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Abstract. In the literature many autofocus algorithms have been proposed and
compared (Groen et al 1985, Firestone et al 1991, Yeo et al 1993, Price and Gough

1994) for use in optical microscopy (bright field and fluorescence microscopy). Most of
the focus criteria measure the high frequency contents of a recorded image as a measure
of focus. In this paper we show that a focus criteria should measure the signal power of
the middle frequency, since defocusing mainly reduces the frequencies around half the
cut-off frequency of the optical system. The filter that provides the required band-pass
filtering depends strongly on the sampling density of the camera. There are two
practical combinations of sampling density and one-dimensional digital band-pass filter:

e Sampling at the Nyquist frequency and the {1, 0, —1} filter;
e Sampling at half the Nyquist frequency and the {1, —1} filter.

The latter is to be preferred due to noise considerations and the fact that it uses four
times fewer sample points. Calculation speed can also be increased by further reducing
the sampling density perpendicular to the filter (on chip or in software) down to 1/8 of
the Nyquist frequency. We have designed a three-phase autofocus algorithm that works
well in fluorescence and bright field microscopy. The phases are:

e Coarse: find the region near focus (step size of typically a few microns);
e Fine: find a quadratic region around focus (step size around one micron);
® Refine: use a quadratic fit on samples around the peak to find the in-focus position.

We found that the final focus error is smaller than the mechanical reproducibility of our
z-axis (~50 nm) for light levels down to 400 photo-electrons per pixel (sampling at the

Nyquist frequency using a cooled CCD camera with pixels of 6.8 x 6.8 um).

Keywords: autofocusing, focus criteria, focus algorithm, CCD camera, microscopy,

spatial frequency, optical transfer function

1. Introduction

Autofocusing is essential in automated microscope systems
where a large number of slides needs to be scanned.
It also provides the objective and reproducible focusing
that is required in quantitative microscopy in order to
perform accurate measurements on an imaged object (e.g.
the analysis of metaphase chromosomes, Mendelsohn and
Mayall 1971).

Autofocus algorithms find the maximum of a focus
function. A focus function is a measure of focus as a
function of the axial (z) position and is sampled at different
positions along the z-axis. The value of the focus function
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is calculated from an image acquired at that z position.
The shape of the focus function is determined by the focus
criterion, the microscope and camera parameters, and the
imaged object. The properties of a useful focus function
are (Groen et al 1985):

Unimodality: only one maximum;

e Accuracy: maximum of the focus function at the in-
focus position;
Reproducibility: a sharp top of the focus function;

e Range: must provide focus information over the desired
range;

e Implementation: fast calculation of the focus value.

The goal of the focus algorithm is to find the in-focus
position using a small number of samples of the focus
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Figure 1. Model representing image acquisition of microscopic images with a CCD camera. The input
image o(x, y) (assumed to be a flat—two dimensional—illuminated object) is filtered by the
microscope (OTF) and sampled (s) with square pixels (size p x p) by the CCD element into an output
image i(x, y). The magnification of the microscope M is incorporated in the pixel size of the CCD
element. In the model, F{e} denotes the Fourier transformation. More precise explanation of the

parameters of the model will be given below.

function. A small number of images results in minimal
focusing time.

2. Image formation and image acquisition

To determine the focus criterion, we need to model the
image formation through a microscope and the image
acquisition with a CCD camera.

2.1. The microscope as linear shift invariant system

To use linear system theory (Oppenheim et al 1983) we
have to show that a high-quality optical system behaves
(to a good approximation) as a linear, shift-invariant (LSI)
system (Young 1989). Linear superposition requires that
the combined effect of multiple sources at one time is equal
to the sum of the individual responses. In fluorescence
microscopy this is guaranteed due to the random nature of
the photon emission of the fluorescence process. In bright
field microscopy, Kohler illumination (Kohler 1893, Inoué
1986) provides an almost perfect linear response. Within an
isoplanatic patch, the point-spread-function of a microscope
lens system is also shift invariant. For now we assume
that the object is ‘thin’ with respect to the depth-of-focus
of the optical system and can therefore be treated as two
dimensional. Image acquisition with a microscope system
can then be modeled as a linear, shift-invariant system as
depicted in figure 1. This model is the same for bright field
and fluorescence microscopy, since the image formation is
equal for both types of microscopy.

2.2. Transfer function and sampling of the CCD
element

The microscope projects the object onto the CCD element.
Apart from magnification of the object, a diffraction-limited
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Figure 2. The optical transfer function (OTF) of a microscope
for different degrees of defocusing:
Az=0,02,04,...,2 pum (with NA = 0.75, A = 540 nm).

microscope acts as a low-pass filter. The projected image
is then sampled by the square pixels of the CCD element.

In our model, o(x, y) represents the illuminated object.
The filtering effect of the microscope is described by the
optical transfer function OTF (Hopkins 1955, Born and
Wolf 1959, Williams and Becklund 1989). The back
focal plane of the microscope objective lens contains
the Fourier transform of the image plane. The finite
aperture, therefore, ensures bandwidth limitation (low-pass
filtering). Considering intensity images, the input image
is multiplied in the Fourier domain by the OTF. The
OTF (which is circularly symmetric in the w,, w,-plane,
o indicating continuous spatial frequencies in radians per
second) depends on the numerical aperture of the objective
lens divided by the wavelength of light (NA/A) and on the
degree of defocusing (Az).

The OTF for different degrees of defocusing (with
NA = 0.75 and A = 540 nm; N A relates the defocusing
Az to the aberration from a spherical wave front relative



to A) as a function of the spatial frequency f is shown in
figure 2. It was evaluated according to the formulas given
in Hopkins. The image filtered by the OTF is then sampled
by the pixels of the CCD element. This can be described
by first a convolution with a block function representing the
size (Psize X Psize pm) and shape of the pixels followed by
a multiplication with a square grid of unit impulse functions
(spaced by p;pacing) representing the position of the pixels.
The “fill factor’ of the element is defined as the squared
ratio between pgi;. and pspacing. Without loss of generality,
the magnification M of the microscope (objective lens and
possible relay optics) is incorporated in the CCD element
by reducing the size and spacing of the pixels by a factor
M.

The convolution with a block function in the spatial
domain is equal to a multiplication with B(wy, wy) (see
figure 3) in the Fourier domain where B(w,, wy) is the
Fourier transform of b(x, y). The result is then sampled by
multiplication with s(x, y), a square grid of unit impulse
functions §(e), which is the same as a convolution with
S(wx, wy) in the Fourier domain. The block and sample
functions in both spatial and Fourier representation are
listed in table 1.

2.3. Image acquisition model
The image acquisition model of the microscope and the
CCD element is given by:

1
[(@)=7-{0@) - OTF (@) - B@)}® S(@) (1)

in which @ = (wy, wy), and ® denotes a convolution.
Finally, the continuous image i(x, y) is read out as a

discrete output image i4[n, m]. This is represented by a

rescaling in both domains (equations (2) and (3)).

ig[n, m] = i(n : pspacing/Mv m- pspacing/M) 2)
Ly(Qx + 27 - n, Qy + 21 - m)
= I(Qx : M/Pspacingv Qy : M/pspacing) 3

in which |Q;| < T A|Qy| < 7 and n, m € N. The Q,, Q,-
plane represents the periodic discrete spatial frequency
domain (£2 in radians per sample). Sampling at the Nyquist
frequency (Oppenheim et al 1983) is retrieved when the
folding frequency (2 = ) equals the cut-off frequency of
the optical system (2 = (Pspacing/M) - (4mNA/L)). The
sampling density is then twice the highest possible spatial
frequency.

Figure 3 shows what happens in the Fourier domain
when an object is imaged by a microscope and sampled
with a CCD element. For simplicity, an imaged point
object 8(x, y) is used as input image o(x, y). This image
has a flat Fourier spectrum. The shape of the spectrum
after filtering with the OTF (Jorr(wx, wy) in figure 3(a))
equals that of the OTF. The transfer function as a results
of pixel shape B(wx, wy) is shown in figure 3(b). The
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pulses in figure 3(c) denote the periodicity as a result
of sampling S(wy, wy). Figure 3(d) shows the resulting
spectrum I (w,, wy). All graphs in figure 3 have the same
horizontal scale, which can be expressed in the continuous
space (w-axis) and the discrete space ($2-axis).

3. A focus criterion near focus

A robust autofocus algorithm has a focus criterion which
shows a sharp peak in the focus function at the in-focus
position. In the previous section we showed that the OTF
only depends on the degree of defocusing and not the
signal spectrum O(wy, wy). Therefore the focus criterion
should only depend on the OTF. Figure 2 shows the
OTF for various degrees of defocusing. It is clear that
the dependency of the OTF on Az is small for the low
frequencies and the high frequencies (around and above
the cut-off frequency of the optical system). At low
frequencies the OTF will always be close to 1.0 and at
high frequencies the OTF will always be close to 0.0. The
largest dependency on the focus error is to be found at
the middle frequencies, just below f = w/27r = NA/A.
Another argument in favour of the middle frequencies is the
SNR, which is far better for the middle frequencies then in
the region near the cut-off frequency, where virtually no
signal energy is passed.

3.1. Band-pass filters in focus criteria

Considering the above, the best focus criterion near focus
is the signal power after band-pass filtering. The band-
pass filter should select only that part of the spectrum
which depends most on Az. In the spectrum of the
discrete image the central frequency of the band is given
by: Qup = (2#NA/A) @ (Pspacing/M). Therefore, the
focus criterion does not only depend on the microscope
parameters (NA and A) but also on the sampling density
of the CCD element (M and Pspacing)- The resulting focus
criterion is given by:

F@) =) Y |ilx, y1®ho,lx, yII* (4
x y

in which i [x, y] is the discrete image acquired at z-
position z and hq, [x, y] is the band-pass filter with central
frequency Qu, = 2TNA/A) o (Pspacing/M). The width
of the pass-band should be chosen small enough but is
not critical (see also 4.2.). Using Parseval’s relation this
equation is equal to the following expression in the Fourier
domain:

1
PO =52 [ [ 110 0) - Hay (2, 2,) o,
i )

It is remarkable that none of the focus criteria found in the
literature have incorporated the effects of sampling. We
show that this is essential.
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Figure 3. These four graphs show what happens in the Fourier domain when a point object (O (w,, w,) with a flat spectrum) is
imaged by a microscope and sampled with a CCD element. The projected image is sampled at 1.25 times the Nyquist frequency,
with a filling factor of 83%. (a) Iorr(ws, wy) is the spectrum after filtering with the OTF (Az =0, 0.5 and 1 um, NA = 0.75
and A = 540 nm). (b) The transfer function B(w,, w,) of the square aperture of the pixels with a filling factor of 83% (thin line
right-side: 70%, left-side 100%). (c) The sampling function S(w,, w,) denotes the periodicity as a result of sampling
a=Q@r-M/ p:,,,,c;,.x)z). (d) The resulting spectrum, I (w,, w,). All graphs have the same horizontal scale, which can be
expressed in the continuous space (w-axis) and discrete space (£2-axis).

4. Combinations of filter and sampling frequency

The power, after band-pass filtering, proposed as the focus
criterion is not practical to use. The spatial representation
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of an arbitrary circular band-pass filter will involve many
coefficients (a large filter) which makes application rather
slow. A first simplification is to use only a one-dimensional
filter. This filter applied to an image will select a part of all
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Table 1. The transfer function of the square aperture of the pixels (b and B), and the sampling function (s

and S). Both in spatial and Fourier representation.

Spatial domain

Fourier domain
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Figure 4. The normalized transfer function of the {1, 0, —1}

filter (1) and of the {1, —1} filter (2). The normalized transfer
function of double and triple application of the single filter are
drawn in thin lines. Note that Q = 7 is the folding frequency.

middle frequencies. But even a one-dimensional filter with
an arbitrary central frequency has too many coefficients to
be practical. In the literature on focus criteria two simple

one-dimensional filters are used as discrete approximations -

of the derivative filter (Brenner et al 1976): the {1, —1}
high-pass filter and the {1, 0, —1} band-pass filter.

4.1. Simple filters

The {1, 0, —1} filter is a band-pass filter with wy, =
w/2. This satisfies our requirements for band-pass filters
in one dimension when applied to images sampled at
the Nyquist frequency. For images sampled at half the
Nyquist frequency the spectrum is folded around half the
cutoff frequency of the optical system, f = NA/A. The
desired central frequency for the band-pass filter becomes
the folding frequency. The {1, —1} filter applied to the
folded spectrum sampled at half the Nyquist frequency
achieves the same effect as the {1, 0, —1} filter applied
to images sampled at the Nyquist frequency. The aliasing
that occurs in the discrete image does not harm the focus
criterion since it does not affect the signal power at the
selected frequencies in the analog image. Table 2 lists the
spatial representation, the magnitude of the transfer function
and the corresponding focus criterion of the two filters.
The normalized magnitudes of the corresponding transfer
functions are drawn in figure 4.

The two combinations are depicted in figure 5. The
spectra of an imaged point object (as in figure 3) are drawn
for different degrees of defocusing together with the transfer
functions of the filters.

Figure 5. Combinations of filter and sampling density. Upper
graph: sampling at the Nyquist frequency and the {1, 0, —1}
filter. Lower graph: sampling at half the Nyquist frequency and
the {1, —1} filter. Spectra are drawn for different amounts of
defocusing of a point object (plain lines) together with the
transfer function of the filter (dashed line). In the lower graph,
the non aliased contributions of the spectrum are drawn in thin
lines.

4.2. Multiple application of simple filters

It is also possible to use focus criteria which are based on
the multiple application of one of the two filters. As a
single application of the {1, —1} and {1, 0, —1} filter is
used to approximate differentiation, multiple application of
these filters can be used to approximate higher derivatives
(Groen et al 1985, Linge et al 1982). Groen et al do not
make a distinction between continuous and discrete images
nor between the different discrete approximations for
differentiation. They reject all focus criteria based on third
and higher derivatives (discrete approximations), because
Erteza (1976) argued that they were too noise sensitive for
continuous images (real differentiation). Higher derivatives
of continuous images (no approximation) give more weight
to high frequencies as the transfer function associated with
the n' derivative is (jw)". Since the signal frequencies are
limited by the OTF, noise effects will indeed dominate.
Multiple application of the {1, 0, —1} and {1, —1} filter
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Table 2. Spatial representation, magnitude of the transfer function | Hy,(S2,)| and the corresponding focus

criterion for the {1, —1} filter and {1, 0, —1} filter.

Filter Spatial representation | Hpp (S2,)] Corresponding focus criterion
{1, -1} 8[x, yI—dlx -1, y] 2lsin(R:/2)]  F() =Y, X, Glx, y1—ilx =1, y])?
{1,0, -1} dlx+1, yl—=48[x—1, y] 2|sin(Ry)| F@)=3%, % Glx+1, yl—ilx -1, y])?

causes narrower band-pass filtering (see figure 4). The
effect of these filters on sampled images cannot be predicted
without considering the OTF and the sampling density. For
example, (multiple) application of the {1, —1} filter and
sampling at the Nyquist frequency yields the same problems
as the (higher) derivatives applied to continuous images that
are described above. Multiple application of the {1, 0, —1}
filter and sampling at the Nyquist frequency, however, only
narrows the width of the band-pass filter and makes the
focus criterion more selective for the frequencies around
Q = m/2. Since these frequencies are most sensitive for
focus errors the resulting focus function will have an even
sharper peak; (see also the following results). The same
hold for the {1, —1} filter and sampling at half the Nyquist
frequency.

4.3. Results

An optimal focus criterion is reached when the middle
spatial frequencies passed by the optical system (analog)
matches the central frequency of the band-pass filter
(discrete).  Considering the two simple filters, two
combinations emerge:

e Sampling at the Nyquist frequency and the {1, 0, —1}
filter based focus criterion.

o Sampling at half the Nyquist frequency and the {1, —1}
filter based focus criterion.

For these combinations, multiple application of the filter
gives a sharper focus function (i.e. more sensitive to focus
€errors).

These results have been verified with a set of
experiments. Two sets of images of a pinhole were
acquired at successive z-positions. One set was sampled
at the Nyquist frequency and one set at half the Nyquist
frequency. Both focus criteria (based upon the {1, —1}
and {1, 0, —1} filters) were applied to both sets of images.
The resulting focus functions are shown in figure 6. The
graphs in the figure clearly show better focus functions for
the combinations mentioned above. It is also clear that
multiple application of the filters in the correct combination
yields better results. They produce sharper focus functions
without suffering from noise.

The lower right graph in figure 6 shows, although not as
sharp, also fairly good focus functions. In this combination,
the filter selects a part of the spectrum which is passed well
by the OTF but does not depend as much on defocusing as
around half the cut-off frequency of the optical system.
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5. Three-dimensional objects

Until now, all objects were assumed to be thin so that they
could be treated as two-dimensional. A three-dimensional
object can be considered as a stack of infinite thin two
dimensional layers. When three-dimensional objects are
imaged through a microscope, the image projected onto
the CCD element consists of contributions from all layers
within the object.

In three dimensions, the spectrum of an image formed
from an object by the OTF is given by:

I3D((1)x, Wy, wz) = 031)((1);, Wy, wz)

-0TF3D(wx, wy, a)z) 6)
in which the subscript 3D denotes a three dimensional
spectrum. Ojp is the spectrum of the illuminated object.
The inverse Fourier transform along the z-coordinate
equation (6) gives:

Lstuckea 2D(wxy Wy, Z) = Oystacked 2D(wx, wy, Z)

®:OT Fstuckea 2D(wx» Wy, Z) @)
in which the subscript ‘stacked 2D’ denotes a two-
dimensional spectrum in the spatial frequency coordinates
wy and w, as a function of the spatial z-coordinate. (Note
that the separability of the complex exponential in the
Fourier transform, e/@xteyyte:r) — eilwxtwyy) | gjwwz,
permits considering the inverse transform only along the
z axis.) The convolution is only taken over the z variable
and can be rewritten as:

Litacked 2D(wx» Wy, Z) = Ostacked ZD(wxs Wy, T — h)
-OT Fytuckea 20(@x, @y, h)dh. @®)

The effects of decreasing light intensity through the object
(absorption) is not taken into account. The total focus value
at a certain z-position can thus be seen as the sum of the
focus values of all infinite thin layers of the abject:

F3p object(2) = / Fob tayer(z + h)dh. )

object

The maximum in the focus function is reached at the z-
position where the sum of the focus value of all the layers
of the object is maximal. The detected in-focus position
lies within the object, but the position depends on the three
dimensional structure of the object. It is not assured that
the focus function still contains only one maximum. This
can easily be determined considering the focus function of
objects above each other: there are two in-focus z-positions.
This is true for all focus criteria and will in general not
cause any problems in practice.
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{1,-1} filter based focus criteria
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Figure 6. The effect of sampling frequency on focus functions. The two left graphs are obtained by applying the {1, —1} filter
based focus criteria, the two right graphs by applying the {1, 0, —1} filter based focus criteria. The images, used to calculate the
focus functions in the upper two graphs, were sampled at the Nyquist rate, the images in the lower two graphs were sampled at
half the Nyquist rate. The numbers besides the curves indicate how often the filter was applied.
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6. Focus criteria in practice

In the discussion on focus criteria we did not include noise.
Furthermore is it not always possible to acquire images
sampled at exactly (half) the Nyquist frequency. Since
we use one-dimensional filters, another parameter is the
sampling density perpendicular to the filter.

6.1. Noise considerations

The two combinations from section 4.3 will give identical
results in the absence of noise. Due to the quantum nature
of light, all images acquired contain Poisson-distributed
photon noise. The SNR of the acquired image increases
with an increasing number of photons per pixel in the
image. For a single pixel this means that the SNR is
lower for smaller pixel values. Whereas in bright field
microscopy enough light can be accumulated to achieve
high SNRs, fluorescence microscopy usually suffers from
low light levels producing low SNR images. The Poisson
noise in the image results in noise in the spectrum of the
image. The noise is assumed to be uniformly distributed
(white) over the spectrum of the image (Priestley 1981).

The noise contribution to the focus function (using the
band-pass based focus criteria) is related to the SNR of the
selected part of the spectrum. An increased SNR can be
achieved in three ways:

e by increasing the intensity of the light source (not
practical in fluorescence microscopy);

e by using longer exposure times, which is also not
practical in fluorescence microscopy, because long
exposure times slow down the process considerably
and decrease the fluorescence intensity due to photo
bleaching of the fluorescent molecules;

e by combining pixels—binning—to form super pixels.

Binning is a feature of the CCD elements used in this
study. The charge of a selected number of adjacent pixels
(in both directions) can be combined before digitization. A
binning factor of two by two combines the charge of four
pixels. Binning increases the number of photons per super
pixel and therefore increases the SNR. It also reduces the
number of pixels which speeds up the image transfer to the
host computer and the calculation of the focus value.

Recalling the two combinations of filter and sampling
frequency and considering the noise suppression and the
data-reducing effect of binning, the combination of the
{1, —1} filter and sampling at half the Nyquist frequency
(achieved by binning) is to be preferred. An experiment
was done to compare the two combinations of sample
densities and filters for low light levels using a 20x
Nikon objective and a Photometrics camera with the
KAF1400 CCD element. Using a built-in relay lens, the
sampling density without binning and Nyquist frequencies
are fyumpling = 7.6 pixels/um and fnyquise = 5.6 pixels/um.
This shows that it is not possible to obtain a sampling
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Figure 7. The effect of binning on focus functions. The figure
shows two graphs: A focus function derived by applying the
{1, 0, —1} filter to images sampled at 1.36 times the Nyquist
frequency and a focus function derived by applying the {1, —1}
filter to images sampled at 0.68 times the Nyquist frequency
caused by a binning factor of two.

density at exactly (half) the Nyquist rate by changing the
binning factor. Two sets of 100 images were acquired of
a pinhole at successive z-positions (Az = 25 nm). The
contrast in the images was about 50 ADU (approximately
400 photo-electrons result in 50 AD-converter units)
between object and background pixels in an image without
binning. One set was sampled without binning (i.e. as close
as possible to the Nyquist rate), the other set was sampled
with a binning factor of two (i.e. as close as possible
to half the Nyquist rate). Both sets were acquired with
exactly the same optical setup. The images acquired with
binning contain four times fewer pixels. Figure 7 shows
the resulting focus functions using the corresponding focus
criteria. The figure shows that the combination of binning
and {—1, 1} filter performs better.

6.2. Sampling density perpendicular to the 1-D filter

In our previous examination of focus criteria we did
not consider the sampling density perpendicular to the
1-D filter. Electronic binning on the CCD-element or
combining pixels in the computer memory will decrease
the time needed for the calculation of a focus value.
Electronic binning also reduces the readout time of the
image. Combining all pixels in a row perpendicular to
the filter will result in a cross section of the Fourier
spectrum at Q, = 0. This one-dimensional spectrum and
the corresponding filter exactly matches the criterion but
only those spatial frequencies that are exactly along the
filter contribute to the focus value. The result is a sharp
peaked focus function that is dominated by noise. Several
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Table 3. The three phases of the proposed autofocus algorithm with step sizes and average number of images needed. z is the

unknown initial distance to the in-focus z-position.

Phase: Step size: Average number of images:
Coarse AZCaarse I Az, L I +2
coarse
. Azeogrse
Fine Azfine = Uguadratic l4-zAz/,',,,| +1
D, .
Refine AZrzfine = "ﬁﬂw Nsamples
samples

[x] denotes the largest integer equal or less than x (floor function).

experiments with different objects have shown that the
sampling density perpendicular to the filter can be reduced
to a 1/8 of the Nyquist frequency. The band-pass filter then
selects a part of the middle frequencies. The maximum
electronic binning factor is given by the dynamic range of
the analog-to-digital converter.

7. Autofocus algorithm

Now that a focus criterion has been found, an algorithm is
needed to actually focus the image of the object onto the
camera. Focusing has to be done as fast as possible, that
is, with a minimum number of images.

In figure 8, a typical focus function is shown for a wide
range of z-positions (100 um). Three different regions
can be distinguished: a near-flat region, a sloped region
and a quadratic region. The flat region is characterized
by a relatively low gradient towards focus. The sloped
region has a distinct gradient towards focus. The quadratic
region lies just around the peak of the focus function. The
observation that the top matches a quadratic function can be
used to find the in-focus z-position by interpolation. This
has been described by (Mendelsohn and Mayall 1971) and
(Mason and Green 1975). Interpolation has two advantages:

e An accurate estimation with only a few images (high
speed);

e A robust estimation for noisy images by minimizing the
mean square-erTor.

The proposed autofocus algorithm has three phases,
adapted to each region of the focus function.

7.1. Three-phase autofocus algorithm

The coarse phase steps along the z-axis with steps of size
AZcoarse, Sampling the focus function by acquiring an image
and calculating the focus value. The first two samples
are used to determine the direction towards focus. The
algorithm steps in that direction until the last focus value
is lower than the previous one. The in-focus z-position is
then located between the z-position with the highest and
second highest focus value.

The fine phase repeats the same procedure with a
smaller steps. The starting point and initial direction
towards focus are already known from the previous phase.

The step size is chosen so, that the distance between
two samples (Azfine) is equal to the size of the quadratic
region. The refine phase samples the focus function with
Niamples €quidistant samples around the in-focus z-position
(all samples taken in the quadratic region). The final
estimation of the in-focus z-position is calculated through a
quadratic fit of the samples in the quadratic region. Table 3
lists the three phases with step size and average number of
images needed.

Suitable values have to be found for the step size in
the coarse phase, the size of the quadratic region, and the
number of samples in the quadratic region. The step size
in the coarse phase should be chosen as follows:

e The total number of images should be minimized;
A step size that is too small may cause unreliable
information about the direction towards focus;

e A larger step size causes more samples in the fine phase.

Furthermore, if the initial distance to focus is known to
be small, it is faster to use only the last two phases. This
situation exists for example. in scanning applications (see
Netten et al 1994).

7.2. The quadratic region: size and number of samples

The choice of the size of the quadratic region is somewhat
arbitrary. Tests with different objects to determine a
suitable quadratic region size for a 20x objective lens
(NA = 0.77) showed that the quadratic shape extends to
1.4 um around focus. Assuming that the maximum wave
front aberration (Hopkins 1955) in the quadratic region is
the same for all objective lenses, the quadratic region sizes
for other objective lenses can be derived from:
wao < N_Az . unadratic
n 8
in which wyg is the wavefront aberration due to defocusing
and 7 is the refractive index. This gives for example
with a 60x oil immersion (n = 1.52) objective lens with
NA = 1.4, a quadratic region of 0.6 um.
The number of samples in the quadratic region depends
on the amount of noise in the focus values. For a
hypothetical noise-free focus function, three samples in the
quadratic region are enough to give an accurate estimate of
the in-focus z-position. When the noise contributions to the

=0.1 um (10)
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Figure 8. Different regions which can be distinguished in a focus function, near-flat, sloped, and quadratic.
The focus function consists of 200 focus values calculated from images acquired at successive z-positions

(Az = 0.5 pm). The lower graph is an enlarged part of the upper graph. The accompanying images show

Giemsa stained human metaphase chromosomes acquired at the indicated z-position (image size 315 x 250
pixels; setup as in section 6.1), to visualize typical defocusing.
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Table 4. Typical focus error using a
quadratic fit on Nygmpies samples in the
quadratic region of the focus function of a
pinhole for different light levels.

Contrast Niamples  Focus error
50 ADU 9 ~ 50 nm
100 ADU 5 ~ 25 nm
> 200 ADU 3 < 25 nm

focus function increase (lower light levels), more samples
in the quadratic region should be taken to obtain a good
estimate of the position.

Some insight into the accuracy of the final estimated in-
focus position is gained by the following experiment: The
quadratic region of a focus function is sampled with the
smallest step size (25 nm). These samples are then used to
get all possible estimates of the focus position, using the
refine algorithm with Nyupmpres samples. The experiment
was repeated for different illumination levels of the object
(pinhole). Typical focus errors are listed in table 4.

8. Conclusions and discussion

Evaluation of image formation through a microscope shows
that the best focus criterion without a priori knowledge
of the imaged object, is the signal power after applying a
band-pass filter that selects the frequencies most sensitive
for focus errors, that is, a band-pass filter which has a ring-
shaped band in the Fourier domain, passing the frequencies
around |2| = (Pspacing/M) ® (4w NA/L).

Since this filter is not practical to use, we investigated
the use of simple (i.e. fast) one-dimensional filters
resembling this criterion. Two optimal combinations of
focus criterion and sampling density have been found:

e Sampling at the Nyquist frequency and applying the
{1, 0, —1} filter based criterion

e Sampling at half the Nyquist frequency and applying
the {1, —1} filter based criterion.

Due to noise and speed considerations, the latter
combination is to be preferred.

Using that criterion, we propose a focus algorithm
designed in three phases, each stepping along the focal
axis but with a decreasing step size. The last phase uses
a quadratic fit to estimate the final in-focus position by
interpolation.

Perhaps the most important conclusion which can be
drawn is the necessity to include the sampling density in
the evaluation of focus criteria. The microscope parameters
determine the spatial frequency at which the OTF is most
dependent on focus errors (just below f = NA/A) in
continuous domain. The sampling density gives the relation
between the spatial frequencies in the continuous and
discrete domain. Resulting in the spatial frequency in the

Autofocusing in microscopy

discrete domain which is most sensitive for focus errors
(just below Q = (Pspacing /M) ® (4w N A/1L)). Comparisons
between filter based focus criteria cannot be made without
considering the sampling density.
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