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ABSTRACT
Direct and indirect functional links between proteins as well as their interactions as
part of larger protein complexes or common signaling pathways may be predicted
by analyzing the correlation of their evolutionary patterns. Based on phylogenetic
profiling, here we present a highly scalable and time-efficient computational framework
for predicting linkages within the whole human proteome. We have validated this
method through analysis of 3,697 human pathways and molecular complexes and
a comparison of our results with the prediction outcomes of previously published
co-occurrency model-based and normalization methods. Here we also introduce
PrePhyloPro, a web-based software that uses our method for accurately predicting
proteome-wide linkages. We present data on interactions of human mitochondrial
proteins, verifying the performance of this software. PrePhyloPro is freely available at
http://prephylopro.org/phyloprofile/.

Subjects Bioinformatics, Genomics
Keywords Linkage prediction, Whole proteome, Phylogenetic profile

INTRODUCTION
The development of sequencing technologies has facilitated the access to whole genomic
information from numerous organisms. Despite successful small-scale attempts to identify
protein–protein interactions in a limited number of model organisms (Ewing et al., 2007; Li
et al., 2004; Tarassov et al., 2008), determining genome-wide linkages remains a challenge.
Phylogenetic profiling, by comparing genome sequences across different species, makes it
possible to explore whole-proteome protein linkages (Pellegrini et al., 1999). This method
is based on the assumption that functionally related proteins are likely to have evolved in
a correlated manner. Several studies have successfully employed phylogenetic profiling to
identify novel members of protein complexes (Avidor-Reiss et al., 2004; Dey et al., 2015;
Gabaldon, Rainey & Huynen, 2005), expand known pathways (Li et al., 2014), and analyze
non-coding elements (Tabach et al., 2013a).

Based on occurrence information across different species, twomain groups of prediction
algorithms have been proposed (Kensche et al., 2008). In the first group, the phylogenetic
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profiles of paired proteins are directly compared by a ‘‘co-occurrency’’ method such as
Hamming distance (Cheng & Perocchi, 2015; Pellegrini et al., 1999), Pearson correlation
coefficient (Glazko & Mushegian, 2004), Jaccard similarity (Brilli et al., 2008; Jaccard,
1912; Yamada, Kanehisa & Goto, 2006), Fisher’s exact test (Barker & Pagel, 2005), and
mutual information (Huynen et al., 2000; Wu, Kasif & DeLisi, 2003). Other normalization
methods, including singular value decomposition (SVD) (Franceschini et al., 2015;
Psomopoulos, Mitkas & Ouzounis, 2013) and normalized phylogenetic profile (NPP)
(Sadreyev et al., 2015; Tabach et al., 2013a; Tabach et al., 2013b) of phylogenetic profiles
before calculating the co-occurrence, have been proposed to reduce the rate of false
positive predictions. Although the co-occurrence-based methods do not correct for the
effect of phylogenetic bias or the non-independence of the profile values, they are widely
used for predicting functional linkages mainly due to being very time-efficient. The second
group is comprised of ‘‘model-based’’ approaches such as collapsing of subtree (Von
Mering et al., 2005), tree-kernel (Vert, 2002), maximum likelihood (Barker & Pagel, 2005),
and parsimony methods (Barker, Meade & Pagel, 2007). To account for the statistical
non-independence of the profile values, the model-based methods use the phylogenetic
tree to correlate the evolutionary processes (Kensche et al., 2008). Recently modifications of
these methods have used sophisticated statistical models to infer gene gain and loss across
a wide range of eukaryotic organisms (Dey et al., 2015; Li et al., 2014). These methods are
dependent on the reliability of phylogeny and require lengthy computational times. Many
of these phylogenetic profiling algorithms are not user-friendly and have low computational
efficiency resulting in high false positive rates.

As increasing numbers of sequenced genomes have become available, a number of
phylogenetic profile databases and tools for visualization of Eukarya phylogenetic profiles
have been developed (Cheng & Perocchi, 2015; Cromar et al., 2016;Ott et al., 2012; Sadreyev
et al., 2015; Szklarczyk et al., 2015). After considering the computational efficiency and
prediction power of the current methods and tools, here we propose a method and online
tool, called PrePhyloPro (PPP), which combines multiple co-occurrency measures and
utilizes top rank thresholds to determine potential linkages. To identify human whole-
proteome functional linkages, we constructed a comprehensive phylogenetic profile using
972 different species. We evaluated PPP with positive and negative reference datasets
based on known human pathways and protein complexes. In comparison to conventional
phylogenetic profiling methods, this method presented overall improvement, i.e., higher
sensitivity and enhanced specificity in the receiver operating characteristic (ROC) curves.
Moreover, an analysis of biological features of the predicted protein links from 3,697
human pathways and complexes, resulted in 21.7% overall true positive rate when the top
rank was set as 400. We also developed a web-based server based on PPP to acquire and
visualize human whole proteome predicted linkages.

RESULTS
Prediction of whole proteome functional linkages
To construct comprehensive phylogenetic profiles, we included a wide range of eukaryotic
and prokaryotic organisms with at least one organism in every known Class or Phylum,
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resulting in 972 different species (Table S1). We then implemented a new phylogenetic
profilingmethod, named PPP, by combiningmultiple co-occurrencymeasures. Apart from
physically interacting protein pairs, the predicted linkages potentially represent related
components (sensors, regulators, and regulons) of signalling pathways and subunits of
protein complexes.

To assess the performance of PPP, we compared this technique with eight conventional
phylogenetic profilingmethods, whichwere divided into three categories. The first category,
comprised of co-occurrency methods, including Jaccard similarity (‘‘Jaccard’’), Pearson
correlation coefficient (‘‘Cor’’), mutual information (‘‘MI’’) and Hamming distance
(‘‘Hamming’’), relied on the evolutionary similarity or distance (Glazko & Mushegian,
2004; Kensche et al., 2008). The second category represented the gain and loss relationships
of two proteins with additional phylogeny; we used maximum likelihood (‘‘Tree’’) (Barker
& Pagel, 2005), Dollo parsimony distance (‘‘Dollo’’) (Kensche et al., 2008) as representatives
of this category. The third category combined co-occurrency methods with normalized
phylogenetic profiles such as NPP (Sadreyev et al., 2015; Tabach et al., 2013a; Tabach
et al., 2013b) and SVD (Franceschini et al., 2015; Psomopoulos, Mitkas & Ouzounis, 2013).
Because of the evolutionary conservation of protein complexes, the correlations of subunits
in the same complex have been widely used as validation datasets (Barker & Pagel, 2005;
Kensche et al., 2008; Ta, Koskinen & Holm, 2011; Zhou et al., 2006). We retrieved subunit
composition information for 1,604 human protein complexes from the ‘‘comprehensive
resource of mammalian protein complexes (CORUM)’’ database (Ruepp et al., 2010) and
generated multiple control datasets (Tables S2–S4).

Performance of PPP in predicting known linkages
ROC curves were plotted for the analysis methods after applying a series of relaxed
thresholds. False positive rate (FPR) and true positive rate (TPR, also known as sensitivity)
were calculated and represented in the x- and y-axis, respectively. A larger area under the
curve (AUC) of ROC would indicate better reliability of the method. We observed that
the AUC of PPP was the largest (0.73) in comparison to other conventional approaches.
‘‘Jaccard’’ had the third largest AUC (0.71), as this coefficient was one of the important tools
used in PPP. In comparison to ‘‘Jaccard’’, PPP had enhanced sensitivity upon increasing
the FPR. For example, by changing the FPR to 0.20, the sensitivity of ‘‘Jaccard’’ was 0.46,
whereas the sensitivity of PPP increased to 0.53, showing a noticeable improvement (Fig.
1A). ‘‘Cor’’ and ‘‘MI’’, two similar correlation methods, had close AUCs (0.66 and 0.68,
respectively). Interestingly, in comparison to PPP, ‘‘MI’’ displayed slightly higher sensitivity
for the FPR values between 0.53 and 0.81. ‘‘Hamming’’ achieved a relatively low AUC of
0.62 (Fig. 1A). To determine the accuracy of positive predictions, i.e., potential functional
linkages, we calculated the precision and recall (PR) for each method. In agreement with
ROC curves, PPP showed a lower rate of decrease in the precision as the recall increased,
indicating higher prediction of true positives comparing to the conventional methods.
Similarly, more true positive predictions were detected by ‘‘MI’’ for the recall between 0.20
and 0.49 (Fig. 1B). Our results showed PPP identified overall more true linkages than each
individual measure.

Niu et al. (2017), PeerJ, DOI 10.7717/peerj.3712 3/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3712#supp-1
http://dx.doi.org/10.7717/peerj.3712#supp-1
http://dx.doi.org/10.7717/peerj.3712#supp-3
http://dx.doi.org/10.7717/peerj.3712


a

False positive rate

Tr
ue

 p
os

itiv
e 

ra
te

AUC
PPP=0.733

Tree=0.595

Dollo=0.614

Cor=0.664

Jaccard=0.708

MI=0.676

Hamming=0.621

NPP=0.719

SVD100=0.595

SVD30=0.629

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

1.00

0.75

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

1.00

0.75

Pr
ec

isi
on

Recall

Methods
PPP

Tree

Dollo

Cor

Jaccard

MI

Hamming

NPP

SVD100

SVD30

b

Figure 1 Performance of PPP. ROC curves (A) and PR curves (B) of PPP compared with Jaccard sim-
ilarity (‘‘Jaccard’’), Pearson correlation coefficient (‘‘Cor’’), mutual information (‘‘MI’’), Hamming dis-
tance (‘‘Hamming’’), maximum likelihood (‘‘Tree’’), Dollo parsimony distance (‘‘Dollo’’), NPP normal-
ization (‘‘NPP’’), and SVD normalization using all (‘‘SVD100’’) or top 30% (‘‘SVD30’’) of the unitary ma-
trix, on a dataset comprising 57,114 positive linkages and 571,140 random protein pairs. The gray diago-
nal dash line is the random guess line.

Recent studies have suggested that the model-based methods have higher discriminative
power and better performance (Barker, Meade & Pagel, 2007; Barker & Pagel, 2005; Dey et
al., 2015; Zhou et al., 2006). Other studies have questioned the superior performance of
thesemethodsmainly due to their reliance on the correctness of the annotation of genomes,
which may not always be the case (Kensche et al., 2008). We, nevertheless, included the
‘‘Tree’’ (Barker & Pagel, 2005) and ‘‘Dollo’’ (Kensche et al., 2008) as representatives by
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using the likelihood ratio (LR) and the parsimony distance as measures, respectively. Our
study found that the AUC and the decrease rate of precision were both lower in ‘‘Tree’’
and ‘‘Dollo’’ compared to PPP (Fig. 1). Our phylogenetic profiles included a wide range of
both eukaryotic and prokaryotic species. The decreased precision rate of the model-based
methods may be due to being arbitrarily applied to the phylogenetic profiles across a broad
evolutionary scenario.

Sophisticated pre-processing and normalization methods are recently proposed to
use sequence alignment bit scores instead of binary phylogenetic profiles, to accurately
reflect the evolutionary relationships. For example, NPP (Sadreyev et al., 2015; Tabach et
al., 2013a; Tabach et al., 2013b) and SVD (Franceschini et al., 2015; Psomopoulos, Mitkas
& Ouzounis, 2013) combined the z-score and truncated unitary matrix with ‘‘Cor’’ and
Euclidean distance, respectively. Our results showed that NPP achieved a significantly
better performance than individual ‘‘Cor’’ correlation measures that had the second largest
AUC (0.72). Similarly, setting the top percentage of unitary matrix as 30% (‘‘SVD30’’),
would result in a higher AUC than that of the Lp-norm based methods, including
‘‘Hamming’’ (Fig. 1).

To further examine the performance of PPP, we constructed another negative reference
dataset with a different random seed in our program, confirming the reliability of the
predicted linkages (Figs. S1A, S1B). To further validate the predicted linkages by PPP,
we applied rebuilt positive linkages excluding large complexes (Figs. S1C, S1D) and an
independent validation dataset described by Ta, Koskinen & Holm (2011) (Figs. S1E, S1F).
The AUC of PPP was the largest in both cases, suggesting the robustness of this method.
Furthermore, we validated predicted protein pairs that were present in a wide range of
species by using the results from the MatrixMatchMaker (MMM) method (Bezginov et
al., 2013; De Juan, Pazos & Valencia, 2013; Rodionov et al., 2011; Tillier & Charlebois, 2009)
(Table S6). Among theMMMprotein pairs, the ones with more homology showed a higher
hit rate at stringent top ranks, indicating increased true linkage detection by PPP when
both proteins of each pair are present in a wide range of species (Fig. S2).

Evaluating predicted linkages in human pathways and complexes
To evaluate the efficiency of PPP in predicting known linkages, we first generated a list of
predicated linkages involved in human pathways or complexes based on five databases.
We used Kyoto Encyclopedia of Genes and Genomes (KEGG), BioCarta, Reactome and
NCI/Nature Pathway Interaction Database (NCI), for pathways analysis and CORUM to
establish connections of proteins within complexes. The list included known linkages in
241, 247, 1,393 and 212 pathways in the KEGG, BioCarta, Reactome and NCI databases,
respectively.We also included 1,604 different complexes throughCORUM(Table S5).With
the threshold of top interactions set as 400 (i.e., the top 400 protein pair phylogenetic profile
correlations/similarities), PPP achieved an overall prediction rate of 21.7%. The method
predicted more than 50% of the interactions in several pathways with at least 30 known
linkages (Fig. 2A). The high ratios of predicted (PPP) and known/original (databases)
links indicated the reliability of our approach. For example, the mitogen-activated protein
kinases (MAPK) signalling pathway is comprised of a total of 17 known links, 15 of which
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Figure 2 PPP predicted linkages in human pathways and complexes. (A) Top pathways and complexes
with high predicted percentage (>50% and the number of predicted links is at least 15) in BioCarta,
KEGG, Reactome, and CORUM databases. The number of PPP predicted (threshold 400, sensitivity
0.97), NPP predicted (threshold 0.73, sensitivity 0.97), and original linkages is presented on the right.
(B–D) Selected Circos visualization of predicted linkages in the MAPK signaling pathway (B), GABA
A receptor activation (C), and TCA citrate cycle (D). The outer ring shows the ideogram of human
karyotype plus the mitochondria genome. The next six rings, coloured with yellow to dark red, show
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were identified by PPP (Figs. 2A, 2B). We performed Circos visualization (Krzywinski et
al., 2009), representing predicted links in three different pathways or complexes: MAPK
signalling pathway (Fig. 2B), γ-aminobutyric acid (GABA) A receptor activation (Fig. 2C)
and tricarboxylic acid (TCA) cycle (Fig. 2D).

PPP successfully identified the linkages within protein families, especially whenmembers
of the family share a common evolutionary pattern. It has been shown that the members
of the MAPK signaling pathway arose at the dawn of eukaryotic evolution (Glatz et al.,
2013) and may have orthologies in some bacterial species (Miller et al., 2010; Pereira, Goss
& Dworkin, 2011). Our phylogenetic profiling confirmed the distribution of two members
of this family, MAP2K and MAP3K, in almost all eukaryotes and some prokaryotes. This
common evolutionary pattern was the basis for the detected linkages within the MAPK by
PPP (Fig. 2B). Similarly, linkages between α subunits (GABRA1 to GABRA6), β subunits
(GABRB1 to GABRB3), and γ subunits (GABRG2 and GABRG3) of the GABA A receptor
were detected because of the similarity in their phylogenetic profile and their presence
only in animals (Fig. 2C). By design, PPP uses co-occurrence as the main criterion for
detecting linkages. The dissimilar phylogenetic distribution of two proteins, therefore,
would translated into absence of interaction. This might result in the presence of false
negatives, due to the involvement of evolutionary modules in pathways or complexes (Li
et al., 2014; Pellegrini et al., 1999). For example, we failed to observe the linkages between
ARHGEF9 and the other GABA A subunits, because homologs of α/β/γ subunits were
exclusively present in Metazoa while ARHGEF9 homologs were also detected in Fungi
(Fig. 2C). Modularity could be explained based on the selection for adaptation rate, where
common evolutionary rates could force certain genes to evolve together and to maintain
an interaction, preventing other genotypes (with similar phylogenetic profiles) from being
included based on the difference in their rates of adaptation (Wagner, 1996).

Similarly, unlike the rest of the MAPK signalling pathway members, homologs of
RAC1 were present mainly in eukaryotes, resulting in false negatives with respect to
interaction with the other members of the MAPK pathway (Fig. 2B). Likewise, since
PPP was based on calculating co-occurrences, it limited the correctly predicted linkages
within the TCA cycle to the known evolutionary modules (Li et al., 2014) (for examples
in ‘‘ACO1/ACO2/CS/DLST/SUCLA1/SUCLA2’’ and in ‘‘IDH3B/IDH3G/IDH3A’’). Most
of the true linkages to PCK1 and PCK2 were missed due to the same reason (Fig. 2D).
Overall, our data suggests that PPP is suitable for predicting interactions between proteins
that share common homologous distributions, but might be limited in detecting linkages
between proteins that belong to different evolutionary modules in human pathways or
complexes.

Input of PrePhyloPro
We implemented PPP and comprehensive phylogenetic profiles into an intuitive and
easy to use web-based software ‘‘PrePhyloPro’’ for whole proteome linkages prediction.
PrePhyloPro could be used for detecting novel (physical) protein-protein interactions, for
predicting new components of biological complexes, and suggesting potential new linkages
in signaling pathways or metabolic processes.
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PrePhyloPro is designed as a user-friendly tool that requires three steps. The first step is
choosing algorithm parameters including the top rank threshold, BLAST E-value threshold,
and the reference organisms. The top rank is the number of linkages (with the highest
correlation coefficient values) corresponding to each queried protein. In the front page
three options (0.001, 0.0005, and 0.0001) are provided for the BLAST E-value threshold.
This threshold is applied to choose homologies among the 972 species in constructing
phylogenetic profiles. Using a smaller top rank and BLAST E-value would result in less but
more reliable linkages. Currently the PrePhyloPro software provides linkages prediction in
two model organisms, Homo sapiens and Arabidopsis thaliana. Prediction in more species
will be available, as future updates will be applied to the software. The second step is
to set the size of protein names for the output plots as the default setting may not be
suitable for studies with high or low number of queried proteins. In the last step, a table of
query proteins in the ‘‘txt’’ or ‘‘csv’’ format will be uploaded onto the website for linkage
prediction. The markup colours and aliases for query proteins could be added to this table
to optimize visualization of output figures. Examples of input files are provided online.

Output of PrePhyloPro
To minimize the processing time for each query, we have already calculated the co-
occurrency for all protein pairs under the three BLAST E-value thresholds, and have saved
them in backend databases. In total, PrePhyloPro takes less than 1 min to determine whole
proteome search for linkages of 20 candidate (query) proteins. PrePhyloPro returns an
integrated webpage including output figures and tables. As an example of an input protein
set, we have used subunits of the human F1Fo ATP synthase (Fig. 3). The outputs for
this set include the phylogenetic profile plot and correlation matrix of input proteins. In
the phylogenetic profile plot, the top panel represents the 972 surveyed species, which are
divided into six major taxa (Animals, Plants, Protists, Fungi, Archaea, and Bacteria). The
left panel represents the input proteins (marked with user-defined colours) combined
with a cluster dendrogram measured by Euclidean distances. The blue and gray bars in the
phylogenetic profile plot correspond to presence or absence of homologies, respectively
(Fig. 3A). The correlation matrix, as a complement to the phylogenetic profile plot, shows
the Pearson correlation coefficient of paired input proteins that are colour-coded from
blue (no correlation between any given profile pairs) to red (highly correlated profiles)
(Fig. 3B). These two figures not only demonstrate homologous distributions of input
proteins among an array of eukaryotic and prokaryotic organisms, but also indicate the
evolutionary relationships within a query set. For example, the F1Fo ATP synthase is
proposed to have evolved from at least two major parts, i.e., the catalytic core (F1) and
the membrane-bound subunits (Fo) (Falk & Walker, 1988; Mulkidjanian et al., 2007; Rak,
Gokova & Tzagoloff, 2011). As anticipated, PrePhyloPro clustered amajority of the subunits
into two groups, corresponding to the F1 and Fo components (Figs. 3A, 3B).

The output of PrePhyloPro also includes the visualization of predicted linkages. We used
the circosJS package (Girault, 2017) to create an interactive Circos plot, which integrates
the chromosome location, homologous distribution, values of co-occurrence, and linkages.
With the threshold of top rank and the BLASTP E-value set to 20 and 0.001, respectively, the
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From FromAnno To ToAnno Jaccard Cor

hsa:498 

ATP5A1, ATP5A, ATP5AL2, ATPM, MC5DN4, 
MOM2, OMR, ORM, hATP1; ATP synthase, H+ 
transporting, mitochondrial F1 complex, alpha subunit 
1, cardiac muscle; K02132 F-type H+-transporting 
ATPase subunit alpha [EC:3.6.3.14] (A)

hsa:523 
ATP6V1A, ATP6A1, ATP6V1A1, HO68, VA68, VPP2, Vma1; ATPase, 
H+ transporting, lysosomal 70kDa, V1 subunit A (EC:3.6.3.14); 
K02145 V-type H+-transporting ATPase subunit A [EC:3.6.3.14] (A)

0.99 0.72

hsa:10476

ATP5H, ATPQ; ATP synthase, H+ transporting,
mitochondrial Fo complex, subunit d (EC:3.6.1.14);
K02138 F-type H+-transporting ATPase subunit d
[EC:3.6.3.14] (A)

hsa:7342 UBP1, LBP-1B, LBP-1a, LBP1A, LBP1B; upstream binding protein 1
(LBP-1a); K09275 transcription factor CP2 and related proteins (A) 0.82 0.88

hsa:10476

ATP5H, ATPQ; ATP synthase, H+ transporting,
mitochondrial Fo complex, subunit d (EC:3.6.1.14);
K02138 F-type H+-transporting ATPase subunit d
[EC:3.6.3.14] (A)

hsa:79977 GRHL2, BOM, DFNA28, TFCP2L3; grainyhead-like 2 (Drosophila);
K09275 transcription factor CP2 and related proteins (A) 0.81 0.88

hsa:10476

ATP5H, ATPQ; ATP synthase, H+ transporting,
mitochondrial Fo complex, subunit d (EC:3.6.1.14);
K02138 F-type H+-transporting ATPase subunit d
[EC:3.6.3.14] (A)

hsa:7024 TFCP2, LBP1C, LSF, LSF1D, SEF, TFCP2C; transcription factor CP2;
K09275 transcription factor CP2 and related proteins (A) 0.81 0.88

hsa:10476

ATP5H, ATPQ; ATP synthase, H+ transporting,
mitochondrial Fo complex, subunit d (EC:3.6.1.14);
K02138 F-type H+-transporting ATPase subunit d
[EC:3.6.3.14] (A)

hsa:85409 NKD2, Naked2; naked cuticle homolog 2 (Drosophila); K03213 naked
cuticle (A) 0.81 0.88

Figure 3 Outputs of PrePhyloPro using human F1Fo ATP synthase subunits as input proteins. (A–B)
The phylogenetic profile plot (A) and the correlation matrix (B) of the F1Fo ATP synthase. The left colour
bar indicates subunits of F1 (red) and Fo (green) regions. (C–D) The D3 interactive Circos plot (C) and
the network (D) of predicted linkages of subunits in the F1 region. (E) The numeric table of predicted
linages. The linkage between the α subunit and ATP6V1A is highlighted.
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predicted linkages of the F1 subunits of the ATP synthase (α,β,γ,δ,ε, and OSCP subunit)
were displayed in Fig. 3C. An ideogram of normal karyotype plus the mitochondrial
genome is plotted in the central ring. The outer three rings with grey background show
the percentage of present homologies for each protein in Bacteria, Archaea, and Eukaryota
(from the outer to the inner ring). Hovering over the points will show the corresponding
present percentages. In the centre, connecting arcs represent the predicted links for the 6
subunits in F1 ATP synthase with user-defined colours (In Fig. 3C: α (blue), β (yellow), γ
(red), δ (orange), ε (purple), and OSCP (green)). Hovering over the arcs will indicate the
linkage partners, their chromosomal locations and Jaccard/Cor values.

To directly visualize network topology, PrePhyloPro generates an interactive linkage
network using JavaScript D3 (Gandrud, Allaire & Kent, 2015). Nodes with more linked
partners have a bigger size. Hovering over one node will enlarge its size and brings up
its corresponding gene symbol. As an example, the α subunit (ATP5A1) of ATP synthase
(Fig. 3D). In contrast to static visualization, the D3 network provides more interactive
features, like dragging or pulling one node from a crowded group, which is particularly
helpful for a large network with overlapping nodes.

The outputs of PrePhyloPro contain a table summarizing the predicted linkages. The
‘‘from’’ and ‘‘to’’ columns are composed of standard protein IDs of input proteins and
the predicted interacting proteins, respectively. The proteins symbols and descriptions
are also included in this table. The last two columns display the Jaccard similarity and
Pearson correlation coefficient values sorted in a decreasing order. Hovering over one cell
of the table highlights its row in a blue background. Other features include a search box
at the right corner, the option for adjusting the number of entries (at the left corner), and
the sort option (at the top of each column) (Fig. 3E). Output results and figures can be
downloaded to local devices. The downloaded folder includes high quality figures. The
correlation matrix and prediction linkages are stored in numeric tables that can be used
for further analysis and validation.

PrePhyloPro identified the known linkages between the α/β subunits and between the
γ/δ subunits of the F1 component of the synthase (Figs. 3C, 3E). The linkage between
the α subunit and ATP6V1A (highlighted in Fig. 3E), a subunit of human V -type ATP
synthase, was also identified by PrePhyloPro. These two proteins are believed to have
evolved from the same ancestor by gene duplication (Iwabe et al., 1989; Shih & Matzke,
2013). Moreover, PrePhyloPro showed strong linkages (Jaccard similarity> 0.99) between
the α/β subunits and ATP-binding cassette transporters (ABC) family members (Table S7).
Recent studies have shown functional linkages between the two sets of proteins. ABCB7
and nuclear genes of ATP synthase are both significantly down-regulated in SOD2 deficient
erythroblasts under oxidative stress (Martin et al., 2011), while mutations of ABCD1 lead
to the oxidation of α/β subunits and defects in oxidative phosphorylation (Lopez-Erauskin
et al., 2013). These studies suggest a possible regulatory relationship within ATP synthase
and ABC family. Another interesting predicted partner of α/β subunits was AFG3L2
(Jaccard similarity> 0.99). Mutations in the Saccharomyces cerevisiae homolog of AFG3L2,
AFG3, inhibit the assembly of ATP synthase, suggesting a similar role of AFG3L2 in human
(Guzelin, Rep & Grivell, 1996; Paul & Tzagoloff, 1995). Moreover, PrePhyloPro predicted
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Figure 4 Phylogenetic profile and network visualization of humanmitochondrial proteome. (A)
Phylogenetic profile plot for 1,006 human mitochondrial proteins across 972 fully sequenced organisms.
Blue and grey squares indicate the gene gain and loss, respectively. Hierarchical cluster is applied to both
the organisms (columns) and proteins (rows). The organisms are organised into 6 taxa: Animals, Plants,
Fungi, Protista, Bacteria, and Archaea. On the left, each small band indicates the corresponding subunits in
complex I to V, and MRPs. (B) Predicted linkage network for human mitochondria proteins.

the high correlations (Jaccard similarity >0.95) between α/β subunits and adenylate kinase
isoforms (AKs) (Table S7). Consistently, AKs maintain the cellular energy balance and
collaborate in ATP synthesis, especially through coupling of the mitochondrial resident
AK2 with the OXPHOS activity (Klepinin et al., 2016). Additionally, the transcription of
AK2 and α/β subunit are both enhanced by triiodothyronine (Severino et al., 2011). It has
also been suggested that the transcription of α subunit and AK1 is regulated by PGC-1α, a
master regulator of metabolism (Lucas et al., 2014). These studies confirm the potential of
PrePhyloPro in predicting linkages based on co-evolution of proteins.

Inferring evolutionary relationships from phylogenetic profiles of
mitochondrial proteins
To evaluate the large-scale prediction power of PrePhyloPro, we used the entire human
mitochondrial proteome containing 1,006 mitochondrial proteins (Pagliarini et al.,
2008) as the input set. PrePhyloPro returned the list of predicted linkages and the
phylogenetic profile plot of mitochondrial proteins (Fig. 4A). Only predicted linkages
between a pair of mitochondrial proteins were selected for the purposes of visualization
(Fig. 4B). Interestingly, after mapping the oxidative phosphorylation complexes (complex
I to complex V) and mitochondrial ribosomal proteins (MRPs), we noticed that the
subunits within a complex are dispersedly distributed in the phylogenetic profile figure
(Figs. 4A, 4B). In agreement with previous studies (Li et al., 2014; Pagliarini et al., 2008),
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this indicated that mitochondrial proteins have originated from multiple modules during
evolution. PrePhyoPro detected closer linkages among members of known evolutionary
modules (Li et al., 2014) of mitochondrial complexes. For example, COX1, COX2, ATP6,
ND1,ND3, and SDHA that arewidely present among eukaryotic and prokaryotic species are
gathered tightly in a subnetwork (Fig. S3). Confirming this result, a recent study showed
that dietary lipid affects the expression of COX1, COX2, ATP6, and ND1 by common
transcription factors such as the peroxisome proliferator-activated receptor (Eya et al.,
2015). On the other hand, the group consisting of COX7A1, NDUFB1, ND6, and NDUFA1
was exclusively present in the Metazoa and was concentrated in a different subnetwork
(Fig. 4B and Fig. S3). These results suggest that, in addition to detecting protein linkages,
PrePhyloPro provides insight into the evolutionary relationships between paired proteins.
Deciphering the evolutionary relationships within a query set would be useful for further
exploring biological functions in pathways and complexes.

DISCUSSION
In this study, we implemented a phylogenetic profilingmethod named PPP to predict whole
proteome linkages. PPP combined multiple co-occurrences and used top ranks to select
most likely linkages. This method excluded solo proteins that have no connections with
other proteins in prediction results, even when a stringent threshold was set to achievemore
reliable linkages. Moreover, PPP displayed robustness in comparison to other conventional
approaches. We are aware that factors, such as control datasets or the species chosen to
construct phylogenetic profiles and trees, may contribute to the poor performance of
some methods. For example, in comparison to PPP, ‘‘MI’’ displayed higher sensitivity in
the ranges corresponding to large FPR, which may be due to the discrimination power
of mutual information. But because ‘‘MI’’ is limited in making a distinction between
the anti-correlating and correlating protein pairs (Steuer et al., 2002), positive predictions
established with a high ‘‘MI’’ threshold might include negatively correlated pairs.

In our test datasets, model-based methods exhibited lower predictive power than co-
occurrence methods. A major limitation of model-based methods is the underestimation
of paired proteins that are both present in a wide range of species, resulting in lack of true
positive predictions. For example, the α and β subunits of the F1Fo ATP synthase are two
co-occurring proteins, as they are present in almost all living species (Gogarten et al., 1989).
They physically interact with each other to form an α3β3 hexamer (Rubinstein, Walker &
Henderson, 2003). ‘‘Tree’’ and ‘‘Dollo’’, however, yielded an extremely low value indicating
no linkages. The ‘‘Tree’’ method showed a rapid increase in precision to the maximum and
remained constant at more stringent LR thresholds, suggesting higher prediction power
of ‘‘Tree’’ with carefully chosen LRs (Barker & Pagel, 2005). Dollo parsimony distance
is limited in eukaryotes, where horizontal gene transfers are rare events (Barker, Meade
& Pagel, 2007; Kensche et al., 2008). Thus, model-based methods would have a better
performance in predicting functional linkages specific to a Class or a Phylum rather than
linkages that are conserved across a wide range of species.

Although PPP showed improvements in ROC curves, two kinds of inaccuracies still
existed, which could be corrected by taking additional steps. The false negatives occurred
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when actually linked partners had different evolutionary rates. For example evolutionary
constrains are not common in signalling and transcriptional pathways (Dey et al., 2015).
Other than protein co-evolution based approaches, methods like weighted gene co-
expression network analysis (WGCNA) is appropriate to detect proteins that share similar
co-expression patterns (Langfelder & Horvath, 2008; Liu et al., 2015). On the other hand,
in addition to setting stringent thresholds for the top rank, using network algorithms to
filter PPP outputs might help in reducing the rate of false positives. This approach could
include selecting hubs connecting to more input proteins by using centrality measurements
(degree and betweenness).

Several online tools exist for phylogenetic profiling, for example STRING (version
10) using SVD (Szklarczyk et al., 2015), PhyloGene using NPP (Sadreyev et al., 2015), and
ProtPhylo using ‘‘Hamming’’ (Cheng & Perocchi, 2015). PrePhyloPro based on PPP is a
complementary online tool for whole proteome linkage predictions. PrePhyloPro includes
several visualization methods, including the interactive Circos plot integrated metadata of
the homology distribution, genome locations, occurrency values and prediction linkages.

METHODS
Phylogenetic profiling
Protein sequences and annotation information from 972 different species were retrieved
from the KEGG database (Kanehisa et al., 2006), including 276 eukaryotic, 614 bacterial,
and 82 archaea organisms, as well as mitochondrial and chloroplast proteins. BLASTP
(Camacho et al., 2009) was used to comparing 20,127 human proteins sequences with
selected species. To construct the homologymatrix, we used BLASTP E-value as the criteria,
in which 1 denoted that homologies of human proteins found in the corresponding species,
otherwise 0.

Four independent co-occurrence methods were used to evaluate the correlated
relationship between a pair of proteins (Glazko & Mushegian, 2004; Kensche et al., 2008).
For each pair of proteins across n species, for example X ,Y ∈ {0,1}n, the Jaccard similarity
is defined from co-occurrence of presences:

J (X ,Y )=

∣∣{i|xi= 1∩yi= 1
}∣∣∣∣{i|xi= 1∪yi= 1
}∣∣ . (1)

The Pearson correlation coefficient is:

cor (X ,Y )=
∑n

i=1
(
xi−X

)(
yi−Y

)
(n−1)SXSY

(2)

where X is the sample mean of X , and Sx is sample standard deviations of X .
The mutual information is:

I (X ,Y )=
∑

x∈{0,1}

∑
y∈{0,1}

p
(
x,y

)
log

(
p
(
x,y

)
p(x)p

(
y
)) (3)

where p(x) is the probability of a symbol (0 or 1) appears in X .
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The Lp-norm is defined as:

dL=

[ N∑
i=1

∣∣xi−yi∣∣p]1/p (4)

where p= 1 is the Hamming distance.
We applied two phylogenetic tree based method, maximum likelihood (Barker & Pagel,

2005) and Dollo parsimony distance (Kensche et al., 2008), as representations of model-
based methods. In order to reduce the computational time, as well as achieving a balanced
phylogenetic tree, we decreased two third of the bacterial species. The phylogenetic tree
was constructed based on the small ribosomal RNA (16S/18S) sequences downloaded from
the SILVA database (release 119) (Quast et al., 2013). After reducing the redundancy of
ribosomal RNA sequences, a total of 522 species were selected including 243 in Eukaryota,
201 in Bacteria, and 78 in Archaea. The truncated ribosomal RNA sequences were aligned
using the MAFFT program (Katoh & Standley, 2013), and the phylogenetic tree was
generated by the RAxML program with default parameters (Stamatakis, 2014). LRs of the
maximum likelihood method were calculated by the BayesTrait (Barker & Pagel, 2005). In
the Dollo parsimony method, the gain/loss state is firstly reconstructed for each node of
the phylogenetic tree, and then the Dollo parsimony distance is calculated as:

dDollo(X ,Y )=
∑

i∈branches

∣∣(anc (xi)−desc (xi))−(anc (yi)−desc (yi))∣∣ (5)

where anc (xi) and desc (xi) are the ancestral and descendant’s state of a branch (Kensche et
al., 2008).

The NPP was used to normalize phylogenetic profiles, in which processed BLASTP bit
scores were included (Sadreyev et al., 2015; Tabach et al., 2013a; Tabach et al., 2013b). In a
bit score profile P with n proteins acrossm species, for each bit score, it was set as 1 if lower
than the 70. Then for each protein ni, if its number of homologous acrossm organisms was
lower than a threshold, e.g., 12, the protein is removed because of its poor conservation.
Next the bit score pij was normalized as log 2

(
pij/pmaxi

)
, where pmaxi was the maximum bit

score in the i-th row. The last step was to normalize bit scores across species. Specifically,
the bit score pij was normalized as

(
pij−µj

)
/σj , which was also known as the z-score,

where µj and σj were the mean and the standard deviation of the j-th column, respectively.
Compared to the original profile P , the NPP normalized profile P ′

(
n′×m

)
had the same

organism number m, but may contain less proteins.
Another normalization method was called SVD (Franceschini et al., 2015; Psomopoulos,

Mitkas & Ouzounis, 2013). In a bit score profile P with n proteins across m species, for
each bit score, it was set as 0 if lower than the 60. Then the bit score pij was normalized as
pij/pmaxi, where pmaxi was the maximum bit score in the i-th row. The next step was to SVD
of the profile following P =U

∑
V ′, where U was the unitary matrix. The profile P ′ was

defined as the top trimming columns of U . Because the SVD predictions are sensitive to
the ‘‘trimming’’ parameter (top percentages of the unitary matrix), we set this parameter as
100% and 30%. Similar to the second step of NPP, poor conserved proteins were marked in
the original profile and removed in P ′

(
n′×m′

)
. The last step was Euclidean normalization
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of species in P ′ as pij/
√∑m′

i=1p
2
ij . The SVD normalized profile P ′ may have less organisms

and proteins than those in the original profile P .
The Pearson correlation coefficient and Euclidean distance (p= 2 in Eq. 4) were applied

to measure co-occurrence of paired proteins as described in NPP and SVD, respectively.

PPP method
We combined co-occurrences to implement a new method named PPP to improve the
prediction efficiency. PPP was inspired by ‘‘solo proteins’’ that did not link to any other
proteins, when we conducted whole proteome linkages prediction. However, solo proteins
may be not in existence, considering the huge size of protein interactions representing
complex biological activities (Stumpf et al., 2008). One solo protein occurred when
correlated relationships of this protein with others were all lower than a pre-defined
threshold in co-occurrence methods. Especially, a stringent threshold set to get higher
reliable linkages always yielded more solo proteins. Thus, instead of setting an arbitrary
threshold of co-occurrency, PPP chose top-ranking T linkages for each protein.

We illustrated PPP by predicting whole proteome linkages among n proteins from a
phylogenetic profile across m species. The first step was to roughly exclude linkages with
negative correlations. For a given protein ni, the Pearson correlation with the other proteins
was calculated and denoted as cor (l)∈Vcor . Similarly, the Jaccard similarity vector VJ was
generated. We excluded proteins with negative Pearson correlations, because a negative
number would imply the presence of one protein and the absence of another in a pair,
which could not be considered as a functional link under an evolutionary scenario. In the
next step, we recorded the rank in decreasing order of each element in the vector VJ and
denoted as rank (l)∈VJ−rank. Finally, top T proteins were considered to be functionally
linked to the proteins

Li={l|cor (l)> 0∧ rank (l)<T } (6)

where T ranges from 1 to n−1. Thus, for a given protein, it has at least one partner owning
the largest co-occurrency. A smaller T yielded less but more reliable linkages.

The whole proteome functional linkages were calculated for proteins as the same
procedural L= {L1,...,Ln}. The predicted linkages were considered as a symmetric
relationship, which means that we neglected the linkage direction between paired proteins.

Control datasets
We retrieved 1,604 human complexes from the CORUM database (Ruepp et al., 2010).
To generate the positive references, we chose paired proteins in same complexes. The
control dataset consisted a total of 57,114 positive linkages (Table S2) and 571,140 negative
linkages (Table S3), which were constructed by randomly selecting two proteins located in
different complexes. Moreover, the negative linkages were not allowed from the complexes
that resided in the same subcellular position. To avoid an arbitrary judgment, we could
randomly choose multiple negative linkage lists (Table S4). Because protein pairs in large
complexes contributed a large proportion in positive linkages and bias the results, we
excluded complexes containing more than 40 subunits and generated another control
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dataset with 29,189 positive linkages and 291,890 negative linkages. Moreover, we used
the control datasets from Ta, Koskinen & Holm (2011), which included 26,525 positive
linkages and a same number of negative ones.

Similarities or distances in co-occurrence and normalization methods, LRs in the
maximum likelihood method, distances in the Dollo parsimony method, and top rank
in PPP were used to generate series of thresholds. Under each threshold, the number
of TP true positives (TP) and true negative (TN) represented the positive and negative
predicted linkages, respectively. In contrast, false positive (FP) and false negative (FN) were
erroneously detected as positive and negative linkages under certain thresholds. In ROC
curves, we represented the FPR and TPR in the x-axis and y-axis, respectively, as:

FPR= 1− specificity = 1−
TN
N

(7)

TPR= sensitivity =
TP
P
. (8)

P andN represent the total number of positive and negative reference links, respectively.
In PR curves, we defined the precision and recall as:

Precision=
TP

TP+FP
(9)

Recall =
TP

TP+FN
. (10)

To validate the linked proteins that were present across a wide range of species, we
compared the PPP predicted linkages with the results generated by the MMM method,
which evolves the largest common submatrix between paired proteins (Bezginov et al.,
2013; Rodionov et al., 2011; Tillier & Charlebois, 2009). With the MMM threshold set as
12, a total of 6,422 co-evolved protein pairs were retrieved (Table S6). We chose proteins
that had 95%, 85%, 75%, and 65% homologies present percentage across 972 species,
respectively, and then we re-generated the MMM protein pairs accordingly. The hit rates
were calculated as Ntop/NMMM , where Ntop denoted the number of PPP predicted linkages
under certain top rank threshold (ranging from 1 to 3,000) and NMMM was the number of
MMM re-generated protein pairs.

Selection and vitalization of functional gene-sets and mitochondria
correlation network
To evaluate the biological features of our whole proteome predicted functional linkages,
we chose four different biological gene-sets databases: KEGG (Kanehisa et al., 2006),
Biocarta, NCI/Nature Pathway Interaction Database (NCI) (Schaefer et al., 2009), and
Reactome (Fabregat et al., 2016). The R/Bioconductor package ‘‘graphite’’ (Sales et al.,
2012) re-constructed the pathway topology into 2,093 different protein-protein interaction
networks. We calculated the predicted percentages for each gene-sets using our whole
proteome functional linkages list. Three representative gene-sets as MAPK signalling
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pathway, GABA A receptor activation, and TCA citrate cycle, were visualized by an
integrated Circos plot (Krzywinski et al., 2009).

To generate the human mitochondria correlation network with our prediction
results, we retrieved 1,006 human mitochondria related proteins (Pagliarini et al., 2008),
which was visualized by Cytoscape (Shannon et al., 2003). Five protein complexes in
oxidative phosphorylation system (OXPHOS), including complex I (NADH-ubiquinone
oxidoreductase), complex II (succinate-ubiquinone oxidoreductase), complex III
(ubiquinol-cytochrome c reductase), complex IV (cytochrome c oxidase), and complex V
(F1Fo ATP synthase) were highlighted, as well as MRPs.

Statistical analysis
The pROC package was used to perform the typical ROC analysis (Robin et al., 2011).
The SVD normalization was carried out by the SVD-Phy package (Franceschini et al.,
2015). The rest programming tasks were conducted using the open-source R Project
(http://www.r-project.org/).
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