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Abstract. We consider a coupled system of Hamiltonian partial differential
equations introduced by Popowicz, which has the appearance of a two-field
coupling between the Camassa-Holm and Degasperis-Procesi equations. The
latter equations are both known to be integrable, and admit peaked soliton
(peakon) solutions with discontinuous derivatives at the peaks. A combination
of a reciprocal transformation with Painlevé analysis provides strong evidence
that the Popowicz system is non-integrable. Nevertheless, we are able to con-
struct exact travelling wave solutions in terms of an elliptic integral, together
with a degenerate travelling wave corresponding to a single peakon. We also
describe the dynamics of N-peakon solutions, which is given in terms of a
Hamiltonian system on a phase space of dimension 3N .

1. Introduction. The members of a one-parameter family of partial differential
equations, namely

mt + umx + buxm = 0, m = u − uxx (1)

with parameter b, have been studied recently. The case b = 2 is the Camassa-Holm
equation [1], while b = 3 is the Degasperis-Procesi equation [3], and it is known
that (with the possible exception of b = 0) these are the only integrable cases
[13], while all of of these equations (apart from b = −1) arise as a shallow water
approximation to the Euler equations [6]. All of the equations have at least one
Hamiltonian structure [11], this being given by

mt = B
δH

δm
, B = −b2m1−1/b∂xm1/bĜm1/b∂xm1−1/b, (2)

with Ĝ = (∂x − ∂3
x)−1 and the Hamiltonian H = (b − 1)−1

∫

m dx for b 6= 0, 1 (and
the latter special cases admit a similar expression).

One of the most interesting features of these equations is that their soliton solu-
tions are not smooth, but rather the field u has a discontinuous derivative at one or
more peaks (hence the name peakons), while the corresponding field m is measure
valued. More precisely for the single peakon the solution has the form

u = c exp(x − ct − x0), with m = 2c δ(x − ct − x0)
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(with x0 being an arbitrary constant), while N -peakon solutions are given by

u =

N
∑

j=1

pj(t) exp(−|x − qj(t)|), m = 2

N
∑

j=1

pj(t)δ(x − qj(t)), (3)

where the amplitudes pj(t) and peak positions qj(t) satisfy a Hamiltonian dynamical
system for any b. For b = 2 the qj and pj are canonically conjugate position
and momentum variables for an integrable geodesic flow with the co-metric gjk =
exp(−|qj − qk|) [1], and for b = 3 the peakon motion is again integrable, being
described by Hamilton’s equations for a different Poisson structure [4, 5], but for
arbitrary b the N -peakon dynamics is unlikely to be integrable in general [10].

There is currently much interest in generalisations of the Camassa-Holm equa-
tions and its relatives. Qiao has found an integrable equation of this type with
cubic nonlinearity [17], and another such example was discovered very recently by
Vladimir Novikov [14]; one of the authors spoke at the AIMS meeting in Arlington
on this topic (for more details see [12]). An important challenge is to understand
the solutions of coupled equations with two or components, and in higher dimen-
sions. For example the EPDiff equation can be used to describe fluids in two or
more spatial dimensions, as well as appearing in computational anatomy [9]. Chen
et al. found an integrable two-component analogue of the Camassa-Holm equation
[2], which also admits multi-peakon solutions [7]. Popowicz has constructed another
two-component Camassa-Holm equation using supersymmetry algebra [15].

The purpose of this short note is to summarise some preliminary results that we
have obtained on the two-component system given by

mt + mx(2u + v) + 3m(2ux + vx) = 0,
nt + nx(2u + v) + 2n(2ux + vx) = 0,

m = u − uxx, n = v − vxx.
(4)

This system can be considered as a coupling between the Camassa-Holm equation
and the Degasperis-Procesi equation (corresponding to (1) for b = 2, 3 respectively);
it reduces to the former when u = 0, and to the latter when v = 0. The system (4)
was obtained by Popowicz by taking a Dirac reduction of a three-field local Hamil-
tonian operator [16]. By construction, this system has a (nonlocal) Hamiltonian
structure, and due to the existence of conservation laws it was conjectured that it
should be integrable (although no second Hamiltonian structure was found).

After reviewing the Hamiltonian structure for it in the next section, in section 3
we perform a reciprocal transformation on the system (a nonlocal change of inde-
pendent variables) which transforms it to a third order partial differential equation
for a single scalar field. By applying Painlevé analysis of the singularities in solu-
tions of the reciprocally transformed system, we find the presence of logarithmic
branching, which is a strong indicator of non-integrability. Nevertheless, in section
4 we find that the system has exact travelling wave solutions given by an elliptic
integral, as well as a degenerate travelling wave which is a peakon. In section 5 we
present formulae for N -peakon solutions of (4), which are governed by Hamiltonian
dynamics on a 3N -dimensional phase space. The final section is devoted to some
conclusions.
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2. Hamiltonian and Poisson structure. Popowicz constructed the system (4)
from the Hamiltonian operator

Z = −

(

9m2/3∂xm1/3Ĝm1/3∂xm2/3 6m2/3∂xm1/3Ĝn1/2∂Xn1/2

6m1/2∂xn1/2Ĝm1/3∂xm2/3 4n1/2∂xn1/2Ĝn1/2∂xn1/2

)

, (5)

where Ĝ = (∂x − ∂3
x)−1. With the Hamiltonian

H0 =

∫

(m + n) dx, (6)

the system can be written as




mt

nt



 = Z





δH0

δm

δH0

δn



 ≡ {m, H0}.

For Z as in (5), the Poisson bracket between two functionals A, B is given by the
standard formula

{A, B} =

∫

(

δA
δm(z)

δA
δn(z)

)

Z

(

δB
δm(z)

δB
δn(z)

)

dz,

which is equivalent to specifying the local Poisson brackets between the fields m
and n as

{m(x), m(y)} = mx(x)mx(y)G(x − y)

+3(m(x)mx(y) − mx(x)m(y))G′(x − y)

−9m(x)m(y)G′′(x − y),

{m(x), n(y)} = mx(x)nx(y)G(x − y)

+(3m(x)nx(y) − 2mx(x)n(y))G′(x − y) (7)

−6m(x)n(y)G′′(x − y),

{n(x), n(y)} = nx(x)nx(y)G(x − y)

+2(n(x)nx(y) − nx(x)n(y))G′(x − y)

−4n(x)n(y)G′′(x − y),

where

G(x) =
1

2
sgn(x)

(

1 − e−|x|
)

(8)

is the Green’s function of the operator Ĝ. This G satisfies the functional equation

G′(α)
(

G(β) + G(γ)
)

+ cyclic = 0 for α + β + γ = 0,

which is a sufficient condition for the operator (2) to satisfy the Jacobi identity; the
general solution to the functional equation was found by Braden and Byatt-Smith
in the appendix of [10].

It was observed by Popowicz that, apart from the Hamiltonian H0, the system
(4) has additional conserved quantities that can be written as

H1 =
∫

(nm−2/3)λm1/3 dx,
H2 =

∫

(−9n2
xn−2m−1/3 + 12nxmxn−1m−4/3 + −4m2

xm−7/3) (nm−2/3)λ dx,
(9)

where in each case the parameter λ is arbitrary. In [16] it is remarked that, having
three conserved quantities, the system is likely to be integrable. The existence of a
mere three (or a few) conservation laws does not guarantee integrability, and a more



4 ANDREW HONE AND MICHAEL IRLE

precise requirement (or better, a definition of integrability) in infinite dimensions
is that an integrable system should have infinitely many commuting symmetries
[13]. In fact, since they contain an arbitrary parameter, each of H1 and H2 provide
infinitely many independent conservation laws for the system. However, a brief cal-
culation shows that the gradient of each functional appearing in (9) is in the kernel
of the Hamiltonian operator Z for all λ, so that all of these conserved quantities
are Casimirs for the associated Poisson bracket. Hence, regardless of the choice of
λ, neither H1 nor H2 can generate a non-trivial flow that commutes with the time
evolution ∂t.

The fact that the combination w = nm−2/3 appears in the conserved functionals
(9) suggests that it is worthwhile to eliminate either m or n and use this as a de-
pendent variable. Also, as noted by Popowicz, the conservation laws corresponding
to H1 are reminiscent of analogous ones for the Camassa-Holm/Degasperis-Procesi
equations, which provide a reciprocal transformation to an equivalent system with
different independent variables. We now make use of these observations.

3. Reciprocal transformation and Painlevé analysis. In order to eliminate n
we can rewrite (4) as

(m1/3)t = −(m1/3C)x,
wt = −Cwx,

(10)

with
C = 2u + v, m = u − uxx, wm2/3 = v − vxx. (11)

The first equation is in conservation form, and previous experience with the Degasperis-
Procesi equation [4] suggests taking the reciprocal transformation

dX = p dx − C p dt, p = m1/3,
dT = dt,

(12)

so that derivatives transform as ∂x = p∂X , ∂t = ∂T − Cp∂X .
In terms of the new independent variables X, T and the dependent variables p, w,

the system (10) becomes
(p−1)T = CX ,

wT = 0,
(13)

and solving the latter two equations in (11) for u, v we can write

C = 2u + v = 2m + wm2/3 + (p∂X)2(2u + v) = 2p3 + wp2 + p(pCX)X .

Substituting back for CX from the first of (13) gives C = p3 + wp2 + p(p(p−1)T ))X ,
and differentiating both sides of the latter with respect to X and substituting for
CX once more produces a single equation of third order for p, namely

pXXT =
pXpXT

p
+

(1 − p2
X)pT

p2
+ 2wppX + (wX + 6pX)p2. (14)

From the second equation (13), the coefficient w = w(X) is an arbitary T -independent
function of X . It turns out that the presence of this arbitrary function provides
an obstruction to integrability, from the point of view of the Painlevé analysis of
the partial differential equation (14). It is also easy to calculate the images under
this reciprocal transformation of the conserved densities corresponding to (9): the
density for H1 is transformed to wλ, and that for H2 becomes −9wλ−2w2

X , both of
which are trivial (since w is no longer a dynamical variable).

To analyse the singularities of the equation (14) we apply the Weiss-Tabor-
Carnevale test. The details of the analysis are almost identical to that for the
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equation obtained from (1) by an analogous reciprocal transformation, so we will
only give a brief description of the results and refer the reader to [8] for details
of a similar calculation. There are two types of local expansion around an arbi-
trary singular manifold φ = φ(X, T ) = 0 corresponding to singularities on the right
hand side of equation (14). For simplicity we can take the Kruskal reduced ansatz
φ = X − f(T ) with f an arbitrary function of T , and it is sufficient to take w to be
a non-zero constant. For the first type of expansion, p is regular as φ → 0, and we
have p = ±φ + α2φ

2 + α3φ
3 + . . ., where α1(T ) and α3(T ) are arbitrary. The res-

onances are at −1, 1, 2, corresponding to the arbitrariness of f, α2, α3 respectively,
and all resonance conditions are satisfied, so that this defines the leading part of
a local expansion that is analytic around φ = X − f(T ) = 0. However, for the
other type of expansion, we have p =

∑

j≥−1 βjφ
j which gives resonances −1, 2, 3.

The leading coefficient satisfies β2
−1 = −ḟ/2, while at the next order β0 = −w/4.

The resonance −1 corresponds to f , and the resonance condition for the value 3
(corresponding to β2) is satisfied automatically, but the resonance 2 corresponding
to β1 gives the additional condition

β̇−1w = −
f̈w

4β−1
= 0 (15)

which is not satisfied unless w ≡ 0 (since f is arbitrary). When w ≡ 0 the equation
(14) corresponds to the integrable Degasperis-Procesi equation (see [4]; this is also
clear from the fact that n ≡ 0 in that case). The failure of the resonance condi-
tion for non-vanishing w means that the local expansion around a pole must be
augmented with infinitely many terms in log φ, so that the Painlevé property does
not hold. These logarithmic terms are an indicator that (14) is not integrable, and
hence the system (4) cannot be.

4. Travelling waves. Travelling wave solutions of (4) arise by putting

u(x, t) = U(s), v(x, t) = V (s), with s = x − ct,

to get

M(2U + V − c)3 = K1, N(2U + V − c)2 = K2, (16)

with M = U − U ′′, N = V − V ′′, where K1, K2 are constants, and C(s) =

2U + V = c − kM−1/3 where k = −K
1/3
1 . From this it is also apparent that

w = NM−2/3 = K2K
−2/3
1 = ℓ =constant. Comparing with (12) and (13) is clear

that travelling waves of (4) are transformed to travelling waves p(X, T ) = P (S) of
(14) moving with speed k, with

P (S) = M1/3(s), S = X − kT, dS = M1/3(s) ds.

The ordinary differential equation for travelling waves of (14) (with constant w = ℓ)
can be integrated twice to yield

(

dP

dS

)2

= −
2

k

(

P 4 + ℓP 3 + mP 2 + cP
)

+ 1 ≡ Q(P ),

for k 6= 0, where m is another integration constant. This reduces to an elliptic
integral of the first kind,

S + const =

∫

dP
√

Q(P )
,



6 ANDREW HONE AND MICHAEL IRLE

so that P is an elliptic function of S. Note that these travelling waves provide
meromorphic solutions of (14), but this does not contradict the Painlevé analysis
in the previous section, because for travelling waves the singular manifold is of the
form φ = X − f(T ) = S − S0 for constant S0, so that f(T ) = kT + S0, implying

f̈ = 0 which removes the obstruction to the Painlevé property in (15).
In the original variable s, we have a third kind differential

ds =
dP

P
√

Q(P )

(so that M(s) = P 3(S) has algebraic branch points as a function of s). For partic-
ular choices of constants, when the quartic Q has a double root, the elliptic integral
reduces to an elementary one in terms of hyperbolic functions, corresponding to
smooth solitary wave solutions with the characteristic soliton shape.

Soliton-type travelling wave solutions must have a constant non-zero background,
since the requirement that U and V tend to zero as s → ±∞ implies K1 = 0 = K2

in (16), hence k = 0 and the above analysis does not apply. However, in this case
we can have a weak solution of (16) which is the peakon solution

u(x, t) = a e−|x−ct|, v(x, t) = b e−|x−ct|,

and

m(x, t) = 2aδ(x − ct), n(x, t) = 2bδ(x − ct),

where a is an arbitrary constant and c = 2a + b is the wave speed. In the next
section we extend this to multi-peakon solutions.

5. Hamiltonian dynamics of peakons. The N -peakon solutions have the ap-
pearance of a simple sum of N single peakons but with both the amplitudes and
positions of the peaks being time-dependent, like so:

u(x, t) =

N
∑

j=1

aj(t)e
−|x−qj(t)|, v(x, t) =

N
∑

j=1

bj(t)e
−|x−qj(t)|, (17)

where aj(t) and bj(t) are the amplitudes of the waves and qj(t) is the position of
the peak of both waves. The main result is as follows.

Theorem 5.1. The Popowicz system (4) admits N -peakon solutions of the form
(17), where the amplitudes aj, bj and positions qj satisfy the dynamical system

ȧj = 2aj

N
∑

k=1

(2ak + bk) sgn(qj − qk) e−|qj−qk|,

ḃj = bj

N
∑

k=1

(2ak + bk) sgn(qj − qk) e−|qj−qk|,

q̇j =

N
∑

k=1

(2ak + bk) e−|qj−qk|

for j = 1, . . . , N . These equations are an Hamiltonian system

ȧj = {aj , h}, ḃj = {bj, h}, q̇j = {qj, h}
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with the Hamiltonian h = 2
∑N

j=1(aj + bj), and the Poisson bracket

{aj , ak} = 2ajaksgn(qj − qk)e−|qj−qk|,

{bj, bk} =
1

2
bjbksgn(qj − qk)e−|qj−qk|,

{qj, qk} =
1

2
sgn(qj − qk)

(

1 − e−|qj−qk|
)

,

{qj , ak} = ake−|qj−qk|,

{qj , bk} =
1

2
bke−|qj−qk|,

{aj , bk} = ajbksgn(qj − qk)e−|qj−qk|.

This Poisson bracket has N Casimirs Cj = aj/b2
j for j = 1, . . . , N .

The proof of the above result, which will be presented elsewhere, is based on
integration of the equations (4) and the brackets (7) against suitable test functions
with support around each of the peaks. Here it is worth remarking that although
the phase space has dimension 3N , fixing the values of the N Casimirs reduces the
motion onto 2N -dimensional symplectic leaves. Once this has been done, one can
eliminate the aj , say, and solve 2N equations for bj , qj .

6. Concluding remarks. The evidence from Painlevé analysis suggests very strongly
that the system (4) is not integrable. This raises the question of whether the N -
peakon system can be integrable for N > 1. The Liouville-Arnold theorem requires
the existence of a further N − 1 independent conserved quantities in involution (in
addition to h and the Casimirs Cj which satisfy {Cj, F} = 0 for any function F
on phase space). The first interesting case is the 2-peakon problem, which requires
just one additional conserved quantity. In fact, a direct calculation shows that the
independent quantity

J = b1b2

(

1 − exp(−|q1 − q2|)
)

is in involution with the Hamiltonian, {J, h} = 0, so that the N = 2 peakon system
is completely integrable.

There is also the question of whether these peakons are stable solutions. We
propose to address these issues in future work.
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