure many important properties of controllers; nonethe- 
less they provide some basis for comparison. From them it seems clear that the LPV 
controller is overall the best controller designed. 
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Criteria Controllers 

Table 3: Comparison of Controllers for the complex trajectory. 

6 Conclusions 

In this paper we have applied an LMI based control technique to a practical application, 
a ducted fan engine. An LPV controller was synthesized which successfully controlled 
the ducted fan with adequate performance on all test trajectories and excellent perfor- 
mance on one particularly difficult trajectory. The LPV controller is the best controller 
yet designed for the complex trajectory. An advantage of LPV designs over conventional 
methods of gain-scheduling is they design a controller of fixed order that works reason- 
ably well over the operating regime of the plant. 

Experimentally, our goals are oriented toward further study of nonlinear robust con- 
trol using this fan or a successor. currently, a new ducted fan with a more aerodynamic 
shape is being designed and modelled using a wind tunnel at Caltech. This fan will 
be much more powerful and maneuverable than the rather heavy model used currently. 
Also, there are plans to add a wing to the ducted fan, so that aerodynamic effects become 
more significant. 

Strictly from the point of view of applying the LPV techniques to the ducted fan, 
there are many more designs and experiments to do. Theoretically, we are investigating 
ways to improve the performance of the LPV synthesis. We would like to extend the 
parameter range in our designs, with the idea of eventually testing trajectories similar to 
Herbst maneuvers in aircraft. The robustness properties of the LPV controllers could be 
further investigated, and we would like to design controllers using more of the parameter 
variations than the reasonably simple model used in this paper. 

Since we have explored only full LPV synthesis in this paper, we have not exploited 
any special properties of the ducted fan. In particular, the state is available for mea- 
surement, and the parameter variations are all states. When this is the case, there is an 
equivalence between the general synthesis problem and a full-mformation version of it. 
Solving the full information problem would result in a nonlinear constant-gain controller 
with the same performance level as the full LPV controller. Further investigation of this 
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is currently in progress. 
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Appendix: Other Parameter Variations 

In this appendix, the remaining parameter variations of the model of Equation 1 are 
shown in Figures 25 through 29. 

'd alpha3 @ad) -2 -2 rate-alpha1 (rad/s) 

Figure 25: Dependence of a42 upon a3 and &. 
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Figure 26: Dependence of a43 upon a3 and &I. 
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Figure 28: Dependence of a62 upon a3 and k l .  
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Figure 29: Dependence of a63 upon a3 and kl .  


