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Abstract. The flow of pollutants from Europe and desert
dust to Europe from the Sahara desert both affects the air
quality of the coastal regions of Egypt. As such, mea-
surements from both ground and satellite observations as-
sume great importance to ascertain the conditions and flow
affecting the Nile Delta and the large city of Alexan-
dria. We note that special weather conditions prevail-
ing in the Mediterranean Sea result in a westerly wind
flow pattern during spring and from North to South dur-
ing the summer. Such flow patterns transport dust-loaded
and polluted air masses from the Sahara desert and Eu-
rope, respectively, through Alexandria, and the Nile Delta
in Egypt. We have carried out measurements acquired with
a ground- based portable sun photometer (Microtops II)
and the satellite-borne TERRA/Moderate Resolution Imag-
ing Spectroradiometer (MODIS) sensor during the periods of
October 1999–August 2001 and July 2002–September 2003.
These measurements show a seasonal variability in aerosol
optical depth (AOD) following these flow patterns. Maxi-
mum aerosol loadings accompanied by total precipitable wa-
ter vapor (W) enhancements are observed during the spring
and summer seasons. Pronounced changes have been ob-
served in theÅngstr̈om exponent (α) derived from ground-
based measurements over Alexandria (31.14◦ N, 29.59◦ E)
during both dust and pollution periods. We have followed
up the observations with a 3-day back-trajectories model to
trace the probable sources and pathways of the air masses
causing the observed aerosol loadings. We have also used
other NASA model outputs to estimate the sea salt, dust, sul-
fates and black carbon AOD spatial distributions during dif-
ferent seasons. Our results reveal the probable source regions
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of these aerosol types, showing agreement with the trajectory
andÅngstr̈om exponent analysis results. It is confirmed that
Alexandria is subjected to different atmospheric conditions
involving dust, pollution, mixed aerosols and clean sky.

Keywords. Atmospheric composition and structure
(Aerosols and particles; Pollution – urban and regional)

1 Introduction

Egypt is influenced by the regional scale trade wind system
caused by differential heating between the Mediterranean
Sea and the land regions of North Africa (bare and dry) and
Southern Europe (partial vegetation coverage). This sys-
tem is enhanced during the warm period of the year by the
strong gradient between the Atlantic anticyclone activity and
monsoon activity over the Indian Ocean and Middle East.
The resulting circulation patterns over Egypt are winds from
North that enhance the sea breezes along the North African
coastline. This flow regime penetrates deep inside Egypt and
assists in cleaning the air in the urban locations within the
greater Delta region, such as Cairo, Alexandria, and adjoin-
ing areas

(Kallos et al., 1998, 2007). The boundary layer height
changes from a few hundred meters at night to 2–4 km dur-
ing daytime, thus also assisting in pumping local air pollu-
tants away from their sources (Kallos et al., 1998). During
fall, this pattern is weakened significantly and local circula-
tions start to develop, while stagnation, local boundary layer
formation along the coast, and shallow boundary layer for-
mations in general, are the characteristics that lead to poor
pollutant dispersion conditions. Also, during fall, biomass
burning in the greater Nile Delta becomes a major contributor
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to local air quality degradation due to poor ventilation pro-
cesses (e.g. light winds and shallow boundary layer).

Past studies have identified the pathways and scales of
transport and transformation of air pollutants released from
Europe towards the Eastern Mediterranean and North Africa
(Luria et al., 1996; Millan et al., 1997; Kallos et al., 1998).
Emissions of atmospheric constituents from the African con-
tinent include both trace gases and aerosols. These emissions
are derived from windblown dust, biomass burning, biogenic
emissions and anthropogenic industrial activities (Piketh and
Walton, 2004). Over the Eastern Mediterranean region, mod-
els predict that sulfate aerosols contribute to the net direct
radiative forcing (Charlson et al., 1991; Kiehl and Rodhe,
1995). For that reason, many experimental aerosol stud-
ies have targeted that region over the last decade (Andreae
et al., 2002; El-Metwally et al., 2008; Gerasopoulos et al.,
2003; Ichoku et al., 1999; Kambezidis and Kaskaoutis, 2008;
Kaskaoutis et al., 2007 and 2008; Kouvarakis et al., 2002;
Lelieveld et al., 2002; Luria et al., 1996; Meloni et al., 2008;
Pinker et al., 1997; Paronis et al., 1998).

The objective of the current study is to investigate the re-
gional pattern of pollution and dust aerosols exchange from
and to Europe. Dust is predominantly emitted from Sa-
hara desert, which is the major source of dust in this region.
The current study investigates a multi-year remotely sensed
aerosol data acquired from both MODIS sensor and ground
Microtops II sun photometer, over Alexandria, Egypt, which
is centrally situated within the region of interest. Alexan-
dria is the second largest city in Egypt, and houses more than
60% of the Egyptian national industries. It lies at the junc-
tion of several weather systems, including the Mediterranean
and the Saharan ones. As a result, it is characterized by a
complex synoptic meteorology, which follows an annual cy-
cle (Moulin et al., 1998).

2 Instrumentation, data and methodology

In this research, ground-based aerosol remote sensing was
conducted using a portable Microtops II sun photometer
manufactured by Solar Light Co., USA. The Sun photometer
measures solar radiance (W sr−1m−2) in five spectral wave
bands (340, 440, 675, 870, and 936 nm) from which the
spectral aerosol optical depth (AOD) is derived. Since the
936 nm wavelength is greatly affected by water-vapor ab-
sorption, it is used to derive the total water- vapor column
amount,W . The derived AOD andWdata were subsequently
adjusted following calibration processes performed as de-
scribed by Ichoku et al. (2002). The absolute accuracy of
the calibration-adjusted AOD measurements is expected to
be±0.02 over the mean, with precision 4 times better than
that of the corresponding values before adjustment (Sabbah
et al., 2001).

Microtops II sun photometer measurements were con-
ducted for several years, on clear days when no cloud patch

was even close to the sun, to avoid cloud contamination. For
better quality control, measurements were taken in triplets.
One or several such sets of measurements were obtained per
day. Approximately once per year, the sun photometer was
returned to the National Aeronautics and Space Administra-
tion (NASA), Goddard Space Flight Center (GSFC), Green-
belt, Maryland, USA, and calibrated against a reference in-
strument, which is the master automatic tracking sun pho-
tometer/sky radiometer (CIMEL Electronique 318A) belong-
ing to AERONET (Holben et al., 1998). The calibration en-
abled the determination of calibration coefficients used for
the adjustment of all data acquired between two successive
calibrations. Overall, the data used in this work were ob-
tained from 19 October 1999 to 20 August 2001, and from
28 July 2002 to 4 September 2003.

The spectral AOD at a given wavelengthλ (τλ) represents
the extinction of radiation at wavelengthλ as a result of the
presence of atmospheric aerosols. AOD measurements in
two adjacent wavelengths can be used to calculate the corre-
spondingÅngstr̈om exponent (α) given in Eq. (1), which rep-
resents the slope of the wavelength dependence of the AOD
in logarithmic coordinates (̊Angstr̈om, 1929).

α(λ1,λ2) = −ln

(
τλ2

τλ1

)/
ln

(
λ2

λ1

)
(1)

In the solar spectrum,α is a good indicator of the size range
of the atmospheric particles responsible for the AOD:α > 1
when fine mode (submicron) aerosols are dominant, while
α < 1 for aerosols dominated by coarse or supermicron par-
ticles. In fact, King et al. (1978), Nakajima et al. (1986),
Kaufman (1993), Eck et al. (1999), O’Neill et al. (2001a,
b, 2003), Schuster et al. (2006) and Gobbi et al. (2007) dis-
cuss how the spectral variation of theÅngstr̈om exponent
can provide further information about the aerosol-size dis-
tribution. Many satellite-based and ground-based measure-
ments provide retrievals of spectral AOD, but no direct size-
distribution retrievals. Therefore, analysis ofα is important
in the interpretation of these data and in providing further
information on particle size.

3 Aerosol (pollution/dust) discrimination using
Ångström exponent

A study of the aerosol parameters during major dust storm
events (2001–2005) over the Indo-Gangetic (IG) Plains, In-
dia (Prasad and Singh, 2007) shows a large increase in AOD
from 0.4–0.6 to more than 1, and a corresponding sharp de-
cline in theÅngstr̈om exponent (to the 0–0.4 range) with the
arrival of dust storms compared to non-dusty days. A sharp
decrease in the̊Angstr̈om exponent to low and even negative
values was observed over Delhi and Hyderabad during dust
storm events (Badarinath et al., 2007; Singh et al., 2005) and
also during Saharan dust events (Kaskaoutis et al., 2008; Ha-
monou et al., 1999). An enhanced level ofW (>3 cm, in near
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infra-red, clear column) has been found to be associated with
higher aerosol loading during these dust storms.

Aerosols over the Northern coast of Egypt can have both
local and distant origins depending on the season. Aerosols
from local sources may either be from natural causes, for
instance desert dust particles directly transported from the
Western desert regions or maritime particles produced over
the Mediterranean; or anthropogenic emissions from the
Alexandria industrialized areas and smoke particles from
seasonal biomass fires over the Greater Delta region (e.g.
Barnaba and Gobbi, 2004). This area is also exposed to long-
range transport of not only the Saharan dust, but also anthro-
pogenic pollutants (mainly from Europe) (Luria et al., 1996;
Millan et al., 1997; and Kallos et al., 1998, 2007). Accord-
ing to their findings, long-range transported anthropogenic
aerosol concentrations are very high during the warm period
of the year due to the prevailing trade wind patterns, pho-
tochemical activity, and the absence of precipitation. Desert
dust transport is a major contributor during the spring and the
transitional seasons. Sea-salt particles contribute to aerosol
concentrations over the coastal areas, mainly during strong
wind weather conditions (synoptic scale component). Sea
salt becomes more important during winter due to the pas-
sage of synoptic systems and during summer due to trade
winds from the north and associated wave breaking activ-
ity along the coastline. Knowledge of these seasonal patterns
can be combined with the aerosolÅngstr̈om exponentα anal-
ysis to achieve an approximate differentiation of the aerosols’
origins. In this study,α was determined from AOD measure-
ments at 675 nm and 440 nm wavelengths as given in Eq. (2)
following Ichoku et al. (2002).

α675/440= −
ln(τa675

/
τa440)

ln(675
/

440)
(2)

where,α675/440 is theÅngstr̈om exponent derived using only
the AOD values (τa675 andτa440) measured at the 675 and
440 nm channels. These two wavelengths have been used be-
cause the computedα675/440 can be used to interpolateτa550,
which can then be plotted together with equivalent MODIS
values. Also, the closeness of this wavelength pair allows us
to avoid the curvature in spectral dependence described by
Eck et al. (1999).

High α values indicate a higher abundance of smaller
aerosol particles, while lowα ones reflect coarser particle
sizes. The coarse-mode aerosols are mainly from sea salt and
mineral dust, whereas the mainly anthropogenic submicron
aerosols are mostly carbonaceous and sulfate aerosols gen-
erated from biomass burning and urban/industrial activities
in addition to those from gas-to-particle conversion mecha-
nisms (Ramachandran, 2004). Therefore, either an increase
in the number of smaller particles or a decrease in the num-
ber of larger particles can cause an increase in the value ofα.
In that context, we classified the months into different cate-
gories (clean/dust/pollution/mixed) according to the number

Table 1. Percentages of occurrence for different aerosol categories
and their corresponding̊Angstr̈om exponent.

Month Dust Pollution Clean Mixed α675/440
(%) (%) (%) (%)

Oct 1999 23.1 15.4 7.7 53.8 0.61
Nov 1999 19.2 30.8 11.5 38.5 0.88
Dec 1999 24.0 12.0 0.0 64.0 0.90
Jan 2000 26.3 10.5 5.3 57.9 0.68
Feb 2000 26.1 17.4 0.0 56.5 0.87
Mar 2000 25.0 3.6 0.0 71.4 0.70
Apr 2000 34.5 10.3 0.0 55.2 0.62
May 2000 3.6 10.7 21.4 64.3 1.03
Jun 2000 0.0 26.7 13.3 60.0 1.29
Jul 2000 25.8 25.8 3.2 45.2 0.59
Aug 2000 0.0 66.7 6.7 26.7 1.41
Sep 2000 0.0 36.7 0.0 63.3 1.12
Oct 2000 0.0 50.0 7.1 42.9 1.19
Nov 2000 0.0 58.3 0.0 41.7 1.24
Dec 2000 11.1 33.3 11.1 44.4 0.96
Jan 2001 25.0 35.7 10.7 28.6 1.04
Feb 2001 17.4 21.7 4.3 56.5 0.88
Mar 2001 32.0 0.0 4.0 64.0 0.63
Apr 2001 52.2 8.7 8.7 30.4 0.37
May 2001 50.0 9.1 0.0 40.9 0.46
Jun 2001 10.0 3.3 6.7 80.0 0.97
Jul 2001 10.0 15.0 0.0 75.0 0.96
Aug 2001 0.0 33.3 0.0 66.7 1.16
Aug 2002 6.9 51.7 0.0 41.4 0.89
Sep 2002 17.2 31.0 0.0 51.7 0.69
Oct 2002 6.7 36.7 0.0 56.7 0.85
Nov 2002 11.5 46.2 7.7 34.6 0.87
Dec 2002 13.0 34.8 0.0 52.2 0.76
Jan 2003 24.1 27.6 13.8 34.5 0.48
Feb 2003 19.0 9.5 0.0 71.4 0.47
Mar 2003 8.7 47.8 0.0 43.5 0.83
Apr 2003 29.2 29.2 0.0 41.7 0.42
May 2003 4.0 20.0 0.0 76.0 0.67
Jun 2003 0.0 74.1 0.0 25.9 1.11
Jul 2003 0.0 65.5 0.0 34.5 1.09
Aug 2003 0.0 75.9 3.4 20.7 1.18

of days that fall into each. This categorization is based on the
AOD τa675 values and the̊Angstr̈om exponentα675/440 (Sab-
bah et al., 2001). Cases withτa675≤ 0.06 were classified as
“clean” conditions. For those withτa675> 0.06, further clas-
sification was based on the values of theÅngstr̈om exponent,
being categorized as “dust” forα675/440< 0.25, “pollution”
for α675/440> 1.0, and “mixed” otherwise (Table 1).

4 Inferring aerosol seasonality

A time-series analysis of the frequency of occurrence of the
four pre-defined aerosol categories, together with monthly
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Fig. 1. Number of days with measurements and occurrences for different aerosol categories and their correspondingÅngstr̈om exponent
over Alexandria for two time periods from October 1999 to August 2001 and from August 2002 to August 2003.

averages of the AOD, precipitable water vapor (W), and
the Ångstr̈om exponent (α675/440) from Microtops II, com-
bined with MODIS-derived AOD and aerosol fine mode frac-
tion (FMF) over Alexandria, as well as fire detections in the
Greater Nile Delta region, can provide some insight into the
pattern and seasonality of aerosol transport and its potential
impacts. The time-series plot of the relative fraction for each
month dominated by each aerosol category (Fig. 1) shows
a data gap, when the Microtops II sunphotometer was sent
to NASA for an extended period (between August 2001 and
August 2002) for calibration. The accuracy of the MODIS
AOD Collection 005 data used in this study has been dis-
cussed in detail by Levy et al. (2007).

During the first data period, the months with the highest
frequency of days with dust events were April 2001 (52.2%),
May 2001 (50.0%), April 2000 (34.5%), and March 2001
(32.0%). However, during the second time period, the high-
est dust percentages were in April 2003 (29.2%), January
2003 (24.1%), February 2003 (19.0%), and September 2002
(17.2%). It is clear that April is the month with the most
frequent dust event occurrences in Alexandria (khamaseen
storms), and is probably the peak month for transport of Sa-
haran dust to the Near East and Eastern Europe. In terms
of the monthly mean AOD (Fig. 3), the peak months during
these dust seasons were April 2000, May 2001, and April
2003. Incidentally, the April 2000 and May 2001 dust peaks
coincide withW peaks, which may have provided favorable
conditions for cloud seeding and nucleation, with the pos-
sible enhancement of indirect radiative forcing (El-Askary

et al., 2003). El-Askary et al. (2006, 2008) observed a
slowly increasing water-vapor column from March through
May in 2000, 2001 and 2003. However, they found that the
highest water-vapor column value observed during spring is
still lower than the values found during September through
November. July generally represents a dust free month, but
in July 2000 the dust occurrence percentage was 25.8% (see
Fig. 1 and Table 1), which is significantly high for this period
of the year. The presence of dust produces a noticeable dip
in theÅngstr̈om exponent value, but also causes an enhance-
ment in the monthly mean AOD value, which is showing as
a peak in the time-series (Fig. 2). This unusual dust outbreak
during the month of July in the Southeastern Mediterranean
region in 2000 was also reported by Alpert et al. (2002), who
suggested that a strong dry convection that may have devel-
oped over the Saharan source regions may have lifted the dust
to a high altitude (say above 700 hPa), thereby allowing the
upper-level southwesterly winds to transport the dust north-
eastward over the Southeastern Mediterranean region. This
observation agrees with the findings reported by Kaskaoutis
et al. (2008). It is also noteworthy that the synoptic systems
prevailing during this period and responsible for dust trans-
port are the “North African Depressions” that move along
the coast of North Africa towards Middle East that have as a
result the transport of dust from Sahara towards the Mediter-
ranean.

As regards to the pollution episodes, it was found (Fig. 1)
that during the first period, the months with the most pol-
lution days were August 2000 (66.7%), November 2000
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Fig. 2. Microtops II monthly mean AOD at (550 nm), precipitable water vapor andÅngstr̈om exponent (α675/440) with corresponding
monthly means of MODIS-AOD and FMF over Alexandria for two time periods from October 1999 to August 2001 and from August 2002
to August 2003.

(58.3%), October 2000 (50.0%) and September 2000
(36.7%). However, during the second time period, the high-
est pollution months were August 2003 (75.9%), June 2003
(74.1%), July 2003 (65.5%), and August 2002 (51.7%).
These summer-fall months have been known to be the domi-
nant pollution months in this region (El-Askary et al., 2006,
2008). They are also associated with highW amounts
(Fig. 2), thereby providing conditions favorable to indirect
radiative forcing by anthropogenic aerosols.

Since smoke is also included producing highα-values, an
attempt was made to determine the influence of smoke from
the biomass burning within the Greater Nile Delta region
on these pollution peaks. Fire pixel counts were obtained
from MODIS on the Terra satellite, and the total counts per
month were calculated and plotted (Fig. 3) for the study pe-
riod. Based on these data, peak biomass burning was found
to occur in September (2001 and 2002) or October (2003 and
2004). Nevertheless, it could be inferred that fine-particles
were the dominant aerosols from local biomass burning in
the Egyptian Nile delta peaks in September or October, and
may be partly responsible for the peak pollution found in
September–October 2000 (El-Askary et al., 2006, 2008).
Since there is virtually no biomass burning in the locality at
other times of the year, it is probable that the rest of the peaks
in the pollution category observed from the monthly fre-
quency data may have been due to long- range transport from

the Near East and Southeastery Europe. Hence, high AOD
values during April–May are attributed to large dust load-
ing in the atmosphere, while FMF shows high values during
the summer and fall seasons due to the urban/industrial and
bio-fuel emissions. It is noteworthy that MODIS AOD val-
ues seem to be higher than the ground observations in the
summer-fall months for reasons relating to the complexity
of satellite retrieval of mixed aerosols over coastal semi-arid
land surfaces (Remer et al., 2005).

5 Model analysis of aerosol transport

For better understanding of the aerosol-transport patterns in
the study region, we have used the NOAA Air Resources
Laboratory (ARL) HYSPLIT4 model (Draxler and Hess,
1998; Draxler, 1999) to generate air-mass back trajectories
over Alexandria for selected days, in order to investigate
the probable sources of the different aerosol types. Also,
Goddard Chemistry Aerosol Radiation and Transport (GO-
CART) model (Chin et al., 2000) outputs were obtained to
determine the possible sources and spatial distribution of
sea salt, dust, sulfates and black-carbon AOD over Alexan-
dria and the surrounding delta region during the four sea-
sons of 2003. Table 2 shows the daily average AOD mea-
surements at 675 nm,α675/440, W , the aerosol type, for
the selected days representing the four scenarios addressed,
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Fig. 3. Fire pixel counts in the Greater Nile Delta region as observed by MODIS on Terra, whose average local solar transit time over that
location is 8:50 a.m.

namely, dust/pollution/mixed/clean. Some of these days
were selected for the back trajectory analysis during 2003,
where the GOCART outputs are displayed.

Air-mass back trajectories are typically calculated from
gridded meteorological data derived from various sources
and archived at regular time intervals each day. A complete
description of input data, methodology, equations involved,
and sources of error for the air mass trajectory calculations
is presented in Draxler and Hess (1997). Figure 4 shows 3-
day air-mass back trajectories at three vertical levels ending
over Alexandria for the four aerosol categories: dust, pol-
lution, clean, and mixed for highlighted days during 2003
taken from Table 2. The wind directions observed during
the dusty days were found to be variable. However, the ma-
jor dust wind directions were W, S, and SW when the air
masses come from the Sahara or North Africa during spring.
We observe that when the wind directions are from N and
NW, although the origin of the wind may be in Europe, the
trajectory passes (typically) over North Africa where the air-
mass becomes loaded with dust before reaching Alexandria.
Therefore, the air-mass back-trajectory allows for the visual-
ization of a sizeable segment of the air-mass path, giving an
indication at where the dust may have been collected from.
Dust situations with elevated water-vapor content are often
cases where an air mass collects dust from Sahara before or
after it collects some moisture over the Mediterranean, after
which part of it is blown back by headwinds toward Alexan-
dria. During the pollution days, (summer and fall seasons),

the air masses come predominantly from different regions of
Eastern, Central or Western Europe mainly due to the well-
known convection patterns and the associated prevailing me-
teorology (Kallos et al., 1998). In other words, elevatedW

values indicate that the air-mass containing the aerosol prob-
ably passed over the Mediterranean to collect moisture be-
fore reaching Alexandria. In particular,W is higher during
the summer and fall because that is when come predomi-
nantly from Europe, gathering moisture over the Mediter-
ranean. Hence, while passing over the Mediterranean to-
ward North Africa, there is a high chance for cloud nucle-
ation and indirect radiative forcing due to the associated sea
breeze (El-Askary and Kafatos, 2008). During the days with
mixed aerosols, the air masses come from two sources, one
that brings pollution from Europe and the other that brings
dust from the Sahara and North Africa. The wind directions
during the mixed days are from all directions; however, hav-
ing Westerly flow usually Alexandria is receiving aerosols
from the central and western Mediterranean. These different
directions reflect the convergence of air masses from diverse
source areas. During the clean days, the air masses mainly
come from the Atlantic Ocean via the Mediterranean. There-
fore, the wind directions during the clean days typically fall
between N and W directions. Our outputs have been further
corroborated by GOCART model outputs exploring what ap-
pears to be significantly high sea salt, dust, sulfates and black
carbon concentrations over the Nile Delta region (Fig. 5).
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Fig. 4. HYSPLIT back-trajectory analysis at different vertical levels (red: 500 m, blue: 1000 m, green: 1500 m) ending over Alexandria
showing(a) dusty,(b) pollution, (c) mixed,(d) clean conditions in 2003.

6 Conclusions

A combination of ground-based and satellite observations
were used in this analysis to study different sources of
aerosol loadings over Alexandria during two different time
periods, namely, October 1999–August 2001, and August
2002–August 2003. Our analysis involved a study of the
AOD and associated water vapor column variability, as well
as other satellite- derived parameters. Natural versus anthro-
pogenic aerosols are well distinguished using our derived

Ångstr̈om exponent. We also identified possible mixed and
clean atmospheric conditions using the calculatedα675/440
values. It is clear that dust episodes dominate the spring
seasons, as reflected by the high values of AOD associated
with sharp drops in the̊Angstr̈om exponent. Back-trajectory
analysis shows agreement with these findings, thereby con-
firming that the Sahara Desert is the major source of such
aerosols during the spring season. Furthermore, the long-
range transport of pollutants from Europe during the summer
season indicated by model runs is well supported by sharp
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Fig. 5. GOCART model outputs of(a) sea salt in winter 2003,(b) dust in spring 2003,(c) sulfates in summer 2003, and(d) black carbon
AOD in fall 2003 respectively showing potential sources and relative concentrations of these aerosol types over Alexandria and the Nile
Delta region.

peaks in the̊Angstr̈om exponent and corresponding increase
in the water-vapor column. Biomass burning and local pol-
lution are most prominent during the fall and winter seasons,
as confirmed by the fire pixel counts and the black-carbon
concentrations observed from other model outputs. In sum-
mary, it is clear that the city of Alexandria and the Greater
Nile Delta region are exposed to the impacts of aerosols from
various sources throughout the year. This is becoming a se-
rious health hazard because of the persistence of high pol-
lution throughout the year or for prolonged time periods.
In addition, the sea-breeze component of the atmospheric
circulation brought by the prevailing European trade winds

tends to inhibit the development of the land breeze compo-
nent, thereby allowing the deposition of pollutants from the
sky above the city at night, especially during the fall sea-
son where the inversion layer is observed to become lower as
discussed by El-Askary and Kafatos (2008). This study has
demonstrated that long-term measurements of aerosol opti-
cal depth (AOD) and precipitable water vapor (W ) from the
ground and from satellite over Alexandria can capture the
general transport signal of aerosols from Europe and the Sa-
hara.
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Table 2. Characterization of the aerosol types over Alexandria,
Egypt, for selected dates. Back ward trajectories’ are shown for
dates in bold (Fig. 5). Shaded cells represent great variations as-
sociated with the specified atmospheric scenario in the highlighted
parameters.

Date τa675 α675/ W

440

Dust

29 March 2000 0.61 0.24 1.96
6 April 2000 0.55 0.12 2.51
1 April 2001 0.36 0.02 1.94
5 May 2001 0.71 0.17 2.25
29 September 2002 0.31 0.22 2.86
10 November 2002 0.32 0.05 1.52
2 March 2003 0.6 0.19 1.32
24 April 2003 0.82 0.08 1.77

Pollution

24 August 2000 0.18 1.29 2.66
20 October 2000 0.31 1.13 3.16
20 August 2001 0.23 1.34 2.77
20 September 2002 0.15 1.29 2.32
1 July 2003 0.27 1.09 3.41
8 August 2003 0.21 1.22 2.82

Mixed

23 October 1999 0.23 0.28 2.45
22 February 2000 0.14 0.36 1.79
29 April 2000 0.57 0.54 2.18
1 March 2001 0.29 0.25 1.37
4 April 2001 0.09 0.85 1.70
30 July 2002 0.43 0.46 2.61
26 September 2002 0.37 0.44 2.92
10 March 2003 0.28 0.88 1.77
15 June 2003 0.16 0.63 2.14

Clean

30 November 1999 0.05 0.49 1.76
3 January 2000 0.05 −0.22 2.21
23 June 2000 0.05 0.79 1.09
5 Januray 2001 0.05 0.81 1.64
9 February 2001 0.05 0.81 1.12
14 November 2002 0.06 1.40 1.95
4 January 2003 0.04 0.63 1.04
17 August 2003 0.06 1.47 1.30
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