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Abstract

In this paper we extend two classical results concerning the isometries of strictly
convex Hilbert geometries, and the characterisation of the isometry groups of
Hilbert geometries on finite dimensional simplices, to infinite dimensions. The
proofs rely on a mix of geometric and functional analytic methods.
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1 Introduction

In [11] Hilbert introduced a collection of metric spaces that are natural deformations
of finite dimensional real hyperbolic spaces. Although Hilbert limited his construction
to finite dimensions, it has a straightforward extension to infinite dimensional spaces.
Indeed, let Ω be a convex subset of a (not necessarily finite-dimensional) real vector
space Y , and suppose that for each x 6= y ∈ Ω the straight line `xy through x and y
has the property that Ω∩ `xy is an open and bounded line segment in `xy. In that case
one can define Hilbert’s metric on Ω as follows. For x 6= y in Ω, let x′ and y′ be the
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end-points of the segment `xy ∩Ω such that x is between x′ and y, and y is between y′

and x. Now Hilbert’s metric on Ω is given by

δH(x, y) := log[x′, x, y, y′] for x 6= y in Ω,

where

[x′, x, y, y′] :=
|x′ − y|
|x′ − x|

|y′ − x|
|y′ − y|

is the cross-ratio, and δH(x, x) = 0 for all x ∈ Ω. The metric space (Ω, δH) is usually
called the Hilbert geometry on Ω. In particular, the open unit ball in an infinite di-
mensional Hilbert space equipped with 1

2δH , is precisely Klein’s model of the infinite
dimensional hyperbolic space. A recent extensive overview of the theory of Hilbert
geometries can be found in [9].

The isometries between finite dimensional Hilbert geometries are well understood.
They have been studied intensively in the past decade by Bosché [3], de la Harpe [7],
Lemmens and Walsh [16], Matveev and Troyanov [18], Speer [22], and Walsh [24]. The
purpose of this paper is to analyse the isometries of infinite dimensional geometries on
strictly convex domains and infinite dimensional simplices. To date there are only a
few works on infinite dimensional Hilbert geometries. We should mention the work [19]
by Molnár in which the group of Hilbert’s metric isometries on the projective domain
of the cone of positive self-adjoint operators on a complex Hilbert space is determined,
and [4, 20] in which the isometries of infinite dimensional hyperbolic space are studied.

It is well known that Hilbert’s metric has important applications in the analysis
of linear, and nonlinear, operators on cones both in finite and infinite dimensions,
see [13, 14, 21]. In mathematical analysis one often works with Birkhoff’s version of
Hilbert’s metric, which provides a slightly more general set up than the one outlined
above. Birkhoff’s version of Hilbert’s metric, denoted dH , is a metric on the set of rays
in the interior, C◦, of a closed cone C in a normed space X. If there exists a linear
functional ϕ on X with ϕ(x) > 0 for all x ∈ C \ {0}, then δH and dH coincide on
Σϕ = {x ∈ C◦ : ϕ(x) > 0}, see for example [13, Theorem 2.1.2]. In general, however,
there may not exists such a linear functional, see Remark 2.3 for more details, and
in this respect Birkhoff’s version is more general. Another advantage of using cones
is that Hilbert’s metric can be expressed in terms of the partial order induced by the
cone, and one can use ideas from the theory of partially ordered vector spaces. In this
paper we will be mainly working with Birkhoff’s version of Hilbert’s metric.

The paper has the following outline. In Section 2 we shall, beside introducing the
relevant definitions, explain the relation between Hilbert’s metric and Birkhoff’s version
of Hilbert’s metric. Among other things we shall construct for a given Hilbert metric
space (Ω, δH) in Y , a real normed vector space X containing Y such that on Ω the
relative norm topology of X coincides with the Hilbert’s metric topology.

Subsequently we prove in Section 3 the following theorem, which generalises [5, p.
163 (29.1)] and [7, Proposition 3].
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Theorem 1.1. If Ω1 and Ω2 are strictly convex Hilbert geometries, and f : Ω1 → Ω2

is an isometry of (Ω1, δH) into (Ω2, δH), then f is a projective linear homomorphism.

The notion of a projective linear homomorphism will be given in Definition 2.7.
As we are working in infinite dimensions, one cannot use a projective basis and

the fundamental theorem of projective geometry to prove Theorem 1.1. Instead we
establish an extension result, Proposition 3.3, which can be combined with Zorn’s
Lemma to prove Theorem 1.1.

The second main result is proved in Section 4, and concerns the isometries of Hilbert
geometries on infinite dimensional simplices. A natural generalisation of finite dimen-
sional simplices to infinite dimensions is the set

∆(K,µ)◦ := {f ∈ C(K) : f(x) > 0 for all x ∈ K and
∫
f dµ = 1},

where C(K) is the set of continuous functions on a compact Hausdorff space K and µ
is a finite, strictly positive, Borel measure on K, i.e., µ(K) <∞ and

∫
fdµ > 0 for all

f ∈ C(K) with f 6= 0 and f(x) ≥ 0 for all x ∈ K. Note that the set

∆◦∞ := {x ∈ `∞ : xi > 0 for all i ∈ N and ϕ(x) :=
∑∞

i=1 2−ixi = 1}

is a special case. Indeed, as `∞ is an abstract M -space with an order unit, it follows
from Kakutani’s representation theorem that `∞ is isometrically order-isomorphic to
C(K) for some compact Hausdorff space K, see [17, Theorem 1.b.6].

For the Hilbert geometries (∆(K,µ)◦, δH) we have the following result.

Theorem 1.2. If K1 and K2 are compact Hausdorff spaces with finite, strictly positive,
Borel measures µ1 and µ2, respectively, then h : ∆(K1, µ1)◦ → ∆(K2, µ2)◦ is a surjective
Hilbert’s metric isometry if and only if there exist ε ∈ {−1, 1}, a homeomorphism
ϑ : K2 → K1, and g ∈ C(K2) with g(x) > 0 for all x ∈ K2 such that

h(f) =
g · (f ◦ ϑ)ε∫
g · (f ◦ ϑ)ε dµ2

.

If (K1, µ1) = (K2, µ2) = (K,µ) and |K| ≥ 3, then the isometry group is given by

Isom(∆(K,µ)◦, δH) ∼= C(K) o (C2 ×Homeo(K)),

where C2 is the cyclic group of order 2, C(K) := C(K)/R1, and 1 is the constant one
function on K.

Theorem 1.2 generalises the characteristion of the isometries of the Hilbert geom-
etry on finite dimensional simplices obtained in [7], see also [8, Theorem 5.1] and [16,
Theorem 1.2]. As a direct consequence we obtain the following result.

Corollary 1.3. If K1,K2 are compact Hausdorff spaces, then (∆(K1, µ1)◦, dH) and
(∆(K2, µ2)◦, dH) are isometric if and only if K1 and K2 are homeomorphic.
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2 Preliminaries

In this section we introduce the basic concepts and preliminary results. A cone C in a
vector space X is a convex set such that λC ⊆ C for all λ ≥ 0 and C ∩ (−C) = {0}. A
cone C induces a partial ordering ≤C on X by x ≤C y if y − x ∈ C. The cone is said
to be Archimedean if for each x ∈ X and y ∈ C with nx ≤C y for all n = 1, 2, 3, . . . we
have that x ≤C 0. An element u ∈ C is called an order unit if for each x ∈ X there
exists λ > 0 such that x ≤C λu. The triple (X,C, u) is called an order unit space, if C
is an Archimedean cone in X and u is an order unit for C.

Given an order unit space (X,C, u), the space X can be equipped with the so-called
order unit norm,

‖x‖u := inf{λ > 0: − λu ≤C x ≤C λu}.

By [1, Theorem 2.55(2)], C is closed under ‖ · ‖u. Note also that ‖ · ‖u is a monotone
norm, i.e., ‖x‖u ≤ ‖y‖u for all 0 ≤C x ≤C y, and hence C is normal with respect to
‖ · ‖u. Recall that a cone C in a normed space (X, ‖ · ‖) is called normal if there exists
a constant κ > 0 such that ‖x‖ ≤ κ‖y‖ whenever 0 ≤C x ≤C y. Furthermore, C has
nonempty interior, C◦, with respect to ‖ · ‖u, as the following lemma shows.

Lemma 2.1. If (X,C, u) is an order unit space, then the set of order units of C
coincides with C◦.

Proof. Every interior point is an order unit by [1, Lemma 2.5]. Conversely, if x ∈ C
is an order unit, then there exists M > 0 such that u/M ≤ x. If ‖y‖u ≤ 1/M , then
x− y ≥ x− u/M ≥ 0, so x ∈ C◦.

Throughout the paper we shall always assume that an order unit space is equipped
with the order unit norm.

A linear functional ϕ : X → R on an order unit space (X,C, u) is said to be positive
if ϕ(C) ⊆ [0,∞). It is said to strictly positive if ϕ(C \ {0}) ⊆ (0,∞). A positive linear
functional ϕ with ϕ(u) = 1 is called a state of (X,C, u). Strictly positive states are
always continuous and ‖ϕ‖ = 1, as can be seen from the following lemma applied to
X2 = R.

Lemma 2.2. Let (X1, C1, u1) and (X2, C2, u2) be order unit spaces. If T : X1 → X2 is
a linear map such that T (C1) ⊆ C2, then T is continuous with ‖T‖ = ‖Tu1‖u2

.

Proof. If ‖x‖u1
≤ 1, then −u1 ≤C1 x ≤C1 u1, so that −Tu1 ≤C2 Tx ≤C2 Tu1. The

statement now follows from the definition of ‖·‖u2
.

Remark 2.3. As mentioned in the introduction, there may not exist a strictly positive
functional for a given order unit space (X,C, u). Indeed, if X is the vector space of
bounded functions on an uncountable set K, C is the Archimedean cone of functions
taking nonnegative values everywhere, and u is the constant one function on K, then
no strictly positive functional exists, see [1, Exercise 6, Section 1.7]. However, if X
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is separable, then a strictly positive state always exists. Indeed, in that case the unit
ball BX∗ of X∗ (which is weak*-compact) is weak*-metrizable, and so there exists a
sequence of states ϕn which is weak*-dense in the set of all states. A standard argument
then shows that the state ϕ :=

∑∞
n=1 2−nϕn is strictly positive.

If (X,C, u) is an order unit space and x, y ∈ C◦, then it follows from Lemma 2.1
that there exist 0 < α ≤ β such that αy ≤C x ≤C βy, and hence we can define

M(x/y) := inf{β > 0: x ≤C βy} <∞.

On C◦ (Birkhoff’s version of) Hilbert’s metric is given by

dH(x, y) := log (M(x/y)M(y/x)) .

It is easy to verify that dH(λx, µy) = dH(x, y) for all λ, µ > 0, and hence dH is not a
metric. However, it can be shown that dH is a metric between pairs of rays in C◦, see
[14, Lemma 2.1]. We shall denote the projective spaces obtained by identifying points
on rays inside C◦ by P (C◦). So, (P (C◦), dH) is a metric space.

In case there exists a strictly positive state ϕ : X → R, we can identify P (C◦) with
the cross section

Σϕ := {x ∈ C◦ : ϕ(x) = 1}.
We shall use the following notation. For x ∈ C◦, we write [x] := x/ϕ(x) ∈ Σϕ. The
boundary of Σϕ relative to the affine space {x ∈ X : ϕ(x) = 1} in (X, ‖ · ‖u) is denoted
by ∂Σϕ. Its closure will be denoted by Σϕ.

The following theorem shows the relation between Hilbert geometries and order
unit spaces with strictly positive functionals.

Theorem 2.4. If Y is a vector space and Ω ⊂ Y is a convex set on which δH is well
defined, then there exists an order unit space (X,C, u) and a strictly positive state ϕ
on X such that Ω is affine isomorphic to Σϕ.

Conversely, if (X,C, u) is an order unit space with a strictly positive state ϕ, then
Σϕ is a convex set on which δH is well defined.

Proof. Let Ω ⊂ Y be a convex set on which δH is well defined, i.e., Ω∩ `xy is open and
bounded for every x, y ∈ Ω with x 6= y. By translating we may assume without loss of
generality that 0 ∈ Ω and, by restricting to the span of Ω, we may also assume that
Y = Span Ω.

We claim that these assumptions imply that Ω∩ `0y is open and bounded for every
nonzero y ∈ Y . Indeed, let y ∈ Y be nonzero, then y =

∑n
i=1 λiyi for some yi ∈ Ω

and λi ∈ R, since Ω spans Y . In this representation we may assume that each λi > 0.
Indeed, if λi < 0 for some i, then we can replace yi by −εyi for some small ε (since
`0yi ∩Ω is open) and λi by −ε−1λi > 0. Now if λ :=

∑n
i=1 λi, then each λ−1λi > 0 and

they sum to 1. So,

λ−1y =

n∑
i=1

λ−1λiyi ∈ Ω
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by convexity of Ω, and hence Ω ∩ `0y = Ω ∩ `0(λ−1y) is open and bounded.
By considering lines through 0, this implies that Ω is absorbing, i.e., for every y ∈ Y ,

there exists an ε > 0 such that λy ∈ Ω for all |λ| < ε. Define

Ω := {y ∈ Y : λy ∈ Ω for all 0 ≤ λ < 1}

and note that Ω is convex.
Let X := Y ⊕ R and consider the cone

CΩ := {λ(y, 1) ∈ X : λ ≥ 0 and y ∈ Ω}.

We now show that CΩ is Archimedean and (0, 1) ∈ X is an order unit.
Let (y, λ) ∈ X with y ∈ Y and λ ∈ R. To show that (0, 1) ∈ X is an order unit, we

have to find M > 0 with −M(0, 1) ≤CΩ
(y, λ) ≤CΩ

M(0, 1). These inequalities hold if
and only if (y, λ+M), (−y,M−λ) ∈ CΩ, which is equivalent to y/(M+λ),−y/(λ−M) ∈
Ω. But the existence of such an M now follows from the fact that Ω is absorbing.

To show that CΩ is Archimedean, it suffices to prove that n(y, λ) ≤CΩ
(0, 1) for

all large enough n implies that −(y, λ) ∈ CΩ, as (0, 1) is an order unit. The assumed
inequality is equivalent with (−ny, 1 − nλ) ∈ CΩ, which shows that λ ≤ 0. If λ = 0,
then −ny ∈ Ω, which implies by the boundedness of `0y∩Ω that y = 0 and so −(y, λ) =
(0, 0) ∈ CΩ. If λ < 0, then by scaling we may assume that λ = −1, and then dividing
the inequality by 1 + n yields

n

1 + n
(−y) ∈ Ω.

Hence −y ∈ Ω, and so −(y, λ) = (−y, 1) ∈ CΩ.
Obviously, the linear functional ϕ : X → R defined by ϕ((y, s)) := s is strictly

positive with respect to CΩ and ϕ((0, 1)) = 1, so ϕ is a strictly positive state.
Let us now show that Ω is affine isomorphic to Σϕ := {x ∈ C◦Ω : ϕ(x) = 1}. First

assume that y ∈ Ω \ Ω. Note that if we can prove that (y, 1) is not an order unit,
then (y, 1) 6∈ C◦Ω by Lemma 2.1. Suppose by way of contradiction that (y, 1) is an
order unit. Then there exists M > 1 such that (0, 1) ≤CΩ

M(y, 1), which is equivalent
with M

M−1y ∈ Ω. Taking 0 < λ := M−1
M < 1 we get that y = λ M

M−1y ∈ Ω, which is
absurd. Now suppose that y ∈ Ω. We need to show that (y, 1) ∈ C◦Ω. As (0, 1) ∈ C◦Ω
is an order unit, it suffices to show by Lemma 2.1 that there exists M > 1 such that
(0, 1) ≤CΩ

M(y, 1). Recall that `0y ∩ Ω is an open subset of `0y. Hence there exists
M > 1 such that M

M−1y ∈ `0y ∩Ω, which implies that (0, 1) ≤CΩ
M(y, 1). We conclude

that Ω is affine isomorphic to Σϕ := {x ∈ C◦Ω : ϕ(x) = 1}.
To prove the second part, we note that for distinct x, y ∈ Σϕ the points wx :=

x−M(y/x)−1y and wy := y−M(x/y)−1x are in ∂C \ {0}, as C is closed. So, [wx] and
[wy] are the end-points of the straight line segment `xy ∩ Σϕ.

Remark 2.5. In the proof of Theorem 2.4, the vector space Y is a subspace of X, and
so it inherits the norm ‖·‖u from X. Thus, for y ∈ Y ,

‖y‖ = inf{λ > 0: − λ(0, 1) ≤ (y, 0) ≤ λ(0, 1)}.
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The condition on λ is equivalent with (y, λ), (−y, λ) ∈ CΩ, which in turn is equivalent
with y/λ,−y/λ ∈ Ω, and so

‖y‖ = inf{λ > 0: y ∈ λ(Ω ∩ −Ω)}.

Hence this norm equals the Minkowski functional of Ω ∩ −Ω.

The advantage of working with cones is that we can use dH instead of δH and apply
ideas from the theory of partially ordered vector spaces. Indeed, the following result,
which goes back to Birkhoff [2], is well known, see for example [13, Theorem 2.12 and
Corollary 2.5.6].

Lemma 2.6. If (X,C, u) is an order unit space with strictly positive state ϕ, then on
Σϕ the metrics dH and δH coincide. Moreover, the Hilbert’s metric topology on Σϕ

coincides with the order unit norm topology on X.

If (X1, C1, u1) and (X2, C2, u2) are two order unit spaces and T : X1 → X2 is a
linear map, we say that T is bi-positive if Tx ∈ C2 if and only if x ∈ C1. Note that a
bi-positive linear map T : X1 → X2 is always injective, as Tx = 0 implies that x and
−x in C1, so that x = 0. Also note that if there exists x ∈ C◦1 such that Tx ∈ C◦2 , then
T (C◦1 ) ⊆ C◦2 . Indeed, if y ∈ C◦1 , then y is an order unit by Lemma 2.1, and hence there
exists λ > 0 such that x ≤C1 λy. It follows that Tx ≤C2 λTy, so that Ty is an order
unit, as Tx is an order unit, and hence Ty ∈ C◦2 .

It is easy to check that a bi-positive linear map T : X1 → X2 induces a Hilbert’s
metric isometry, as M(Tx/Ty) = M(x/y) for all x, y ∈ C◦1 . In that case we shall denote
the induced map between the projective spaces P (C◦1 ) and P (C◦2 ) by [T ].

Definition 2.7. An isometry f from (P (C◦1 ), dH) into (P (C◦2 ), dH) is called a projective
linear homomorphism if there exists a bi-positive linear map T : X1 → X2 such that
f = [T ] on P (C◦1 ).

Before we start the proof of Theorem 1.1, we collect some final pieces of notation.
Recall that the image of a map γ from a (possibly unbounded) interval I ⊆ R into
(Σϕ, dH) is a geodesic if

dH(γ(t), γ(s)) = |t− s| for all t, s ∈ I.

Given a straight line `xy through x 6= y in Σϕ, we write `+xy := `xy ∩ Σϕ. Also for
x, y ∈ X the closed and open line segments are, respectively, denoted by

[x, y] := {tx+ (1− t)y : 0 ≤ t ≤ 1} and (x, y) := {tx+ (1− t)y : 0 < t < 1}.

The half-open intervals are defined in a similar way. For each x, y ∈ Σϕ the segment
[x, y] is a geodesic in (Σϕ, dH), see [11]. It is, however, in general not the only geodesic.
The unique geodesics in (Σϕ, dH) are characterised as follows, see [11] or [7, Proposition
2].
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Lemma 2.8. Let (X,C, u) be an order unit space with strictly positive state ϕ. If
x, y ∈ Σϕ and x′, y′ ∈ ∂Σϕ are the end points of `xy ∩ Σϕ, then [x, y] is the unique
geodesic connecting x and y in (Σϕ, dH) if and only if there exist no open line segments
Ix′ through x′ and Iy′ through y′ in ∂Σϕ such that the affine span of Ix′ ∪ Iy′ is 2-
dimensional.

3 Strictly convex Hilbert geometries

We prove Theorem 1.1. Throughout this section we shall assume that (X1, C1, u1) and
(X2, C2, u2) are order unit spaces, with strictly positive states ϕi : Xi → R for i = 1, 2.
For simplicity we write

Σi := {x ∈ C◦i : ϕi(x) = 1} and ‖·‖i := ‖·‖ui for i = 1, 2.

Recall that Σi, i = 1, 2, is strictly convex if for each x, y ∈ ∂Σi we have that
(x, y) ⊆ Σi. In that case, it follows from Lemma 2.8 that the metric spaces (Σi, dH),
i = 1, 2, are uniquely geodesic. Thus, any isometry f of (Σ1, dH) into (Σ2, dH) has
to map line segments to line segments if (Σ1, dH) and (Σ2, dH) are strictly convex.
We shall show that any isometry that maps line segments to line segments must be
a projective linear homomorphism, which implies Theorem 1.1. We begin with the
following lemma, which generalises [7, p.101].

Lemma 3.1. If f : (Σ1, dH)→ (Σ2, dH) is an isometry that maps line segments to line
segments, then f has a unique continuous extension to a map from (Σ1, ‖ · ‖1) into
(Σ2, ‖ · ‖2). Furthermore, this extension is injective.

Proof. The uniqueness of the continuous extension follows from the density of Σ1 in
Σ1. Convergence in this proof will always be in the order unit norm; recall that on Σi,
the order unit norm topology and dH -topology coincide by Lemma 2.6.

Fix an element p ∈ Σ1 and let x ∈ ∂Σ1. The line segment [p, x) is mapped onto the
line segment [f(p), ξ), for some ξ ∈ ∂Σ2, because

dH(p, (1− t)p+ tx)→∞

as t ↑ 1. We define f(x) := ξ.
To show continuity of the extension, let (xn)n be a sequence in Σ1 converging to x.

Then yn := (p+ xn)/2→ (p+ x)/2 =: y, and so f(yn)→ f(y). Let s > 1 be such that
sf(y) + (1− s)f(p) /∈ Σ2. Then for some N ≥ 1 and all n ≥ N ,

sf(yn) + (1− s)f(p) /∈ Σ2. (3.1)

Since f maps line segments to line segments, there exist sn such that

snf(yn) + (1− sn)f(p) = f(xn) ∈ Σ2,
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and combining this with (3.1) yields sn < s for all n ≥ N .
Now suppose that f(xn) does not converge to f(x). By passing to a subsequence

three times, we find a subsequence (xnk)k such that f(xnk) stays away from f(x),
snk → r ∈ [0, s], and that either all xnk ∈ ∂Σ1 or all xnk ∈ Σ1. It follows that

f(xnk) = snkf(ynk) + (1− snk)f(p)→ rf(y) + (1− r)f(p) ∈ Σ2.

We claim that rf(y) + (1− r)f(p) ∈ ∂Σ2. Indeed, if all xnk ∈ ∂Σ1, then f(xnk) ∈ ∂Σ2

and the claim follows from the closedness of ∂Σ2. If all xnk ∈ Σ1, then the fact f is
a dH -isometry combined with dH(xnk , p) → ∞ yields dH(f(xnk), f(p)) → ∞, and so
rf(y) + (1− r)f(p) ∈ ∂Σ2.

Hence f(x) = rf(y) + (1 − r)f(p) by construction of f(x), and so f(xnk) → f(x),
which is impossible since f(xnk) stays away from f(x). Therefore the extension of f is
continuous.

To show injectivity suppose that x, y ∈ Σ1 are such that x 6= y. Note that
[f(p), f(x)] 6= [f(p), f(y)], since f is injective on Σ1; so, f(x) 6= f(y).

The following lemma is essentially part (iii) of the lemma on page 101 in [7], and
will be useful in the sequel.

Lemma 3.2. Let x, y ∈ Σ1 and let x′, y′ ∈ ∂Σ1 be the end points of `+xy such that x is
between x′ and y, and y is between y′ and x. Suppose that f : (Σ1, dH) → (Σ2, dH) is
an isometry that maps line segments to line segments. If f(x)′ and f(y)′ are the end
points of `+f(x)f(y) such that f(x) is between f(x)′ and f(y), and f(y) is between f(y)′

and f(x), then there exists a linear map S : Span{x′, y′} → Span{f(x)′, f(y)′} satisfying
[Sx′] = f(x)′, [Sy′] = f(y)′, [Sz] = f(z) for all z ∈ (x′, y′), and S is bi-positive with
respect to C1 ∩ Span{x′, y′} and C2 ∩ Span{f(x)′, f(y)′}.

Proof. Let 0 < s, t < 1 be such that x = tx′ + (1 − t)y′ and f(x) = sf(x′) + (1 −
s)f(y′). Since {tx′, (1 − t)y′} and {sf(x′), (1 − s)f(y′)} define bases for Span{x′, y′}
and Span{f(x)′, f(y)′}, and the cones C1 ∩ Span{x′, y′} and C2 ∩ Span{f(x)′, f(y)′}
are the positive span of these basis elements, we have a bijective and bi-positive linear
map S : Span{x′, y′} → Span{f(x)′, f(y)′} defined by

S(αtx′ + β(1− t)y′) := αsf(x)′ + β(1− s)f(y)′.

Note that [Sx′] = f(x)′, [Sy′] = f(y)′ and Sx = f(x).
Let z ∈ [x, x′) and note that, as f maps line segments to line segments and f is an

isometry, we have that

[f(x)′, f(z), f(x), f(y)′] = exp(dH(f(z), f(x))) = exp(dH(z, x)) = [x′, z, x, y′].

As the cross ratio is a projective invariant, we know that[
[Sx′], [Sz], [Sx], [Sy′]

]
= [Sx′, Sx, Sy, Sy′] = [x′, z, x, y′],

9



which combined with the previous equality gives[
[Sx′], [Sz], [Sx], [Sy′]

]
= [f(x)′, f(z), f(x), f(y)′] =

[
[Sx′], f(z), [Sx], [Sy′]

]
.

This implies that [Sz] = f(z). Interchanging the roles of x′ and y′ finally gives [Sz] =
f(z) for all z ∈ (x′, y′).

Proposition 3.3. Let f : (Σ1, dH)→ (Σ2, dH) be an isometry that maps line segments
to line segments and Y ⊆ X1 be a subspace such that Y ∩ Σ1 6= ∅. If T : Y → X2 is a
bi-positive linear map such that [Ty] = f(y) for all y ∈ Y ∩ Σ1, then for z ∈ Σ1 \ Y
there is a bi-positive linear extension

T̂ : Y ⊕ Span{z} → X2

of T such that [T̂ y] = f(y) for all y ∈ (Y ⊕ Span{z}) ∩ Σ1.

Proof. Let T : Y → X2 be a bi-positive linear map that satisfies [Ty] = f(y) for all
y ∈ Y ∩ Σ1 and choose z ∈ Σ1 \ Y . Fix ξ ∈ Y ∩ Σ1 and consider `+zξ. By Lemma 3.2
there exists a bi-positive linear map S : Span{ξ, z} → X2 such that [Sx] = f(x) for all
x ∈ `+zξ. By rescaling S, we may assume that Sξ = Tξ.

Now let Ŷ := Y ⊕ Span{z} and define the linear map

T̂ : Ŷ → ranT + Span{Sz}

by y+λz 7→ Ty+λSz. We wish to show that ranT +Span{Sz} is in fact a direct sum,
making T̂ injective. Suppose Ty = λSz for some y ∈ Y and λ > 0. As T is bi-positive,
this implies that y ∈ Y ∩ C◦1 , so [Ty] = [Sz] = f(z). But this yields f([y]) = f(z),
so [y] = z and this is impossible. If λ < 0, we can use a similar argument for −y
to arrive at a contradiction. Thus, ranT + Span{Sz} is indeed a direct sum. Since
T̂ ξ = Tξ = Sξ and T̂ z = Sz, it follows that T̂ = S on `+zξ and so [T̂ x] = f(x) for all

x ∈ `+zξ.
Now suppose that w ∈ Ŷ ∩ Σ1 and w /∈ Y ∪ `+zξ. The subspace Y is a hyperplane

in Ŷ and therefore, it divides Ŷ ∩ Σ1 into two parts. Choose distinct η1, η2 ∈ `+zξ that
lie on the other side of w and let y1, y2 ∈ Y ∩ Σ1 be the intersection points of the
line segments `+wη1

and `+wη2
, respectively. The situation is depicted in Figure 1 below.

We see that w is the unique point of intersection of the line segments `+η1y1
and `+η2y2

.
As f is injective, it follows that f(w) is the unique point of intersection of the line
segments `+f(η1)f(y1) and `+f(η2)f(y2). Also, as [T̂ ηi] = f(ηi) and [T̂ yi] = f(yi), we have

T̂ ηi, T̂ yi ∈ Span{f(ηi), f(yi)}; hence

T̂w ∈ Span{f(η1), f(y1)} ∩ Span{f(η2), f(y2)} = Span{f(w)}.

So, T̂w ∈ C◦2 ∪ −C◦2 , since T̂ is injective, and hence

T̂ (Ŷ ∩ C◦1 ) ⊆ C◦2 ∪ −C◦2 .

10
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Figure 1: Points of intersection

The convexity of Ŷ ∩C◦1 now implies that either T̂ (Ŷ ∩C◦1 ) ⊆ C◦2 or T̂ (Ŷ ∩C◦1 ) ⊆ −C◦2 .
As T̂ ξ = Tξ ∈ C◦2 , it follows that T̂ (Ŷ ∩ C◦1 ) ⊆ C◦2 . Moreover, this shows that [T̂w] is
well defined. As w was arbitrary, we conclude that [T̂ y] = f(y) for all y ∈ Ŷ ∩ Σ1.

Next, we will show that T̂ is bi-positive. Suppose x ∈ ∂C1 ∩ Ŷ with x 6= 0. We
claim that T̂ (x) ∈ ∂C2. Since ϕ1(x) > 0, we may assume without loss of generality
that x ∈ ∂Σ1. Define xn := (1 − 1

n)x + 1
nξ for n ≥ 1. Then we have xn → x, so that

f(xn)→ f(x) by Lemma 3.1 and

T̂ xn = T̂ |Span{x,ξ}xn → T̂ |Span{x,ξ}x = T̂ x

as dim(Span{x, ξ}) < ∞. It follows that ϕ2(T̂ xn) → ϕ2(T̂ x) and, since T̂ xn ∈ C2 for
all n ≥ 1, we must have T̂ x ∈ C2, because C2 is closed. Moreover, the injectivity of T̂
yields ϕ2(T̂ x) > 0. We also have that

T̂ xn = ϕ2(T̂ xn)f(xn)→ ϕ2(T̂ x)f(x) ∈ ∂C2,

so we conclude that T̂ x ∈ ∂C2 showing that T̂ is positive. Finally, if we pick x ∈ Ŷ \C1,
then there exists a 0 < t < 1 such that tx+(1− t)ξ ∈ ∂C1 and so tT̂ x+(1− t)T̂ ξ ∈ ∂C2

by our previous findings. But this implies that T̂ x /∈ C2 making T̂ bi-positive.

Enough preparations have been made to prove the following result which implies
Theorem 1.1 by Theorem 2.4.

Theorem 3.4. An map f : (Σ1, dH)→ (Σ2, dH) is an isometry that maps line segments
to line segments if and only if it is a projective linear homomorphism.

Proof. Consider the collection C of pairs (Y, TY ) where Y ⊆ X1 is a linear subspace
and TY : Y → X2 is a bi-positive linear map such that [TY x] = f(x) for all x ∈ Y ∩Σ1.
Note that C 6= ∅, since C◦1 6= ∅. We can define a partial order ≤ on C by

(Y, TY ) ≤ (Z, TZ) if Y ⊆ Z and TZy = TY y for all y ∈ Y .

11



Let (Yi, TYi)i∈I be a totally ordered subset in C. Put Y :=
⋃
i∈I Yi and define TY : Y →

X2 through TY yi := TYiyi. Clearly, we have that Y is a linear subspace of X1 and TY
is a well defined bi-positive linear map. For y ∈ Y ∩ Σ1 we have y ∈ Yi ∩ Σ1 for some
i ∈ I and [TY y] = [TYiy] = f(y), so (Y, TY ) ∈ C is an upper bound. By Zorn’s lemma
our collection C contains a maximal element (Ω, TΩ). Suppose that x ∈ Σ1 \ Ω. By
Proposition 3.3 we have a bi-positive linear extension

T̂Ω : Ω⊕ Span{x} → X2

of TΩ such that [T̂Ωz] = f(z) for all z ∈ (Ω ⊕ Span{x}) ∩ Σ1. But now we have (Ω ⊕
Span{x}, T̂Ω) ∈ C and (Ω, TΩ) ≤ (Ω⊕ Span{x}, T̂Ω), which contradicts the maximality
of (Ω, TΩ). We conclude that Ω ∩ Σ1 = Σ1 and therefore [TΩx] = f(x) for all x ∈ Σ1.

We claim that Ω = X1. Let x ∈ X1, u ∈ Σ1 and ε > 0 such that Bε(u) ⊆ C◦1 . Also,
there are y, z ∈ C1 such that x = y− z, as C1−C1 = X1. Now, for k ≥ 1 large enough,
we have that 1

ky + u, 1
kz + u ∈ Bε(u). Since Σ1 ⊆ Ω, it follows that C◦1 ⊆ Ω; hence

1
kx =

(
1
ky + u

)
−
(

1
kz + u

)
∈ Ω,

so x ∈ Ω.
Obviously any projective linear homomorphism maps line segments to line segments,

and hence we are done.

Note that Lemma 2.2 shows that the linear map T in the previous theorem is
continuous with respect to the order unit norm. We also note that Theorem 3.4 implies
that two uniquely geodesic Hilbert geometries Ω1 and Ω2 are isometric if and only if
there exists a projective linear isomorphism between them.

Remark 3.5. An important variant of Hilbert’s metric is Thompson’s metric which was
introduced in [23]. On the interior of a cone C in an order unit space, Thompson’s
metric is given by

dT (x, y) := log max{M(x/y),M(y/x)} for x, y ∈ C◦.

It was shown in [15, Theorem 8.2] that if C is a finite dimensional strictly convex
cone with dimC ≥ 3, then for every isometry f of (C◦, dT ) there exists a bi-positive
linear map T : X → X such that for each x ∈ C◦ we have that f(x) = λxTx for some
λx > 0. The proof of this result relies on [7, Proposition 3]. Using Theorem 3.4 it
is straightforward to extend [15, Theorem 8.2] to infinite dimensional strictly convex
cones.

4 Infinite dimensional simplices

Let K be a compact Hausdorff space and C(K) denote the space of real-valued con-
tinuous functions on K. Consider the cone C(K)+ consisting of nonnegative functions
with interior,

C(K)◦+ := {f ∈ C(K) : f(x) > 0 for all x ∈ K}.

12



It is well known that the Hilbert geometry on a finite dimensional simplex is isomet-
ric to a finite dimensional normed space. The same is true for (P (C(K)◦+), dH), see [21,
Proposition 1.7]. It will be useful to recall the basic argument. Let 1 be the constant
one function on K and denote the elements in the quotient space C(K) := C(K)/R1
by g. The map Log : P (C(K)◦+)→ C(K) given by,

Log(f) := log ◦f for f ∈ P (C(K)◦+),

is an isometry of (P (C(K))◦+, dH) onto (C(K), ‖ · ‖var), where

‖g‖var := sup
x∈K

g(x)− inf
x∈K

g(x),

is the variation norm. To see this note that

M(f/g) = inf{β > 0 : f(x) ≤ βg(x) for all x ∈ K} = sup
x∈K

f(x)

g(x)

for f, g ∈ P (C(K)◦+), so that

dH(f, g) = sup
x∈K

log f(x)

log g(x)
+ sup
x∈K

log g(x)

log f(x)

= sup
x∈K

(log f(x)− log g(x))− inf
x∈K

(log f(x)− log g(x))

= ‖Log(f)− Log(g)‖var.

Given a function f ∈ C(K) the supremum norm of its translations f − λ1 for
λ ∈ R is minimised precisely when translating f by the average of both extreme values
1
2(supx∈K f(x) + infx∈K f(x)). This means that the quotient norm on C(K)/R1 with
respect to the supremum norm is exactly half of ‖ · ‖var. This assertion is made precise
in the following lemma.

Lemma 4.1. Let K be a compact Hausdorff space. If ‖ · ‖q is the quotient norm on

C(K) with respect to 2‖ · ‖∞, then ‖ · ‖q coincides with ‖ · ‖var on C(K).

Proof. Let f ∈ C(K) and write a ∨ b = max{a, b} for a, b ∈ R. Using the elementary
fact that infλ∈R(a− λ) ∨ (b+ λ) = (a+ b)/2, we see that∥∥f∥∥

q
= 2 inf

λ∈R
‖f − λ1‖∞ = 2 inf

λ∈R
sup
s∈K
|f(s)− λ|

= 2 inf
λ∈R

[(
sup
s∈K

f(s)− λ
)
∨
(

sup
s∈K
−f(s) + λ

)]
= sup

s∈K
f(s) + sup

s∈K
−f(s) = sup

s∈K
f(s)− inf

s∈K
f(s) =

∥∥f∥∥
var
.
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Our findings so far have shown that in order to describe the surjective isometries

h : (P (C(K1)◦+), dH)→ (P (C(K2)◦+), dH),

it suffices to understand the surjective isometries

T : (C(K1), ‖ · ‖q)→ (C(K2), ‖ · ‖q).

By the Mazur-Ulam theorem these isometries T must be affine. We can compose T
with an appropriate translation to make it linear. Thus, our goal will be to classify all
isometric isomorphisms (surjective linear isometries) T : (C(K1), ‖·‖q)→ (C(K2), ‖·‖q).

We will follow the lines of the proof for the Banach-Stone theorem [6, Theorem
VI.2.1]. The Banach-Stone theorem characterises the isometric isomorphisms between
(C(K), ‖·‖∞) spaces. A common way to prove the Banach-Stone theorem is by looking
at the adjoint operator, which is an isometry on the dual of (C(K), ‖·‖∞), and to exploit
the extreme points of the unit ball there. We shall take a similar approach.

The dual of (C(K), ‖·‖∞) is (M(K), ‖·‖TV ), where M(K) is the space of all regular
signed Borel measures on K and ‖µ‖TV := |µ|(K) is the total variation norm. Let us
recall some basic facts about (M(K), ‖ · ‖TV ), which can be found in [6, Appendix C].

Every µ ∈ M(K) has a Hahn-Jordan decomposition µ = µ+ − µ− where µ+ and
µ− are positive measures in M(K), and

‖µ‖TV = ‖µ+‖TV + ‖µ−‖TV . (4.1)

Also, if µ, ν ∈ M(K) are positive, we have ‖µ + ν‖TV = ‖µ‖TV + ‖ν‖TV . The space
M(K) is a lattice: every µ, ν ∈ M(K) have a supremum (least upper bound) µ ∨ ν.
The set P (K) denotes the set of probability measures on K, and its extreme points are
the set of Dirac measures {δs : s ∈ K}. The map s 7→ δs is a homeomorphism from K
onto {δs : s ∈ K} equipped with the weak*-topology.

The dual space of (C(K)/R1, ‖·‖q) is R1⊥ ⊆ (M(K), 1
2‖·‖TV ), where R1⊥ := {µ ∈

M(K) : µ(K) = 0}. It follows that

R1⊥ = {µ ∈M(K) : ‖µ+‖TV = ‖µ−‖TV }.

Now, if
T : (C(K1), ‖ · ‖q)→ (C(K2), ‖ · ‖q)

is an isometric isomorphism, then the corresponding adjoint operator

T ∗ : (R1⊥2 ,
1
2‖ · ‖TV )→ (R1⊥1 ,

1
2‖ · ‖TV )

is a isometric isomorphism as well. Moreover, T ∗ is a weak*-homeomorphism from
the unit ball B2 ⊆ R1⊥2 onto the unit ball B1 ⊆ R1⊥1 that maps the set of extreme
points of B2, denoted ext(B2), bijectively onto the set of the extreme points of B1,
denoted ext(B1). The following lemma tells us that the extreme points are exactly the
differences of Dirac measures.
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Proposition 4.2. Let K be a compact Hausdorff space. The set of extreme points,
ext(B), of the unit sphere B in R1⊥ ⊆ (M(K), 1

2‖ · ‖TV ) satisfies

ext(B) = {δs − δt : s, t ∈ K and s 6= t} .

Proof. Let δs − δt ∈ B with s 6= t and suppose µ, ν ∈ B are such that

δs − δt =
1

2
(µ+ ν) =

1

2

(
µ+ + ν+

)
− 1

2

(
µ− + ν−

)
.

Then δs = (δs − δt) ∨ 0 ≤ 1
2(µ+ + ν+), and so for η := 1

2(µ+ + ν+) − δs ≥ 0 it follows
from (4.1) that

1 + ‖η‖TV = ‖δs + η‖TV = 1
2‖µ

+ + ν+‖TV = 1
2‖µ

+‖TV + 1
2‖ν

+‖TV = 1,

so η = 0, which yields δs = 1
2(µ+ + ν+). The fact that δs is an extreme point in BM(K)

(see [6, Theorem V.8.4]) implies that µ+ = ν+. Similarly, we have that δt ≤ 1
2(µ−+ν−)

which implies µ− = ν−. This shows that δs − δt ∈ ext(B).
Conversely, let µ = µ+ − µ− ∈ ext(B), and suppose µ+ = 1

2(ν1 + ν2) for ν1, ν2 ∈
P (K). Then for i = 1, 2,

1

2

∥∥νi − µ−∥∥TV ≤ 1

2

(
‖νi‖TV +

∥∥µ−∥∥
TV

)
= 1,

so νi−µ− ∈ B. Since µ ∈ ext(B) and µ = 1
2(ν1−µ−) + 1

2(ν2−µ−), we obtain ν1 = ν2.
Hence µ+ ∈ ext(P (K)), which implies that µ+ = δs for some s ∈ K by [6, Theorem
V.8.4]. A similar argument yields µ− = δt for some t ∈ K.

For s ∈ K define the sets Es := {δs − δt : t ∈ K, s 6= t}. Clearly the distance
between distinct elements of Es is 1, and it turns out that the sets ±Es are the maximal
equilateral subsets in ext(B) of mutual distance 1.

Lemma 4.3. Let K be a compact Hausdorff space and ∅ 6= A ⊆ ext(B) be such that
1
2‖µ− ν‖TV = 1 for all µ, ν ∈ A with µ 6= ν, then there is an element s ∈ K such that
A ⊆ Es or A ⊆ −Es.

Proof. If such an s does not exist, then there exist elements δs − δt, δp − δq ∈ A with
s 6= p and t 6= q. But clearly

1

2
‖(δs − δt)− (δp − δq)‖TV = 2.

Now let T : C(K1) → C(K2) be an isometric isomorphism. Then the isometric
isomorphism T ∗ preserves the maximal equilateral subsets of the extreme points of
mutual distance 1. Hence T ∗(Es) = ±Eϑ(s). Note that if s 6= t, then Es ∩Et = ∅. But
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Es ∩ −Et 6= ∅, as δs − δt ∈ Es ∩ −Et. As T ∗ maps disjoint sets to disjoint sets, either
T ∗(Es) = Eϑ(s) for all s ∈ K2, or, T ∗(Es) = −Eϑ(s) for all s ∈ K2. Thus, there exists
ε ∈ {−1, 1} such that T ∗(Es) = εEϑ(s) for all s ∈ K2, and ϑ is a bijection from K2 to
K1.

Lemma 4.4. The above constructed bijection ϑ : K2 → K1 is a homeomorphism.

Proof. Let (sα)α be a net in K2 converging to s ∈ K2. Then δsα converges weak* to
δs, and so

δϑ(sα) − δϑ(s) = εT ∗(δsα − δs)
weak*−→ εT ∗0 = 0.

Hence δϑ(sα)
weak*−→ δϑ(s), or equivalently, ϑ(sα) → ϑ(s). So ϑ is a continuous bijection

from a compact space into a Hausdorff space and so it is a homeomorphism.

We are now able to prove our main result on isometric isomorphisms T : C(K1)→
C(K2).

Theorem 4.5. If K1 and K2 are compact Hausdorff spaces, then a map T : C(K1)→
C(K2) is an isometric isomorphism if and only if there exist an ε ∈ {−1, 1} and a
homeomorphism ϑ : K2 → K1 such that Tf = ε(f ◦ ϑ).

Proof. Suppose T is an isometric isomorphism, and let ϑ and ε be such that T ∗Es =
εEϑ(s). Although point-evaluation for elements g ∈ C(K2) is not well defined, the
values g(s)− g(t) for s, t ∈ K2 are well defined, and the computation

Tf(s)− Tf(t) = (δs − δt)(Tf)

= [T ∗(δs − δt)](f)

= [ε(δϑ(s) − δϑ(t))](f)

= ε(f(ϑ(s))− f(ϑ(t)))

shows that T is induced from the map f 7→ ε(f ◦ ϑ) from C(K1) into C(K2).
Conversely, if ε ∈ {−1, 1} and ϑ : K2 → K1 is a homeomorphism, then f 7→ ε(f ◦ϑ)

is an isometric isomorphism between C(K1) and C(K2) that maps R11 onto R12,
and hence it induces an isometric isomorphism between the respective quotient spaces
C(K1) and C(K2).

Our next goal is to describe the group of surjective isometries from C(K) to itself.
For any real normed space X, the Mazur-Ulam theorem shows that any surjective
isometry from X to X is the composition of an isometric isomorphism and a translation.
Clearly the subgroup of isometric isomorphisms and the subgroup of translations have
trivial intersection, and it is easily verified that a translation by x ∈ X conjugated by
an isometric isomorphism T of X yields a translation by Tx. This shows that the group
of surjective isometries from X to X is a semidirect product of these two subgroups. In
the case of X = C(K), we know the group of isometric isomorphisms by Theorem 4.5
which yields the following description.
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Proposition 4.6. If K be a compact Hausdorff space, then the group of surjective
isometries of C(K) is isomorphic to C(K) o (C2 ×Homeo(K)) if and only if |K| ≥ 3,
where C2 is the cyclic group of order 2.

Note that in the above proposition, ϑ ∈ Homeo(K) acts on f ∈ C(K) as f ◦ ϑ−1

(not as f ◦ ϑ).

Proof. If K has only 2 elements, then multiplication by −1 coincides with the non-
trivial homeomorphism, and if |K| ≤ 1, then multiplication by −1 is the identity. In
all other cases there is no overlap, and the result follows from the above discussion.

Translating Theorem 4.5 and Proposition 4.6 back to (P (C(Ki)
◦
+), dH) through the

pointwise exponential (the inverse of the pointwise logarithm) yields the following.

Theorem 4.7. Let K1,K2 be compact Hausdorff spaces. A map

h : (P (C(K1)◦+), dH)→ (P (C(K2)◦+), dH)

is a surjective isometry if and only if there exist g ∈ C(K2)◦+, ε ∈ {−1, 1}, and a
homeomorphism ϑ : K2 → K1 such that

h(f) = g · (f ◦ ϑ)ε for all f ∈ P (C(K2)◦+).

If K1 = K2 = K and |K| ≥ 3, then the isometry group is given by

Isom(P (C(K)◦+), dH) ∼= C(K) o (C2 ×Homeo(K)),

where C2 is the cyclic group of order 2.

If µi (i ∈ {1, 2}) is a strictly positive measure on Ki, and we identify P (C(Ki)
◦
+

with ∆(Ki, µi), we obtain Theorem 1.2.

Remark 4.8. In the above theorem, everything is projectively linear except for the
inversion. It follows that if K is a compact Hausdorff space with at least 3 elements,
the index of the collineation group in the isometry group Isom(P (C(K)◦+), dH) equals
2.

Theorem 4.7 has the following interesting consequence.

Corollary 4.9. If K1,K2 are compact Hausdorff spaces, then (P (C(K1)◦+), dH) and
(P (C(K2)◦+), dH) are isometric if and only if K1 and K2 are homeomorphic.

It would be interesting to study non-commutative versions of Theorem 4.7. In
particular, one could look at Hilbert’s metric isometries on the interior of the cone
A+ of positive self-adjoint elements in a unital C∗-algebra. In view of the char-
acterisation of Thompson’s metric isometries on A◦+ by Hatori and Molnár [10], it
seems plausible that each Hilbert’s metric isometry h : P (A◦+)→ P (A◦+) is of the form
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h(a) = h(e)1/2J(aε)h(e)1/2, where ε ∈ {−1, 1} is fixed, e is the unit in A, and J is a
Jordan* isomorphism.

More generally is seems worthwhile to investigate if Walsh’s results in [24] can
be extended to infinite dimensions. In [24] Walsh showed that every isometry of a
finite dimensional Hilbert geometry is a projective linear automorphism, except when
the domain comes from a non-Lorentzian symmetric cone. It is well known that the
symmetric cones in finite dimensional vector spaces are precisely the interiors of the
cones of squares of Euclidean Jordan algebras by the fundamental work of Koecher
[12] and Vinberg [25]. Thus, Walsh’s result provides a link between the existence of an
isometry of (Ω, dH) that is not a projective linear automorphism and a Jordan algebra
structure on the vector space above Ω. It might well be true that in a general order unit
space (X,C, u) we have that the existence of a Hilbert’s metric isometry on P (C◦) that
is not a projective linear automorphism implies that X has a Jordan algebra structure
and C is the cone of squares.

References

[1] C.D. Aliprantis and R. Tourky, Cones and duality. Graduate Studies in Mathematics, 84. American
Mathematical Society, Providence, RI, 2007.

[2] G. Birkhoff, Extensions of Jentzsch’s theorems. Trans. Amer. Math. Soc. 85, (1957), 219–277.
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