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Abstract 

Formation of galactose-acylated monogalactosyldiacylglycerols has been shown to be induced by leaf 

homogenization, mechanical wounding, avirulent bacterial infection, and thawing after snap-freezing. 

Here, lipidomic analysis using mass spectrometry showed that galactose-acylated 

monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) 

leaves upon wounding, have acyl-galactose profiles that differ from those of wounded Arabidopsis 

thaliana, indicating that different plant species accumulate different acyl-galactose components in 

response to the same stress. Additionally, the composition of the acyl-galactose component of 

Arabidopsis acMGDG depends on the stress treatment. After sub-lethal freezing treatment, acMGDG 

contained mainly non-oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids 

accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with 

acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. 

Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated 

monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid-containing 

acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were 

wounded again.  These findings suggest that, in Arabidopsis, the pool of galactose-acylated 

monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses.  

 

Abbreviations 

18:3-2O (and similar abbreviations for fatty acids) Number of carbons: Number of double bond 

equivalents (excluding the acid carbonyl group) – number of oxygens beyond the carboxylic acid group  

acMGDG galactose-acylated monogalactosyldiacylglycerol 

Arabidopside E 1-OPDA,2-dnOPDA,3-(OPDA-galactosyl) glycerol  

Arabidopside G 1-OPDA,2-OPDA,3-(OPDA-galactosyl) glycerol  

BHT butylated hydroxytoluene 

Col-0 Columbia-0 

DAG diacylglycerol 

DGDG digalactosyldiacylglycerol 
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DGMG digalactosylmonoacylglycerol 

ESI electrospray ionization 

dnOPDA dinor-oxophytodienoic acid 

Gal galactose or galactosyl 

JA jasmonic acid 

MS mass spectrometry 

MGDG monogalactosyldiacylglycerol 

MGMG monogalactosylmonoacylglycerol  

NL neutral loss 

NL 341.2 neutral loss scan of m/z 341.2 (and similar abbreviations for neutral loss scans) 

OPDA 12-oxophytodienoic acid 

PA phosphatidic acid 

Pre 277.2 precursor scan of m/z 277.2 (and similar abbreviations for precursor scans) 

Pst Pseudomonas syringae pv tomato DC3000 expressing AvrRpt2 

Q-TOF quadrupole time-of-flight 

SQDG sulfoquinovosyldiacylglycerol 

 

Introduction 

Membranes of plant chloroplasts contain glyco-glycerolipids with three major head groups: galactose 

(Gal, in monogalactosyldiacylglycerol, MGDG), digalactose (in digalactosyldiacylglycerol, DGDG), and 

sulfonated glucose (in sulfoquinovosyldiacylglycerol, SQDG). The Gal component of MGDG can be 

enzymatically modified by fatty acylation (esterification) at the 6’-hydroxyl group. Over 40 years ago, 

this head group acylation was characterized in spinach homogenates (Heinz, 1967a; Heinz & Tulloch, 

1969). Fatty acid compositional analysis of in vitro incubation products from an ammonium sulfate-
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precipitated protein fraction with purified lipid substrates indicated that, when only MGDG was present, 

galactose-acylated MGDG (acMGDG) was formed via a dismutation reaction, i.e., 2 MGDG → 

acMGDG + monogalactosylmonoacylglycerol (MGMG). However, when both MGDG and DGDG were 

present, acMGDG was formed exclusively by transacylation from DGDG, i.e., DGDG + MGDG → 

acMGDG + digalactosylmonoacylglycerol (DGMG; Heinz, 1967b; Heinz, 1972). This early work 

focused on acMGDG formation in homogenized leaf tissues; however, the potential physiological role for 

the acylation reaction was not considered. 

 

More recently, acMGDGs with the structure 1-(12-oxophytodienoic acid )(OPDA),2-dinor-

oxophytodienoic acid (dnOPDA),3-(OPDA-Gal) glycerol (Arabidopside E) and acMGDG with 3 OPDA 

chains (Arabidopside G) were identified in Arabidopsis leaves under stress. These acMGDGs can 

accumulate to as much as 8% of the Arabidopsis total leaf lipid when the leaves are infected with the 

bacteria Pseudomonas syringae carrying the avirulence factor AvrRpt2 (Pst) or AvrRpm1 (Andersson et 

al., 2006; Kourtchenko et al., 2007). Indeed, in vitro testing indicated that Arabidopsides E and G have 

antimicrobial activities against the virulent bacterium Pseudomonas syringae DC3000 (Andersson et al., 

2006) and the necrotrophic fungus Botrytis cinerea (Kourtchenko et al., 2007). Forty additional acMGDG 

molecular species (13 non-oxidized and 27 oxidized) were measured after wounding of Arabidopsis 

leaves (Ibrahim et al., 2011), and 27 additional acMGDGs, each with at least one oxidized fatty acid 

chain, were characterized as being induced significantly after wounding or avirulent bacterial infection of 

Arabidopsis leaves (Vu et al., 2012). 

 

Galactolipids with cyclic oxidized acyl chains, or oxylipins, such as OPDA, esterified to glycerol are rare 

in plant species outside the genus Arabidopsis (Bottcher & Weiler, 2007). The current study adds to the 

evidence that, although cyclic fatty acids in membrane lipids may be restricted in occurrence, Gal 

acylation of MGDG is a relatively conserved process that occurs in tomato and wheat, in addition to 

Arabidopsis, spinach, and broad bean (Andersson et al., 2006; Heinz, 1967a; Heinz, 1967b; Heinz & 

Tulloch, 1969; Heinz, 1972; Ibrahim et al., 2011; Kourtchenko et al., 2007; Vu et al., 2012). MGDG Gal 

acylation is demonstrated to be a common response to stresses including wounding, freezing, and 

infection with avirulent bacterial. The data show major variation in composition of the Gal-esterified acyl 

group, both among plant species and in response to different stresses. Furthermore, comparison of the 

profiles of the fatty acyl chain on the Gal of acMGDG and the fatty acyl chains of DGDG supports the 

notion that DGDG is the usual acyl donor for MGDG Gal acylation in vivo.  
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Materials and methods 

Plant materials 

Mature wheat leaves (Triticum aestivum L., cultivar Thatcher) were collected from the North Agronomy 

Farm, Kansas State University, Manhattan, KS. Tomato plants (Solanum lycopersicum, cultivar Better 

Boy) were purchased from Westside Market, Manhattan, KS. Arabidopsis thaliana accessions Columbia-

0 (Col-0) and C24 were grown one plant per well in Pro-Mix “PGX” soil (Hummert International, Earth 

City, MO) in 72-well plug trays (Hummert International, Earth City, MO). Trays were kept in a Conviron 

growth chamber under a 14 h /10 h light/dark cycle with 60% humidity at 21 °C. Light intensity in growth 

chambers was maintained at 80 µmol m-2 s-1 with cool white fluorescent lights (Sylvania, Danvers, MA). 

Plants were fertilized twice, once when sowing and once at 20 days old, by irrigation with a 1% solution 

of 20-20-20 Miracle-Gro plant food (Scotts Miracle-Gro, Marysville, OH).  Col-0 was harvested after 30 

days and C24 after 42 days of growth.  

 

Treatments 

Arabidopsis plants were infected with bacteria (Pseudomonas syringae) as previously described (Vu et 

al., 2012). Cold acclimation was performed in a 4 °C room equipped with light carts. Freezing treatment 

was performed in a programmable freezing chamber (Espec Corporation, Hudsonville, MI). Each tray of 

plants in soil was partly submerged in an ice slurry (made by adding tap water to ~1.5 kg of ice chips to a 

total volume of 4 L) to avoid supercooling during freezing treatment at -8 °C for 2 h.  The soil was 

completely in contact with the ice slurry through the irrigation holes at the bottom of the growing tray.  

The temperature was dropped to -8 °C without gradual decreasing; at the end of the freezing treatment, 

plants were transferred to their growth condition (21 °C, 60% humidity) and sampled after 3 h and 24 h. 

Leaf numbers 5 and 6 were collected for ion leakage measurement (see next section), and the remaining 

portion of the rosette was dropped into 4 ml of 75 °C isopropanol with 0.01% butylated hydroxytoluene 

(BHT) for lipid analysis. Leaf number is the order of leaf appearance, determined as described previously 

(Telfer et al., 1997). Wounding was performed by applying pressure with a hemostat across the leaf mid-

vein, leaving wound marks about 6 mm apart. For the re-wounding experiment, plants were randomly 

assigned to one of three groups. Plants of the “control” singly wounded group were harvested at 0 min, 5 

min, 15 min, 45 min, 4 h, 24 h and 48 h after wounding. For the other two groups, a second wound was 

applied at the same wounded marks as the first wound either 24 h or 48 h after the first wound was 

applied. The leaves were harvested at 0 min, 5 min, 15 min, 45 min, 4 h, 24 h and 48 h after the second 

wound. In the re-wounding experiment, four leaves (leaf numbers 5, 6, 7, and 8) were harvested at each 
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time point; leaf number 5 was dropped into 2 ml of 75 °C isopropanol with 0.01% BHT for lipid analysis, 

and leaf numbers 6, 7, and 8 were put together into a 1.5-ml tube and frozen in liquid nitrogen for 

phytohormone analysis by gas chromatography - mass spectrometry (MS).  

 

Ion leakage measurement 

Two leaves from each rosette were rinsed with deionized water before being dropped into a 50-ml glass 

tube (Pyrex) containing 25 ml of distilled water (Dillons Supermarket, Manhattan, KS). The tubes were 

shaken for 2 h at 100 rpm before the first ion conductivity reading with Oakton CON 510 electrical 

conductivity meter (Oakton Instruments, Vernon Hills, IL). After the first reading, the tubes were 

incubated at 95-100 °C in a water bath for 2 h, and a second conductivity reading was taken. Relative ion 

leakage, as a percentage, was reported as (the first over the second conductivity reading) x 100 (%).  

 

Lipid extraction  

Modified Bligh-Dyer method (Bligh & Dyer, 1959) for polar lipid analysis: For the Pst and wounding 

experiments, three leaves were dropped into 3 ml of 75 °C isopropanol containing 0.01% BHT; heating at 

75 °C was continued for 15 min. Chloroform (1.5 ml) and water (0.6 ml) were added, and the tube was 

shaken for 1 h before the solvent was transferred to another tube. For the second round of extraction, 4 ml 

of chloroform: methanol (2:1) were added to the leaves, followed by shaking for 30 min and combination 

of the solvent with the previous extract. After repeating the extraction three more times and combining 

the extracts, the combined extract was evaporated under a nitrogen stream and re-dissolved in 1 ml of 

chloroform. The extracted leaf residue was dried overnight at 105 °C and the dry mass obtained by 

weighing.  

 

Alternate extraction method (for polar lipid analysis): For the freezing and re-wounding experiments, 

leaves were dropped into a 20-ml vial with a Teflon-lined cap containing 4 ml (2 ml in the re-wounding 

experiment) of 75 °C isopropanol with 0.01% BHT. After 15 min at 75 °C, 12 ml (6 ml in the re-

wounding experiment) of extraction solvent (chloroform: methanol: 300 mM ammonium acetate in water, 

30: 41.5: 3.5, v/v/v) were added, and the tube was shaken at room temperature for 24 h.  
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For gas chromatography-MS (free oxylipin analysis): Extraction and derivatization were carried out as 

described previously (Schmelz et al., 2004). 

 

Mass spectrometry 

For samples extracted by the modified Bligh-Dyer method (stored in 1 ml chloroform), a volume (x µl) 

containing 0.2 mg leaf dry mass was diluted by adding (360  x) µl of chloroform and 840 µl of 

methanol: 300 mM ammonium acetate in water (95: 5, v/v). For samples extracted by the alternate 

method, a volume (y µl) containing 0.2 mg leaf dry mass was diluted with (1200  y) µl of chloroform: 

methanol: isopropanol: 300 mM ammonium acetate in water (30: 41.5: 25: 3.5, v/v/v/v).  

 

Phospholipids and galactolipids with normal chains were analyzed by triple quadrupole MS using head 

group-specific scans and standards as described previously (Xiao et al., 2010). Precursor scans of m/z 

277.2 (Pre 277.2, 18:3), m/z 291.2 (Pre 291.2, 18:4-O), m/z 293.2 (Pre 293.2, 18:3-O), m/z 295.2 (Pre 

295.2, 18:2-O or 17:3-2O) and m/z 283.2 (Pre 283.2, 18:0, to detect internal standard 16:0/18:0 MGDG) 

were performed in negative mode as described previously (Vu et al., 2012), except that 1.505 nmol of 

18:0/16:0 MGDG was used in each vial as an internal standard. 

 

Scans for neutral loss (NL) fragments composed of Gal and a fatty acid (Table 1) were carried out in 

positive mode using an ABI 4000 triple quadrupole mass spectrometer (Applied Biosystems, Foster City, 

CA) with an electrospray ionization (ESI) source. To perform the NL scans listed in Table 1, three 

identical sample vials were used to provide enough volume for the analysis of each sample. To each 

sample vial, 0.95 nmol of di18:0 DGDG was added as an internal standard; this was detected by NL scan 

of m/z 341.2 (NL 341.2), with a target of m/z 966.7. The infusion flow rate was 30 µl min-1. The scan rate 

was 36 u s-1 for 75 cycles. Others parameters were: collision gas, 2 (arbitrary units); curtain gas, 20 

(arbitrary units); ion source gases 1 and 2, 45 (arbitrary units); source temperature, 100 °C; interface 

heater, “on”; ion spray voltage, 5500 V; declustering potential, 90 V; entrance potential, 10 V; collision 

energy, 24 V; and collision cell exit potential, 23 V.  
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Accurate acyl mass analysis by quadrupole time-of-flight (Q-TOF) MS was performed on unfractionated 

lipid extracts with a Q-TOF-2 tandem mass spectrometer (Micromass Ltd., Manchester, UK), using the 

solvent, parameters, and processing method described by Buseman et al. (2006), with a few changes. 

Charged precursor ions were subjected to product ion scanning in negative or positive ion mode. 

Precursor ions were selected by the quadrupole, tuned to transmit at 0.8 u full width at half height (i.e., 

monoisotopic selection). Extracts were infused into the ESI source at 20 µl min-1; collision energy was 30 

V. 

 

Chemical ionization gas chromatography - MS was used to profile phytohormones of samples harvested 

from the re-wounding experiment following the procedure described by Schmelz et al. (2004).  

 

Mass spectral data processing and analysis 

Peak smoothing, background subtraction, and peak centroiding for triple quadrupole MS data were 

carried out using a custom script with Applied Biosystems Analyst software. After targeted peaks were 

identified, isotopic overlaps were calculated and subtracted from peaks within each spectrum. For NL 

scans, spectra were also corrected for isotopic overlaps of head group fragments. Signals of targeted 

peaks were normalized to the signal of the corresponding internal standard (18:0/16:0 MGDG for 

negative precursor scans and di18:0 DGDG for positive NL scans) and reported as normalized mass 

spectral signal per mg of leaf dry mass, where amount of signal produced by 1 nmol internal standard is 1 

unit of signal.  

 

To calculate the OPDA to 18:3 signal ratio in MGDGs and DGDGs in Arabidopsis, the ESI triple 

quadrupole MS signals were detected by scanning in negative mode for Pre 291.2 (OPDA) and Pre 277.2 

(18:3). The sum of signals from MGDGs and DGDGs containing combinations of OPDA (18:4-O) with 

each of the five major fatty acids (16:3, 16:0, dnOPDA (16:4-O), 18:3, and OPDA) was divided by the 

sum of MGDGs and DGDGs containing combinations of 18:3 with each of the same five major fatty 

acids. To calculate the Gal-OPDA to Gal-18:3 signal ratio in acMGDGs, the sum of signals of Gal-OPDA 

acMGDGs (with each of the 35 diacylglycerol (DAG) combinations listed in Table S1), detected by 

scanning in positive mode for NL 453.3 (Gal-OPDA), was divided by the sum of signals of Gal-18:3 

acMGDGs (with the 35 DAGs listed in Table S1), detected by scanning in positive mode for NL 439.3 

(Gal-18:3). 
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Q-TOF mass spectra obtained in negative mode were mass-corrected by using, as a lock mass, the 

theoretical exact mass of the acyl anion of 18:3 fatty acid or OPDA, m/z 277.2173 or 291.1966, 

respectively. Q-TOF spectra obtained in positive mode were mass-corrected by locking on the mass of a 

fragment containing the glycerol backbone attached to either 18:3 fatty acid or OPDA (m/z 335.2581 or 

349.2373, respectively). With the locked mass correction, the exact masses of product ions were 

determined to ten thousandths of a mass unit. 

 

Results  

Wound-induced acylation of the galactose of MGDG occurs in multiple plant species 

acMGDGs are formed by acylation of MGDG on the carbon at the 6-position of galactose (Heinz & 

Tulloch, 1969). Utilizing direct infusion ESI triple quadrupole MS, acMGDG levels can be measured by 

NL scanning in the positive mode. Fig. 1A depicts an acMGDG molecule, showing formation of the NL 

fragment, C22H43O6N (417.3 u), by collision induced dissociation. The fragment is composed of a 

palmitoyl chain, 16:0 (where 16 is the number of carbons and 0 is the number of double bond equivalents, 

excluding the carbonyl double bond), esterified to Gal. Other NL fragments used for detection of 

acMGDGs are listed in Table 1. Each NL scan targets an acMGDG group with a common acyl-Gal 

component and varied DAG components. The DAG components targeted in each NL scan (Table 1) are 

listed in Table S1. In contrast to the previous method used by our group to detect acMGDGs by targeting 

fatty acyl anions (Vu et al., 2012), which did not identify the position of the detected fatty acid among the 

three positions in acMGDG, the current method detects the fatty acid linked to the galactose. To compare 

amounts of acMGDGs, signals were normalized to the signal of an internal standard, with an amount of 

signal equal to that of 1 nmol of the standard equal to 1. This approach allows sample-to-sample 

comparison of signals.  More detail on the acMGDGs (as defined by DAG species in combination with 

each acyl-galactose species) may be viewed in Table S2. 

 

Fig. 1B shows that various plant species, from the monocot wheat to eudicots tomato and Arabidopsis, 

produce acMGDG in response to wounding. acMGDG is formed within 45 min after wounding with a 

hemostat. Fold increases of acMGDG in leaves 45 min after wounding were 3 for tomato, 18 for wheat, 

20 for Arabidopsis C24, and 130 for Arabidopsis Col-0.  
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In acMGDG produced in response to wounding, the fatty acyl species linked to Gal varied among plant 

species (Fig. 2). Fig. 2A shows that in Arabidopsis Col-0, the most abundant Gal-linked fatty acids were 

18:4-O, which has been identified as OPDA in galactolipids (Buseman et al., 2006; Stelmach et al., 

2001), 16:0, 18:3-2O/20:1, 18:3, and 18:3-O (49%, 19%, 11%, 7%, and 4%, respectively, of the total 

acMGDG measured). Gal-linked fatty acids18:3-2O and 20:1 have the same nominal mass and thus are 

not differentiated by this method. In agreement with previous analyses of Arabidopsis thaliana Col-0, 

three acMGDGs with the most abundant signals were 1-OPDA,2-dnOPDA,3-(OPDA-galactosyl) glycerol 

(Arabidopside E, 38% of total acMGDG signal), 1-OPDA,2-dnOPDA,3-(16:0-galactosyl) glycerol (14%) 

and 1,2-diOPDA,3-(OPDA-galactosyl) glycerol (7%, Arabidopside G) (Table S2; Andersson et al., 2006; 

Ibrahim et al., 2011; Kourtchenko et al., 2007; Vu et al., 2012). In Arabidopsis C24, Gal linkage of 

unoxidized fatty acids was more prevalent: 18:3 (32% of total acMGDG signal), 16:0 (19%), OPDA 

(18%), 18:2 (6%), 18:3-O (6%) and 18:3-2O/20:1 (6%) compared to Col-0 after the same wounding 

treatment (Fig. 2B). While the amount of acMGDG with OPDA esterified to Gal is ~10-fold less in 

Arabidopsis C24 than in Arabidopsis Col-0, the amount of acMGDG with 18:3 esterified to Gal was 

slightly higher in C24 than in Col-0. Similarly, MS signals from acMGDGs in wounded tomato and 

wheat leaves were derived primarily from unoxidized Gal-linked fatty acids: 16:0 (40%), 18:3 (27%), and 

18:2 (15%) in tomato; 18:3 (73%), 16:0 (9%) and 18:2 (6%) in wheat (Fig. 2C-D). Scanning for NL 439.3 

(18:3-containing Gal) in samples from wheat 45 min after wounding produced a massive peak at m/z 

1052.8, whose signal accounted for 72% of the total acMGDG signal (Table S2). Accurate-mass product 

ion analysis of this species (acetate adduct, [M + C2H3O2]
, m/z 1093.8) by Q-TOF MS in the negative 

mode (Buseman et al., 2006; Vu et al., 2012) showed that this largest acMGDG component of wheat 

contained only 18:3 acyl chains, consistent with a structure of 1,2-di18:3,3-(18:3-galactosyl) glycerol 

(Fig. S1).  Table S3 shows the acyl composition (three chains) of the major acMGDG molecular species 

detected in Arabidopsis Col-0, tomato, and wheat and the supporting accurate-mass product ion analysis. 

 

acMGDGs accumulate following stress, including sub-lethal freezing 

The total amounts of acMGDG formed under different stress treatments were determined using the NL 

scans indicated in Table 1 (Fig. 3). As shown previously by precursor scanning for acyl anions, infection 

of Arabidopsis thaliana Col-0 with the avirulent bacteria Pst induced large amounts of acMGDG (Fig. 

3A; Vu et al., 2012). Wounding also induced acMGDG (Fig. 3B). Similarly, sub-lethal freezing induced 

synthesis of acMGDG (Fig. 3C). Levels of acMGDG with unoxidized fatty acyl chains had not been 
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previously determined  (Vu et al., 2012; next section). In the experiment shown in Fig. 3C-E, Arabidopsis 

Col-0 plants were cold-acclimated at 4 °C for 3 days or not acclimated (remained at the growth 

temperature of 21 °C) until the freezing treatment (2 h at -8 °C). Plants were returned to 21 °C after 

freezing and sampled 3 h or 24 h later. As indicated by measurement of ion leakage at 24 h (Fig. 3D), 

non-acclimated plants sustained more damage than acclimated plants (p < 0.001). Fig. 3C indicates that 

levels of acMGDG increased during the post-freezing period in both acclimated and non-acclimated 

plants, but that the levels were always higher in non-acclimated than in acclimated plants. Ion leakage 

measurements (Fig. 3D) indicate that the membranes of acclimated plants were quite permeable at 3 h 

into the recovery period, but less so at 24 h (p < 0.01). In contrast, the non-acclimated plants showed 

greater leaf membrane damage after 24 h post freezing than at 3 h (p < 0.05) and much more damage at 

24 h than observed in acclimated plants. Indeed, acclimated plants sustained visible damage to leaves, but 

the leaves were able to recover, while the damaged leaves of non-acclimated plants died, although the 

plant did not (see Fig. S2).  Levels of the phospholipid hydrolytic product phosphatidic acid (PA) are 

shown in Fig. 3E. (Levels of other membrane lipids are shown in Table S4). Whereas total PA levels (Fig. 

3E) were closely correlated with leaf ion leakage (Fig. 3D), the total acMGDG signal (Fig. 3C) did not 

correlate strictly with leaf injury. Acclimated plants tended to accumulate acMGDG between 3 h and 24 h 

(p < 0.1) after freezing treatment as ion leakage dropped. Taken together, comparison of acMGDG 

signals in acclimated and non-acclimated plants demonstrates a link between treatment and total 

acMGDG accumulation, but acMGDG accumulated even during recovery. 

 

The composition of induced acMGDGs varies among stresses 

The most abundant acMGDGs in Col-0 leaves after infection of the plants by Pst (24 h) were those with 

Gal-linked fatty acids OPDA (56%), 16:0 (17%), 18:3 (10%), 18:3-2O/20:1 (6%) and 16:4-O (4%) (Fig. 

4A). The acMGDG composition, with a prevalence of OPDA and 16:0 on Gal, was similar to that formed 

after wounding (Fig. 4B). The acMGDG Gal-linked acyl composition was drastically different in plants 

24 h after freezing. In acclimated plants (Fig. 4C), 18:3 (48%), 16:0 (14%), OPDA (14%), 16:3 (10%) 

and 18:2 (6%) were most prevalent, and in non-acclimated plants (Fig. 4D), 18:3 (58%), 16:3 (13%), 16:0 

(11%), 18:2 (7%) and OPDA (4%) were highest. Although acclimated plants accumulated ~ 5-fold less 

acMGDG than non-acclimated plants, they accumulated approximately the same amount of OPDA-Gal 

acMGDG (0.48 ± 0.23 normalized MS units mg-1 dry mass in acclimated plants compared with 0.59 ± 

0.17 units in non-acclimated plants). 
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Overall, the data demonstrate that during recovery from freezing, as well as during Pst infection and after 

wounding, significant acylation of the Gal of MGDG was induced. However, in contrast to the 

composition during other stresses, after freezing, the Gal-linked acyl chains were mostly unoxidized.  

 

The proportions of 16:3, 16:0, and 18:3 in the Gal-esterified acyl chains in 

acMGDGs resemble proportions in DGDG 

The formation of acMGDG, by a dismutation reaction when MGDG was the only substrate or by 

transacylation from DGDG when both MGDG and DGDG were present, has been demonstrated in in 

vitro experiments (Heinz, 1967b; Heinz, 1972). To define the in vivo substrate(s) for acMGDG formation, 

we considered the acyl compositions of Arabidopsis MGDG and DGDG. Leaf MGDG contains two 

major molecular species; 18:3/16:3 MGDG is present at higher levels than di18:3 MGDG. Leaf DGDG 

has three major molecular species: di18:3 DGDG > (16:0/18:3 DGDG + 18:3/16:0 DGDG) > 18:3/16:3 

DGDG. The acyl composition of MGDG has previously been analyzed: 59% 18:3, 33% 16:3, and only 

1% 16:0, whereas the acyl composition of DGDG contains 77% 18:3, 3% 16:3, and 12% 16:0 (Miquel et 

al., 1998). Comparing the percentages of 16:0 and 16:3 (and other acyls) esterified to the Gal of acMGDG 

of stressed (induced) samples to the percentages in MGDG and DGDG of untreated samples should shed 

light on the origin(s) of the acyl groups (Fig. 5). The fatty acid compositions of MGDG and DGDG used 

in the current analysis were estimated from the percentage of each MGDG and DGDG molecular species 

determined by head-group scanning of untreated samples, with assignment of molecular species based on 

previous product ion analysis (Devaiah et al., 2006). Detailed estimation is shown in Table S5. The 

percentages of each fatty acid in MGDG and DGDG determined in this way on the untreated samples 

were in close agreement with the previously published data (Miquel et al., 1998). When acMGDG 

formation is induced by stresses in Col-0, fatty acid oxidation also occurs at various levels. Hence, for 

comparison of normal and head group acylated galactolipid compositions, the contents of unoxidized fatty 

acids and their oxidized derivatives were summed: i.e., 16:3 and its major oxidized derivative, 16:4-O, 

were combined; similarly, 18:3, 18:4-O, 18:3-O, and 18:3-2O were combined, as were 18:2 and 18:2-2O. 

The composition of the fatty acids linked to Gal in acMGDG during stress responses, reveals that the 

percentage of 16:0, ranging from 11% to 19%, is similar to the percentage in DGDG (11%) and much 

higher than in MGDG (0.1%) (Fig. 5). While it is possible that under certain circumstances, some fatty 

acyl chains used to esterify Gal might come from MGDG, as suggested by the somewhat higher 

percentage of 16:3 and 16:4-O incorporated on the Gal of acMGDG following freezing stress (Fig. 5E-F), 

the data are consistent with DGDG as the major source of the Gal-esterified fatty acids in acMGDG 

formed in vivo.  



13 
 

 

The oxidized fatty acyl chain OPDA is enriched on the Gal of acMGDG 

To determine relative amounts of OPDA and 18:3 in MGDG, DGDG, and acMGDG, ratios of MS signals 

for OPDA and 18:3 in MGDG and DGDG were measured using ESI triple quadrupole MS precursor 

scanning in negative mode, while ratios of MS signals for OPDA and 18:3 on the Gal of acMGDG were 

measured using NL scanning in positive mode.  Levels of MGDG and DGDG detected by negative 

precursor scans for 18:4-O (includes OPDA), 18:3-O, and 18:2-O are shown in Table S6. The ratios of 

OPDA to 18:3 signals under different treatments are shown in Table 2. Pst infection and wounding of 

Col-0 significantly increased the OPDA level in MGDG and DGDG (p < 0.001) and the OPDA/18:3 

signal ratio in MGDG and DGDG (p < 0.05). However, the OPDA/18:3 signal ratio was several orders of 

magnitude higher on the Gal of acMGDG than in MGDG and DGDG under both induced and non-

induced conditions. Although neither acclimated nor non-acclimated plants accumulated much OPDA in 

galactolipids after freezing treatment, the OPDA/18:3 signal ratio from the acyl chains on the Gal of 

acMGDG was significantly greater than the OPDA/18:3 signal ratio from the acyl chains esterified to the 

glycerols of MGDG and DGDG. Interestingly, OPDA enrichment on the Gal of induced acMGDG in 

cold-acclimated Col-0 plants is greater than in non-acclimated Col-0 recovering from sub-lethal freezing 

(Table 2). Taken together, the data in Table 2 indicate that the enrichment of OPDA on the Gal of 

acMGDG is usually correlated with the availability of OPDA in MGDG and DGDG, and OPDA is 

concentrated in the pool of fatty acids linked to the Gal of acMGDG.  

 

Oxidized acMGDG induction is enhanced by re-wounding 

Although the existence of acMGDG has long been known, its physiological roles are still largely unclear. 

The fully oxidized acMGDGs Arabidopside E and Arabidopside G have been demonstrated to have anti-

fungal and anti-bacterial activities in vitro (Andersson et al., 2006; Kourtchenko et al., 2007). One 

hypothesis about acMGDG function is that oxidized-fatty acid-containing complex lipids may serve as 

reservoirs for precursors of oxylipin-derived phytohormones such as jasmonic acid (JA). In order to test 

this hypothesis, we wounded Col-0 leaves twice at the same place, with the second wound occurring 

either 24 h or 48 h after the first. Leaves were harvested for lipid extraction at 0 min, 5 min, 15 min, 45 

min, 4 h, 24 h and 48 h following each wounding event. Harvested leaves were extracted and analyzed for 

both complex lipids and the free phytohormones JA and OPDA. There was no enhancement by re-

wounding in levels of induced total free JA and total free OPDA (Fig. S3), indicating that the 
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accumulation of pools of esterified oxylipins did not trigger a significantly faster or stronger response in 

levels of free JA or OPDA upon re-wounding. 

 

Fig. 6 shows levels of plastidic complex lipids MGDG, DGDG, and acMGDG. Whereas free oxylipin 

content wasn’t significantly higher upon re-wounding, signals from oxidized MGDG and DGDG (Fig. 

6A-C) were clearly increased by a second wounding to levels higher than by a single wounding. The 

second wounding did not induce major and sustained increases in signals from unoxidized acMGDG (Fig. 

6D-F). In contrast, the levels of oxidized acMGDGs (Fig. 6G-H) were much higher during re-wounding 

and remained higher than the levels induced by the first wounding for up to 48 h after re-wounding.  

 

Discussion 

The present work demonstrates that acMGDGs are formed in planta across species (Fig. 1B). Prior work 

established that wounding and bacterial infection induce acMGDG production in Arabidopsis (Andersson 

et al., 2006; Kourtchenko et al., 2007; Vu et al., 2012). Homogenization was also reported to induce 

MGDG acylation in spinach and broad bean leaves (Heinz, 1967a; Heinz, 1972). Here, we demonstrated 

that acMGDG is also formed in tomato and wheat in response to wounding, suggesting that Gal acylation 

of MGDG is a conserved response to stress in plants. We also demonstrate that sub-lethal freezing 

induces acMGDG synthesis in the post-freezing period (Fig. 3C). This was not observed in our previous 

study, which focused only on oxidized acMGDG and analyzed lipid levels only to the end of the freezing 

period (Vu et al., 2012).  

 

The acyl composition of the acyl-Gal in acMGDG differs in different circumstances. Factors that affect 

the composition include the plant species, the applied stress, and, likely, other factors that affect the 

composition of the galactolipid pool. In general the data support the notion that in vivo formation of 

acMGDG occurs via transacylation from DGDG, as demonstrated previously for in vitro formation 

(Heinz, 1967b; Heinz, 1972). Species and accessions with more oxidized lipids in the galactolipid pool 

(Col-0 > C24 > other species) have more oxidized lipids in acMGDG. Stresses that induce more lipid 

oxidation (bacterial infection and wounding) vs. those that induce less (freezing) also result in production 

of acMGDG with more oxidized molecular species. Wound-induced acMGDGs containing Gal-linked 

OPDA (Arabidopsides E and G) were not detected in Brassica napus, Nicotiana tabacum, Pisum sativum, 
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Spinacia oleracea, Avena sativa, and barley (Kourtchenko et al., 2007). However, we cannot rule out the 

possibility that acMGDG is produced in these species with unoxidized fatty acids linked to Gal, similar to 

the observed reaction products in wheat. 

   

At the same time, the composition of the acyl-Gal in Arabidopsis acMGDG was determined to be more 

oxidized than the galactolipid acyl pool as a whole. Ibrahim et al. (2011) reported that the ratio of 

unoxidized acMGDG to oxidized acMGDG in Col-0 leaves harvested 30 min after wounding (regardless 

of the positions of oxidized fatty acids on acMGDGs) is 0.6; the detection of such a high level of 

oxidation agrees with our data showing that oxidized fatty acids are enriched in acMGDG. Two possible 

explanations for the enrichment of OPDA on the Gal of acMGDG are: (1) that an acyltransferase 

preferentially acylates Gal with an oxidized fatty acid compared to an unoxidized one or (2) that an 

oxidizing enzyme, such as a lipoxygenase, can act efficiently and directly on an unoxidized fatty acid 

bound to Gal. The data suggest that, as previously demonstrated in vitro, DGDG in particular is likely to 

be the source of acyl chains for MGDG acylation to acMGDG in vivo. To date, no protein or gene directly 

responsible for acylation of acMGDG has been identified.  The oxidized MGDGs and DGDGs, such as 

Arabidopsides A, B, and D (OPDA/dnOPDA MGDG, diOPDA MGDG, and diOPDA DGDG, 

respectively, Fig. 6A-C), are among the most rapidly formed compounds during stress responses, and the 

production of acMGDG always lags behind the production of these potential substrate species. This might 

support the idea of preferential acylation with oxidized fatty acids. On the other hand, Nilsson et al. 

(2012) presented data suggesting that oxidizing enzymes can directly catalyze oxidation of membrane 

bound fatty acids. Interaction between a soluble lipoxygenase and a Gal-linked acyl chain might be even 

more likely. If an oxidizing enzyme could preferentially interact with head group-linked fatty acyl chains, 

this would support the second possibility.  

 

One potential function for acMGDGs might be as a reservoir for signaling compounds. Another 

possibility is that acMGDGs are just signs of damage. The current work didn’t provide support for either 

of those possibilities. JA and OPDA production was not directly correlated with acMGDG levels, nor was 

leaf damage linked with acMGDG levels in the recovery period after freezing. An alternative notion is 

that the acMGDG pool serves to sequester potentially harmful fatty acids from the main membrane lipid 

pool. Two examples of accumulation of acMGDG during stress responses support this idea. In the period 

after freezing, cold-acclimated plants accumulated acMGDG as the leaves recovered and ion leakage 

decreased (Fig. 3). This acMGDG in acclimated leaves was enriched in oxidized fatty acid more than the 
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acMGDG accumulated in non-acclimated leaves which do not recover from freezing damage. The second 

example is accumulation of acMGDG during re-wounding (Fig. 6). In this case, upon rewounding, levels 

of acMGDG with oxidized fatty acids linked to Gal appeared to increase more and to stay increased 

longer than other galactolipid derivatives. These examples imply that acMGDG species are relatively 

long-lived and may persist and increase as recovery from stress occurs.  
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Figures 

Figure 1. acMGDG structure and occurrence upon wounding. A) Structure of a representative acMGDG 
molecule, 1-18:4-O,2-16:4-O,3-(16:0-galactosyl)glycerol and the fragmentation that gives rise to the NL 
fragment by collision induced dissociation. A proton moves from right to left during fragmentation. B) 
Total acMGDG induced by wounding, measured by the 11 NL scans indicated in Table 1, in Arabidopsis 
Col-0 and C24, tomato, and wheat leaves. Units are in relation to amount of signal detected for 1 nmol of 
internal standard (di18:0 DGDG), which is denoted as 1. Error bars are standard deviation, n = 5. The 
numbers above the bars of wounded samples show the fold induction compared to corresponding 
unwounded samples.  
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Figure 2. Levels of acMGDG (grouped by fatty acyl moiety on the Gal) in leaves of Arabidopsis Col-0 
(A) and C24 (B), tomato (C), and wheat (D) 45 min after wounding. The y axes have different scales. 
Error bars are standard deviation, n = 5. The numbers above the bars show the percentage of the 
corresponding acMGDG group over the sum of the 11 measured acMGDG groups.  
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Figure 3. acMGDG forms in leaves of Arabidopsis Col-0 after application of different stresses, and its 
occurrence during freezing is not directly associated with cell membrane ion leakage. Panels A, B, and C: 
acMGDG induced by Pst infection, wounding, and freezing. The y axes have different scales. Panel C 
shares an x-axis with Panels D and E. Panel D: Relative ion leakage (%) of acclimated and non-
acclimated Arabidopsis Col-0 leaves at 3 h and 24 h after freezing treatment. Panel E: Level of total 
phosphatidic acid as measured by MS in acclimated and non-acclimated Arabidopsis Col-0 leaves at 3 h 
and 24 h after freezing treatment. Error bars are standard deviation; panels A and B: n = 5; panels C, D, 
and E: n = 6. 
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Figure 4. Levels of acMGDG (grouped by fatty acyl moiety on the Gal) in leaves of Arabidopsis Col-0 
after application of different stresses. Panel A: acMGDG at 24 h post Pst infection, n = 5; panel B: 
acMGDG at 45 min post wounding, n = 5; panel C: acMGDG of cold acclimated Col-0 plants at 24 h post 
freezing, n= 6; panel D: acMGDG of non-acclimated Col-0 plants at 24 h post freezing, n = 6. Y axes 
have different scales. Error bars are standard deviation. The numbers above the bars show the percentage 
of the corresponding acMGDG group over the sum of the 11 measured acMGDG groups. 
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Figure 5. Fatty acyl composition (%) of MGDG (A) and DGDG (B) in untreated leaves and fatty acid 
composition of acyl-Gal in acMGDG of Col-0 plants at 24 h post Pst infection (C), n = 5; and at 45 min 
post wounding (D), n = 5; of cold acclimated (E) and of non-acclimated (F) Col-0 plants at 24 h post 
freezing, n = 6. 
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Figure 6. Levels of oxidized MGDG, DGDG, and acMGDG, measured by Pre 277.2 (18:3) and Pre 291.2 
(18:4-O) using direct infusion ESI triple quadrupole MS in negative mode. Levels of lipids were 
measured at various time points after wounding was performed at 0 h (squares). Data denoted by circles 
show levels of lipids after a second wounding at the 24 h time point of the first wounding, and data 
denoted by triangles show levels of lipids after a second wounding at the 48 h time point of the first 
wounding. The x-axis indicates time (h) starting from the only wounding event (squares) or final 
wounding event (circles and triangles). Y axes are mass spectral signal for the indicated compound, where 
1 is the amount of signal detected for 1 nmol of internal standard (18:0/16:0 MGDG), The y axes have 
different scales. Error bars are standard deviation, n = 5. 
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Supporting Information 

Additional Supporting Information may be found in the online version of this article: 

“Vu-et-al-2013-Supporting-Information.xls”: 

Table S1. DAG fragments of acMGDG determined during NL scanning by ESI triple quadrupole MS in 

positive mode using scan modes listed in Table 1.     

Table S2. Levels of acMGDG detected by NL scans of individual replicates (in normalized mass spectral 

signal unit mg-1 leaf dry mass).   

Table S3. Accurate masses of acyl groups of acMGDG from wounded Col-0, tomato, and wheat provided 

by Q-TOF MS.  

Table S4. Levels of normal chain phospholipids and galactolipids detected by triple quadrupole mass 

spectrometry (in nmol mg-1 leaf dry mass), performed as described in Xiao et al. (2010, supplemental 

data). 

Table S5. Estimation of fatty acid composition in MGDG and DGDG.  

Table S6. Levels of 18:4-O-, 18:3-O- and 18:2-O-containing MGDG, DGDG and phosphatidylglycerol 

(PG) detected by Pre scans of 291.2, 293.2 and 295.2 in negative mode, as described by Vu et al. (2012). 

“Vu-et-al-2013-Supporting-Information.pdf”: 

Figure S1. Tentative structure of 18:3/18:3/18:3 acMGDG detected in wounded wheat leaves. 

Figure S2. Acclimated and non-acclimated Arabidopsis thaliana Col-0 after being frozen at -8 °C for 2 h. 

Figure S3. Total free OPDA and JA after wounding and re-wounding of Col-0 plants.  

 



Table 1. NL fragments used to detect acMGDGs by ESI triple quadrupole MS in positive mode 

 

 

 

 

 

 

 

 

 

m/z of NL fragment Fatty acyl chain Chemical formula of NL fragment 

411.3 16:3 C22H37O6N 

417.3 16:0 C22H43O6N 

425.3 16:4-O C22H35O7N 

439.3 18:3 C24H41O6N 

441.3 18:2 C24H43O6N 

443.3 18:1, 16:3-2O C24H45O6N, C22H37O7N 

445.3 18:0 C24H47O6N 

453.3 18:4-O C24H39O7N 

455.3 18:3-O C24H41O7N 

471.3 18:3-2O, 20:1 C24H41O8N, C26H49O6N 

473.3 18:2-2O, 20:0 C24H43O8N, C26H51O6N 



Table 2. Ratio of signals from OPDA/18:3 in galactolipids of Arabidopsis thaliana. Total OPDA-

containing MGDG and DGDG (normalized mass spectral signal unit per dry leaf mass), measured by 

scanning Pre 291.2 in negative mode (complete data in Table S6), are shown in the second column. Col-0 

was subjected to Pst infection (“Pst, 24 h”, n = 5), freezing and post-freezing at 21 °C with or without 

prior cold acclimation (“acclimated, 24 h” or “non-acclimated, 24 h”, n = 6), and wounding (“wounded, 

45 min”, n = 5). C24 was also wounded and sampled after 45 min (“wounded, 45 min”, n = 5). The third 

through fifth columns indicate the ratio of signals derived from OPDA to signals derived from 18:3 in 

acyl chains of MGDG, acyl chains of DGDG, or from the acyl chain on the Gal of acMGDG. Errors are 

standard deviation. 

Treatment OPDA-

containing 

MGDG and 

DGDG (intensity 

mg-1) 

Ratio of OPDA/18:3 signals 

 in MGDG in DGDG on Gal of 

acMGDG 

Col-0, untreated 0.02 ± 0.01 0.0005 ± 0.0002 0.0049 ± 0.0005 5.39 ± 3.50 

Col-0, Pst, 24 h 0.81 ± 0.15 0.022 ± 0.006 0.041 ± 0.010 5.82 ± 1.95 

Col-0, acclimated, 24 h 0.013 ± 0.013 0.0006 ± 0.0010 0.0008 ± 0.0006 0.51 ± 0.36 

Col-0, non-acclimated, 24 h 0.017 ± 0.009 0.0092 ± 0.0080 0.0080 ± 0.0070 0.063 ± 0.017 

Col-0, wounded, 45 min 1.26 ± 0.23 0.0085 ± 0.0053 0.022 ± 0.011 24.1 ± 6.5 

C24, untreated 0.17 ± 0.07 0.0004 ± 0.0003 0.0027 ± 0.0026 0.39 ± 0.21 

C24, wounded, 45 min 0.26 ± 0.13 0.0013 ± 0.0007 0.0058 ± 0.0018 0.56 ± 0.07 
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