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Abstract

Formal argument suggests that command, communication and con-
trol systems can remain stable in the sense of the Data Rate Theorem
that mandates the minimum rate of control information required to sta-
bilize inherently unstable ‘plants’, but may nonetheless, under fog-of-war
demands, collapse into dysfunctional modes at variance with their fun-
damental mission. We apply the theory to autonomous ground vehicles
under intelligent traffic control in which swarms of interacting, self-driving
devices are inherently unstable as a consequence of the basic irregularity
of the road network. It appears that such ‘V2V/V2I’ systems will experi-
ence large-scale failures analogous to the vast propagating fronts of power
network blackouts, and possibly less benign, but more subtle patterns of
‘psychopathology’ at various scales.

Key Words: control theory; driving experience; groupoid; information theory;
turbulence; vehicle density

...[T]he psychological actions of drivers make traffic different from
any other flow (Orosz et al. 2010).

...[A]ll models are wrong, but some are useful (Box and Draper
1987)

1 Introduction

We use a variety of mathematical models to explore the dynamics of rapid-
acting, inherently unstable command, communication and control systems (C3)
that are cognitive in the sense that they must, in an appropriate ‘real time’,
evaluate a large number possible actions and choose a small subset for imple-
mentation. Such choice decreases uncertainty, in a precise formal manner, and
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reduction in uncertainty implies the existence of an information source. See
Wallace (2012, 2015a) for more details. We first examine dynamics related to
V2V/V2I automated ground vehicle systems from the perspective of the Data
Rate Theorem (e.g., Nair et al. 2007), extend the argument to more general
phase transition analogs for C3 structures, study instability as onset of ‘turbu-
lent’ modes, and then use an information bottleneck method to derive similar
results, developing statistical tools useful at different scales and levels of orga-
nization. V2V/V2I atuomated ground vehicle systems operate along geodesics
in a densely convoluted ‘map quotient space’ – more fully described later – that
is in contrast to the problem of air traffic control, where locally stable vehicle
paths are seen as thick braid geodesics in a simpler Euclidean quotient space (Hu
et al. 2001). Such geodesics are generalizations of the streamline characteristics
of hydrodynamic flow (e.g., Landau and Lifshitz 1987).

2 Data Rate Theorem

Unlike aircraft, which can be constructed to be inherently stable in linear flight
by placing the aerodynamic center of pressure sufficiently behind the mechani-
cal center of gravity, the complex nature of road geometry and density of dense
vehicular traffic ensures that V2V/V2I systems will be inherently unstable, re-
quiring constant input of control information to prevent, at the least, traffic jams
and tie-ups. For a linear ‘plant’ described by an n-dimensional state vector xt
at time t, the dynamics are given by the vector equation

xt+1 = Axt + Stochastic and Control terms (1)

where A is an appropriate n× n system matrix.
LetH be the control information rate needed to stabilize a rapidly-responding

but inherently unstable C3 system. By the Data Rate Theorem (DRT), H must
be greater than the rate at which ‘topological information’ is generated. For
the linear system of Eq.(1), that rate is

α ≡ log[|det(Au)|]

where det is the determinant and Au is the decoupled component of the matrix
A having eigenvalues ≥ 1 (Nair et al. 2007).

For a fixed road network, it is evident that the central topological variate
is the vehicle density that defines system dynamics under the ‘fundamental
diagram’ relating vehicular flow per unit time to vehicle density per unit length.
See figure (1), showing, for a Rome street, the number of vehicles/hour as
a function of vehicles/mile. Behavior shifts from regular to ‘uncontrolled’ at
about 40 v/mi.

Under such circumstances, vehicle density ρ is the only parameter defining
the rate of topological information generation, and we can write the stability
relation of the DRT as

H > α = f(ρ)α0 (2)
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Figure 1: Vehicles per hour as a function of vehicle density per mile for a street
in Rome (Blandin et al. 2011). Both streamline geodesic flow and the phase
transition to ‘crystallized’ turbulent flow at critical traffic density are evident.
Some of the states may be ‘supercooled’, i.e., delayed ‘crystallization’ in spite of
high traffic density. ‘Fine structure’ can be expected within both geodesic and
turbulent modes.
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where α0 is a road network constant and f(ρ) is a positive, monotonically in-
creasing function. The Mathematical Appendix uses a classic Black-Scholes
argument to approximate the ‘cost’ of H as a function of the ‘investment’ ρ as
a linear function. Similarly, we can, again in first order, approximate f(ρ) as a
linear function, giving the limit condition for stability as

κ1ρ+ κ2
κ2ρ+ κ4

> α0 (3)

For ρ = 0 the stability condition is κ2/κ4 > α0. At large ρ this becomes
κ1/κ2 > α0. If κ2/κ4 � κ1/κ2, the stability condition may be violated at high
traffic density, and instability becomes manifest, as at higher densities in figure
(1).

A more complex model, based explicitly on the cognitive nature of control
systems, provides deeper insight.

3 Phase transition

Again, the essence of cognition is active choice. As described above, a cognitive
system, confronted with uncertainty, must choose a small set of actual responses
from a larger set of those available to it. Such choice reduces uncertainty, and
the reduction of uncertainty implies the existence of an information source. The
argument can be made quite formally (Wallace 2012, 2015a).

Given an information source associated with an inherently unstable, rapid-
fire cognitive C3 system – said to be ‘dual’ to it – an equivalence class algebra
emerges by choosing different system origin states a0 and defining the equiv-
alence of two subsequent states at times m,n > 0, written as am, an, by the
existence of high-probability meaningful paths connecting them to the same
origin point. Disjoint partition by equivalence class, essentially similar to orbit
equivalence classes in dynamical systems, defines a symmetry groupoid asso-
ciated with the cognitive process. Groupoids represent generalizations of the
group concept in which there is not necessarily a product defined for each pos-
sible element pair (Weinstein, 1996). The simplest example would be a disjoint
union of groups.

The equivalence classes define a set of cognitive dual information sources
available to the inherently unstable C3 system, creating a large groupoid, with
each orbit corresponding to a transitive groupoid whose disjoint union is the full
groupoid. Each subgroupoid is associated with its own dual information source,
and larger groupoids will have richer dual information sources than smaller.

Let XGi
be the C3 dual information source associated with the groupoid

element Gi, and let Y be the information source associated with incoming en-
vironmental information, in a large sense See Wallace (2012, 2015a) for details
of how environmental regularities imply the existence of an environmental in-
formation source.

We construct a Morse Function (Pettini, 2007) as follows.
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Let H(XGi , Y ) ≡ HGi be the joint uncertainty of the two information
sources. Define a Boltzmann-like pseudoprobability as

P [HGi ] =
exp[−HGi

/κH]∑
j exp[−HGj/κH]

(4)

where κ is an appropriate constant depending on the particular system and its
linkages to control signals, and the sum is over the different possible cognitive
modes of the full system.

A ‘free energy’ Morse Function F can be defined as

exp[−F/κH] ≡
∑
j

exp[−HGj
/κH] (5)

Given the inherent groupoid structure, it is possible to apply an extension of
Landau’s picture of phase transition (Pettini, 2007). In Landau’s formulation
of spontaneous symmetry breaking, phase transitions driven by temperature
changes occur as alteration of system symmetry, with higher energies at higher
temperatures being more symmetric. The shift between symmetries is highly
punctuated in the temperature index, here the minimum necessary control in-
formation rate H under the Data Rate Theorem for unstable control systems.
Typically, such arguments involve only a very limited number of possible phases.

In this context, Birkhoff’s (1960 p.146) perspective on the central role of
groups in fluid mechanics is of considerable interest:

[Group symmetry] underlies the entire theories of dimensional
analysis and modeling. In the form of ‘inspectional analysis’ it
greatly generalizes these theories... [R]ecognition of groups... often
makes possible reductions in the number of independent variables
involved in partial differential equations... [E]ven after the number
of independent variables is reduced to one... the resulting system of
ordinary differential equations can often be integrated most easily
by the use of group-theoretic considerations.

We will argue here that, for ‘cognitive fluids’ like vehicle traffic flows, groupoid
generalizations of group theory become central.

Decline in the richness of control information H, or in the ability of that
information to influence the system, characterized by κ, can lead to punc-
tuated decline in the complexity of cognitive process possible within the C3

system, driving it into a ground state collapse that may not be actual ‘instabil-
ity’ but rather a kind of dead zone in which, using the armed drone example,
‘all possible targets are enemies’. This condition represents a dysfunctionally
simple cognitive groupoid structure roughly akin to certain individual human
psychopathologies (Wallace 2015a).

Below, we will argue that, for large-scale autonomous vehicle/intelligent in-
frastructure systems, the ground state dead zone involves massive, propagating
tie-ups that far more resemble power network blackouts than traditional traffic
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jams. The essential feature is the role of vehicle road density ρ. Most of the
topology of the inherently unstable vehicle/road system will be ‘factored out’
via the construction of geodesics in a topological quotient space, so that ρ re-
mains the only possible index of the rate of topological information generation
for the DRT. Thus, in Eqs(4) and (5), H is replaced by the ratio H/f(ρ), where
f is a dimensionless monotonic increasing positive function.

For a fixed H, increasing ρ is then equivalent to lowering the ‘temperature’,
and the system passes from high symmetry ‘free flow’ to different forms of
‘crystalline’ structure – broken symmetries representing platoons, shock fronts,
traffic jams, and the like.

Again, making an exactly-solvable Black-Scholes approximation, the Math-
ematical Appendix shows that the ‘cost’ of the control information H can, in
first order, be expressed in terms of ρ as

H ≈ κ1ρ+ κ2 (6)

where κi ≥ 0. Again, in first order, taking f(ρ) ≈ κ3ρ + κ4 > 0, we obtain an
effective ‘temperature’ as

κH/f(ρ) ≈ κ1ρ+ κ2
κ3ρ+ κ4

(7)

with limits κ2/κ4, ρ → 0 and κ1/κ3, ρ → ∞. Again, assuming κ2/κ4 � κ1/κ3,
increase in traffic density will quickly bring the effective ‘temperature’ be-
low critical values, triggering collapse into a dysfunctional ground state, even
though, in this case, the system might remain formally ‘stable’ under the Data
Rate Theorem at the limit κ1/κ3 > 0. Thus we begin to explore variations in
stability beyond the DRT itself.

The underlying dynamic can be treated in finer detail by viewing the initial
phase transition as the first-order onset of a kind of ‘turbulence’, a transition
from free flow to ‘flock’ structures like those studied in ‘active matter’ physics.
Indeed, the traffic engineering perspective is quite precisely the inverse of main-
stream active matter studies, which Ramaswamy (2010) describes as follows:

It is natural for a condensed matter physicist to regard a coher-
ently moving flock of birds, beasts, or bacteria as an orientationally
ordered phase of living matter. ...[M]odels showed a nonequilibrium
phase transition from a disordered state to a flock with long-range
order... in the particle velocities as the noise strength was decreased
or the concentration of particles was raised.

In traffic engineering, the appearance of such ‘long range order’ is the first
stage of a traffic jam (e.g., Kerner and Klenov 2009), a relation made explicit
by Helbing (2001 Section VI) in his comprehensive review of traffic and related
self-driven many-particle systems.

While flocking and schooling have obvious survival value against predation
for animals in three-dimensional venues, long-range order – aggregation – among
blood cells flowing along arteries is a blood clot and can be rapidly fatal.
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4 Turbulence

The ‘free energy’ function F in equation (5) can be used to explore dynamics
within a particular system phase defined by the associated groupoid.

Given a vector of system parameters K, in standard manner it is possible to
define an ‘entropy’ from F as the Legendre transform

S ≡ F (K)−K · ∇KF (8)

and a nonequilibrium Onsager stochastic differential equation for dynamics in
terms of the gradients in S (de Groot and Mazur 1984), which can be written
in one dimension as

dKt = −[µ∂S/∂Kt]dt+ σKtdBt (9)

where µ is a diffusion coefficient. The last term represents a macroscopic volatil-
ity – proportional to the parameter K – in which dBt is a noise term that may
not be white, i.e., the quadratic variation [Bt, Bt] may not be proportional to
t. While details will depend on the particular circumstances, such systems are
subject to a distressingly rich spectrum of possible instabilities (e.g., Khasmin-
skii 2012). The full set of equations would involve properly indexed sums across
the parameters making up the vector K.

Allowing discontinuous Levy-like stochastic jumps, equation (9) can be solved
explicitly, provided K can be factored out and the equation set reexpressed as

dKt = Kt−dYt (10)

where Yt is a stochastic process, and t− indicates left-continuous. Taking ∆Yt =
Yt−Yt− as representing the jump process, the solution is in terms of the Doleans-
Dade exponential (Protter 1990)

Kt = exp(Yt −
1

2
[Yt, Yt]

C
t )Πs≤t(1 + ∆Ys) exp(−∆Ys) (11)

where [Yt, Yt]
C
t is the path-by-path continuous part of the quadratic variation

of Yt. This can be expressed

[Yt, Yt]
C
t = [Yt, Yt]−

∑
0≤s≤t

(∆Ys)
2 (12)

The product term in equation (11), with jump processes having nonzero ∆,
converges.

Invoking the mean value theorem in equation (11), if, heuristically, dYt <
1/2d[Y, Y ]Ct , then the expectation of K, E(K), converges to zero. Otherwise,
small perturbations will grow exponentially in expectation. This is an essential
component of modern theories of turbulence (e.g., Ruelle 1983) and will prove
central in understanding traffic flow instabilities. The phenomenon is roughly
analogous to models of ‘first order’ phase transition, for example the sudden
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crystallization of a supercooled liquid when its container is tapped or a seed
crystal is introduced. Higher order phase transitions involve discontinuities in
higher order derivatives of system parameters and phase transitions may involve
discontinuities at multiple ‘derivative’ scales.

A simple example. If a system following equation (10) has been initially
placed in a characteristic eigenmode – e.g., the smooth part of a ‘fundamental
diagram’ flow on some traffic network – then the dynamic equation for deviations
in some parameter K(t) from that mode can be written, in first order, as

dKt ≈ aKtdt+ σKtdWt (13)

where dWt represents white noise having uniform spectrum. Then, using the
Ito chain rule,

d log[K]t ≈ (a− σ2/2)dt+ σdWt (14)

The expectation is then

E[K]t ∝ exp[(a− σ2/2)t] (15)

so that, if a < σ2/2, E[K]→ 0. σ2 then – quite counterintuitively as described
in Wallace (2016) – is a kind of control information in the sense of the Data Rate
Theorem that serves to stabilize system dynamics. For an inherently unstable
traffic flow system at low traffic density σ2 = ωH, where H is the minimum
necessary control information to keep the vehicle on the road, and ω is the
‘cost’ of translation. Thus H represents the degree of independent control a
driver or autonomous vehicle computer can exercise within local road flow, e.g.,
changing lanes, accelerating, slowing down, changing headway, predicting other
vehicle maneuvers, detecting emerging bottlenecks, swerving, taking a different
route, and so on.

Anticipating the argument, for traffic models below, we will argue that σ2

must again be replaced by H(ρ)/g(ρ) where g(ρ) is positive monontonic increas-
ing. Then, antiparalleling the arguments of Belletti et al. (Bellitti et al. 2015,
Section 2.3), for this simple example a ‘traffic Froude number’ (TFN) F that
defines regimes of free and turbulent flow can be defined as

F ≡ 1− [a− 1

2
(H(ρ)/g(ρ))] (16)

where H(ρ)/g(ρ) is clearly a variant of Eq.(7) and a is 2α0 in Eq.(3).
When F > 1, the system is in ‘laminar’ free-flow, and becomes ‘turbulent’

when F < 1.
A more precise characterization, from this perspective, is that H(ρ)/g(ρ)

represents a kind of viscosity index so that F is more akin to a Reynolds number
than to a classical Froude number.

A difference between our approach and that of Bellitti et al. lies in the central
object-of-interest. They invoke a hydrodynamic perspective involving the ‘flow’
of individual vehicles in a channel that finds ‘instability’ to be associated with
unconstrained travel speed. The focus here is on the stability of geodesics in
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a complex topological quotient space M2n/W (r) that will be more precisely
defined below. This is, in a sense, the inverse of their problem.

As argued at the end of Section 3, raising ρ is equivalent to ‘freezing’ the
system from ‘liquid flow’ to ‘crystallized’ broken symmetries – platoons, shock
fronts, jams, and myriad other ‘snowflake’ fine structures.

[Y jt , Y
j
t ]Ct may be further parameterized and, using the methods of Dzha-

paridze and Spreij (1994), for colored noise, can be estimated from a time series
data periodogram, as described in Wallace (2016). Increasing complexity in
spectral structure is another marker of turbulence onset (Ruelle, 1983).

More specifically, for a stochastic process Xt and a finite stopping time T ,
for each real number λ, the periodogram of X at T is defined as

IT (X;λ) ≡ |
∫ T

0

exp[iλt]dXt|2 (17)

Take ε as a real random variate that has a density function r assumed to be
symmetric around zero and examine, for any positive real number L,

Eε[IT (X;Lε] =

∫ +∞

−∞
IT (X;Ls)r(s)ds (18)

Some work shows that, for L→∞,

Eε[IT (X;Lε)]→ [XT , XT ] (19)

Thus the quadratic variation can be estimated from observed time series
data, as routinely done in financial engineering. Presumably, both high and low
frequency limits could be explored in this method, parallel to what was done in
Belletti et al., (2015).

5 Information bottleneck

Another modeling approach is via the information bottleneck method of Tishby
et al. (1999). The essential idea is that the control information needed to stabi-
lize an inherently unstable system, which we write as H, can be used to define
an average distortion measure in a rate distortion calculation. This involves an
iterated application of the Rate Distortion Theorem (Cover and Thomas 2006)
to a control system in which a series of ‘orders’ yn = y1, ..., yn, having prob-
ability p(yn), is sent through and the outcomes monitored as ŷn = ŷ1, ..., ŷn.
The distortion measure is now the minimum necessary control information for
system stability, H(yn, ŷn). We can thus define an average ‘distortion’ Ĥ as

Ĥ ≡
∑
yn

p(yn)H(yn, ŷn) ≥ 0 (20)

It then is possible to define a new, iterated, Rate Distortion Function R(Ĥ).
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For simplicity, we take R to be a Gaussian RDF in Ĥ,

R(Ĥ) = 1/2 log[σ2/Ĥ] Ĥ < σ2

R(Ĥ) = 0 Ĥ ≥ σ2 (21)

Again, following Feynman (2000), information must be recognized as a form
of free energy and a Rate Distortion Function can be used to define an ‘entropy’
as the Legendre transform

S = R(Ĥ)− ĤdR/dĤ (22)

Taking Onsager’s nonequilibrium thermodynamics perspective, the dynam-
ics can, in first order, be characterized in terms of the gradients of S, and we
invoke an extended analog using the stochastic differential equation

dĤt = [−µdS/dĤt − F (ρ)]dt+ βĤtdWt

= [
µ

2Ĥt
− F (ρ)]dt+ βĤtdWt (23)

where dWt is standard white noise, and F (ρ) is a function of traffic density ρ,
the only possible determinant of the rate of generation of system ‘topological in-
formation’, given the extreme topological factoring associated with travel along
a network. β represents the magnitude of a ‘volatility’ noise term independent
of σ2 in the definition of R: higher H, higher stochastic jitter.

Applying the Ito chain rule to the expectation of Ĥ2
t , it becomes possible to

explore the second moment stability of the system (Khashminskii 2012). A sim-
ple calculation finds that the expectation for Ĥ2 cannot be a real number unless
the discriminant of a quadratic equation is nonnegative, giving the necessary
condition

F (ρ) ≥ β√µ (24)

We force ‘closure’ to the model by taking F (ρ) as given by Eq.(3), so that,
again,

κ1ρ+ κ2
κ3ρ+ κ4

≥ β√µ ≡ α0 (25)

with similar restrictions on the constants κi for stability.
Other channel forms will have analogous limits on traffic density as a con-

sequence of the convexity of the RDF. The interested reader might carry the
calculation through for the ‘real’ channel, having R(Ĥ) = σ2/Ĥ.

6 Reconsidering V2V/V2I systems

Kerner et al. (2015) explicitly apply insights from statistical physics to traffic
flow, writing
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In many equilibrium... and dissipative metastable systems of
natural science... there can be a spontaneous phase transition from
one metastable phase to another metastable phase of a system. Such
spontaneous phase transition occurs when a nucleus for the transi-
tion appears randomly in an initial metastable phase of the system:
The growth of the nucleus leads to the phase transition. The nucleus
can be a fluctuation within the initial system phase whose amplitude
is equal or larger than an amplitude of a critical nucleus required
for spontaneous phase transition. Nuclei for such spontaneous phase
transitions can be observed in empirical and experimental studies of
many equilibrium and dissipative metastable systems... There can
also be another source for the occurrence of a nucleus, rather than
fluctuations: A nucleus can be induced by an external disturbance
applied to the initial phase. In this case, the phase transition is
called an induced phase transition...

A Data Rate Theorem approach to stability and flow of autonomous ve-
hicle/traffic control systems, via spontaneous symmetry breaking in cognitive
groupoids, generalizes and extends these insights, implying a far more complex
picture of control requirements for inherently unstable systems than is sug-
gested by the Theorem itself, or by ‘physics’ models of phase transition. That
is, ‘higher order’ instabilities can appear. Such systems can require inordinate
levels of control information. Here, we find that C3 systems may remain ‘stable’
in the strict sense of the DRT, but can collapse into a ground state analogous
to certain psychopathologies, or, following the arguments above, into even more
complicated pathological dynamics. In biological circumstances, such failures
can be associated with the onset of senescence (Wallace 2014, 2015b). Appar-
ently, rapidly responding, and hence almost certainly inherently unstable, C3

systems can display recognizable analogs to senility under fog-of-war demands.
Using these ideas, it becomes possible to formally represent the interaction of

cognitive ground state collapse in autonomous vehicle/intelligent road systems
with critical transitions in traffic flow.

Recall that, defining ‘stability’ as the ability to return, after perturbation,
to the streamline geodesic trajectory of the embedding, topologically complex,
road network, it is clear that individual autonomous vehicles are inherently
unstable and require a constant flow of control information for safe operation,
unlike aircraft that can, in fact, be made inherently stable by placing the center
of pressure well behind the center of gravity. There is no such configuration pos-
sible for ground-based vehicles following sinuous road geometries, particularly
in heavy traffic.

The argument can be made more precise using the approach of Hu et al.
(2001) who show that, in the context of air traffic control, finding collision-free
maneuvers for multiple agents on a Euclidean plane surface R2 is the same as
finding the shortest geodesic in a particular manifold with nonsmooth boundary.
Given n vehicles, the geodesic is calculated for the quotient space R2n/W (r),
where W (r) is defined by the requirement that no vehicles are closer together
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than some critical Euclidean distance r. For autonomous ground vehicles, R2

must be replaced by a far more topologically complex roadmap space M2 sub-
ject to traffic jams and other ‘snowflake’ condensation geometries in real time.
Geodesics for n vehicles are then in a quotient spaceM2n/W (r) whose dynamics
are subject to phase transitions in vehicle density ρ (Kerner and Klenov, 2009;
Jin et al., 2013) that represent cognitive groupoid symmetry breaking. Recall
figure 1. Again, the vertical axis shows the number of vehicles per hour, the
horizontal, the density of vehicles per mile. The streamline geodesic flow, and
deviations from it at critical vehicle density, are evident. Some of the phases
may be ‘supercooled’ – fast-flowing ‘liquid’ at higher-than-critical densities. Ad-
ditional ‘fine structure’ should be expected within both geodesic and turbulent
modes.

Again, given the factoring out of most of the topological structure by the
construction of geodesics in the quotient spaceM2n/W (r), the only parameter
available to represent the rate of generation of topological information in the
inherently unstable traffic flow system is the vehicle density ρ.

Classic traffic flow models based on extensions of hydrodynamic perspectives
involving hyperbolic partial differential equations (HPDE’s) can be analogously
factored using the methods of characteristic curves and Riemann invariants
– streamlines (e.g., Landau and Lifshitz 1987). Along characteristic curves,
HPDE’s are projected down to ordinary differential equations (ODE’s) that are
usually far easier to solve. The ODE solution or solutions can then be pro-
jected upward as solutions to the HPDE’s. Here, reduction involves expressing
complex dynamics in terms of relatively simple stochastic differential equations
and their stability properties. Those stability properties, marking the onset of
‘turbulence’, will be of central interest.

Taking a somewhat larger view, cognitive phase transitions in autonomous
vehicle systems, in particular ground state collapse to some equivalent of ‘all
possible targets are enemies’, should become synergistic with traffic flow phase
transitions to produce truly monumental traffic jams, and it is possible to model
this phenomenon, to first order, in terms of spontaneous symmetry breaking on
groupoids.

Consider a random network of roads between nodal points – intersections. If
the average probability of passage falls below a critical value, the Erdos/Renyi
‘giant component’ that connects across the full network breaks into a set of dis-
joint connected equivalence class subcomponents, with ‘bottlenecks’ at which
traffic jams occur marking corridors between them. Li et al. (2015), in fact,
explicitly apply a similar percolation model to explain this effect for road con-
gestion in a district of Beijing. The underlying road network is shown in figure
2, and in figure 3 a cross section taken during rush hour showing disjoint sec-
tions when regions with average velocity below 40% of observed maximum for
the road link have been removed.

Such equivalence classes define a groupoid (Weinstein, 1996). Above, we de-
fined the cognitive groupoid to be associated with a C3 structure, here a system
of autonomous vehicles linked together in a V2V ‘swarm intelligence’ embedded
in a larger vehicle to infrastructure (V2I) traffic management system. Individ-
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Figure 2: Adapted from Li et al. (2015). Full road network near central Beijing.

Figure 3: Adapted from Li et al., (2015). Disconnected subcomponents of
Beijing central road network at rush hour. Sections with average vehicle velocity
less than 40% of maximum observed have been removed.
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ual vehicle spacings, speed, acceleration, lane-change, and so on are determined
by this encompassing distributed cognitive machine that attempts to optimize
traffic flow and safety. The associated individual groupoids are the basic tran-
sitive groupoids that build a larger composite groupoid. Thus, under declining
probability of passage, related to traffic congestion and viewed here as a tem-
perature analog, this ‘vehicle/road’ groupoid undergoes a symmetry-breaking
transition into a combined cognitive ground state collapse and traffic jam mode
– essentially a transition from ‘laminar’ geodesic to ‘turbulent’ or ‘crystallized’
flow. Autonomous vehicle systems that become senile under fog-of-war demands
will likely trigger traffic jams that are far different from those associated with
human-controlled vehicles. There is no reason to believe that such differences
will be benign.

A more precise-seeming model can be built using the turbulence limit of
equations (9) and (10), under conditions of white noise, so that [Y, Y ]C ∝ t,
where t is the time.

Following figure 1, suppose the system has been placed in a geodesic for the
map quotient space M2n/W (r), and is free-flowing ‘laminar’ at some vehicle
density ρ, but may be inherently unstable. As described above, for the simplest
kinds of stochastic differential equation models involving white noise – equation
(14) – heuristically,

Yt → at (26)

[Yt, Yt]→ (H(ρ)/g(ρ))t

in the exponential of equation (11), where α > 0 and H represents the degree
of ‘driver’ control information necessary to keep a vehicle on the road according
to the DRT. As argued, this may include lane change, speed variation, spacing
change, and other maneuvers.

Again, in first order, if

a− 1/2(H(ρ)/g(ρ)) < 0

then any perturbation K dies out in expectation – the driver/autonomous ve-
hicle can exercise sufficient initiative to damp out occasional glitches – and the
system has sufficient symmetry so that it can return to streamline geodesic flow.
If ρ increases beyond a critical value, then too limited spacing constrains the
possibility of cognitive vehicle initiative, the ‘temperature’ falls below criticality,
and perturbations grow exponentially in time so that instability causes ‘turbu-
lent’ crystal formation – ‘fine structure’ traffic jams of one form or another. As
argued above, this can happen even though the system remains fully ‘stable’
under the Data Rate Theorem: the individual vehicle control information rate
H(ρ) remains sufficient so that no crash occurs. A central concept of modern
theories of turbulence is the onset of exponential growth in small perturbations
(Ruelle, 1983).

The analysis of traffic flow on a network is, conceptually, somewhat similar to
characterizing the propagation of a ‘traffic jam signal’ via the Markov ‘network

14

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1714v1 | CC-BY 4.0 Open Access | rec: 5 Feb 2016, publ: 5 Feb 2016



dynamics’ formalism of (Wallace, 2016; Gould and Wallace, 1994), a method
that might be used to empirically identify geodesic eigenmodes of real road
network systems under different conditions, as opposed to individual vehicle
dynamics or flow on a single road. Abducting the approach of Gould and Wallace
(1994), the spread of a ‘signal’ on a particular network of interacting sites –
between and within – is described at nonequilibrium steady state in terms of
an equilibrium distribution εi ‘per unit area’ Ai of a Markov process, where
A scales with the different ‘size’ of each node, taken as distinguishable by a
scale variable A (for example number of entering streets or average total traffic
flow) as well as by its ‘position’ i or the associated probability-of-contact matrix
(POCM). The POCM is normalized to a stochastic matrix Q having unit row
sums, and the vector ε calculated as ε = εQ

There is a vector set of dimensionless network flows X it , i = 1, ..., n at time
t. These are each determined by some relation

X it = f(t, εi/Ai) (27)

Here, i is the index of the node of interest, X it is the corresponding dimen-
sionless scaled i-th signal, t the time, and f an appropriate function. Again, εi
is defined by the relation ε = εQ for a stochastic matrix Q, calculated as the
network probability-of-contact matrix between regions, normalized to unit row
sums. Using Q, we have broken out the underlying network topology, a fixed
between-and-within travel configuration weighted by usage that is assumed to
change relatively slowly on the timescale of observation compared to the time
needed to approach the nonequilibrium steady state distribution.

Since the X are expressed in dimensionless form, f, t, and A must be rewrit-
ten as dimensionless as well giving, for the monotonic increasing (or threshold-
triggered) function F

X iτ = F [τ,
εi
Ai
×Aτ ] (28)

where Aτ is the value of a ‘characteristic area’ variate that represents the spread
of the perturbation signal – evolving into a traffic jam under worst-case condi-
tions – at (dimensionless) characteristic time τ = t/T0.

F may be quite complicated, including dimensionless ‘structural’ variates for
each individual geographic node i. The idea is that the characteristic ‘area’ Aτ
grows according to a stochastic process, even though F may be a deterministic
mixmaster driven by systematic local probability-of-contact or flow patterns.
Then the appropriate model for Aτ of a spreading traffic jam becomes some-
thing like equations (9) or (10), with K replaced by A and t by τ . Thus, for
the network, the signal Yτ must again have a ‘noise’/vehicle density threshold
condition like Eq.(16) for large-scale propagation of a traffic jam across the full
network – something that would look very similar to the spread of a power
blackout.

Zhang (2015) uses a similar Markov method to examine taxicab GPS data
for transit within and between 12 empirically-identified ‘hot zones’ in Shanghai,
determining the POCM and its equilibrium distribution.
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This approach is something in the spirit of a long line of work summarized
by Cassidy et al. (2011) that attempts to extend the idea of a fundamental
diagram for a single road to a full transport network. As they put it,

Macroscopic fundamental diagrams (MFDs)... relate the total
time spent to the total distance traveled... It is proposed that these
macrolevel relations should be observed if the data come from peri-
ods when all lanes on all links throughout the network are in either
the congested or the uncontested regime...

Following our arguments here, such conditions might apply when Aτ → 0,
or when it encompasses the entire network domain. Indeed, figure 3 suggests
why MFDs cannot be constructed in general: congested and free flowing sec-
tions of traffic networks will often, and perhaps usually, coexist in an essentially
random manner depending on local traffic densities. Figure 4, adapted from
Geroliminis and Sun (2011), shows the limitations of the MFD approach. It ex-
amines the flow, in vehicles/5min intervals, vs. percent occupancy over a three
day period for the Minnesota Twin Cities freeway network that connects St.
Paul and Minneapolis. See figure 1 of their paper for details of the road and
sensor spacing. Evidently, while the unconstrained region of occupancy permits
characterization of a geodesic mode, both strong hysteresis and phase transi-
tion effects are evident after about 8% occupancy, analogous to the ‘nucleation’
dyanamics of figure 1 at high traffic density. Again, as in figure 1 ‘fine structure’
should be expected within both geodesic and turbulent modes, depending on
local parameters.

Daganzo et al. (2010) further find that MFD flow, when it can be char-
acterized at all, will become unstable if the average network traffic density is
sufficiently high. They find that, for certain network configurations, the stable
congested state

...is one of complete gridlock with zero flow. It is therefore im-
portant to ensure that in real-world applications that a network’s
[traffic] density never be allowed to approach this critical value.

Daqing et al. (2014) examine the dynamic spread of traffic congestion on the
Beijing central road network. They characterize the failure of a road segment
to be a traffic velocity less than 20km/hr and use observational data to define
a spatial correlation length in terms of the Euclidean distances between failed
nodes. Our equivalent might be something like

√
Aτ . Adapting their results,

figure 5 shows the daily pattern of the correlation length of cascading traffic
jams over a 9 day period. The two commuting maxima are evident, and greatest
correlation lengths reach the diameter of the main part of the city. Even at rush
hour, no MFD can be defined, as, according to figure 3, the network will be a
dynamic patchwork of free and congested components.

A next step would be to allow ρ vary in space and time, i.e., to parameterize
the model using the moments of vehicle density.

Figure 6, adapted from Rand (1979, figure 6.4), provides a disturbing coun-
terexample to these careful empirical and theoretical results on network traffic
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Figure 4: Adapted from Geroliminis and Sun (2011). Breakdown of the macro-
scopic fundamental diagram for the freeway network connecting St. Paul and
Minneapolis at high vehicle densities. Both nucleation and hysteresis effects are
evident, showing the fine structure within the turbulent mode.
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Figure 5: Adapted from Daqing et al. (2014). Daily cycle of traffic jam corre-
lation length over a 9 day period in central Beijing. The maxima cover most
of the central city. Even for rush hour, however, no macroscopic fundamental
diagram can be defined since the region is characterized by a patchwork of free
and congested parts, as shown in figure 3.
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flow, one with unfortunate results. Summarizing observations carried out by
the Rand Fire Project, it represents a repeated sampling of ‘travel time vs. dis-
tance’ for the full Trenton NJ road network in 1975 under varying conditions
of time-of-day, day-of-week, weather, and so on, by fire companies responding
to calls for service. This was an attempt to create a Macroscopic Fundamental
Diagram in the sense used above, but without any reference at all to traffic
density.

Indeed, fire service responses are a traffic flow ‘best case’ as fire units are
permitted to bypass one-way restrictions, traffic lights, and so on, and usually
able to surmount even the worst weather conditions. In spite of best-case cir-
cumstances, the scatterplot evidently samples whole-network turbulent flow, not
unlike that to the right of the local geodesic in figures 1 and 4, part of a single
street and a highway network, respectively, and consistent with the assertions
of Cassidy et al. (2011) that MFD relations can only be defined under very
restrictive conditions, i.e., either complete free flow or full network congestion.

The Rand Fire Project, when confronted with intractable whole-network
traffic turbulence, simply collapsed the data onto a ‘square root-linear’ rela-
tion, as indicated on the figure. The computer models resulting from this gross
oversimplification were used to determine fire service deployment strategies for
high fire incidence, overcrowded neighborhoods in a number of US cities, with
literally devastating results and consequent massive impacts on public health
and public order. Wallace and Wallace (1998), produced under an Investigator
Award in Health Policy Research from the Robert Wood Johnson Foundation,
documents the New York City case history. The Rand models are still in use
by the New York City Fire Department, for political purposes outlined in that
analysis.

7 Discussion and conclusions

Ruelle (1983), in his elegant keynote address on turbulent dynamics, raises a
red flag for any traffic flow studies:

...[A] deductive theory of developed turbulence does not exist,
and a mathematical basis for the important theoretical literature on
the subject is still lacking... A purely deductive analysis starting
with the Navier-Stokes equation... does not appear feasible... and
might be inappropriate because of the approximate nature of the...
equation.

Or, as the mathematician Garrett Birkoff (1960 p.5) put it, “...[V]ery few of
the deductions of rational hydrodynamics can be established rigorously”.

Similar problems afflict the exactly solvable but highly approximate Black-
Scholes models of financial engineering, and institutions that rely heavily on
them have gone bankrupt in the face of market turbulence (Wallace 2015c).

Turbulence in traffic flow does not represent simple drift from steady linear
or even parallel travel trajectories. Traffic turbulence involves the exponential
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Figure 6: Adapted from figure 6.4 of Rand (1979). Relation between fire com-
pany travel time and response distance for the full Trenton, NJ road network,
1975. The Rand Fire Project collapsed evident large-scale traffic turbulence
into a simple ‘square root-linear’ model used to design fire service deployment
policies in high fire incidence, high population density neighborhoods of many
US cities, including the infamous South Bronx. The impacts were literally dev-
astating (Wallace and Wallace, 1998).

20

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1714v1 | CC-BY 4.0 Open Access | rec: 5 Feb 2016, publ: 5 Feb 2016



amplification of small perturbations into large-scale deviations from complicated
streamline geodesics in a topologically complex map quotient space. This is the
mechanism of groupoid ‘symmetry breaking’ by which the system undergoes
a phase transition from ‘liquid’ geodesic flow to ‘crystalline’ phases of shock
fronts, platoons, and outright jams. Under such circumstances, cognitive vehicle
initiative – the stabilizing control information we have called H – serves as a
mechanism for returning to local geodesic flow. Inhibition of cognitive initiative
occurs when vehicle density exceeds a critical limit, triggering complex dynamic
condensation patterns and, for autonomous vehicle systems, perhaps even more
disruptive behaviors.

It is, then, not enough to envision atomistic autonomous ground vehicles
as having only local dynamics in an embedding traffic stream, as seems the
current American and European practice. Traffic light strategies, a frequently-
shifting road map space, and the dynamic composition of the traffic stream,
all create the synergistic context in which individual vehicles operate and which
constitutes the individual ‘driving experience’. It is necessary to understand the
dynamics of that full system, not simply the behavior of a vehicle atom within
it, and the properties of that system will be both overtly and subtly emergent, as
will, we assert, the responses of cognitive vehicles enmeshed in context, whether
controlled by humans or machines.

One inference from this analysis is that failure modes afflicting large-scale
V2V/V2I systems are likely to be more akin to power blackouts than to traffic
jams as we know them, and the description by Kinney et al. (2005) is of interest:

Today the North American power grid is one of the most com-
plex and interconnected systems of our time, and about one half
of all domestic generation is sold over ever-increasing distances on
the wholesale market before it is delivered to customers... Unfortu-
nately the same capabilities that allow power to be transferred over
hundreds of miles also enable the propagation of local failures into
grid-wide events... It is increasingly recognized that understanding
the complex emergent behaviors of the power grid can only be un-
derstood from a systems perspective, taking advantage of the recent
advances in complex network theory...

Dobson (2007) puts it as follows:

[P]robabalistic models of cascading failure and power system sim-
ulations suggest that there is a critical loading at which expected
blackout size sharply increases and there is a power law in the dis-
tribution of blackout size... There are two attributes of the critical
loading: 1. A sharp change in gradient of some quantity such as
expected blackout size as one passes through the critical loading.
2. A power law region in probability distribution of blackout size
at the critical loading. We use the terminology ‘critical’ because
this behavior is analogous to a critical phase transition in statistical
physics.

21

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1714v1 | CC-BY 4.0 Open Access | rec: 5 Feb 2016, publ: 5 Feb 2016



Daqing et al. (2014), in fact, explicitly link traffic jams and power failures:

Cascading failures have become major threats to network ro-
bustness due to their potential catastrophic consequences, where lo-
cal perturbations can induce global propagation of failures... [that]
propagate through collective interactions among system components....
[W]e find by analyzing our collected data that jams in city traffic and
faults in power grid are spatially long-range correlated with correla-
tions decaying slowly with distance. Moreover, we find in the daily
traffic, that the correlation length increases dramatically and reaches
maximum, when morning or evening rush hour is approaching...

While clever V2V/V2I management strategies might keep rush hour traf-
fic streams in supercooled high-flow mode beyond critical densities, such a
state is notoriously unstable. More subtle patterns of autonomous vehicle ‘psy-
chopathology’ may be even less benign.

8 Mathematical Appendix

Suppose the system is stable, in the control theory sense, and takeH as the ‘cost’
of stability at the traffic density ρ. What is the form of H(ρ) under conditions
of volatility i.e., variability in ρ proportional to it? Let

dρt = g(t, ρt)dt+ bρtdWt (29)

where dWt is taken as white noise.
Assuming stability, let H(ρt, t) be the minimum needed incoming rate of

control information under the Data Rate Theorem, and expand in ρ using the
Ito chain rule

dHt = [∂H/∂t+ g(ρt, t)∂H/∂ρ+
1

2
b2ρ2t∂

2H/∂ρ2]dt

+[bρt∂H/∂ρ]dWt (30)

We define a quantity L as a Legendre transform of the rate H, by convention
having the form

L = −H+ ρ∂H/∂ρ (31)

Since H is an information index, it is a kind of free energy in the sense of
Feynman (2000) and L is a classic entropy measure.

Heuristically, replacing dX with ∆X in these expressions and applying
Eq.(30) gives

∆L = (−∂H/∂t− 1

2
b2ρ2∂2H/∂ρ2)∆t (32)

As in the classical Black-Scholes model (Black and Scholes 1973), the terms
in g and dWt cancel out, and the effects of noise are subsumed into the Ito
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correction factor, a powerful regularity assumption that makes this an exactly
solvable approximate model.

The conventional Black-Scholes calculation takes ∆L/∆T ∝ L. Here, at
nonequilibrium steady state, we assume ∆L/∆t = ∂H/∂t = 0, so that

−1

2
b2ρ2∂2H/∂ρ2 = 0 (33)

By inspection,
H = κ1ρ+ κ2 (34)

where the κi are nonnegative constants.
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