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Abstract The effectiveness of regulatory actions designed to
improve air quality is often assessed by predicting changes in
public health resulting from their implementation. Risk of
premature mortality from long-term exposure to ambient air
pollution is the single most important contributor to such as-
sessments and is estimated from observational studies gener-
ally assuming a log-linear, no-threshold association between
ambient concentrations and death. There has been only limited
assessment of this assumption in part because of a lack of
methods to estimate the shape of the exposure-response func-
tion in very large study populations. In this paper, we propose
a new class of variable coefficient risk functions capable of
capturing a variety of potentially non-linear associations
which are suitable for health impact assessment. We construct

the class by defining transformations of concentration as the
product of either a linear or log-linear function of concentra-
tion multiplied by a logistic weighting function. These risk
functions can be estimated using hazard regression survival
models with currently available computer software and can
accommodate large population-based cohorts which are in-
creasingly being used for this purpose. We illustrate our
modeling approach with two large cohort studies of long-
term concentrations of ambient air pollution and mortality:
the American Cancer Society Cancer Prevention Study II
(CPS II) cohort and the Canadian Census Health and
Environment Cohort (CanCHEC). We then estimate the num-
ber of deaths attributable to changes in fine particulate matter
concentrations over the 2000 to 2010 time period in both
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Canada and the USA using both linear and non-linear hazard
function models.

Keywords Air pollution . Cohort . Exposure .Mortality .

Particulate matter

Introduction

Estimating the association between ambient concentrations of
outdoor air pollution and mortality has traditionally been con-
ducted with the use of cohort studies in which a group of
subjects are identified, important mortality risk factors record-
ed, and the cohort is followed up for vital status and cause of
death. Several cohort studies of ambient air pollution have
been conducted in North America and Western Europe
(Hoek et al., 2013). Although these studies have undergone
extensive analyses, there has been little attention paid to the
shape of the association between exposure and mortality.

Estimating the exposure-response relationships is critical to
assessing the impact of specific regulatory actions to improve
air quality on population mortality rates (Cohen et al., 2004,
Ostro 2004, Lim et al., 2012; US EPA, 2012; Murray et al.,
2015). Such analyses focus on predicting changes in the num-
ber of deaths associated with proposed or hypothesized chang-
es in ambient air quality for specific populations. Change in
death estimates such as

ΔD ¼ M 0 1−
1

R β;Δzð Þ
� �

� pop

can be calculated. Here, ΔD is the predicted change in the
number of deaths for the population of interest, M0 is the
baseline mortality rate,Δz is the predicted or observed change
in ambient concentrations, and pop is the size of the target
population. The mortality impact function, R(β,Δz), is often
expressed as a relative risk function of a vector of unknown
parameters β. Uncertainty is introduced into the analysis by
simulation methods. Computer software is available to con-
duct such analyses (Global Burden of Disease (Lim et al.,
2012, Murray et al., 2015), environmental Benefits Mapping
Analysis Program (BenMAP) (US EPA 2015), World Health
Organization (Ostro 2004), and Health Canada—Air Quality
Benefits Assessment Tool—(Judek et al., 2012)).

The simplest form R(β,Δz) = eβ × Δz for scalar β has been
employed most often. The risk coefficient β is obtained from
analyses of cohort studies almost exclusively based on the
Cox proportional hazards model (Cox, 1972). In these models,
a linear association between ambient concentration and the
logarithm of the hazard rate, the instantaneous probability of
death, is assumed.

Increasingly large study populations are now being used to
examine the association between ambient concentrations of

air pollution and adverse health outcomes. These studies
link study specific data, population registries (Fisher et al.,
2015), census information (Crouse et al., 2012, 2015;
Hales et al., 2012; Cesaroni et al. 2013), or administrative
health databases (Zeger et al., 2008; Greven et al. 2011;
Carey et al., 2013) to vital status and cause of death over
time and include hundreds of thousands to millions of
deaths. Although these large sample sizes are attractive in
terms of providing risk estimates with relatively small sam-
pling errors, the suite of applicable analytical methods to
characterize the exposure-response relation between air
pollution and mortality is limited due to restrictions on
the size of computer memory and analysis time.

Consequently, studies employing large cohorts often fit
natural, restricted, or smoothing splines with a few degrees
of freedom or a few categories of air pollution concentrations
to describe the shape of the association between ambient con-
centrations and mortality because these functions can be esti-
mated with standard computer software. Statistical tests are
employed comparing these functions to linear in concentration
models. These approaches require the selection of the number
and placement of spline knots or categories of air pollution
concentrations. They do not necessarily yield shapes that are
suitable for health impact assessment, such as being monoton-
ically non-decreasing. Smoothing splines are preferable in this
regard in that they display less curvature but also may not be
strictly monotonically increasing. Smoothing splines may also
mask some detail of the shape of the concentration-response
function, such as a threshold-type association, since air pollu-
tion typically explains only a small fraction of mortality, and
as such the fitted smoothing spline often has little curvature.
Smoothing splines also can pose computer implementation
problems for very large cohorts. Unfortunately, no computer
software is available to fit monotonic natural or smoothing
splines for the Cox survival model, although monotonic
smoothing splines have been implemented for the exponential
family (Pya and Wood 2013). Finally, risk estimates from
these non-parametric models are not as conveniently incorpo-
rated into current risk assessment software as are simple alge-
braic functions.

Due to these limitations, only very simple algebraic non-
linear concentration-response functions have been examined.
Krewski et al. (2009) and Crouse et al. (2012) used the loga-
rithm of fine particulate matter (PM2.5) in their Cox survival
models and showed that the log model was a superior
predictor of mortality compared to models that included the
untransformed concentration. Jerrett et al. (2009) fit a thresh-
old function (i.e., no association below a fixed concentration
and linear above) to the association between mortality from
non-malignant respiratory disease and ground level ozone,
again demonstrating a superior fit compared to the untrans-
formed ozone concentration. These approaches to fitting alge-
braic risk functions are feasible since they are transformations
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of concentration and can be directly incorporated into the sur-
vival model structure required with standard software.

Non-linear concentration-mortality associations have been
employed in the Global Burden of Disease 2004 project
(Cohen et al., 2004). Here, the American Cancer Society
Cancer Prevention Study II (CPS II) cohort was used to esti-
mate the association between ambient fine particulate concen-
trations and mortality (Pope et al. 2002). A linear association
was assumed from a counterfactual concentration of 7.5 to
30 μg/m3, the highest observed concentration at the time of
any cohort study of PM2.5, with no additional risk assumed
above this concentration. Sensitivity analyses were conducted
assuming a linear association from the counterfactual to
50 μg/m3 and no additional risk above. A risk model based
on the logarithm of concentration, whose risk parameter was
estimated from the CPS II cohort, was also considered. These
risk models were selected due to concerns that simple linear
extrapolation of excess relative risk from the low concentra-
tions observed in the USA, where the CPS II cohort was
conducted, to much higher concentrations observed world-
wide, would yield unreasonably large burden of disease
estimates.

Burnett et al. (2014) suggest a more complex shape to
describe the association between PM2.5 concentrations and
mortality, with no association below some concentration, a
near-linear association for low to moderate concentrations,
and a diminishing change in risk as concentration increases
over the global range of PM2.5. Using a meta-regression
approach, Burnett et al. (2014) demonstrated that the
PM2.5-mortality association was non-linear and more com-
plex than could be described by a single unknown param-
eter such as that postulated by the logarithm of concentra-
tion. Burnett et al. (2014) incorporated information on risk
from other sources of PM2.5 such as second-hand and ac-
tive smoking and exposure to indoor sources of PM2.5 from
the burning of biomass for cooking and heating.
Concentrations from these sources are much larger than
those observed in cohort studies of ambient air pollution
that have been largely conducted in North America and
Western Europe (Hoek et al., 2013). This information pro-
vided a means to estimate risk over the global range of
ambient concentrations, the focus of their work.

These authors incorporated information from cohort stud-
ies of ambient air pollution by estimating study-specific risk
based on contrasts in concentration from the study-specific
mean to a counterfactual level. This non-linear risk model
was used by the Global Burden of Disease 2010 project
(Lim et al., 2012) to predict mortality burden for all 188 coun-
tries worldwide and has the form

R β; zð Þ ¼
1 if z < zc f otherwise

1þ β1 � 1−e−β2 z−zc fð Þβ3� �( )

for counterfactual concentration zcf, below which no addition-
al risk is assumed. Little power is available, however, to dis-
criminate among shapes of the concentration-mortality asso-
ciation if only studies of ambient air pollution are used since
their mean concentrations are similar. Thus additional infor-
mation from other sources of fine particulate exposure was
required to discern the shape of the concentration-mortality
association. The unknown parameters in this model form can-
not be estimated using standard survival model software and
thus cannot be directly applied to the analysis of individual
cohort studies.

As a result, there has been no consensus as to the shape of
the concentration-mortality association solely based on infor-
mation from existing cohort studies and no method has been
suggested as to how to identify such shapes for use in health
impact assessment. In this paper, we describe a modeling
framework in which a class of flexible algebraic
concentration-response functions can be fit to survival models
using standard computer software and can accommodate very
large cohorts. In addition, such models should ideally be able
to be directly incorporated into existing health impact assess-
ment computer software, both in terms of health impact pre-
dictions and their uncertainty. We illustrate our modeling ap-
proach with examples from the American Cancer Society
Cancer Prevention Study II (CPS II) cohort and the
Canadian Census Health and Environment cohort
(CanCHEC).

Relative risk model

In this section, we present a new class of concentration-
response models that capture relationships between ambient
concentrations and mortality in cohort studies which we a
priori suggest are suitable for health impact assessment: linear,
log-linear, threshold, and variations on sigmoidal shapes.

Consider the relative risk hazard model, h(t|x, z), of the
form

h t x; zjð Þ ¼ ho tð Þexp γ
0
xþ β*ω z μ; τjð Þ*f zð Þ

n o
;

where ho(t) is the baseline hazard function of follow-up
time t. Here, f is a known parametric monotonic function
of air pollution concentration z, 0 <ω(z|μ, τ) < 1 is a known
weighting function indexed by scalar values μ and τ, with
β an unknown parameter to be estimated from the survival
data using standard computer software. Here, x is a vector
of known risk factors such as smoking history, diet, and
education with corresponding unknown parameter vector
γ. Our focus is on identifying the shape of the association
between exposure and response and not on modeling the
other risk factors. We a priori specify the risk factors in our
analysis but for each model describing air pollution, we
allow different estimates of γ.

Air Qual Atmos Health (2016) 9:961–972 963



Our model can be interpreted as a variable coefficient risk
function where β(z) =β×ω(z|μ, τ) represents the risk coeffi-
cient that varies with concentration.

Since variations on a sigmoidal shape are of interest, we
consider the logistic weighting function

ω z μ; τjð Þ ¼ 1þ exp −
z−μ
τ � r

� �� �n o−1

with μ a location parameter and r the range of z. The pa-
rameter τ controls the curvature of the weighting function.
Larger values of τ produce shapes with less curvature. For
example, when τ< 0.001 ω approximates an indicator func-
tion at μ. The weighting function is nearly linear for
τ> 0.5.

We then consider two forms of f: f(z) = log(z) and f(z) = z
that have been previously used to describe the relationship
between outdoor air pollution exposure and mortality, where
log(z) is the natural logarithm of concentration. We also con-
sider values for μ selected based on percentiles of the distri-
bution of z.

Concentration-response models that have been previously
examined can be included within this framework. For exam-
ple, the linear model can be specified by f(z) = z and setting μ
to a large negative number such that ω(z|μ, τ) ~ 1,∀ z. A sim-
ilar specification can approximate the log-concentration mod-
el with f (z) = log(z). The threshold model is specified by
f(z) = z−T with ω(z|μ=T, τ=0.001) for threshold concentra-
tion T.

We have found in practice that for large variations in con-
centration our hazard function can have a marked curvature
near μ and setting τ=0.1 suitably reduces this undesirable
curvature without dramatically changing the shape of the
function. Functions that approximate powers of concentration
can be constructed by setting τ=0.2. Such power in concen-
tration forms have been previously suggested for health im-
pact functions (Burnett et al., 2014). Selected forms of the
concentration-response function are displayed in Fig. 1 that
indicate the variety of shapes that can be constructed from our
model specification.

The unknown parameter β can be estimated using stan-
dard survival analysis software. The specific variable
ν(z|μ) that best fits the data within our class is selected
by the following procedure designed to minimize the num-
ber of model runs.

1. Create four weighting variables based on values of μ de-
fined at the 0th, 25th, 50th, and 75th percentiles of the air
pollution distribution with τ=0.1 and an additional four
variables with τ=0.2. Multiply these eight weighting var-
iables by the concentration or logarithm of concentration
to create 16 variables. Run 16 Cox models based on these
variables. Select the variable with the largest log-
likelihood value among the 16 examined.

2. Given the best fitting μ value based on Step 1, fit two
models setting μ to five percentile values greater than
and less than the best fitting μ. For μ equal to the mini-
mum concentration, subtract and increment equal to the
difference between the 5th percentile and minimum con-
centration from the minimum concentration and denote
this value as −5th percentile. Continue to take differences
of minimum—10 % of increment and minimum—15 %
of increment until log-likelihood is maximized.

3. If the log-likelihood values of the twomodels in Step 2 are
not larger than the best fitting model in Step 1—STOP.
Otherwise, run additional models with increments of μ set
to five percentile values until the largest log-likelihood is
achieved.

Computer code to conduct this search, written in both R
and SAS by Hong Chen, is provided in the Electronic supple-
mentary material.

Incorporation into risk assessment models
and uncertainty characterization

Suppose the current concentration is denoted by zC and we
wish to predict the change in risk if a target population was
exposed to concentrations predicted by future reduction sce-
narios, denoted by zF. Then, the hazard ratio associated with
such changes in concentration is

HR zCð Þ
HR zFð Þ ¼ exp Δν zC; zF

� �� β̂
n o

;

where Δν(zC, zF) = f (zC) ×ω(zC|μ) − f (zF) ×ω(zF|μ) is the
transformed change in air pollution. The change in the
number of deaths associated with this change in exposure
is calculated by

ΔD ¼ M0 1−exp −Δν zC; zF
� �� β̂

n o� �
� pop;

a form that can readily be incorporated into most health
impact assessment software.

Uncertainty in estimates of ΔD is characterized by uncer-
tainty of its components, namely z, M0, pop, and

Δν zC; zFð Þ � β̂. Uncertainty exists in Δν zC; zFð Þ � β̂ from

both uncertainty in the estimate β̂ for a specific variable defini-
tion v(z|μ) = f(z) ×ω(z|μ) and the selection of the variable v(z|μ).

If v(z|μ) is assumed known, then

v
�
z μ

���� � βeN�
v
�
z μ

���� � β̂; v
�
z μ

���� � se
β̂

�
;

with seβ̂ the standard error of β̂ obtained from survival

model software. Typical health impact assessment pro-
grams simulate a large number of realizations from this
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normal distribution resulting in an uncertainty distribution
of excess deaths.

In our case, the form of v(z|μ) is not known a priori but has
been determined from the data. One can incorporate the joint
uncertainty in both β and μ by forming an “ensemble”model.

Here, simulations of a large number of realizations of v z μjð Þ
�β̂ weighted by the likelihood value for all the models fit in
our model selection procedure are undertaken, as would be
prescribed by Bayesian model averaging methods (Buckland
et al., 1997).

Illustrative examples

We illustrate the use of our model with an analysis of the
association between estimates of ambient PM2.5 concentration
and mortality in two large cohort studies: CPS II and
CanCHEC. The analytic datasets used here are the same as
that reported by Pope et al. (2015a) for CPS II and Crouse
et al. (2015) for CanCHEC. We then compare the estimated
number of excess deaths associated with changes in ambient
concentrations between two time periods (~2000 and ~2010)
for both the entire US and Canadian populations between our
optimal or ensemble non-linear risk models for each cohort
and the corresponding risk model that is linear in
concentration.

American Cancer Society Cancer Prevention Study II
(CPS II) cohort

A total of 669,046 CPS II participants were assigned estimates
of PM2.5 concentrations using a national-level hybrid land use
regression and Bayesian Maximum Entropy interpolation
model (Beckerman et al., 2013) for the 1998–2004 time peri-
od at their place of residence at the commencement of the
study in 1982. Several mortality risk factors were included
in the Cox survival model: education; marital status; body
mass index (BMI); BMI squared; cigarette smoking status;
cigarettes per day and cigarettes per day squared; years
smoked and years smoked squared; started smoking at
<18 years of age; passive smoking (hours); vegetable, fruit,
and fiber and fat intake; beer, wine, and liquor consumption;
occupational exposures; an occupational dirtiness index; and
1990 socio-demographic ecological covariates at both the ZIP
code level and the ZIP code minus the county level mean
(median household income; percentage of black residents,
Hispanic residents, and percentage of adults with post-
secondary education, unemployment, and poverty). The base-
line hazard function was stratified by single year age groups,
sex, and race.

There were 237,201 deaths from all causes during the
1982–2004 follow-up period. [Note, we could not examine
all non-accidental causes of death since we could not identify

Fig. 1 Selected hazard ratio
forms
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accidental causes prior to 1988 when subjects were linked to
the computerizedmortality files with specific causes of death.]
Fine particulate concentrations ranged from 1.4 to 27.9μg/m3.
The best fitting “optimal” model was specified with μ given

by the 5th percentile (8.2 μg/m3), f(z) = log(z), β̂ ¼ 0:0433,
and seβ̂ ¼ 0:00446 (Table 1). Similar results are presented

for all models examined by our search algorithm and the en-
semble likelihood-based weights assigned to each model. The
optimal (black line) and ensemble (blue line) models are pre-
sented in Fig. 2 (left hand panel) in addition to their uncertain-
ty intervals. The optimal and ensemble models are similar but
the ensemble uncertainty interval is clearly wider than the
corresponding interval for the optimal model. This is due to
the non-trivial ensemble weights assigned to models with
much larger estimates of β that correspond to smaller values

of μ (Table 1). The linear in concentration model was β̂ ¼ 0:
0071 and seβ̂ ¼ 0:00079 with corresponding log-likelihood

value −1,920,357.9. The log-likelihood value of the non-
linear model (−1,920,350.7) was larger than that of the linear
model suggesting the optimal non-linear model was an im-
proved fit.

Canadian Census Health and Environment Cohort
(CanCHEC)

CanCHEC has been described in detail previously (Crouse
et al., 2012, 2015; Peters et al., 2013). It is a population-
based cohort of 2.6 million subjects over 25 years of age
who completed the 1991 census long-form. These subjects
were linked to the Canadian Mortality Database using deter-
ministic and probabilistic linkage methods from June 4, 1991
(census day) through December 31, 2006. For this illustrative

analysis, we extracted all non-accidental deaths. Estimates of
PM2.5 for the period 1998–2006 were obtained from a com-
bination of satellite remote sensing information and a chemi-
cal transport model (van Donkelaar et al., 2013). We included
in the Cox proportional hazards model covariates for visible
minority status, marital status, highest level of education, im-
migrant status, employment status, aboriginal ancestry, occu-
pational classification, and quintiles of household income (see
Crouse et al., 2015 for details on the definitions of these
variables). In addition to covariates recorded at the subject
level, we calculated time-varying contextual variables from
the closest census year (i.e., either 1991, 1996, 2001, or
2006).We stratified the baseline hazard by age (5 year groups)
and sex.

The cohort experienced 328,585 non-accidental deaths
during follow-up. Fine particulate concentrations ranged from
1.1 to 17.0 μg/m3. The optimal non-linear PM2.5 model was

specified by μ=−1.50, f(z) = log(z), β̂ ¼ 0:0603, and
seβ̂ ¼ 0:00451, with log-likelihood −3,196,246.5. This value
of μwas determined by subtracting the difference between the
5th and 0th percentiles from the 0th percentile. Approximately
99 % of the likelihood based weights were assigned to the
optimal model and models with adjacent values of μ, namely
−1.5 and 3.7. The predicted hazard ratio for the optimal model
(black solid line) and uncertainty bounds (black dashed line)
are presented in Fig. 2, right hand panel. In addition, we pres-
ent the ensemble hazard ratio of all models fit (blue solid line)
and uncertainty bounds (gray-shaded area) in the right hand
panel of Fig. 2. The optimal model hazard ratio is similar to
the ensemble hazard ratio. However, the ensemble model un-
certainty bounds are slightly larger than the optimal model
bounds reflecting the additional uncertainty in the estimate
of μ. Our estimate of the hazard function is clearly supra-
linear in concentration and a better mortality predictor than
the traditional linear in concentration model with

β̂ ¼ 0:0080, seβ̂ ¼ 0:000644, and log-likelihood −3,196,256.

Estimating excess deaths associated with temporal
changes in ambient PM2.5 concentrations

We have demonstrated that the optimal or best fitting hazard
model within our class is non-linear for both the CPS II and
CanCHEC cohorts (all causes of death for CPS II and non-
accidental causes for CanCHEC) and a better predictor of
mortality than a model which is linear in concentration. Of
interest is how different these models are in predicting attrib-
utable deaths within the general population. We examined this
issue using two datasets, one for Canada and the other for the
USA.

The Canadian data consisted of estimates of ambient PM2.5

concentrations for each of 288 Census Divisions in Canada for

Table 1 Estimates of β and standard error by study (CPS II or
CanCHEC) for non-linear models with f (z) = log(z) by value of μ and τ;
likelihood weight used for ensemble estimates also presented

Study μ μg/m3

(percentile)
τ β (standard error) Likelihood

weighta

CPS II −5.43 (−5 %) 0.1 0.0930 (0.00984) 0.036

1.38 (0 %) 0.1 0.0802 (0.00843) 0.080

8.19 (5 %) 0.1 0.0433 (0.00446) 0.460b

9.04 (10 %) 0.1 0.0398 (0.00412) 0.324

10.55 (25 %) 0.1 0.0351 (0.00369) 0.056

1.38 (0 %) 0.2 0.0666 (0.00704) 0.044

CanCHEC −4.10 (−10 %) 0.1 0.0620 (0.00469) 0.297

−1.50 (−5 %) 0.1 0.0603 (0.00451) 0.363b

1.10 (0 %) 0.1 0.0535 (0.00404) 0.329

3.20 (5 %) 0.1 0.0399 (0.00307) 0.011

aAll other models examined during our model search routine we assigned
weights <0.001 and not reported
bOptimal model
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two time periods: 1999–2001 and 2010–2012, in addition to
the population over 25 and number of non-accidental deaths
based on the 2010–2012 time period as complied by Stieb
et al. (2015). The US data consisted of modeled estimates of
ambient PM2.5 at the county level for the years 2000 and 2010
in addition to the population over age 30 and number of all
cause of deaths for the year 2010. Themodeled ambient PM2.5

concentration fields for the USA for 2000 and 2010 were
provided by the Multiethnic Study of Atherosclerosis and
Air Pollution (MESA-AIR) project team (Kim et al. 2015).

PM2.5 air quality levels in much of North America im-
proved between over time, with generally more widespread
reductions in the Eastern and Northwestern USA and
California and in the more southern census divisions in
Canada (Fig. 3). The average change in concentration among
census divisions in Canada was 1.1 μg/m3. However the
population-weighted change was 2.0 μg/m3 or 24 % of
1999–2001 values based on a reduction from 8.5 μg/m3 in
1999–2001 to 6.5 μg/m3 in 2010–2012. The mean US county
average concentration changed by 2.3 μg/m3 with the
population-weighted concentration changing from 12.4 μg/
m3 in 2000 to 8.7 μg/m3 in 2010, a decline of 3.7 μg/m3 or
17 % of 2000 concentrations. Greater changes in concentra-
tions over time were observed for those areas with larger pop-
ulations in both countries. Increases in PM2.5 occurred in 31%
of Canadian census divisions and 12% ofUS counties, largely
in the central region of the USA and the north and western
regions of Canada, areas with sparser populations.

The focus of our illustrative analysis is on changes in con-
centrations over time. As such, we are interested in how the
hazard function changes with concentration. To understand
this change, we plot the derivatives of the hazard functions
(Fig. 4, left hand panel) with respect to concentration as sug-
gested by Pope et al. 2015b. The CanCHEC hazard function
derivative is greater than the CPS II derivative when PM2.5

<7 μg/m3. However, only 40 % of Canadians lived in areas
below this level in 2000. The derivative of the CanCHEC
optimal non-linear hazard function is greater than the deriva-
tive for the linear in concentration model when PM2.5 <9 μg/
m3. Approximately half of Canadians lived in areas under his
value in 2000. Estimates of deaths attributable to the

difference in concentrations over time are presented in
Table 2. Similar deaths were predicted for the linear in con-
centration (3477), optimal non-linear (3146), and ensemble
non-linear (3323) CanCHEC models. This similarity is due
to the fact that half of Canadians lived in regions where the
non-linear model derivatives were greater/less than the linear
model derivative. However, the excess deaths predicted by the
CPS II linear in concentration model (3090) were smaller than
the CPS II non-linear model (4302 for the optimal model and
4243 for the ensemble model) since more Canadians (60 %)
lived in areas where the CPS II non-linear model derivative
was larger than either the linear or non-linear model
CanCHEC derivative.

Estimates of year 2000 and 2010 ambient PM2.5 concen-
trations along with the linear, optimal, and ensemble non-
linear concentration-response hazard functions for the
CanCHEC and CPS II cohorts were input into BenMAP to
generate estimates of the number of deaths attributable to
changes in exposure between 2000 and 2010 for the USA.
The resulting estimates are presented in Table 2 for the CPS
II-based linear model, the optimal and ensemble non-linear
models based on CanCHEC, and both the optimal and ensem-
ble non-linear models based on CPS II. For the USA, we
observed that the CanCHEC model predicted fewer reduc-
tions in attributable deaths (46,600) compared to the linear
model (60,900) and even fewer compared to the CPS II opti-
mal (77,700) and ensemble (76,500) models. As with the
Canadian data, these differences in attributable deaths are ex-
plained by the location in the exposure distribution where
most of the change in concentration occurs. Only 5 % of the
over 30 population in the USA lived in counties with 2000
concentrations less than 7 μg/m3, where the CanCHECmodel
derivative is greatest, while 61 % lived in counties with con-
centrations between 7 and 14 μg/m3, where the change in the
CPS II model mortality response is greatest.

Figure 5 shows the distribution of county level estimated
reduction in premature mortality for the USA by combinations
of year 2000 PM2.5 concentrations and the change in PM2.5

between 2000 and 2010. Size of the circles is proportional to
the predicted reductions in premature deaths for the CPS II
optimal non-linear model (dark gray) or CanCHEC optimal

Fig. 2 Hazard functions for CPS
II (left hand panel) and
CanCHEC (right hand panel).
Optimal hazard function (black
solid line) with uncertainty
bounds (dashed black lines).
Ensemble hazard function (blue
solid line) with uncertainty
bounds (gray-shaded area)
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non-linear model (light gray). The light gray circles indicate
combinations of concentration levels and changes where the
CanCHEC model predicts greater mortality impacts than the
CPS II model. The dark gray circles indicate combinations of
concentration levels and changes where the CPS II model
predicts greater mortality impacts than the CanCHEC model.
Black circles show the grid cells where there was an increase
in PM2.5 between 2000 and 2010. The overall pattern of the

distribution shows that the CPS II model predicts greater im-
pacts in locations with greater concentrations and greater re-
ductions, while the CanCHEC model gives greater impacts
where concentrations are lower and reductions are smaller,
consistent with the analysis of the model derivatives.

The incorporation of the additional uncertainty implied by
alternative values of μ in estimates of excess deaths depends
on the uncertainty in the derivative of the hazard function as

Fig. 3 Change in PM2.5

concentrations over time. Census
division are represented in
Canada and counties in the USA.
Time period displayed for Canada
was based on 1999–2001 average
and 2010–2012 average. Time
period displayed for the USAwas
based on 2000 and 2010

Fig. 4 Derivative with respect to concentration of optimal non-linear
models (blue line CPSII, red line CanCHEC) and linear in
concentration models (black line CPSII, orange line CanCHEC)
displayed in the left hand panel. Derivatives for CPS II (optimal model
= black line, ensemble model = blue line) with uncertainty bounds

(optimal model = black dashed lines, ensemble model = gray-shaded
area) presented in the middle panel and CanCHEC (optimal model =
black line, ensemble model = blue line) with uncertainty bounds
(optimal model = black dashed lines, ensemble model = gray-shaded
area) displayed in the right hand panel
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shown in Fig. 4 for CPS II (middle panel) and CanCHEC
(right hand panel) for both the optimal (dashed black lines)
and ensemble (gray-shaded area) models. The uncertainty
associated with the optimal and ensemble models was sim-
ilar for both the CPS II and CanCHEC models when con-
centrations are greater than 8 μg/m3. However, the deriva-
tive of the ensemble models displayed much greater uncer-
tainty for the CPS II model below this concentration and

somewhat greater uncertainty for the CanCHEC model.
This observation is consistent with our uncertainty esti-
mates of excess deaths (Table 2) where in Canada, the
ensemble models displayed greater uncertainty than the
optimal models but no such pattern was observed in the
USA due to the location of changes in concentration within
the exposure distribution (at higher concentrations in the
USA compared to Canada).

Table 2 Estimates of excess deaths attributable to changes in PM2.5 concentration over time by form of hazard function (linear or non-linear), cohort
(CanCHEC and CPS II), and country (Canada and USA)

Country (population weighted
change in PM2.5)

Hazard model form—cohort Number of excess deathsa

(95 % confidence interval)
Percent change in
baseline mortality rate

Canada (2.0 μg/m3) Linear—CanCHEC 3480 (2940–4020) 1.55

Linear—CPS II 3090 (2430–3750) 1.38

Non-linear optimal—CanCHEC 3146 (2700–3610) 1.41

Non-linear ensemble—CanCHEC 3320 (2720–4060) 1.48

Non-linear optimal—CPS II 4300 (3420–5200) 1.92

Non-linear ensemble—CPS II 4240 (3100–5560) 1.90

Combined non-linear ensemblea 3640 (2780–4500) 1.62

USA (3.7 μg/m3) Linear—CanCHEC 68,700 (58,000–79,300) 2.82

Linear—CPS II 60,900 (47,500–74,100) 2.50

Non-linear optimal—CanCHEC 46,600 (39,700–53,400) 1.92

Non-linear ensemble—CanCHEC 49,000 (40,700–57,100) 2.01

Non-linear optimal—CPS II 77,700 (62,200–93,100) 3.20

Non-linear ensemble—CPS II 76,700 (60,600–93,000) 3.15

Combined non-linear ensemblea 61,900 (34,700–89,100) 2.54

aMeta-analytic combination of CanCHEC and CPS II ensemble models

Fig. 5 Estimated reductions in
US premature deaths by
combinations of 2000 PM2.5

concentration and PM2.5 change
between 2000 and 2010
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Comparing and combining concentration-response
functions

The forms of the concentration-mortality association identi-
fied in CanCHEC and CPS II are clearly different. The loga-
rithm was selected for each cohort and the optimal value of μ
was near the lower end of the exposure distribution for both
cohorts (5th percentile for CPS II and the −5th percentile for
CanCHEC). However, the rate of change for very low con-
centrations was greater in CanCHEC compared to CPS II and
the opposite pattern was observed for medium and higher
concentrations (Fig. 4).

This may be due to a few factors. The 5th percentile con-
centration for CPS II was 8.2 μg/m3 while that for CanCHEC
was 3.2 μg/m3. This was due to both lower concentrations in
Canada compared to the USA in general, and the fact that
subjects in CanCHEC covered the entire population including
those living in low exposure rural areas. There was, thus,
additional uncertainty in the form of the function at lower
concentrations for CPS II as evidenced by the need to include
additional functions in the ensemble estimate with μ values
(0th and −5th percentiles) lower than the optimal value at the
5th percentile.

However, the change in risk for concentrations larger than
9 μg/m3 was much greater for CPS II than that for CanCHEC
(Fig. 4). This may be due to the form of the PM2.5 exposure
model. The CPS II exposure model incorporated land use
information including traffic counts while the CanCHEC ex-
posure model used only remote sensing information. Turner
et al. (2016) examined the effect of both regional and local
variation in PM2.5 and mortality in CPS II cohort and found
local variation, primarily induced by land use and traffic data,
was a much stronger predictor than regional variation. The
hazard ratio for a 10 μg/m3 change in PM2.5 based on regional
variation was 1.05 (1.03, 1.07) while for local variation the
hazard ratio was 1.27 (1.21, 1.34). This additional information
may have improved the predictive power of the CPS II expo-
sure model over the CanCHEC exposure model, especially in
the center of the exposure distribution containing the majority
of data.

We have presented two very different estimates of excess
deaths attributable to changes in PM2.5 ambient concentra-
tions over the first decade of this century (Table 2). We have
suggested this could be due to both different concentration
distributions and exposure models. Health impact assessments
of PM2.5 have either used a single study, such as the US EPA
(2012), or a meta-analysis of studies (Judek et al., 2012). Both
these approaches use a linear in concentration risk model. The
meta-analysis approach assumes a common, true, risk func-
tion and that each study is a random representation of that
common function. In most cases, the risk function is charac-
terized by a single parameter assumed to be normally distri-
bution with a mean common to all studies and a study specific

standard error. The meta-analysis approach uses a random
effects model to estimate both a commonmean and uncertain-
ty as a function of true heterogeneity in risk among studies and
within study error.

We can reduce the dimension of our ensemble estimates of
risk for each study by first conducting the health impact as-
sessment, which yields a single uncertainty distribution per
study. We have found that the uncertainty distribution of ex-
cess deaths in our example is well approximated by a normal
distribution. We can then pool the information between the
two functions through the excess death distributions using
the meta-analytic random effects procedure (Viechtbauer
2010). This approach yields mean estimates of excess deaths
(Table 2) between the CanCHEC and CPS II estimates (61,
900 for the USA and 3640 for Canada). However, since the
two functions are very different, the uncertainty intervals are
much wider than either function examined separately
(Table 2).

Discussion

We present an approach to characterizing the shape of the
association between ambient concentrations of air pollution
and mortality applicable to the analysis of large cohort studies
and for use in health impact assessment. Our modeling ap-
proach is very simple to program and implement with stan-
dard computer software for survival analysis. The results can
also be directly incorporated into existing health impact as-
sessment software, including widely used software such as
Health Canada’s AQBAT and the US EPA’s BenMAP. The
computer code to implement our model identification and
estimation procedure is provided in the Electronic
supplementary material in both SAS and R.

Pope et al. (2015b) examine implications of using non-
linear risk models for cost/benefit analysis. A feature of a
linear model is that the magnitude of risk is proportional to
the size of the change in exposure. However, for non-linear
models, the location of exposure changes within the exposure
distribution is also important (Pope et al. 2015b). The use of
non-linear health impact assessment models makes the inter-
pretation of such exposure changes more complex and a priori
less predictable, as illustrated by our examples. We note, for
example, that the linear in concentration model parameter was
slightly greater for CanCHEC (0.008) than that for CPS II
(0.007). However, in our examples for both Canada and the
USA, the CPS II non-linear models predicted more deaths
than did the CanCHEC non-linear models.

We suggest possible explanations for differences in the
shape of the concentration-mortality function between
CanCHEC and CPS II, namely the population size covered
by low concentrations and the form of the exposure model.
We suggest an approach to combining the distributions of
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excess deaths estimated from each model using standard
meta-analysis methods to form a single summary uncertainty
distribution.We also suggest that this approach is preferable to
combining the non-linear functions themselves (Armstrong
et al., 2014) and then conducting the health impact analysis
since the focus of our analysis is on estimating disease burden
associated with changes in exposure and not obtaining a com-
mon risk function. Our method combines both uncertainty in
the risk function within each study and variation in the func-
tions, as they pertain to burden estimates, between functions.

We present a new method to identify the shape of the as-
sociation between air pollution and mortality in cohort study
designs using the Cox proportional hazards model for analy-
ses. However, our method is not restricted to the Cox survival
model and can be used with any regression modeling tech-
nique. For example, the case-crossover design (Maclure 1991)
is often used to examine the association between short-term
exposure to air pollution and acute health events using a con-
ditional logistic regression model. We provide computer code
in both R and SAS to implement our search routine for such
designs in the Electronic supplementary material.
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