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Sufficient dimension reduction [Li (1991)] has long been a promi-
nent issue in multivariate nonparametric regression analysis. To un-
cover the central dimension reduction space, we propose in this pa-
per an adaptive composite quantile approach. Compared to existing
methods, (1) it requires minimal assumptions and is capable of reveal-
ing all dimension reduction directions; (2) it is robust against outliers;
and (3) it is structure-adaptive, thus more efficient. Asymptotic re-
sults are proved and numerical examples are provided, including a
real data analysis.

1. Introduction. Dimension reduction is a rather amorphous concept
in statistics, changing its characteristics and taking different forms depend-
ing on the context. In regression, the paradigm of sufficient dimension re-
duction [Li (1991), Cook (1994), Cook (1998)] which combines the idea of
dimension reduction with the concept of sufficiency, aims to generate low-
dimensional summary plot without appreciable loss of information. In most
cases, reductions are typically constrained to be linear and the goal then is
to estimate the central dimension reduction subspace, or simply the central
subspace.

Cook (2007) gave a formal definition and overviews of the sufficient dimen-
sion reduction in regression, which we adopt in this paper for the definition
of the central subspace. Suppose Y is a scalar dependent variable and X is
the corresponding p× 1 vector of predictors. Let B be a p× q(q ≤ p) (con-
stant) orthonormal matrix and B>, its transpose. The space S(B) spanned
by the columns of B, is said to be the (sufficient) dimension reduction sub-
space (DRS), if the conditional distribution F (.|B>X) of Y given B>X is
identical to F (.|X), i.e.

F (Y |X) = F (Y |B>X) almost surely.(1.1)

Consequently, a subspace is called a central subspace (CS), if it is not only
itself a DRS, but also a subset of any other DRS’. It thus represents the
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2 KONG AND XIA

minimal subspace that captured all the information relevant to regressing Y
on X. Under quite general conditions, the CS exists and is given by

S0 = ∩{S(B) : model (1.1) holds for B};

see, Yin, Li and Cook (2008) for the latest results on sufficient conditions
for the existence of CS. Its dimension dim(S0) = q(≤ p) is referred to as
the structural dimension, while its orthogonal basis β01, · · · , β0q is called
the dimension reduction directions or simply the CS directions. Let B0 =
(β01, · · · , β0q) and thus equivalent to (1.1), we have

F (Y |X) = F (Y |B>0 X) almost surely.(1.2)

Research in dimension reduction methodologies, namely the search of CS
(directions), has garnered tremendous interest [Hristache et al (2001), Yin
and Cook (2002), Xia et al (2002), Li et al (2003, 2005), Lue (2004), Zhu and
Zeng (2006) and Ma and Zhu (2012)] since the seminal work of Li (1991).
Some earlier research in this area such as Li (1991), was often based on
either restrictive or hard-to-verify assumptions, which limited their applica-
tions; while others being model (moment)-based, targeted not at S(B0), but
instead the reduction subspace S(B) associated with certain functional of
F (Y |X), e. g., the conditional mean [Cook and Li (2002)] or the conditional
variance [Zhu and Zhu (2009)]. As we are going to demonstrate through
the following example, such subspace quite often is strictly a subset of CS.
Consider the following model where

Y = β>1 X + β>2 X ε, and E(ε|X) = 0.(1.3)

As E(Y |X) = β>1 X, the central mean subspace S(β1) is thus strictly con-
tained in S(β1, β2), the full CS.

Seeing the restrictions with the aforementioned moment-based methods,
some consider the possibility of recovering all CS directions by taking trans-
formation of the response variable Y . See, for example, Zhu and Zeng (2006),
which practically requires assuming a parametric model for X; or Fukumizu
et al (2009), where no theoretical results are available; and Yin and Li (2011).
Others [Xia (2007), Zhu et al (2010), Wang and Xia (2008)] tried to extract
information on CS directly from the conditional density or distribution func-
tion. A major drawback of the methodologies in the preceding four references
is that the embedded estimation procedure is not structure-adaptive, ren-
dering the subsequent estimators of CS (directions) less efficient. To see this,
take model (1.3) for example. As the conditional density (distribution) func-
tion is nonlinear, the smoothing parameter used in constructing their kernel
estimators must therefore be small, i.e. only a small proportion of data is be-
ing used for local estimation. In contrary, the conditional quantile function
is in this case at least piecewise linear and consequently its estimation can
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ON ADAPTIVE QUANTILE DIMENSION REDUCTION 3

be made more efficient through the use of a larger (data-driven) bandwidth.
Another reason for us to consider a conditional-quantile based approach is
the theoretical equivalence between conditional distribution functions and
conditional quantiles.

As in the case of conditional mean-based approach, we do not expect the
CS (directions) to be fully revealed via quantile regression at any individual
level. The solution we shall propose in this paper is a combination of di-
mension reduction methods of Xia et al (2002) and the composite quantile
approach for regression [Zou and Yuan (2008), Kai et al (2010), He et al
(2013)], together with a adaptive-weighting strategy. The advantages of this
new approach include: (1) it requires minimal assumptions and can identify
the CS directions exhaustively; (2) it is robust against outliers, a property
inherited from quantile regression; and (3) the embedded estimation proce-
dure is structure-adaptive, i.e. the use of a data-driven bandwidth means
more efficient use of data.

The paper is organized as follows. In Section 2 we show how the CS char-
acterizes the composite outer product of gradients matrix. Based on this
characterization, Section 3 describes how an adaptive composite quantile
approach is integrated with the outer-product of gradients (qOPG) method,
and for comparison purposes, the composite quantile minimum average vari-
ance method (qMAVE). In Section 4, we present regularity conditions and
theoretical results on the asymptotic normality of the qOPG estimator. Sec-
tion 5 and 6 examine some practical issues, such as bandwidth selection and
determination of the structural dimension. Section 7 contains some numer-
ical results, including an example of real data analysis. Section 8 provides
concluding remarks. All proofs are given in the Appendix.

2. A composite quantile approach. Under model (1.2), for any 0 <
τ < 1, the τth conditional quantile of Y given X,

Qτ (X) = min{y : F (y|X) ≥ τ}

admits the following alternative expression

Qτ (X) = min{y : F (y|B>0 X) ≥ τ} = Q̃τ (B>0 X).(2.1)

Its gradient vector

∇Qτ (x) =
[∂Qτ (x)

∂x1
, · · · , ∂Qτ (x)

∂xp

]>
defined for any x = (x1, · · · , xp)> ∈ Rp, is thus related to ∇Q̃τ (.), the

gradient vector of Q̃τ (.), via the following identity

∇Qτ (x) = B0∇Q̃τ (B>0 x).(2.2)

imsart-aos ver. 2014/02/20 file: AOS1242.tex date: May 27, 2014



4 KONG AND XIA

Consequently, we have the following fact for the corresponding outer-product
of gradients (OPG) matrix specific to level τ :

Σ(τ) = E{∇Qτ (X)[∇Qτ (X)]>}
= B0E{∇Q̃τ (B>0 X)[∇Q̃τ (B>0 X)]>}B>0 .(2.3)

It is obvious that for any τ ∈ (0, 1),

S(Σ(τ)) ⊆ S(B0).

Indeed, plenty of examples exist where the above inequality holds strictly
for at least one τ ∈ (0, 1). Consider, for example, model (1.3) with τ = 0.5
and the median of ε equal to zero. In other words, the CS may not be fully
recovered by OPG matrices specific to any finite number of quantile levels.
The solution instead lies with the composite OPG matrix defined as

Σ =

∫ 1

0

Σ(τ)dτ,(2.4)

as stated in the following lemma.

Lemma 1. Suppose ∇Qτ (.) exists for almost all τ ∈ (0, 1) and X. We
have S(Σ) = S(B0).

By definition, the composite OPG matrix Σ is simply an equally weighted
average of the level-specific OPG matrices Σ(τ), 0 < τ < 1. As previously
demonstrated, Σ(τ) for a given τ might contain little or no information at all
about the CS. Consider another example where Y = x1ε, X = (x1, ...,xp)

>

and ε has median zero. It is easy to see that Σ(0.5) = 0, a p×p zero matrix.
We call such Σ(τ) uninformative, to which less weight should be assigned for
the purpose of a more revealing composite OPG matrix. Since whether or
not any level-specific Σ(.) is uninformative is not given a priori, we suggest
the following procedure to obtain an adaptively weighted composite OPG
matrix. Suppose we have decided on the structural dimension q. For any
given τ ∈ (0, 1), denote by λ1(τ) ≥ ... ≥ λp(τ) ≥ 0, the p eigenvalues
of Σ(τ). The ‘adaptively weighted’ composite OPG matrix is consequently
defined as

Σw =

∫ 1

0
w(τ)Σ(τ)dτ,

where the weight function

w(τ) =
λ1(τ) + ...+ λq(τ)

λ1(τ) + ...+ λp(τ)
,(2.5)

reflects the percentage of information contained in the first q eigenvectors
of Σ(τ). If Σ(τ) = 0, we define w(τ) = 0. Note that as S(Σ(τ)) ⊆ S(B0) for
any τ , we have w(τ) = 1 for any τ such that Σ(τ) > 0. In practice, weights
w(.) are derived from eigenvalues of estimates of Σ(τ).
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ON ADAPTIVE QUANTILE DIMENSION REDUCTION 5

3. Estimation of the dimension reduction directions. Based on
Lemma 1, the key to recovering the CS directions lies with the estimation
of the composite OPG matrix Σ, which in turn depends on the availability
of a proper estimate of the gradient vector ∇Qτ (x) for any given τ ∈ (0, 1)

and x ∈ Rp. Let ∇̂Qτ (x) denote such an estimate. We can then construct
estimate of the level-specific OPG matrix (2.3) and consequently estimate
of the composite OPG matrix (2.4), as follows

Σ̂(τ) =
1

n

n∑
j=1

∇̂Qτ (Xj), Σ̂ =

∫ 1

0

Σ̂(τ)dτ.(3.1)

Various nonparametric estimators of∇Qτ (.) could be used in (3.1), including
kernel smoothing, nearest neighbor and spline estimators; see, e. g., Truong
(1989), Bhattacharya and Gangopadhyay (1991), and Koenker, Ng and Port-
noy (1992, 1994). In this paper, we opt for the local polynomial estimators
of Chaudhuri (1991) and Kong et al (2010). This is because, to show that Σ̂
is root-n consistent and asymptotically ‘normal’, we need the following two
pre-requisites: (i) ∇̂Qτ (x) has a bias of order op(n

−1/2) uniformly in x and
in τ ; (ii) a Bahadur-type expansion of ∇̂Qτ (x), again uniformly in x as well
as in τ . Condition (i) can be met by approximating Qτ (.) locally with poly-
nomials in p variables with high enough degrees. Condition (ii), to be proved
in the Appendix using results on empirical processes and U−processes, ex-
tends what was obtained in Kong et al (2010), where the uniformity is with
respect to x only.

Suppose there exists some positive integer k such that, for all τ ∈ (0, 1),
Qτ (.) has partial derivatives of order up to k on D, the compact support of
X in Rp. Consequently, for any given x = (x1, · · · , xp)> ∈ D and X near x,
Qτ (X) can be approximated by its kth order Taylor expansion, i.e.

Qτ (X) ≈ Qτ (x) +
∑

1≤[u]≤k

DuQτ (x)

u!
(X− x)u,(3.2)

where u = (u1, · · · , up) denotes a generic p−dimensional vector of nonnega-
tive integers, [u] =

∑p
i=1 ui, u! =

∏p
i=1 ui!, x

u =
∏p
i=1 x

ui
i with the conven-

tion that 00 = 1, and Du denotes the differential operator ∂[u]/∂xu11 · · · , x
up
p .

For ease of reference, write A = {u : [u] ≤ k} and s(A) = ](A), the cardi-
nality of A.

Suppose (Xi, Yi), i = 1, · · · , n, are i.i.d. copies of (X, Y ), and hn is a
smoothing parameter such that hn → 0, as n → ∞. For any given x ∈ Rp
and τ ∈ (0, 1), define two s(A)× 1 vectors as follows

x(hn, A) = (x(hn,u))u∈A with x(hn,u) = h
−[u]
n xu,

cn(x; τ) = (cn,u(x; τ))u∈A with cn,u(x; τ) = h
[u]
n DuQτ (x)/u!.
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6 KONG AND XIA

The local polynomial estimate of cn(x; τ) is defined as a solution to the
following problem

min
c

n∑
i=1

ρτ{Yi − c>Xix(hn, A)}Khn(|Xix|),(3.3)

where c = (cu)u∈A ∈ Rs(A), ρτ (s) = |s|+ (2τ − 1)s, Xix = Xi−x, |.| stands
for the supremum norm, K(.) is a kernel function in Rp with finite support,
and Khn(.) = K(./hn)/hn. Note that although in this paper we take K(.) to
be the uniform density function on [−1, 1]p, the p-dimensional cube in Rp,
the results we obtain apply to other cases such as the Epanechnikov kernel
as well.

Since ρτ (s) → ∞, as |s| → ∞, solution to (3.3) always exists as long as
Khn(|Xix|) > 0 for at least one Xi. Denote by ĉn(x; τ) = (ĉn,u(x; τ))u∈A,

a solution to (3.3) and by ∇̂Qτ (x), the local polynomial estimate of the
gradient vector ∇Qτ (x):

∇̂Qτ (x) = h−1
n (ĉn,u(x; τ))u∈A,[u]=1.

Consequently, we can construct estimates of the level-specific OPG matrix
Σ(τ) and of the composite OPG matrix Σ as follows:

Σ̂(τ) =
1

n

n∑
j=1

∇̂Qτ (Xj){∇̂Qτ (Xj)}>; Σ̂ =

∫ 1

0

Σ̂(τ)dτ.(3.4)

For the sake of technical convenience, we focus on rather than the Σ̂ in (3.4)
but instead the following truncated version

Σ̂T =

∫ 1−δ∗

δ∗
Σ̂(τ)dτ,(3.5)

for some small δ∗ ∈ (0, 1). This is due to the fact that the uniformity in

τ of the strong Bahadur type representation of ∇̂Qτ (x) requires the con-
ditional density of Y given X at Qτ (X) to be uniformly bounded away
from zero, a condition apparently cannot be met by all τ ∈ (0, 1). See
Lemma 2 and its proof given in the Appendix for more details. Neverthe-
less, such truncation need not cause much concern. The reasons are two-
fold. On one hand, the integral in (3.4) is approximated as a summation
over a sequence of discretised τ values. On the other hand, the CS which
is derived from {Qτ (.|x) : 0 < τ < 1, x ∈ D} or equivalently from Σ,
is expected to closely resemble, if not completely identical to, that from
{Qτ (.|x) : δ∗ ≤ τ ≤ 1− δ∗, x ∈ D} or equivalently from

ΣT =

∫ 1−δ∗

δ∗
Σ(τ)dτ,
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ON ADAPTIVE QUANTILE DIMENSION REDUCTION 7

provided that δ∗ > 0 is small enough. We assume this is indeed the case, i.e.
ΣT = Σ.

As suggested at the end of Section 2, we could further construct an esti-
mate of the adaptively-weighted truncated composite OPG matrix as

Σ̂wT =

∫ 1−δ∗

δ∗
Σ̂(τ)ŵ(τ)dτ,(3.6)

with weight ŵ(τ) calculated according to formula (2.5) using the eigenvalues
of Σ̂(τ). However, to make sure less weights are assigned to those uninforma-
tive matrices Σ̂(τ) which are close to but not exactly zero, we set ŵ(τ) = 0
if the largest eigenvalue of Σ̂(τ) is below certain threshold.

In the ideal case where the structural dimension q is known a priori,
estimates of the CS directions are simply given by the first q eigenvectors
of Σ̂T: β̂k, k = 1, · · · , q. Details on how to estimate q when it is unknown
as well as bandwidth selection are given in Sections 5 and 6, respectively.
Similar to Xia et al (2002), the above estimator can be further refined as
follows. Re-label the above obtained estimate B̂ = (β̂1, · · · , β̂q) as B(1), and

the smoothing parameter hn used in obtaining it as h
(1)
n . Construct a refined

estimate of ∇Qτ (x) as

∇̂Q(2)
τ (x) = (ĉ

(2)
n,u(x; τ))u∈A,[u]=1/h

(2)
n ,

where

ĉ(2)
n,u(x; τ) = arg min

c

n∑
i=1

ρτ{Yi − c>Xix(h(1)
n , A)}K

h
(2)
n

(|X>ixB(1)|),(3.7)

and K(.) is a kernel density in Rq. Accordingly, the estimates Σ̂(τ) and Σ̂T

in (3.4) and (3.5) could be refined respectively as

Σ̂(2)(τ) =
1

n

n∑
j=1

∇̂Q(2)
τ (Xj){∇̂Q(2)

τ (Xj)}>

and

Σ̂
(2)
T =

∫ 1−δ∗

δ∗
ŵ(2)(τ)Σ̂(2)(τ)dτ,

where ŵ(2)(τ) is constructed in the same way as ŵ(τ), using eigne-values of

Σ̂(2)(τ). Again, pick the first q eigenvectors of Σ̂
(2)
T to construct a new matrix

B(2) which can then be substituted into (3.7) for B(1). Repeat the above two
steps until convergence is reached. Intuitively, this refined estimate of Σ is
more efficient due to the use of a lower dimensional kernel when estimating
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8 KONG AND XIA

∇Qτ (x), thus mitigating the so-called ‘curse of dimensionality’ problem. We
call the above procedure the adaptive composite quantile outer product of
gradients (qOPG).

We can also incorporate this ‘composite-quantile’ idea into the minimum
average variance estimation (MAVE) procedure of Xia et al (2002) and pro-
pose a composite quantile MAVE (qMAVE) as follows. With structural di-
mension q, consider the following minimization problem∫ 1−δ∗

δ∗

n∑
j=1

n∑
i=1

ρτ{Yi − aj − b>j B>Xij}Khn(|Xij |)dτ,(3.8)

with respect to p×q matrix B, where Xij = Xi−Xj . Again, just as in (3.7),
a possibly lower dimensional kernel Khn(|B>Xij |) could be used to replace
Khn(|Xij |) in (3.8), in the hope of an improved efficiency of the resulted
estimator, at least with finite-sample size. Estimates of the q CS directions
are thus given by the orthonormal-ized columns of B̂, the solution to (3.8).
Realization of (3.8) is similar to that of Xia (2007) and its theoretical prop-
erties can also be similarly investigated by combining the results obtained
in the Appendix and the proofs in Xia (2007).

To find out whether a qMAVE procedure would benefit from some ‘adap-
tive’ weighting scheme, one could consider for example a level-specific qMAVE
procedure, where

B̂(τ) = arg min
B∈Rp×q

min
aj ,bj

n∑
j=1

n∑
i=1

ρτ{Yi − aj − b>j B>Xij}Khn(|Xij |)dτ,

and consequently define

Σ̂∗w =

∫ 1−δ∗

δ∗
B̂(τ)B̂(τ)>ŵ(τ)dτ,

where ŵ(τ) is the same as in ( 3.6) derived from the level-specific OPG
matrix. Our experience is such that this level-specific qMAVE is always
outperformed by both the qMAVE procedure of (3.8) and qOPG. A possi-
ble explanation is that B̂(τ) being an orthonormal matrix means that all
directions (columns of B̂(τ)) are equally weighted, whereas in qOPG the
corresponding directions (eigenvectors) are given different weights dictated
by their respective eigenvalues.

4. Assumptions and theoretical results. For any s0 = l + γ, with
non-negative integer l and 0 < γ ≤ 1, we say a function m(.) : Rp → R
has the order of smoothness s0 on D, denoted by m(.) ∈ Hs0(D) if, it is
differentiable up to order l and there exists a constant C > 0, such that

|Dum(x1)−Dum(x2)| ≤ C|x1 − x2|γ , for all x1,x2 ∈ D, and [u] = l.
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ON ADAPTIVE QUANTILE DIMENSION REDUCTION 9

We assume the following conditions hold throughout the paper.

[A1] The support D of X is open, convex and the probability density func-
tion of X is such that fX(.) ∈ Hs1(D), for some s1 > 0.

[A2] The conditional quantile function Qτ (.) ∈ Hs2(D) for some s2 > 0
uniformly in τ ∈ (0, 1).

[A3] There exist some positive values δ∗, b1, b2 and s3 > 0, such that
the conditional probability density fY |X(.|.) of Y given X belongs
to Hs3(D) and is uniformly bounded away from zero in (Qτ (x) −
b1, Qτ (x) + b2) for all τ ∈ [δ∗, 1− δ∗] and x ∈ D.

The order of smoothness s1, s2, s3 will be specified later. The above
assumptions are standard in local polynomial smoothing for quantile re-
gression; see, for example, Chaudhuri et al (1997) and Kong et al (2010).
Among them, [A2] implies that for any x ∈ D and Xi ∈ Sn(x) = {i : 1 ≤
i ≤ n, |Xix| ≤ hn}, the error from approximating Qτ (Xi) by the k(= [s2])th
order Taylor expansion

Qn(Xi,x; τ) = [Xix(hn, A)]>cn(x; τ)

is of order O(hs2n ), uniformly in {(x,Xi) : x ∈ D, Xi ∈ Sn(x)} and τ ∈
(0, 1). [A3] strengthens CONDITION 3 of Chaudhuri et al (1997), where it
is required that for a pre-specified τ, g(x|τ) = fY |X(Qτ (x)|x) > 0, for all
x ∈ D.

The following lemma concerns the strong uniform Bahadur type repre-
sentation of ĉn(.; τ) derived from (3.3).

Lemma 2. Suppose [A1]-[A3] hold with s1 > 0, s2 > 0, s3 > 1/2, and
k = [s2]. The bandwidth hn is chosen such that

hn ∝ n−κ with
1

2(s2 + p)
≤ κ < 1

p
.

Then we have with probability one,

ĉn(x; τ)− cn(x; τ) =−Σ−1
n (x; τ)

Nn(x)

∑
i∈Sn(x)

Xix(hn, A)[I{Yi ≤ Qn(Xi,x; τ)} − τ ]

+O{
( log n

nhpn

)3/4

}(4.1)

uniformly in τ ∈ [δ∗, 1 − δ∗] and x = X1, · · · ,Xn, where Nn(x) = ]Sn(x)
and

Σn(x; τ) = Ei

[
g(Xi|τ)Xix(hn, A)X>ix(hn, A)|Xi ∈ Sn(x)

]
.
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10 KONG AND XIA

This strengthens the results obtained in Chaudhuri (1991) for nonpara-
metric quantile regression and Kong et al (2010) for general nonparametric
M-regression, both of which concerned the uniformity in x only. The uni-
formity in both x and τ plays a central role in examining the asymptotic
properties of Σ̂T, defined via averaging over x = X1, · · · ,Xn, and then
integration with respect to τ over [δ∗, 1− δ∗].

We now move on to present the asymptotic properties of Σ̂T and those
of its eigenvalues and eigenvectors. Write ∇2Qτ (.) for the Hessian matrix
of Qτ (.) and ∇g(.|τ), for the first order derivative vector of g(.|τ). For any

τ ∈ (0, 1) and 1 ≤ k, l ≤ p, let ∇Q[k]
τ (X) stand for the kth element of

∇Qτ (X); ∇[l]g(X|τ) for the lth element of ∇g(X|τ), ∇2
[k,l]Qτ (X) for the

(k, l) element of ∇2Qτ (.) and write

ρ(X|τ, k, l) =
[2∇2

[k,l]Qτ (X)

g(X|τ)
− ∇Q

[k]
τ (X)∇[l]g(X|τ)

g2(X|τ)
− ∇

[l]Qτ (X)∇[k]g(X|τ)

g2(X|τ)

]
.

For any τ1, τ2 ∈ (0, 1) and 1 ≤ k1, l1, k2, l2 ≤ p, define

h(τ1, τ2|k1, l1, k2, l2) = Cov
(
∇Q(k1)

τ1 (X)∇Q(l1)
τ1 (X),∇Q(k2)

τ2 (X)∇Q(l2)
τ2 (X)

)
+{min(τ1, τ2)− τ1τ2}Cov

(
ρ(X|τ, k1, l1), ρ(X|τ, k2, l2)

)
.

For any symmetric p×p matrix S = (sij), form a p(p+1)/2×1 vector using
the elements of S:

Vech(S) = (s11, · · · , sp1, s22, · · · , s2p, s22, · · · , spp)>.

Denote by v(.) the following 1-to-1 mapping from {1, 2, · · · , p(p+1)/2} onto
{(i, j) : 1 ≤ i ≤ j ≤ p}:

v(k) = (v(k, 1), v(k, 2)) = (i, j) such that
(2p− i)(i− 1)

2
+ j = k.

In other words, the kth element of Vech(S) is given by sv(k) = sv(k,1),v(k,2).
Finally, for any symmetric p×p matrix S, denote by λk(S) and βk(S), k =

1, · · · , q, the first q (nonzero) eigen-values and eigen-vectors of S respectively.
Write λ̃p−q(S) for the average of the smallest p− q eigenvalues of S.

Theorem 1. Suppose [A1]-[A3] hold with s1 > 0, s3 > 1/2, s2 >
3/2p+ 3, and k = [s2]. Furthermore, the smoothing parameter hn is chosen
such that

hn ∝ n−κ with
1

2(s2 − 1)
≤ κ < 1

3p+ 4
.(4.2)
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ON ADAPTIVE QUANTILE DIMENSION REDUCTION 11

Then we have λ̃p−q(Σ̂T) = op(n
−1/2) and

√
n(Σ̂T − ΣT)

d→ N,(4.3)

where ‘
d→’ stands for convergence in distribution and N stands for a sym-

metric p× p random matrix, such that Vech(N) is multivariate normal with
zero mean and covariance matrix H, whose (k, l)th element is given by∫ 1

0

∫ 1

0

h(τ1, τ2|v(k, 1), v(k, 2), v(l, 1), v(l, 2)) dτ1dτ2.

Furthermore, if λk(ΣT), k = 1, · · · , q, are all distinct, then for each k =
1, · · · , q,

√
n{λk(Σ̂T)− λk(ΣT)} d→ β>k (ΣT)Nβk(ΣT),(4.4)

√
n{βk(Σ̂T)− βk(ΣT)} d→

q∑
l=1,l 6=k

βl(ΣT)β>l (ΣT)Nβk(ΣT)

λk(ΣT)− λl(ΣT)
.(4.5)

In theory, (4.4) could be applied to make inference on the structural di-
mension q. The proof of Theorem 1 is mainly based upon results on U-
processes (Nolan and Pollard, 1987), namely a collection of U-statistics in-
dexed by a family of symmetric kernels.

5. Bandwidth selection. As far as the point-wise estimation of∇Qτ (.)
is concerned, it followed from Lemma 2 that the ‘optimal’ bandwidth hn
which minimizes the point-wise mean square error (MSE) of ∇̂Qτ (x), is
of the order O(n−1/(p+2k+2)). In this sense, the choice (4.2) of the band-
width hn under-smooths the estimator. Such undersmoothing is necessary
for the estimator ∇̂Qτ (x) to have a bias of order op(n

−1/2) thus negligible.
The stochastic term of ∇̂Qτ (x), once averaged over x = X1, · · · ,Xn, can
achieve the rate of Op(n

−1/2), independent of the speed at which hn tends
to zero. Similar observations have been made in Chaudhri et al (1997) and
Kong et al (2013). In cases where the link function Qτ (.) closely resembles a
(local) polynomials, the bias thus becomes less of an issue as it either signifi-
cantly reduces or completely vanishes; we can then afford to employ a larger
bandwidth thus produce more efficient estimates of ∇Qτ (.), while results
in Theorem 1 still hold. This also explains our assertion in Section 1 that
qOPG is structure-adaptive. In practice, an empirical ‘optimal’ bandwidth
can be obtained by plugging in estimates for the unknown quantities in the
formula of the point-wise theoretical ‘optimal’ bandwidth.
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12 KONG AND XIA

We can also select bandwidth based on the cross-validation (CV) criterion
for quantile regression; see, for example, Al-kenani and Yu (2010). This
is carried out as follows. For any given τ ∈ (0, 1) and fixed hn, denote

by Q
\j
τ (x|hn), j = 1, · · · , n, the leave-one-out estimate of Qτ (Xj) using

{(Xi, Yi) : i 6= j} with bandwidth hn. Let

CV (τ, hn) = n−1
n∑
j=1

ρτ

(
Yj −Q\jτ (Xj |hn)

)
,

and denote by hCVτ , the level-specific cross-validated (CV) bandwidth, namely
the hn that minimizes CV (τ, hn). However, based on our experience with
simulated data, we found such level-specific CV bandwidth selection is not
only rather time-consuming, but also terribly unstable, possibly due to the
difficulty in assessing the goodness-of-fit in quantile regression; see Koenker
and Machado (1999). Instead, We recommend the following modified level-
specific CV bandwidth. First, consider an average of the level-specific CV
bandwidth hCVτ with τ ranging over the set of {τs = s/(T +1) : s = 1, ..., T}
for some positive integer T :

h̄CV =

T∑
s=1

hCVτs /T.

Then in view of the relationship proposed in Yu and Jones (1998), we define
the modified level-specific CV bandwidth as

h̄CVτ = h̄CV {τ(1− τ)/φ(Φ−1(τ))}1/5,(5.1)

where functions φ(.) and Φ(.) are respectively the probability and cumula-
tive distribution functions of the standard normal distribution. Compared
to hCVτ , h̄CVτ is more stable and delivers much better results, but its com-
putation is equally computationally intensive. We also tried out variations
of h̄CVτ defined as in (5.1) but with h̄CV replaced by bandwidths chosen via
other procedures. Our best experience lies with h̄CVτ with h̄CV set to be the
CV bandwidth for conditional mean regression of |Y − E(Y )| on X.

6. Estimation of the structural dimension.. According to Theorem
1, the average of the smallest p − q eigenvalues of Σ̂T defined in (3.5) is
of order op(n

−1/2). For k = 1, · · · , p, plot the average of the smallest k
eigenvalues of Σ̂T against k and likely values for q could be then identified
by noting the location of a noticeable increase. The asymptotic distribution
of the eigenvalues of Σ̂T given in Theorem 1 could also be used for selecting q.
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ON ADAPTIVE QUANTILE DIMENSION REDUCTION 13

However, as the distribution depends on another unknown matrix H which
is not easy to estimate, such approach might not be very practical.

Combining the CV method of Xia et al (2002) with the composite quantile
regression provides an alternative way to select q. For illustration purposes,
we here give details for the local constant quantile kernel smoothing. With
working dimension q, suppose the q−columns of B̂q are the corresponding
estimates of the CS directions. For each observation (Xj , Yj), j = 1, ..., n,
calculate the delete-one-estimator of Q̃τ (B̂qXj) of (2.1) as

Q̂\jτ (B̂>q Xj) = argmin
c

∑
i 6=j

ρτ (Yi − c)Khn(|B̂qXij |).

We then define the CV value specific to working dimension q as

CV (q) =

∫ 1−δ∗

δ∗

n∑
j=1

ρτ (Yi − Q̂\jτ (B̂>q Xj))dτ,

and choose the dimension which minimizes CV (q). Our simulation study
suggests that this methodology works reasonably well, though it is also
rather computationally intensive.

7. Numerical study. In this section, we first carry out comparison
studies of the two newly proposed procedures, qOPG and qMAVE, with
two existing methods using simulated data. The two new procedures are
then applied to the analysis of a real data set for the purpose of discovering
the dimension reduction space.

In the calculation below, the local linear quantile regression, i.e. k = 1,
and the Epanechnikov kernel function are used. The integrations in (3.6) and
(3.8) are evaluated by the weighted summation of Σ̂(τ) over τ = 0.1, 0.2, ..., 0.9.

Example 1 (Simulated data). We reconsider the following three models
that are commonly tested out in the field of dimension reduction

Model (A) : Y = x1(x1 + x2 + 1) + 0.5ε,

Model (B) : Y = x1/(0.5 + (x2 + 1.5)2) + 0.5ε,

Model (C) : Y = x1 + exp(x2)ε,

where X = (x1, ...,x10)
> ∼ N(0, (σij)1≤i,j≤10) with σij = 0.5|i−j|, and ε is

the error term designed to have various distributions; see Table 1 below. The
first two models were thoughtfully designed by Li (1991) for the study of
Slice Inverse Regression (SIR). Model 3 was used in Xia (2007) in the context
of conditional mean and conditional variance based dimension reduction.
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14 KONG AND XIA

Based on the conclusion of Ma and Zhu (2012) from their intensive com-
parison study using simulated data, we have chosen to compare our con-
ditional quantile-based approaches, qOPG and qMAVE, with dOPG and
dMAVE of (Xia, 2007), among the many existing dimension reduction pro-
cedures. Another reason for us to include dOPG and dMAVE in the study
is the fact that these conditional probability-based approaches, are theoret-
ical equivalences to qOPG and qMAVE. We hope through such comparison
can manifest the structure-adaptive nature of our new methods. We also
include in the comparison study the SIR of Li (1991), for which 8 slices are
used when the sample size n = 200, and 10 when the sample size n = 400.
For dOPG and dMAVE, following the rule-of-thumb as in Xia (2007), we
use bandwidths of order n−1/5 and n−1/(p+4) respectively for the two ker-
nels in the estimation. For qOPG and dMAVE, the bandwidth is chosen
as described in Section 5. For any estimator B̂ of B0, we define the esti-
mation error as the largest among the absolute values of the elements of
B̂(B̂>B̂)−1B̂ − B0(B

>
0 B0)

−1B0. Table 1 reports the mean and standard
error (in brackets) of the estimation error from 100 replicates for various
combinations of model, error distribution and sample size. The last column
of Table 1 is the percentage of times that the structural dimension has been
correctly identified by the CV method described in Section 6.

A a general observation is such that qOPG and qMAVE - either with
data-driven bandwidth or with a bandwidth chosen according to the rule-of-
thumb - outperform respectively dOPG and dMAVE as well as SIR for both
models (A) and (B). The only exception lies with model (C), where qOPG
using the rule-of-thumb bandwidth is beaten by dOPG, but the situation
reverses with a data-driven bandwidth. This provides a line of empirical ev-
idence for the assertion we made in Section 1 that if the conditional quantile
function is well approximated locally by polynomials, then the data-driven
bandwidth deduced from qOPG means more efficient estimators. Another
noticeable pattern is that, contradictory to what happens with conditional
density-based methods where dMAVE consistently outperforms dOPG, the
expected superiority of qMAVE over qOPG is nowhere obvious. In fact, for
models (A) and (B), qOPG outperforms qMAVE most of the time, especially
so when data-driven bandwidths are used. Even for model (C) qMAVE seems
to enjoy an obvious lead over qOPG, this again becomes less obvious when
a data-driven bandwidth is used. A plausible explanation for this might be
that an adaptive-weighting scheme has been incorporated into qOPG, while
such procedure is hard to be combined with qMAVE.
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ON ADAPTIVE QUANTILE DIMENSION REDUCTION 15

Table 1. Average estimation errors and their standard derivation (in parenthesis)
and frequency of correct structural dimension identification

qOPG qMAVE

Model ε n SIR dOPG dMAVE h0 hCV h0 hCV freq.
(A) N(0,1) 200 0.82 0.55 0.53 0.42 0.44 0.48 0.48 56%

(0.14) (0.20) (0.18) (0.15) (0.15) (0.16) (0.15)
400 0.68 0.37 0.35 0.27 0.26 0.31 0.30 90%

(0.16) (0.14) (0.10) (0.08) (0.08) (0.08) (0.08)

t(3)/
√

3 200 0.79 0.50 0.46 0.42 0.38 0.38 0.40 72%
(0.15) (0.22) (0.16) (0.15) (0.14) (0.14) (0.14)

400 0.63 0.31 0.29 0.22 0.21 0.23 0.24 97%
(0.16) (0.13) (0.08) (0.07) (0.07) (0.06) (0.06)

χ2(1) 200 0.78 0.61 0.50 0.48 0.49 0.46 0.49 50%
(0.13) (0.22) (0.17) (0.20) (0.19) (0.17) (0.17)

400 0.61 0.39 0.32 0.30 0.28 0.28 0.29 79%
(0.14) (0.16) (0.10) (0.12) (0.09) (0.09) (0.10)

(B) N(0,1) 200 0.69 0.58 0.59 0.44 0.50 0.54 0.52 56%
(0.17) (0.17) (0.18) (0.18) (0.19) (0.19) (0.19)

400 0.51 0.35 0.38 0.24 0.27 0.32 0.32 87%
(0.15) (0.10) (0.13) (0.10) (0.10) (0.11) (0.12)

t(3)/
√

3 200 0.57 0.48 0.47 0.38 0.37 0.40 0.40 84%
(0.16) (0.16) (0.15) (0.16) (0.12) (0.15) (0.13)

400 0.41 0.34 0.29 0.19 0.18 0.21 0.22 97%
(0.12) (0.10) (0.09) (0.09) (0.06) (0.06) (0.07)

χ2(1) 200 0.64 0.57 0.53 0.55 0.46 0.51 0.48 64%
(0.17) (0.18) (0.20) (0.24) (0.20) (0.22) (0.19)

400 0.42 0.35 0.31 0.24 0.22 0.24 0.25 94%
(0.11) (0.13) (0.09) (0.11) (0.08) (0.07) (0.07)

(C) N(0,1) 200 0.53 0.55 0.51 0.77 0.42 0.48 0.36 29%
(0.13) (0.14) (0.17) (0.15) (0.14) (0.17) (0.10)

400 0.37 0.36 0.33 0.77 0.29 0.30 0.24 31%
(0.08) (0.11) (0.09) (0.16) (0.10) (0.08) (0.05)

t(3)/
√

3 200 0.61 0.62 0.59 0.81 0.47 0.55 0.38 32%
(0.15) (0.14) (0.18) (0.15) (0.19) (0.19) (0.14)

400 0.44 0.41 0.38 0.77 0.39 0.35 0.25 39%
(0.12) (0.14) (0.15) (0.15) (0.20) (0.14) (0.07)

χ2(1) 200 0.63 0.60 0.49 0.50 0.46 0.44 0.42 37%
(0.14) (0.15) (0.16) (0.17) (0.16) (0.16) (0.13)

400 0.43 0.42 0.32 0.35 0.30 0.31 0.27 46%
(0.11) (0.14) (0.09) (0.10) (0.16) (0.09) (0.08)

Example 2 (Real data). In financial economics, the capital asset pricing
model (CAPM) indicates that the return of a portfolio strongly depends
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16 KONG AND XIA

on the market performance. However, little is known about the factors that
affect the volatility of a portfolio. In the following, we consider the daily
return Y of a portfolio listed at

http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

with covariate X = (x1,x2, ...,x15), where x1, ...,x5 are the returns of the
portfolio in the past five days, and x6, ...,x10 are the absolute values of the
returns which are proxy of the past volatilities; x11, ...,x15 are the market
returns on the same day as Y and those in the past four days, and x16, ...,x20

are the absolute values of the market returns.
Applying qOPG, the first several eigenvalues of Σ̂T are respectively 1.0620,

0.0164, 0.0017, 0.0007 and 0.0004. With the structural dimension set as 2,
we obtain the estimated CS directions β1 and β2; see Table 2. The scatter
plots of Y against β>1 X and β>2 X are given in Fig. 1. The fitted curve in
the bottom two panels are created with bandwidths h = h0/(f̂k(x))0.2 with
h0 being selected by the CV method, and f̂k(.), k = 1, 2, being the kernel
estimate of the density function of β>k X. The fitted regression function of
the portfolio’s return on β>1 X in the bottom-left panel of Fig. 1 suggests the
first CS direction β1 is mostly about the conditional mean, while the second
CS direction β2 is clearly about the conditional variance, evident from the
bottom-right panel. The first direction β1 is dominated by x11, the market
return of the day, with a coefficient 0.9940; this is in line with the CAPM in
that the expected return of any portfolio largely depends on the present-day
market performance. It is also interesting to note that the volatility of the
portfolio also depends the market’s volatility, as suggested by the large coef-
ficients of x16,x17 and x18 on the second CS direction β2. Also, its own past
volatilities (x8,x9) also contribute to its present-day volatility, although to
a less extent.

Table 2: Estimated CS directions for Example 2
xi β1 β2 xi β1 β2 xi β1 β2 xi β1 β2

x1 -0.014 0.001 x6 0.006 -0.089 x11 0.994 -0.032 x16 0.029 0.490
x2 -0.042 0.045 x7 0.005 0.093 x12 0.048 -0.027 x17 -0.017 0.506
x3 -0.029 -0.239 x8 0.020 0.271 x13 0.048 -0.076 x18 0.008 0.302
x4 -0.008 -0.100 x9 0.008 0.277 x14 0.035 0.347 x19 -0.035 -0.126
x5 0.008 0.067 x10 -0.014 0.111 x15 -0.005 0.010 x20 0.001 -0.120

8. Conclusions. In this paper, we have proposed and investigated two
composite quantile approach to dimension reduction, namely qOPG and
qMAVE. Compared with moment-based methods, these methods require
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ON ADAPTIVE QUANTILE DIMENSION REDUCTION 17

less restrictive assumptions and can identify all dimension reduction direc-
tions. It does not involve ‘slicing’ of the response variable Y , as is the case
with SIR or conditional density-based methods (Xia, 2007). It carries out
regression analysis directly on Y instead of transformations of Y . As a re-
sult of these characteristics, qOPG and qMAVE are structure-adaptive and
thus more efficient. However, because the amount of computation embedded
in quantile regression is significantly heavier than in least square minimiza-
tion, the implementation of qOPG and qMAVE is rather time consuming
compared to most of the existing methods. Because of this, we recommend
the use of dOPG or dMAVE to obtain an initial estimator of the central
subspace and of the structural dimension, and the use of qOPG or qMAVE
for more efficient refined estimator.
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Fig 1. Results for Example 2. The top two panels are the scatter plots of Y against the two
estimated CS directions β1 and β2. The bottom-left panel is the fitted regression function
of Y against the first CS direction and its 95% confidence interval. In the bottom-right
panel, the curves are the regression quantiles of Y against the second directions at τ =
0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 respectively.
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APPENDIX: PROOFS

Proof of Lemma 1. The assertion that S(Σ) ⊆ S(B0) follows directly
from (2.3). We show that the opposite holds too. Based on (2.3), we can see
by definition

Σ = B0

[ ∫ 1

0

E{∇Q̃τ (B>0 X)[∇Q̃τ (B>0 X)]>}dτ
]
B>0 .

It thus suffices if we can prove the matrix

M =

∫ 1

0

E{∇Q̃τ (B>0 X)[∇Q̃τ (B>0 X)]>}dτ

is of full rank. For if otherwise, there must exist some vector b1 ∈ Rq, with
Euclidean norm one such that b>1 Mb1 = 0. Seeing the definition of M , this
implies that

b>1 ∇Q̃τ (B>0 X) = 0 a.s.(a.1)

for all τ ∈ (0, 1) except on a set of Lebesgue measure zero.
Let B = (b1, · · · ,bq) ∈ Rq×q denote an orthonormal basis for Rq, i.e.

B>B = Iq. For any given τ ∈ (0, 1), write

Gτ (u) = Q̃τ (u), G̃τ (u) = Q̃τ (Bu), B̃0 = B0B.(a.2)

Thus

Gτ (Bu) = G̃τ (u); Gτ (B>0 X) = Gτ (B̃>0 X).

Consider the gradient vector of G̃τ (u) and then evaluate it for u = B̃>0 X:

∂G̃τ (u)

∂u
=
∂Gτ (Bu)

∂u
= B>

∂Gτ (Bu)

∂(Bu)
= B>∇Gτ (Bu)

u=B̃>0 X
= B>∇Gτ (B>0 X),

the first element of which, according to (a.1), equals zero. This suggests the
value of G̃τ (B̃>0 X), as a function of B̃>0 X = (b>1 B

>
0 X, · · · ,b>q B>0 X)>, does

not change with b>1 B
>
0 X. This together with the fact that

G̃τ (B̃>0 X) = Gτ (B>0 X) = Q̃τ (B>0 X) = Qτ (X)

implies thatQτ (X) is in fact a function of q−1 variables: b>2 B
>
0 X, · · · ,b>q B>0 X.

And this according to (a.1) holds for any τ ∈ (0, 1). As {Qτ (X) : τ ∈ (0, 1)}
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ON ADAPTIVE QUANTILE DIMENSION REDUCTION 19

collectively defines F (.|X), we can conclude that F (.|X) is in fact a function
of (b>2 B

>
0 X, · · · ,b>q B>0 X)> = [B0(b2, · · · ,bq)]>X, expressed as

F (Y |X) = F (Y |B̃>X), a.s. where B̃ = B0(b2, · · · ,bq).

This means S(B̃) is SDR and as S(B0) is the CS, we should have S(B0) ⊆
S(B̃). This contradicts the fact that dim(S(B0)) = q > q− 1 = dim(S(B̃)).
�

The proof of Lemma 2 is left until the end. To prove Theorem 1, we also
need to introduce more notations. For any t = (t1, · · · , tp)> ∈ [−1, 1]p, let
t(A) stand for the s(A)× 1 vector (tu)u∈A. Define

Γ =

∫
[−1,1]p

t(A){t(A)}>dt.

Standard result in kernel smoothing, e.g. Masry (1996), is such that with
probability one,

Nn(x)

nhpn
− fX(x) = O(h2

n + (nhpn/ log n)−1/2)(a.3)

uniformly in x ∈ D, and

Σn(x; τ)− g(x|τ)Γ = O
(

(nhpn/ log n)−1/2 + hn

)
(a.4)

uniformly in τ ∈ (0, 1) and x ∈ D.
Also we will cite the following result, the proof of which will be given at

the end of this section: with probability one,∑
i

Xix(hn, A)I(|Xix| ≤ hn)
[
I{Yi ≤ Qn(Xi,x; τ)}

−I{Yi ≤ Qτ (Xi)}
]

= o(n−1/2)(a.5)

uniformly in x ∈ D, τ ∈ (0, 1).

Proof of Theorem 1. Write as Γ̃n(Xj ; τ), the p×s(A) matrix consisting
the second up to the (p + 1)th row of Σ−1n (Xj ; τ). First note that under
conditions in Theorem 1,

h−1
n (nhpn/ log n)−3/4 = o(n−1/2), hs2−1

n = o(n−1/2), and log n/(nhpn) = o(n−1/2hn).

This together with (3.4) and Lemma 2 leads to

Σ̂(τ) =
1

n

n∑
j=1

∇Qτ (Xj){∇Qτ (Xj)}> + h−1
n [Mn(τ) +M>n (τ)] + o(n−1/2),

where

Mn(τ) =
1

n

∑
i,j

∇Qτ (Xj)

Nn(Xj)
I(|Xij | ≤ hn)[I{Yi ≤ Qn(Xi,Xj ; τ)} − τ ]X>ij(hn, A)Γ̃>n (Xj ; τ).
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with Xij = Xi −Xj . Using results in (a.3), (a.4) and (a.5), we have

Σ̂(τ) =
1

n

n∑
j=1

∇Qτ (Xj){∇Qτ (Xj)}>

+h−(p+1)
n [M̃n(τ)Γ̃> + Γ̃M̃>n (τ)] + o(n−1/2),(a.6)

where Γ̃ is the p × s(A) matrix consisting of the second up to the p + 1th
rows of Γ−1 and

M̃n(τ) =
1

n2

∑
i,j

∇Qτ (Xj)X
>
ij(hn, A)

g(Xj |τ)fX(Xj)
[I{Yi ≤ Qτ (Xi)} − τ ]I(|Xij | ≤ hn).

The key to the study of the properties of Σ̂(τ) is {M̃n(τ) : τ ∈ (0, 1)}, which
is a typical example of U−processes (Nolan and Pollard, 1987).

To derive the Hoeffding’s decomposition of M̃n(τ), write Zi = (Yi,Xi)
and define

ξn(Zi,Zj ; τ) =
{∇Qτ (Xj)X

>
ij(hn, A)

g(Xj |τ)fX(Xj)
[I{Yi ≤ Qτ (Xi)} − τ ]

+
∇Qτ (Xi)X

>
ji(hn, A)

g(Xi|τ)fX(Xi)
[I{Yj ≤ Qτ (Xj)} − τ ]

}
I(|Xij | ≤ hn),

ζn(Zi; τ) = Ej [ξn(Zi,Zj ; τ)] = hpn[I{Yi ≤ Qτ (Xi)} − τ ]
{∇Qτ (Xi)

g(Xi|τ)
γ> +

hn

[∇2Qτ (Xi)

g(Xi|τ)
− ∇Qτ (Xi)∇>g(Xi|τ)

g2(Xi|τ)

]
Γ1 +O(h2

n)
}
,(a.7)

where

γ =

∫
[−1,1]p

t(A)dt, Γ1 =

∫
t t>(A)dt.

Note that E[ξn(Zi,Zj ; τ)] = E[ζn(Zi; τ)] = 0. Therefore, we have

M̃n(τ) =
1

n2

∑
i<j

ξn(Zi,Zj ; τ) = Un(τ) +
1

n

∑
i

ζn(Zi; τ),

where Un(τ) is its Hoeffding’s decomposition

Un(τ) =
1

n2

∑
i<j

ξn(Zi,Zj ; τ)− 1

n

∑
i

ζn(Zi; τ).(a.8)

To decide the tail properties of sup{|Un(τ)| : τ ∈ [δ∗, 1− δ∗]}, first note that
according to Lemma (2.13) of Pakes and Pollard (1989) [reproduced as [C1]
at the end of this section] and Corollary A.3, {ξn(Zi,Zj ; τ) : τ ∈ [δ∗, 1−δ∗]}
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is Euclidean for a constant envelope, or in Arcones (1995) term, a uniformly
bounded V-C subgraph class. Applying Proposition 4 in Arcones (1995) to
Un(τ), we conclude that there exists some finite c2 > 0, such that for any
ε > 0,

P{n1/2 sup
τ∈[δ∗,1−δ∗]

|Un(τ)| ≥ hp+1
n ε} ≤ 2 exp{−c2εn1/2h−1

n }.

By an application of the Borel-Cantelli Lemma, we have

sup
τ∈[δ∗,1−δ∗]

|Un(τ)| = o(n−1/2hp+1
n ) a.s.

This together with (a.6), (a.7), (a.8) and the facts that Γ̃γ = 0, Γ̃Γ1 = Ip
implies that with probability one,

Σ̂(τ) =
1

n

n∑
i=1

∇Qτ (Xi){∇Qτ (Xi)}> +
1

n

n∑
i=1

[I{Yi ≤ Qτ (Xi)} − τ ]

g2(Xi|τ)
×[

2g(Xi|τ)∇2Qτ (Xi)−∇Qτ (Xi)∇>g(Xi|τ)−∇g(Xi|τ)∇>Qτ (Xi)
]

+ o(n−1/2)

where the term o(n−1/2) is uniform in τ ∈ [δ∗, 1−δ∗]. Consequently, we have

Σ̂T =

∫ 1−δ∗

δ∗
Σ̂(τ)dτ = ΣT +

1

n

n∑
i=1

Σ(1)(Xi)

+
1

n

n∑
i=1

Σ(2)(Xi, Yi) + o(n−1/2), a.s.(a.9)

where Σ(1)(.) and Σ(2)(.) are two symmetric random matrices with properties
such that

E[Σ(1)(X)] = 0, E[Σ(2)(X, Y )] = 0, Σ(1)(X)Π = 0, Σ(2)(X, Y )Π = 0,

with Π = I − B0(B
>
0 B0)

−1B>0 , the projection matrix such that ΠB0 =
B>0 Π = 0. An application of Lemma A.1 in Li (1991) to the right-hand side

of (a.9) with ΣT, n−1/2, Σ̂T and n−1/2{
∑
i
{Σ(1)(Xi) + Σ(2)(Xi, Yi)} acting

as T , w2, T (w) and T (2) therein respectively, we have with probability one,

λ̃p−q(Σ̂T) =
n−1/2

p− q
∑
i

trace([Σ(1)(Xi) + Σ(2)(Xi, Yi)]Π) + o(n−1/2) = o(n−1/2)

We now move on to derive the asymptotic properties of the first q eigen-
values and eigen-vectors of Σ̂. First note that the three classes of func-
tions, namely {∇Qτ (Xi){∇Qτ (Xi)}>, τ ∈ [δ∗, 1− δ∗]}, {g(Xi|τ)}−2[I{Yi ≤
Qτ (Xi)}−τ ], τ ∈ [δ∗, 1−δ∗]}, and {g(Xi|τ)∇2Qτ (Xi)−∇Qτ (Xi)∇>g(Xi|τ)−
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∇g(Xi|τ)∇>Qτ (Xi), τ ∈ [δ∗, 1−δ∗]} are, according to Corollary A.3, all Eu-
clidean for a constant envelop. Therefore, the collection of random matrices
{Σ̂(τ) : τ ∈ [δ∗, 1 − δ∗]} are Glivenko-Cantelli as well as Donsker [van der
Vaart and Wellner (2000)].

By Glivenko-Cantelli, we mean that

sup
τ∈[δ∗,1−δ∗]

|Vech(Σ̂(τ))−Vech(Σ(τ))| → 0 a.s.,

from which we can conclude that

Vech(Σ̂T)−Vech(ΣT)→ 0 a.s.

which in turn implies that [Lemma 3.1, Bai et al (1991)],

βk(Σ̂T)− βk(ΣT)→ 0 (k = 1, · · · , q) a.s.

By Donsker, we mean that

√
n{Vech(Σ̂(τ))−Vech(Σ(τ))} d→ G, in `∞([δ∗, 1− δ∗]),

where `∞([δ∗, 1−δ∗]) stands for the space of all uniformly bounded multivari-

ate real functions from [δ∗, 1−δ∗] to Rp(p+1)/2 equipped with the supremum
norm, and the limit G is a zero-mean p(p + 1)/2−dimensional Gaussian
process on [δ∗, 1−δ∗], such that for any given τ1, τ2 ∈ [δ∗, 1−δ∗], the covari-
ance matrix E[G(τ1)G(τ2)] has its (k, l)th element given by the covariance
between

∇Q[v(k,1)]
τ1 (X)∇Q[v(k,2)]

τ1 (X) +
[I{Yi≤Qτ1 (Xi)}−τ1]

g2(Xi|τ1)

[
2g(Xi|τ1)]∇2

[v(k,1),v(k,2)]Qτ1(Xi)

−∇Q[v(k,1)]
τ1 (Xi)∇[v(k,2)]g(Xi|τ1)−∇[v(k,1)]g(Xi|τ1)∇[v(k,2)]Qτ1(Xi)

]
and

∇Q[[v(l,1)]]
τ2 (X)∇Q[v(l,2)]

τ2 (X) +
[I{Yi≤Qτ2 (Xi)}−τ2]

g2(Xi|τ2)

[
2g(Xi|τ2)]∇2

[v(l,1),v(k,2)]Qτ2(Xi)

−∇Q[v(l,1)]
τ2 (Xi)∇[v(l,2)]g(Xi|τ2)−∇[v(l,1)]g(Xi|τ2)∇[v(l,2)]Qτ2(Xi)

]
;

equation (4.3) thus follows by appealing to the Continuous-mapping Theo-
rem.

The proof of (4.4) and (4.5), i.e. the asymptotic normality of the eigen-
values and eigenvectors of Σ̂, can be done in exactly the same manner as in
Theorem 2.2 of Zhu and Fang (1996), which, by an application of the Pertur-
bation Theory [Sun (1988), Kato (1995)], relates the asymptotic normality
of a random matrix to that of its eigenvalues and eigenvectors. �

To prepare for the proof of Lemma 2, we need to introduce more notations
and some related results. For any given x ∈ D let DXn(x) be the Nn(x)×
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s(A) matrix with rows given by the transposition of Xix(hn, A), i ∈ Sn(x),
and V Yn(x) be the Nn(x)× 1 vector whose components are Yi, i ∈ Sn(x).

For any subset h ⊂ Sn(x), denote by DXn(x,h) and V Yn(x,h), the sub-
matrix (vector) of DXn(x) and V Yn(x), respectively, with indices of rows
given by by h. Further define

Hn(x) = {h : h ⊂ Sn(x), ](h) = s(A), DXn(x,h) is of full rank}.

Suppose DXn(x) of rank = s(A), Hn(x) is thus nonempty. The following
two facts concern the uniqueness of ĉn(x; τ) and its ‘matrix form’ of , for any
given x ∈ D and τ ∈ (0, 1). They are essentially restatements of Theorems
3.1 and 3.2 in Koenker and Bassett (1978); see, also FACT 6.3 and 6.4 in
Chaudhuri (1991b).

[B1] There exists positive constants c1 and c2, such that

P (An) = 1, where An = {c1nhdn ≤ Nn(x) ≤ c2nhdn for all x ∈ D}

This follows easily from (a.4).
[B2] There exists a h ∈ Hn(x), such that (3.3) has at least one solution of

the form

ĉn(x; τ) = [DXn(x,h)]−1V Yn(x,h).

[B3] For h ∈ Hn(x), let ĉn(x; τ) = [DXn(x,h)]−1V Yn(x,h) and define

Ln(h;x, τ) = [DXn(x,h)]−1
∑
i∈h̄

[
I{Yi < X>ix(hn, A)ĉn(x; τ)} − τ

]
Xi,x(hn, A),

where h̄ is the relative complement of h with respect to Sn(x). Then
ĉn(x; τ) is a unique solution to (3.3) if and only if Ln(h;x, τ) ∈ (τ −
1, τ)s(A). Further, if ĉn(x; τ) is a solution (not necessarily unique) to
(3.3), we must have Ln(h;x, τ) ∈ [τ − 1, τ ]s(A).

To facilitate the use of the conditioning arguments at various places in the
proofs, for any Xj , j = 1, · · · , n, we exclude Xj from the previously defined
Sn(Xj); instead we define Sn(Xj) = {i : 1 ≤ i ≤ n, i 6= j, |Xij | ≤ hn} and
Nn(Xj) = ](Sn(Xj)).

The proof of Lemma 2 will be built upon the following slightly weaker
result.

Lemma A.1. Let δn = (nhpn/ log n)−1/2. Suppose conditions in Lemma
2 hold. Then

sup
1≤j≤n,τ∈[δ∗,1−δ∗]

|ĉn(Xj ; τ)− cn(Xj ; τ)| = O(δn) a.s.
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Proof of Lemma A.1. For any given positive constant K1 and a generic
x ∈ D, let Un be the event defined as

Un =
{

sup
τ∈[δ∗,1−δ∗]

|ĉn(x; τ)− cn(x; τ)| ≥ K1δn

}
.(a.10)

In view of the fact that P (An) = 1, the assertion in Lemma A.1 will follow
from an application of the Borel-Cantelli lemma, if we can show that there
exists some K1 > 0, such that∑

n

nP (Un ∩An) <∞.(a.11)

We now try to get an upper bound for P (Un ∩ An). To this end, for given

τ ∈ [δ∗, 1− δ∗],x ∈ D and c ∈ Rs(A), define

Zni(c|x, τ) =
[
I{Yi < c>Xix(hn, A)} − τ

]
Xi,x(hn, A).

Based on [B2] and [B3], there exists some positive constant K2, which de-
pends only on s(A) such that Un ∩An is contained in the event

{there exists some τ ∈ [δ∗, 1− δ∗] and h ∈ Hn(x), such that for

ĉn(x; τ) = [DXn(x,h)]−1V Yn(x,h), we have |
∑
i∈h̄

Zni(ĉn(x; τ)|x, τ)| ≤ K2,

and |ĉn(x; τ)− cn(x; τ)| ≥ K1δn} ∩An.(a.12)

Choose large enough K1 such that we can apply Proposition A.2 to conclude
that there exist some ε1 > 0, and K3 > 0, such that, for all τ ∈ [δ∗, 1− δ∗],

E[Zni(ĉn(x; τ)|x, τ)] ≥ min{ε1,K3K1δn},

and consequently as a result of An and the fact that ](h̄) = Nn(x) − s(A),
we have {∣∣∣∑

i∈h̄

Zni(ĉn(x; τ)|x, τ)
∣∣∣ ≤ K2

}
⊆
{∣∣∣∑

i∈h̄

{Zni(ĉn(x; τ)|x, τ)− E[Zni(ĉn(x; τ)|x, τ)]}
∣∣∣ ≥ c∗1K1nh

p
nδn

}
(a.13)

for some c∗1 > 0.
Next, note that given the set Sn(x), h ⊂ Sn(x), and (Xi, Yi) for i ∈ h, and

thus ĉn(x; τ) = [DXn(x,h)]−1V Yn(x,h) is also fixed, the random vectors
{Zni(ĉn(x; τ)|x, τ), i ∈ h̄} are conditionally i.i.d. This together with (a.12),

(a.13) and the fact that ](Hn(x)) is of order (nhpn)s(A), implies there exists
some c∗2 > 0, such that

P (Un ∩An) ≤ c∗2(nhpn)s(A)

×P
{

sup
τ ∈ [δ∗, 1− δ∗],

c ∈ Rs(A)

∣∣∣∑
i∈h̄

{Zni(c|x, τ)− E[Zni(c|x, τ)]}
∣∣∣ ≥ c∗1K1nh

p
nδn

}
.(a.14)
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To find a bound for the probability on the right hand side above, first note
that according to Lemma 22 (ii) in Nolan and Pollard (1987), {Zni(c|x, τ) :

τ ∈ [δ∗, 1− δ∗], c ∈ Rs(A)} is contained in an Euclidean class for a constant
envelope, since Yi−c>Xix(hn, A) = [X>ix(hn, A), Yi]∗(c>,−1)> and the indi-
cator function I(. < 0) is of bounded variation. As E|Zni(c|x, τ)Zτni(c|x, τ)|2 =

O(1) uniformly in τ ∈ [δ∗, 1−δ∗], c ∈ Rs(A), through similar arguments used
in the proof of Theorem 2.37 in Pollard (1984, pp.34), we have that

P
{

sup
τ ∈ [δ∗, 1− δ∗],

c ∈ Rs(A)

∣∣∣∑
i∈h̄

{Zni(c|x, τ)− E[Zni(c|x, τ)]}
∣∣∣ ≥ c∗1K1nh

p
nδn

}
= o(n−a),

for any a > 0. This together with (a.14) leads to (a.11). �
For any x ∈ D, let ωhn(t|x) be the conditional probability density function

of (Xi−x)/hn given i ∈ Sn(x). Note that it converges to the uniform density
on [−1, 1]p uniformly in t ∈ [−1, 1]p and x ∈ D.

Proof of Lemma 2. For any given τ ∈ [δ∗, 1−δ∗], x ∈ D, and X ∈ Sn(x),
write

Q̂n(X,x; τ) = [(X− x)(hn, A)]>ĉn(x; τ).

The proof consists of the following steps.

Step 1: For any given τ ∈ [0, 1], c ∈ Rs(A) and x ∈ Rp, define

H̃n(c;x) = E[I{Yi < c>Xix(hn, A)}Xix(hn, A)|i ∈ Sn(x)]

=

∫
[−1,1]p

F (c>t(A)|x + hnt)t(A)ωhn(t|x)dt,

R(1)
n (c̃, c|x, τ) = H̃n(x, c̃)− H̃n(x, c)− Σn(x; τ)(c̃− c).

Therefore, under assumptions [A2] and [A3],

R(1)
n (ĉn(x; τ), cn(x; τ)|x, τ)

= H̃n(x, ĉn(x; τ))− H̃n(x, cn(x; τ))− Σn(x; τ)[ĉn(x; τ)− cn(x; τ)],(a.15)

=

∫
[−1,1]p

[F (Q̂n(x + hnt,x; τ)|x + hnt)− F (Qn(x + hnt,x; τ)|x + hnt)

−g(x + hnt|τ)t(A)t>(A){ĉn(x; τ)− cn(x; τ)}]whn(t|x)dt

= O(δ1+s3
n ) = O{[n(1−κp)/ log n]−3/4}, (if s3 ≥ 1/2),(a.16)

uniformly in τ ∈ [δ∗, 1−δ∗], where (a.16) follows from Lemma A.1 and
the facts that Q̂n(x+hnt,x; τ)−Qn(x+hnt,x; τ) = {t(A)}>[ĉn(x; τ)−
cn(x; τ)] and Qn(x + hnt,x; τ)−Qτ (x + hnt) = O(hs2n ) = o(δn).
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Step 2: For any given τ ∈ (0, 1), x ∈ Rp and h ∈ Hn(x), define

χn(x; τ) =
∑

i∈Sn(x)

[Xix(hn, A)I{Yi ≤ Q̂n(Xi,x; τ)} − H̃n(ĉn(x; τ);x)]

−
∑

i∈Sn(x)

[Xix(hn, A)I{Yi ≤ Qn(Xi,x; τ)} − H̃n(cn(x; τ),x)],

ĉhn(x; τ) = [DXn(x,h)]−1V Yn(x,h), Q̂h
n(Xi,x; τ) = {ĉhn(x; τ)}>Xix(hn, A),

and for any c1, c2 ∈ Rs(A), define

χh
n(c1, c2;x) =

∑
i∈h̄

[Xix(hn, A)I{Yi ≤ c>1 Xix(hn, A)} − H̃n(c1;x)]

−
∑
i∈h̄

[Xix(hn, A)I{Yi ≤ c>2 Xix(hn, A)} − H̃n(c2;x)].

For any given K3 > 0, consider the corresponding event

Wn(x) =
{

sup
τ∈[δ∗,1−δ∗]

|χn(x; τ)| ≥ K3[log n]3/4n(1−κp)/4
}
.

Then in view of definition of the events An, Un(x) of (a.10) and [B2],

the event Wn(x) ∩ An ∩ Un(x) [Un(x) is the complement of Un(x)] is
contained in the event

{for some τ ∈ [δ∗, 1− δ∗] and h ∈ Hn(x), |χh
n(ĉhn(x; τ), cn(x; τ);x)|

≥ K4[log n]3/4n(1−κp)/4and |ĉhn(x)− cn(x; τ)| ≤ K1δn} ∩An

for large enough n, where K4 = K3/2 and for which we have implicitly

used the facts that ](h) = p and [log n]3/4n(1−κp)/4 → ∞ as n → ∞.

Again, since ](Hn(x)) is of order n(1−κp)n(A) uniformly in x ∈ D,

there exists some constant c3 > 0, such that P (Wn(x)∩An∩Un(x)) is

bounded by c3n
(1−κp)n(A) multiplied by the probability of the following

event {
sup

c1, c2 ∈ Rs(A);
|c1 − c2| ≤ K1δn

|χh
n(c1, c2;x)| ≥ K4[log n]3/4n(1−κp)/4

}
∩An.(a.17)

To find a bound for the probability of even (a.17), first note that
according to Lemma 22 (ii) in Nolan and Pollard (1987) and Lemma
(2.14) (i) in Pakes and Pollard (1989), the class of all functions on

Rs(A)+1 of the form

(Yi,Xix(hn, A))→ Xix(hn, A)[I{Yi ≤ c>1 Xix(hn, A)} − I{Yi ≤ c>2 Xix(hn, A)}]
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with c1, c2 ranging over Rs(A) is again an Euclidean class for a constant
envelope. Secondly,conditioning on Sn(x), h ∈ Hn(x), and observa-
tions {(Xi, Yi) : i ∈ h}, the terms in the sum defining χh

n(c1, c2;x) are
i.i.d. with mean zero, and variance-covariance matrix with Euclidean
norm of order O(|c1 − c2|). Following the steps in the proof of The-
orem 2.37 in Pollard (1984, pp.34), we can conclude that there exist
constant c4 > 0, c5 > 0, such that the probability of (a.17) is bounded
by

Kc4
4 (log n)c4/2 exp(−c5K2

4 log n) = o(n−α), for any α > 0,

if K4, or equivalently K3, is chosen to be sufficiently large. Equivalently
we have there exists some K3, such that

P
{

sup
τ∈[δ∗,1−δ∗]

|χn(x; τ)| ≥ K3[log n]3/4n(1−κp)/4
}

= o(n−2).

An application of Borel-Cantelli lemma leads to

sup
τ∈[δ∗,1−δ∗],j=1,··· ,n

|χn(Xj ; τ)| = O{(log n)3/4n(1−κp)/4} a.s.(a.18)

Step 3: Combining (a.15), (a.16) and (a.18), we have with probability one,

1

Nn(x)

∑
i∈Sn(x)

Xix(hn, A)[I{Yi ≤ Qn(Xi,x; τ)} − τ ]

= − 1

Nn(x)
χh
n(x)− H̃n(ĉn(x; τ);x) + H̃n(cn(x; τ);x)

+
1

Nn(x)

∑
i∈Sn(x)

Xix(hn, A)[I{Yi ≤ Q̂n(Xi,x; τ)} − τ ]

= −Σn(x; τ)[ĉn(x; τ)− cn(x; τ)] +O{[n(1−κp)/ log n]−3/4}

+
1

Nn(x)

∑
i∈Sn(x)

Xij(δn, A)[I{Yi ≤ Q̂n(Xi,x; τ)} − τ ](a.19)

uniformly in τ ∈ [δ∗, 1 − δ∗] and x = Xj , j = 1, · · · , n. Note that
according to [B3], the last term in (a.19) is of order O(nκp−1) =
o{[n(1−κp)/ log n]−3/4}. �

Proposition A.2. There exists some K2 > 0,K3 > 0,K4 > 0 such that
for all τ ∈ [δ∗, 1− δ∗],∣∣∣ ∫

[−1,1]p
{F (c>t(A)|x + hnt)− τ}t(A)ωhn(t|x)dt

∣∣∣ ≥ min{K2,K3|c− cn(x; τ)|},

whenever |c− cn(x; τ)| ≥ K4h
s2
n .
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Proof of Proposition A.2. First note that as ωhn(t|x) converges to the
uniform density on [−1, 1]p uniformly in t ∈ [−1, 1]p, x ∈ D, we have∫

[−1,1]p
{F (c>t(A)|x + hnt)− τ}t(A)ωhn(t|x)dt = Hn(c|x, τ)(1 + o(1))

where Hn(c|x, τ) =

∫
[−1,1]p

{F (c>t(A)|x + hnt)− τ}t(A)dt.

The proof is split into the following steps.
Steps 1: We show that there exist M1 > 0 and ε1 > 0, such that for all

τ ∈ [δ∗, 1− δ∗], and x ∈ D, |Hn(c|x, τ)| ≥ ε1, whenever |c− cn(x; τ)| ≥M1.
If this is false, there must exist three sequences {τn∗} in [δ∗, 1−δ∗], {xn∗}

in D and {cn∗} in Rs(A), such that as n∗ →∞, |cn∗−cn(xn∗ ; τn∗)| → ∞, but
|Hn(cn∗ |xn∗ , τn∗)| → 0. Without loss of generality, suppose there exist some
τ∗ ∈ [δ∗, 1− δ∗] and x∗ ∈ D, such that as n∗ →∞, τn∗ → τ∗, and xn∗ → x∗.
Further construct the sequence {∆n∗} with ∆n∗ = cn∗ − cn(xn∗ ; τn∗), and
for which we have, as n∗ →∞, |∆n∗ | → ∞, and ∆n∗/|∆n∗ | → ∆∗, for some
∆∗ ∈ Rs(A).

Note that for any given t ∈ [−1, 1]p, c>n∗t(A) = cn(xn∗ ; τn∗)>t(A) +
∆>n∗t(A), the first term being finite, must tend to either +∞ or −∞ de-
pending on whether t>(A)∆∗ is positive or negative. Consequently, due to
F (.|.) being continuous in both its arguments, we have

lim
n∗→∞

F (c>n∗t(A)|xn∗ + hnt) = lim
n∗

F (c>n∗t(A)|x∗ + hnt)

= F (+∞× sign{t>(A)∆∗}|x∗ + hnt),

which must tend to either 1 or 0 depending on whether t>(A)∆∗ is positive
or negative respectively. As it is trivial to argue that the region [−1, 1]p∩{t :
t>(A)∆∗ = 0} must have Lebesgue measure zero, a simple application of
the Dominated Convergence Theorem to Hn(cn∗ |xn∗ , τn∗) yields

τ∗
∫

[−1,1]p∩{t:t>(A)∆∗<0}
t(A)dt = (1− τ∗)

∫
[−1,1]p∩{t:t>(A)∆∗>0}

t(A)dt.

Multiplying either side by ∆∗, we get

τ∗
∫

[−1,1]p∩{t:t>(A)∆∗<0}
t>(A)∆∗dt = (1− τ∗)

∫
[−1,1]p∩{t:t>(A)∆∗>0}

t>(A)∆∗dt.

As 0 < τ∗ < 1, the above implies that both regions [−1, 1]p∩{t : t>(A)∆∗ <
0} and [−1, 1]p∩{t : t>(A)∆∗ > 0} must both have Lebesgue measure zero,
which can’t be true.

Step 2: For any t ∈ [−1, 1]p, write Rn(t; τ,x) = t>(A)cn(x; τ) − Qτ (x +
hnt). Note that Rn(t,x) = O(hs2n ) uniformly in t ∈ [−1, 1]p, τ ∈ [δ∗, 1− δ∗]
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and x ∈ D ⊂ Rp. For any t ∈ [−1, 1]p and c ∈ Rs(A), define a real valued
function as

gn(c, t|x, τ) =
F (c>t(A)|x + hnt)− F (cn(x; τ)>t(A)|x + hnt)

(c− cn(x; τ))>t(A)
.

In the case where (c − cn(x; τ))>t(A) = 0, gn(c, t|x, τ) can be defined ar-
bitrarily because the set {t ∈ [−1, 1]p : c>t(A) = 0} has Lebesque measure
zero for any nonzero c. Write

Hn(c|x, τ) =

∫
[−1,1]p

{F (c>t(A)|x + hnt)− F (cn(x; τ)>t(A)|x + hnt)}t(A)dt

+

∫
[−1,1]p

{F (cn(x; τ)>t(A)|x + hnt)− F (Qτ (x + hnt)|x + hnt)}t(A)dt

=
[ ∫

[−1,1]p
gn(c, t|x, τ)t(A){t(A)}>dt

]
(c− cn(x; τ))

+

∫
[−1,1]p

fY |X(Qτ (x + hnt) + ξ1Rn(t; τ,x)|x + hnt)Rn(t; τ,x)t(A)dt,(a.20)

where ξ1 lies between 0 and 1, depending on t, τ and x.
Step 3: By Cauchy inequality, we have regarding the second term on the

right-hand side of (a.20),∣∣∣ ∫
[−1,1]p

{fY |X(Qτ (x + hnt) + ξ1Rn(t; τ,x)|x + hnt)}Rn(t,x)t(A)dt
∣∣∣2

≤ | sup
y,x

fY |X(y|x)|2[s(A)]2p
∫

[−1,1]p
|Rn(t; τ,x)|2dt = O(h2s2

n ).(a.21)

uniformly in τ ∈ [δ∗, 1− δ∗] and x ∈ D.
Step 4: Now in view of assumption [A3], there exists λ1 > 0, such that

gn(c, t|τ,x) ≥ λ1 for all c, t and x ∈ D and τ ∈ [δ∗, 1 − δ∗], such that
|c − cn(x; τ)| ≤ M1 and (c − cn(x; τ))>t(A) 6= 0. Let λ2 be the smallest
e-value of the s(A) × s(A) matrix Γ. Then for the first term on the right
hand side of (a.20), we have∣∣∣[ ∫[−1,1]p

gn(c, t|x, τ)t(A){t(A)}>dt
]
(c− cn(x; τ))

∣∣∣ ≥ λ1λ2|c− cn(x; τ)|,(a.22)

for all c ∈ Rs(A) such that |c− cn(x; τ)| ≤M1. The assertion in the propo-
sition thus follows from (a.20), (a.21) ,(a.22) and the conclusion reached in
Step 1. �

We collect here some useful results for the verification of Euclidean prop-
erty of a class of functions.

[C1] Let F = {f(., t) : t ∈ T} be a class of functions indexed by a bounded
subset T of Rd. If there exists an α > 0 and a nonnegative function
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φ(.) such that

|f(., t)− f(., t′)| ≤ φ(.)‖t− t′‖α for any t, t′ ∈ T,

then F is Euclidean for the envelope |f(., t0)|+Mφ(.), where t0 is an
arbitrary point of T and M = (2

√
d sup

T
‖t − t0‖)α. [Lemma (2.13) of

Pakes and Pollard (1989)]
[C2] If a class of functions F is Euclidean for an envelop F and g is Euclidean

for an envelop G, then {f + g : f ∈ F, g ∈ g} is Euclidean for the
envelop F + G and {fg : f ∈ F, g ∈ g} is Euclidean for the envelop
FG. [Lemma (2.14) of Pakes and Pollard (1989)]

[C3] Let λ(.) be a real-valued function of bounded variation on R. The class
of all functions on Rp of the form {λ(b>x + c) : b ∈ Rp, c ∈ R is
Euclidean for a constant envelop. [Lemma 22 (ii) of Nolan and Pollard
(1987)]

[C4] Let λ(.) be a real-valued function of bounded variation on R+. The
class of all functions on Rp of the form {λ(‖Bx+b‖) : B ∈ Rm×p, b ∈
Rm is Euclidean for a constant envelop. [Lemma 22 (i) of Nolan and
Pollard (1987)]

Corollary A.3. The following classes of functions are all Euclidean
for an constant envelope: {I{Yi ≤ Qτ (Xi)} = I{F (Yi|Xi) ≤ τ}, τ ∈ (0, 1)},
{Xix(hn, A) : x ∈ D}, {I(|Xix| ≤ hn) : x ∈ D} and {I{Yi ≤ Qn(Xi,x; τ)} : x ∈
D, τ ∈ (0, 1)}.

Proof of Corollary A.3. This follows easily from [C2], [C3] and [C4]. �
Proof of (a.5). By Corollary A.3, any algebraic operations involving

these classes of functions are also Euclidean; e.g. {Xij(hn, A)[I{Yi ≤ Qn(Xi,Xj ; τ)}−
I{Yi ≤ Qτ (Xi)}]I(|Xij | ≤ hn) : Xj ∈ D, τ ∈ (0, 1)}. This together with Theo-
rem 37 in Pollard (1984, pp. 34) and the fact that Qn(Xi,Xj ; τ)−Qτ (Xi) =
O(hs2n ) lead to (a.5), i.e. with probability one,

1

nhpn

∑
i

Xij(hn, A)[I{Yi ≤ Qn(Xi,Xj ; τ)} −

I{Yi ≤ Qτ (Xi)}]I(|Xij | ≤ hn) = o(n−1/2)

uniformly in Xj ∈ D, τ ∈ (0, 1). �
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