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ABSTRACT
Background: Freezing is commonly used for food preservation. It is usually done

under constant atmospheric pressure (isobaric). While extending the life of the

produce, isobaric freezing has detrimental effects. It causes loss of food weight

and changes in food quality. Using thermodynamic analysis, we have developed a

theoretical model of the process of freezing in a constant volume system (isochoric).

The mathematical model suggests that the detrimental effects associated with

isobaric freezing may be reduced in an isochoric freezing system. To explore this

hypothesis, we performed a preliminary study on the isochoric freezing of a produce

with which our group has experience, the potato.

Method: Experiments were performed in an isochoric freezing device we designed.

The device is robust and has no moving parts. For comparison, we used a

geometrically identical isobaric freezing device. Following freezing and thawing, the

samples were weighed, examined with colorimetry, and examined with microscopy.

Results: It was found that potatoes frozen to -5 �C in an isochoric system

experienced no weight loss and limited enzymatic browning. In contrast the -5 �C
isobaric frozen potato experienced substantial weight loss and substantial enzymatic

browning. Microscopic analysis shows that the structural integrity of the potato is

maintained after freezing in the isochoric system and impaired after freezing in

the isobaric system.

Discussion: Tissue damage during isobaric freezing is caused by the increase

in extracellular osmolality and the mechanical damage by ice crystals. Our

thermodynamic analysis predicts that during isochoric freezing the intracellular

osmolality remains comparable to the extracellular osmolality and that isochoric

systems can be designed to eliminate the mechanical damage by ice. The results

of this preliminary study seem to confirm the theoretical predictions.

Conclusion: This is a preliminary exploratory study on isochoric freezing of food.

We have shown that the quality of a food product preserved by isochoric freezing

is better than the quality of food preserved to the same temperature in isobaric

conditions. Obviously, more extensive research remains to be done to extend this

study to lower freezing temperatures and other food items.
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INTRODUCTION
This study was designed to compare the damage to a food item, the potato, due to freezing

in an isobaric (constant pressure) atmospheric system with the damage due to freezing in

an isochoric (constant volume) system. Refrigeration and freezing are one of the most

popular methods of food preservation (Mollett, 1996; Tressler & Evers, 1957). Metabolism

is temperature dependent and low temperatures aid preservation by reducing deleterious

chemical reactions in food and inhibiting the growth of microorganisms and other

pathogens. The lower the temperature, the further chemical reactions rates are reduced,

and preservation improved. Below the freezing temperature of water, most foods, many

of which consist of water, freeze. Freezing, while reducing metabolism and even

sometimes killing pathogens, has a number of detrimental effects on food (Reid, 1996).

The process of freezing itself will induce several mechanisms of damage. A major

mechanism is the “solute-concentration damage.” Freezing removes water from the

solutions in the form of ice. Since ice has a tight crystallographic structure and cannot

contain any solutes (Rubinsky, 1983a, 1983b), the concentration of the solutes in the

unfrozen portion increases with freezing to lower temperatures. The detrimental effects of

the increased concentration of solutes can be lumped together under the heading “solute-

concentration damage” (Reid, 1996). A mechanism related to solute-concentration

damage is “dehydration damage” (Reid, 1996). Biological matter made of cells freezes

preferentially an extracellularly (Mazur, 1970; Rubinsky et al., 1987). As a result of the

increase in concentration in the extracellular medium, there is an osmotically driven

transport of water across the cell membrane, from the interior of the cell to the

extracellular medium (Rubinsky et al., 1987). This causes cell dehydration and cell

membrane deformation and the so-called “dehydration damage” (Reid, 1996). There

are also two mechanisms of mechanical damage. One is mechanical damage from ice

crystals, associated with local stress when rigid ice crystals compress or deform organic

structure entrapped between the ice crystals (Reid, 1996). The compression is due to

the freezing of water in pockets of high concentration solution entrapped between ice

crystals (Ishiguro & Rubinsky, 1994). A second is the “ratchet mechanism of damage,”

caused by ice growing in the deformed region of tissue in such a way that it prevents

the return of the structure to its original shape (Reid, 1996). Damage also occurs

during storage of frozen biological matter. However, in this study, we will address only

the mechanisms of damage associated with the process of freezing and explore the

hypothesis that isochoric preservation can reduce freezing-damage to food, relative to

isobaric freezing.

We have published two fundamental thermodynamic studies on the process of

freezing in an isochoric system (Rubinsky, Perez & Carlson, 2005) and on the process

of nucleation, supercooling, and vitrification in an isochoric system (Szobota &

Rubinsky, 2006). Figure 1 shows the insight gained from the thermodynamic analysis

Lyu et al. (2017), PeerJ, DOI 10.7717/peerj.3322 2/15

http://dx.doi.org/10.7717/peerj.3322
https://peerj.com/


(Rubinsky, Perez & Carlson, 2005). The insert in Fig. 1A, shows the thermodynamic path of

a freezing process in an isochoric (constant volume) system, in comparison to the

thermodynamic path in an atmospheric isobaric system and in a hyperbaric system.

The process of freezing in an atmospheric isobaric system occurs along the vertical line

on the phase diagram. In contrast, the process of freezing in a constant volume system

occurs along the liquidus line, to the triple point between ice I, ice III, and water. For pure

water, the pressure and temperature at the triple point are -21.985 �C and 209.9 MPa,

respectively. Under isobaric conditions, the entire amount of water in the system will

be frozen at the triple point temperature. The extent of freezing in an isochoric system

is different. Figure 1A was obtained from the theoretical analysis (Rubinsky, Perez &

Carlson, 2005). It shows the amount of ice in an isochoric system as a function of a

homogenized temperature, TH. TH is defined as (TH = T-T0) where, T is the actual

temperature of the isochoric system and T0 is the temperature at which the solution in the

isochoric system freezes at atmospheric pressure. We are using this homogenization,

because it makes the curve useful for a wide range of compositions. Thermodynamic

analysis predicts that in isochoric freezing, 45% of the water in the system will remain

unfrozen at the triple point (Fig. 1A) (Rubinsky, Perez & Carlson, 2005). This suggests that

“mechanical damage from freezing” (Reid, 1996) can be eliminated during freezing to

temperatures at (or above) the triple point, by designing an isochoric freezing device in

which the stored food product occupies the 45% unfrozen volume. Figure 1B shows

another interesting observation gained from the thermodynamic analysis of the processes

of freezing in an isochoric system and in an isobaric system (Rubinsky, Perez & Carlson,

2005). The figure shows the osmolality of the freezing solution as a function of

temperature. The initial osmolality of the solution used in this study was about

0.3086 Osm. Figure 1B shows that in a solution frozen in an isobaric system (atmospheric

or hyperbaric), the osmolality at the triple point is more than twenty times as high as

the initial osmolality. Obviously, this leads to the “solute-concentration damage” and

“dehydration damage” in conventional isobaric freezing (Reid, 1996). In contrast, Fig. 1B

shows that in isochoric freezing, the osmolality at the triple point is lower by a factor

of five from that during isobaric freezing. This result is to be expected, from the data

displayed in Fig. 1A. In isochoric freezing, 45% of the solution remains unfrozen at the

triple point. Our results suggest that in addition to eliminating mechanical damage,

isochoric freezing will also reduce solute-concentration damage and dehydration damage.

There are additional aspects of isochoric freezing that deserve attention. Nucleation

theory predicts that “homogeneous nucleation” (i.e., nucleation without a preferential

nucleation site) in pure water is about -42 �C. In pure water without nucleation

sites, the water can supercool to -42 �C and freeze at that temperature, rather than at

the thermodynamic equilibrium value of 0 �C. In contrast, we have shown from a

thermodynamic analysis of the probability of homogeneous nucleation in an isochoric

system, that the temperature for “homogeneous nucleation” in water is substantially

depressed from about -42 �C in an isobaric atmospheric system to well below -100 �C in

an isochoric system (Szobota & Rubinsky, 2006). This suggests that isochoric cooling

will promote vitrification, as the homogeneous nucleation temperature in an isochoric
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system is in a range comparable to the glass formation temperature for water, about

-130 �C. The predicted effect of isochoric freezing on nucleation was examined

experimentally (Preciado, 2007; Preciado & Rubinsky, 2010). This effect of isochoric

freezing was utilized for cryofixation for electron microscopy (Leunissen & Yi, 2009). The

predicted effect of isochoric cooling on vitrification (Szobota & Rubinsky, 2006) was

shown experimentally (Huebinger, Han & Grabenbauer, 2016).

Isochoric freezing, while maintaining a constant volume, causes an increase in pressure,

to the triple point. Freezing of biological matter under elevated pressure was studied

in the past (Kalichevsky, Knorr & Lillford, 1995; Persidsky, 1971; LeBail et al., 2002;

Toepfl et al., 2006). Hyperbaric freezing (see insert in Fig. 1A) is used for rapid freezing;

by first increasing the pressure, followed by cooling to the intersection of the

hyperbaric line with the liquidus curve and then decreasing the pressure to atmospheric

(LeBail et al., 2002). Treatment of food at hyperbaric pressures (without freezing) is

also used for sterilization. Pressure has an effect on microorganisms’ sterilization and

complete Escherichia coli death was reported at 210 MPa (Suppes et al., 2003). In contrast,

the same study found that red blood cells survive this pressure and are more resilient

to hyperbaric pressures than E. coli (Suppes et al., 2003). Salinas-Almaguer et al. (2015)

investigated the use of the increase in pressure caused by isochoric freezing, for

sterilization of E. coli. In an isochoric system in which the biological material was

dispersed throughout the freezing sample, Salinas-Almaguer et al. found that the E. coli

were completely destroyed at -15 �C, but survived partially at -20 and -30 �C. It should
be mentioned that we obtained different results in our isochoric freezing experiments

(Preciado, 2007, pp. 81–133). Using three different types of cells, Madin–Darby canine

kidney epithelial cells, E. coli, and yeast, we found substantial survival after isochoric

freezing to -10, -15, and -20 �C. However, as discussed in the previous paragraph, in our
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Figure 1 (A) Ice percentage-homogenized temperature diagram during freezing in an isochoric system. The temperature is homogenized

with the temperature at which the tested solution freezes at atmospheric pressure. Insert in A′: Pressure–Temperature diagram for water and process

lines for isobaric atmospheric, hyperbaric and isochoric freezing processes. (B) Comparison of osmolality as a function of temperature during

isochoric and isobaric (at 1 atm) freezing of the same solution.
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experiment the isochoric chamber was designed in a different way. Ice nucleation was

induced in such a way as to ensure that the cells reside in the unfrozen volume and there is

no contact between the cells and ice crystals. This is how we avoid “mechanical damage

from freezing” (Reid, 1996). In the Salinas-Almaguer et al. experiments, the biological

material was not separated from the ice crystals. This may explain the difference in our

findings. In the study reported here, we have used the same isochoric chamber

configuration as in the work of Preciado (2007).

As mentioned earlier, our previous studies (Rubinsky, Perez & Carlson, 2005) suggest

that isochoric freezing has the potential to reduce the damage due to freezing in food

products, relative to isobaric freezing. The goal of this study is to assess the damages

induced by freezing a food product (a potato) in an isochoric system in comparison

to the freezing damages in an isobaric system. We have chosen to study isochoric freezing

in a potato because we have extensive experience with its mechanisms of damage (Ivorra,

Mir & Rubinsky, 2009; Golberg, Rabinowitch & Rubinsky, 2010; Hjouj & Rubinsky, 2010).

This study is preliminary and the focus is on freezing-damage in a narrow range of

parameters. Our primary goal is a first order exploration of the concept. Obviously, much

more work remains to be done to evaluate the effect of isochoric freezing on various food

products and to explore the value of isochoric preservation to the food industry.

MATERIALS AND METHODS
Isochoric system
Isochoric freezing systems are simple. They require only a constant volume chamber,

capable of withstanding the pressures that develop in the system, with minimal

deformation. For control, they require a pressure transducer. A photograph of the system

is shown in Fig. 2A. The isochoric chamber is based on a modified stainless steel OC-1

pressure vessel (O-ring 316 SS, inner cylindrical volume of 125 ml, 1″ inner diameter,

working pressure 13,800 psi, test pressure 20,000 psi) custom designed by High Pressure

Equipment Company (Erie, PA, USA). We used a standard O-ring made of BUNA-N, for

sealing. The constant volume chamber is sealed with a screw and metal seal and is

connected to an Ashcroft 4–20 mA loop-powered 20,000 psi pressure gauge, connected

through a NI myDAQ Connector (National Instruments, Austin, TX, USA) to a laptop.

The data is recorded and displayed with LabVIEW. For safety, a rupture disk limited

the pressure to 60 MPa (about 8,700 psi). The isochoric chamber was immersed in a

water–ethylene glycol bath (50/50) cooled by means of a NesLab RT-140 cooling system

(Thermo Scientific, Waltham, MA, USA).

Sample preparation
Russian Banana Fingerling potatoes (Solanum tuberosum L.) weighing between 12 and

20 g, purchased at a local store, were used in this study. The osmolality of the potatoes was

determined in preliminary experiments by measuring the samples’ weight loss in different

sucrose solution. We found that a solution of 9.09% w/w (0.3086 Osm) sucrose was

isotonic with the potatoes. In preparation for the experiments the samples were peeled,

cut into cuboid, weighed, and enclosed into cryogenic vials (standard 12 mm inner
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diameter, 1.2 ml, Corning Incorporated cryogenic vial, capped and self-standing) filled

with the isotonic sucrose solution (9.09% w/w) in such a way to ensure there was no

air in the vials. We made a small hole (0.5 mm) in the vial’ wall to ensure thermodynamic

and osmolality equilibrium between the interior of the vial and the interior of the

isochoric chamber.

Experimental protocol
The potato samples were divided into three groups: room temperature preservation,

isochoric freezing, and isobaric freezing. The room temperature preservation samples

were preserved in an isotonic sucrose solution at room temperature (22 �C) for 120 min.

The isochoric samples were processed using the isochoric experimental system. A steel

nut (the ice nucleating surface) was dropped to the bottom of the isochoric chamber to

ensure that ice formation started at the bottom of the chamber at a distance from the vials,

which were on the top of the chamber. The isochoric chamber was filled with isotonic

sucrose solution and sealed, with care to avoid the entrapment of air bubbles. It is

important to emphasize that care must be exercised to eliminate air from the system. The

presence of undissolved air can affect the results (Perez et al., 2016). The chamber was then

completely immersed in the cooling bath and cooled to -5 �C. We performed the

experiments at this temperature, because, in a previous study we found that organisms

can survive isochoric freezing at these conditions (Mikus et al., 2016). In the previous
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Figure 2 (A) Schematic of an isochoric system; ice nucleation site is the place where we placed a small metal whose role is to initiate ice

formation. (B) Photograph of the isochoric system; the height of the reactor without the fittings and the measurements instruments is 10″ and
with them is 19″. The inner chamber diameter is 1″.
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study (Mikus et al., 2016), -2, -4, and -6 �C was studied to evaluate whether the

organisms can survive isochoric freezing. As the survival rate at -4 and -6 �C was 97%

and 71%, respectively, we choose moderate temperature (-5 �C) as our experiment

conditions. Obviously, in the future, studies need to be performed in the entire range of

temperatures to the triple point. The pressure was monitored and recorded in real time,

using LabVIEW. It took about 60 min to reach the desired pressure and the experiment

was terminated after another 60 min. The isochoric chamber was warmed at room

temperature until the pressure reached atmospheric. Then the chamber was opened for

sample analysis. The isobaric samples followed the same procedure as the isochoric

samples except that the chamber was open to atmospheric pressure during freezing. The

samples were kept in the cooling bath at -5 �C for 120 min. We limited the period of

exposure to subfreezing temperatures to 2 h, because our focus is on freezing-damage not

the damage due to storage.

It is important to notice the special mode in which ice forms in our system. As

indicated in the “Introduction,” our isochoric system is designed in such a way as to

separate between the ice and the biological material. We design the volume of the

biological material to be less than the volume of the unfrozen fraction at the temperature

of interest. At -5 �C, we induce ice nucleation at the bottom of the chamber and the

sample is kept at the top of the chamber, in the 75% of the volume that is unfrozen. In this

way, we eliminate the possibility of mechanical damage by freezing (Reid, 1996).

Sample analysis
Three methods were used to evaluate and compare the samples preserved at room

temperature to isobarically frozen samples and isochorically preserved samples: weight

loss, color change, and microscopic appearance. The samples were analyzed immediately

after removal from the chambers.

To evaluate weight loss, the samples were weighed before and immediately after each

treatment with an electronic balance (ER-182A; A&D Company, Tokyo, Japan). The

surface water on the sample was absorbed by filter papers before weighing. This was

repeated for five samples, for each treatment.

Colorimetric measurements were done with a color meter (TES-135A; TES Electric

Electronic Corp., Taiwan) in Hunter L� a� b� color space values before and immediately

after each treatment. The L�, a�, b� represent the lightness of the color (L� = 0 yields

black and L� = 100 indicates diffuse white; specular white may be higher), the redness

of the color (a�, negative values indicate green while positive values indicate magenta),

and the yellowness of the color (b�, negative values indicate blue and positive values

indicate yellow).

The total color difference (�E) between the differently treated samples was calculated

as follows (Cserhalmi et al., 2006):

�E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�L2 þ�a2 þ�b2
p

�L, �a, and �b correspond to the difference in L�, a�, b� values before and after
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treatment, respectively, for each sample. The colorimetric experiments were repeated for

three samples for each treatment.

The microstructure of the potato samples was observed under a stereomicroscope

(Lumar, V12 SteREO Carl Zeiss; Carl Zeiss, Oberkochen, Germany) at a magnification of

45� and 80� 10 min after the treatment. The samples were stained with 0.1% toluidine

blue O (TBO), to observe the cell walls (Obrien, Feder & McCully, 1964). We sectioned the

potato cube and placed the sliced sections on a clean microscope slide. Then, we flooded

the sections with an aqueous solution of 0.1% TBO for 1 min. The stain was removed

gently from the potato surface by using a piece of filter paper and the samples were washed

with water until there was no excess stain around the sample. Nine (3 � 3, three samples

for each treatment and three different sections in each sample) sections were examined in

each treatment.

Mean and standard deviations were calculated using SPSS 24.0 software (IBM,

Armonk, NY, USA). T-ANOVA was used to detect significant differences between mean.

Significance was set at p < 0.05 for the ANOVA matrix F value.

RESULTS AND DISCUSSION
The technology of an isochoric system is very simple relative to that of a comparable high-

pressure freezing (hyperbaric) system. Unlike a hyperbaric freezing system, an isochoric

system contains no moving parts and requires no power for continuous operation. There

is also no concern with sealing the chamber around moving parts or deterioration of

moving parts (Mikus et al., 2016; Rubinsky, Perez & Carlson, 2005). Figure 2A shows a

schematic of the device. It is a rigid closed container designed to withstand the pressure.

Figure 2B shows a photograph of the isochoric device used in this study. It is a capped

cylinder made from a standard commercial stainless steel pressure vessel.

Control over the isochoric refrigeration process is also very simple. Figure 2 shows that

we have used a pressure transducer connected to the vessel for control. In an isochoric

refrigeration system, either only temperature or pressure need to be controlled. A two-

phase system in a closed fixed volume is always at thermodynamic equilibrium. Therefore,

either pressure or temperature completely specifies the system. In contrast, in a hyperbaric

system, there is the need to control both temperature and pressure (Koch et al., 1996).

Figure 3 was obtained from measurements made with the pressure transducer in Fig. 2

during an isochoric freezing experiment. It shows a typical curve depicting the change

in pressure with time during the isochoric refrigeration process in our experiments.

The interesting aspect is that the pressure reaches steady state and stays at that value

for over an hour, to the termination of the experiment. This demonstrates that the

isochoric system has reached thermodynamic equilibrium. The time to reach steady state

obviously depends on the thermal mass of the device and the heat transfer coefficient

to the cooling bath. In all our experiments, the samples reached isochoric thermodynamic

equilibrium, and our results represent the state of the treated material after it has reached

thermodynamic equilibrium.

Figures 4 and 5 compare, respectively, the weight loss and color change after 2 h of:

(a) freezing to -5 �C in an isochoric system; (b) freezing to -5 �C in isobaric conditions;
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and (c) storage in an isotonic sucrose solution at room temperature. Figure 6 describes

the microscopic micrographs that provide an explanation for the mechanisms involved.

Weight loss during storage is of concern to the food industry. It occurs during

preservation of all foods, including potatoes (Wang, Brandt & Olsen, 2016). Frozen storage

is particularly detrimental as it leads to substantial weight loss (Campañone, Salvadori &

Mascheroni, 2001; Koch et al., 1996). Figure 4 shows a comparison between the change in

weight of the potato samples after 2 h in a 9.09% w/w sucrose solution at: room

temperature, -5 �C in isobaric condition, and -5 �C in isochoric condition. The figure

shows that there is no statistically significant change in weight either after 2 h at room
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temperature or during freezing at -5 �C in isochoric conditions (p > 0.05). In contrast,

freezing at -5 �C in isobaric conditions resulted in a weight loss of

13.1 ± 1.1%. The weight loss with isobaric freezing observed here is consistent with

findings of many other studies (Koch et al., 1996). To the best of our knowledge, the

fact that there was no weight loss after isochoric freezing at temperatures lower than 0 �C,
is unique to isochoric refrigeration.

Browning in raw fruits, vegetables and their processed products is a major problem

in the food industry and is believed to be one of the main causes of quality loss during

post-harvest handling and processing. The browning reaction in the potato is an

important area of research in the food industry and was studied for well over half a

century (Schwimmer & Makower, 1954). It results from the oxidation of phenolic

compounds under the action of an enzyme called polyphenol oxidase (PPO, phenolase).

In the presence of oxygen from air, the enzyme catalyzes the first steps in the biochemical

conversion of iron-containing phenolics, found in the potato, to produce quinone which

undergo further polymerization to yield dark insoluble polymers referred to as “melanin.”

Browning and the formation of melanin occur in the potato when the PPO enzyme is

released through damaged cell membranes. Figure 5 shows the color difference between

the samples kept at room temperature, those frozen to -5 �C in isobaric conditions

and those frozen to -5 �C in isochoric conditions. For each case, the figure shows a

typical photograph of the sample, the total color change�E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�L2 þ�a2 þ�b2
p

, and

the changed in lightness, L�. Obviously, browning is substantially reduced in isochoric

refrigeration relative to isobaric freezing to the same temperature; which is another

potentially important attribute of isochoric refrigeration.
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Figure 5 Colorimetric measurements—after room temperature preservation, isobaric freezing and

isochoric freezing.�E (dark) and L� light data columns. L� represents the lightness of the color (L� = 0

yields black and L� = 100 indicates diffuse white), a� represents the redness and b� represents its yel-

lowness in the color. �E is the total color difference which was calculated using

�E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�L2 þ�a2 þ�b2
p

, where �L, �a, and �b are the differences in L�, a�, b� values before and
after treatment, respectively, in each sample. The colorimetric experiments were repeated on three

samples for each treatment. The values on left are for both, �E and L�. The error bars represent the

standard deviation of three samples. Inserts, macroscopic photographs of the potato samples.
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Figure 6 shows microscopic images of the treated samples and the effects of isochoric

refrigeration. The micrographs show the appearance of the samples after staining with

the toluidine blue stain, at two magnifications, �45 (top row) and �80 (bottom row).

In analyzing the micrographs, it is important to realize that toluidine stains the cell

walls in plants as well as the starch (Obrien, Feder & McCully, 1964). The arrow points to

the cell wall. It is obvious that the cell walls in the room temperature sample and the

isochoric -5 �C samples are intact and encircle the cells. Furthermore, the tissue is

translucent. In contrast, the arrow in Fig. 6 shows that in the isobaric frozen sample,

the cell walls are impaired. Also, important is the observation that the toluidine has

stained the entire volume of the potato. This suggests that the cell membrane was

breached and the intracellular starch has become accessible to the stain throughout the

sample. In contrast, there is no staining of starch either in the room temperature stored

sample or in the isochoric preserved sample. The fact that the intracellular content was

released after isobaric freezing explains both the changes in weight and the browning

of the isobaric preserved samples, in relation to the room temperature preserved samples

and the isochoric preserved samples in Figs. 4 and 5.

The mechanisms of damage during isobaric freezing were discussed in the

“Introduction” (Reid, 1996). According to Fig. 1A, only 25% of the water is frozen

in an isochoric system at -5 �C. Obviously, in the isochoric system in our particular

design, ice is produced distant from the biological material and there is no ice in the

preserved biological material. Therefore, the mechanism of cell damage by freezing

is eliminated. In contrast, from conservation of mass and Fig. 1B, it is possible to

Figure 6 Microscopic photographs of the potato after isochoric refrigeration and isobaric freezing.

The arrow points to a typical cell wall. Note the color in the micrographs. The microstructure of potatoes

was observed by stereomicroscope (Lumar, V12 Stereo Zeiss) within 10 min after the treatment. The

samples were stained by 0.11% toluidine blue O for 1 min to observe the cell walls of potato. Nine (3� 3,

three samples of each treatment and three different sections in each sample) sections were examined in

each treatment. Top row (A–C) �45, scale bar 22.2 mm; bottom row (D–F) �80, scale bar 12.5 mm.
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estimate that in an isobaric system at -5 �C, 85% of the volume is frozen, and the

freezing engulfs the potato. With respect to solute concentration, our analysis and

experiments (Fig. 1A) show that when a solution is frozen under isobaric atmospheric

conditions to -5 �C, the osmolality increases to 3.5 Osm (Rubinsky, Perez & Carlson,

2005). In contrast, when the solution is frozen to -5 �C under isochoric conditions, the

osmolality of the unfrozen milieu composition is lower by a factor of seven from that

in an isobaric system (Rubinsky, Perez & Carlson, 2005). The increase in extracellular

osmolality during isobaric freezing may be another factor contributing to the detected

weight loss, because of the dehydration effect.

It should be noticed, though, that in isochoric refrigeration the pressure increases,

while in an isobaric system the pressure remains constant. Obviously, this is a

potential mechanism of cell damage during isochoric freezing that does not exist in

isobaric freezing. However, the increase in pressure in this experiment is hydrostatic

and mild. Experiments have shown that even whole livers can survive the pressures

in our isochoric experiments conditions (Takahashi et al., 2001). This should

explain why the cell membrane is intact and the intracellular content is maintained

in isochoric refrigeration. The integrity of the cell membrane and the isosmotic

composition of the intracellular milieu and the extracellular milieu during isochoric

refrigeration is the reason why there is no weight loss or substantial browning

during isochoric refrigeration to -5 �C as shown in Figs. 4 and 5. In contrast,

the breaching of the cell membrane and the hyperosmotic extracellular concentration

in isobaric freezing to -5 �C results in weight loss to the extracellular milieu

and browning of the intracellular. It is possible to draw a practical conclusion

from these experiments. Metabolic analysis predicts that lowering the storage

temperature of a meat product from 4 to -5 �C will reduce metabolism by a factor of

between two and three. This suggests that a minor change in storage conditions, from

4 �C isobaric to -5 �C isochoric could double the storage time of a product with

minimal effect on the quality. Obviously, this is an extrapolation that needs to be

examined.

In summary, this is a first experimental study on the feasibility of isochoric

refrigeration of a food product at subfreezing temperatures. While obviously much more

research must be done on this technology, it is evident that a food product, such as

the potato, can be preserved at -5 �C in isochoric conditions without the deleterious

effects of isobaric atmospheric freezing to -5 �C, i.e., weight loss and browning. It should
be emphasized that we have focused here on the damage due to freezing and not

storage damage. A further study on storage damage is also needed. In addition, our

laboratory is equipped for mechanical engineering work and does not have the devices

necessary for chemical and nutritional studies on food quality deterioration, such as

changes in vitamin C. There is no doubt that much more research is needed on the

effects of storage, on chemical changes, and of course a more extensive study over the

entire range of temperatures to the triple point. Nevertheless, the main value of this

study is that it introduces a possible new method of food storage, with some apparent

potential.
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