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Many QTL mapping methods have been developed in the past two decades. Statistically, the best method should have a high de-
tection power but a low false discovery rate (FDR). Power and FDR cannot be derived theoretically for most QTL mapping
methods, but they can be properly evaluated using computer simulations. In this paper, we used four genetic models (two for in-
dependent loci and two for linked loci) to illustrate power and FDR estimation for interval mapping (IM) and inclusive composite
interval mapping (ICIM). For each model, we simulated 1000 populations each of 200 doubled haploids. A support interval (SI)
was first defined to indicate to which predefined QTL the significant QTL belonged. Power was calculated by counting the num-
ber of simulation runs with significant peaks higher than the logarithm of odds (LOD) threshold in the SI. Quantitative trait loci
not identified in any SIs were viewed as false positives. The FDR is the rate at which QTLs are identified as significant when they
are actually non-significant. Simulation results allowed us to estimate power and FDR of IM and ICIM for two independent and
two linkage genetic models. Our estimates allowed us to readily compare the efficiencies of different statistical methods for QTL
mapping, including the ability to separate linkage, under a wide range of genetic models. We used IM and ICIM as examples of
how to estimate power and FDR, but the principles shown in this paper can be used for power analysis and comparison of any
other QTL mapping methods, especially those based on interval tests.

false discovery rate (FDR), inclusive composite interval mapping (ICIM), interval mapping (IM), power simulation

Citation: Li H H, Zhang L Y, Wang J K. Estimation of statistical power and false discovery rate of QTL mapping methods through computer simulation. Chin Sci

Bull, 2012, 57: 2701-2710, doi: 10.1007/s11434-012-5239-3

July 2012 Vol.57 No.21:2701-2710
doi: 10.1007/511434-012-5239-3

Quantitative trait locus (QTL) mapping has become routine
for genetic studies of complex traits in plants, animals, and
humans. Interval mapping (IM) has been viewed as a mile-
stone in QTL mapping methods; IM uses a likelihood ratio
test for the existence of QTLs based on maximum likeli-
hood parameter estimation [1]. However, conventional IM
cannot properly separate linked QTLs [2,3], and its power
of detection is low, because of the lack of a background
control. Composite interval mapping (CIM), proposed by
Zeng [4], is one of the most commonly used methods, but
CIM can result in biased mapping because it simultaneously
estimates QTLs and background effects [5]. Inclusive com-
posite interval mapping (ICIM) is a critical step forward
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that highlights the importance of model selection and inter-
val testing in QTL linkage mapping, and is able to separate
linked QTLs through a two-step mapping strategy [5—8]. In
addition, ICIM can be readily extended to epistasis mapping
and QTL mapping in multi-parental populations [9-11].
There are many other QTL mapping methods in addition
to IM, CIM, and ICIM [5,12-14]. To appropriately evaluate
the efficiency of these methods, we need to compare the true
QTL positions and effects with their estimate and calculate
the statistical power and false discovery rate (FDR). As with
any statistical test, two types of error, Type I and Type II,
can occur in QTL mapping [5,8,11]. (1) A Type I error is a
false positive, in which a segregating QTL is detected when
in fact it is not present. (2) A Type II error is a false nega-
tive, in which a QTL is not detected when it actually exists.

csb.scichina.com  www.springer.com/scp


https://core.ac.uk/display/205187781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2702 LiHH, et al.

Type I error can be controlled by choosing proper critical
values, whereas Type II error is determined by the experi-
ment design and the size of the QTL effect. Statistical pow-
er is the probability that the null hypothesis is rejected when
it is indeed false. In other words, if B is the probability of
Type II error, the power equals 1-B. In QTL mapping,
power indicates the probability that a real QTL is detected
and is therefore the most important indicator of the meth-
od’s efficiency. The FDR offers an intuitive balance be-
tween false and true positives [15]. The FDR is defined by
the rate at which significant features are truly null.

The asymptotical properties of test statistics used in most
QTL mapping methods are hardly known, therefore the sta-
tistical power and the FDR cannot be estimated theoretically
[8,16]. When using actual mapping populations, the true
QTL positions and effects are usually unknown. Another
problem with using real data to compare methods is that the
parameter ranges are usually limited by experimental condi-
tions, genetic architectures, and species. Collecting real data
occupying the full range of parameter spaces is usually im-
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possible.

Monte Carlo computer simulation is often used in physi-
cal and mathematical systems when computing an exact
result with a deterministic algorithm is infeasible or impos-
sible. It provides an efficient way to calculate the power and
FDR of different QTL mapping methods to evaluate and
compare their efficiencies. Our objective in this paper was
to illustrate how detection power and FDR can be estimated
in simulated populations under various genetic models, us-
ing two QTL mapping methods (i.e., IM and ICIM) as ex-
amples.

1 Materials and methods

1.1 Genetic model

In our simulation studies, we considered four QTLs with
different additive effects affecting a quantitative trait and a
genome of six chromosomes (Table 1). Each chromosome
was 120 cM in length with 13 evenly-distributed markers.

Table 1 Characteristics of four genetic models for four QTLs used to estimate the power and false discovery rate of interval mapping and inclusive com-

posite interval mapping

Model Chromosome Position (cM) Additive effect PVE (%)"
Independent I
Ql 1 35 0.316 5.0
Q2 2 35 0.447 10.0
Q3 3 35 0.548 15.0
Q4 4 35 0.633 20.0
Genetic variance 1.000
Error variance 1.000
Heritability 0.500
Independent IT
Q1 1 35 0.316 5.0
Q2 2 35 —0.447 10.0
Q3 3 35 0.548 15.0
Q4 4 35 —0.633 20.0
Genetic variance 1.000
Error variance 1.000
Heritability 0.500
Linkage I
Ql 1 35 0.316 39
Q2 1 65 0.447 7.9
Q3 2 35 0.548 11.8
Q4 2 65 0.633 15.8
Genetic variance 1.535
Error variance 1.000
Heritability 0.606
Linkage II
Ql 1 35 0.316 6.8
Q2 1 65 -0.447 13.7
Q3 2 35 0.548 20.5
Q4 2 65 -0.633 27.3
Genetic variance 0.465
Error variance 1.000
Heritability 0.317

a) PVE, phenotypic variance explained by each QTL.
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Each marker interval was 10 cM. Two independent models
(Independents I and II) and two linkage models (Linkages I
and IT) were defined. When there was no linkage, the four
QTLs were located on the first four chromosomes at posi-
tion 35 cM. Each independent model represented a different
scenario of QTL effects. In Independent I, the four QTLs
had additive effects 0.316, 0.447, 0.548, and 0.633, respec-
tively, indicating that one parent had the four favorable al-
leles, and the other parent had the four non-favorable alleles.
When error variance was 1.00, they explained 5%, 10%,
15%, and 20% of phenotypic variance, respectively. In In-
dependent II, the four QTLs had additive effects 0.316,
—0.447, 0.548, and —0.633, respectively, indicating that one
parent had the favorable alleles for two loci, and the other
parent had the favorable alleles for the other two loci. They
explained the same amount of phenotypic variance as in
Independent I. The total genetic variance is sum of individ-

4

ual QTL variances, i.e., V, = Zaf , Where q; is the addi-
i=1

tive effect of the ith QTL. When the error variance was

fixed at 1 in the independent models, genetic variance was 1

and heritability was 0.5.

For the two linkage models, Q1 and Q2 were located at
35 and 65 c¢cM on chromosome 1, and Q3 and Q4 were lo-
cated at 35 and 65 cM on chromosome 2 (Table 1). In
Linkage I, the QTLs had the same effects as in Independent
I, representing coupling linkage. In Linkage II, the QTLs
had the same effects as in Independent II, representing re-
pulsion linkage. If r is the recombination frequency between
two linked QTLs having a genetic distance of d cM,

1 . . .
r= E(l —¢ ") in Haldane’s mapping function. The total
genetic variance is
4
V, =) al +2(1-ryaa, +2(1-r,)a,a,
i=l1

where a; is the additive effect of the ith QTL, ry, is the re-
combination frequency between Q1 and Q2, and r34 is the
recombination frequency between Q3 and Q4. When the
error variance was fixed at 1.00 in the linkage models, ge-
netic variance was 1.535 for Linkage I and 0.465 for Link-
age II, resulting in heritabilities of 0.606 and 0.317, respec-
tively.

1.2 Simulation of genetic populations and their QTL
mapping

One thousand doubled haploid populations, each of size 200,
were simulated for each model, and QTL mapping was
completed using the QTL IciMapping software package,
which is freely available from http://www.isbreeding.net.
IM and ICIM were used on each simulated population. In
the first step of ICIM, marker selection was conducted
through stepwise regression by considering all marker in-
formation simultaneously. The two probabilities for enter-
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ing and removing variables in the first step were set at 0.001
and 0.002, respectively. Phenotypic values were then ad-
justed for all markers retained in the regression equation,
except for the two markers flanking the current mapping
interval. In the second step, the adjusted phenotypic values
are used in one-dimensional scanning. The logarithm of
odds (LOD) threshold was set at 2.5 for IM and ICIM.

1.3 Estimation of statistical power and false discovery
rate

Both IM and ICIM are based on an interval test, which is
not a point estimation procedure [5]. The LOD score is the
test statistic used in IM and ICIM and is calculated for each
position in the genome through one-dimensional scanning.
Example LOD profiles from IM and ICIM in five simulated
populations are shown in Figures 1 and 2 for the independent
and linkage models, respectively. QTLs are identified at the
peaks on the LOD profiles. One QTL was unlikely to be
located exactly at the predefined position in each simulated
population. The multiple non-independent and non-point
tests complicate the calculation of power, even though sim-
ulation. In particular, when QTLs are closely linked, deter-
mining which putative QTL the LOD peak belongs to is
difficult.

A support interval (SI) has to be used to indicate to
which predefined QTL the significant QTL belonged in the
simulations. Each predefined QTL was assigned to a prede-
fined interval length centered at the true QTL location, and
then the power was determined by counting the number of
simulation runs with significant peaks higher than the LOD
threshold along the LOD profile in this interval. QTLs not
identified in the corresponding SI were viewed as false pos-
itives. Five simulated populations from Independent I were
used to illustrate how the detection power and FDR were
calculated through computer simulation.

When an LOD threshold value of 2.5 was used, IM iden-
tified a total of 16 and ICIM identified a total of 20 QTLs in
five simulation runs (Table 2). Using the first run as an ex-
ample, IM did not detect Q1, so its power was 0. One QTL
was identified at 25 cM on chromosome 2, but this QTL
was not located within the 10 cM SI of the actual position of
Q2, i.e., from 30 to 40 cM, and was treated as a false posi-
tive. IM identified one QTL at 35 cM, within the 10 cM SI,
on chromosome 3, so the detection power for Q3 was 1. The
detection power for Q4 was 1 as well, because one QTL
was identified on chromosome 4 at 40 cM, within the 10 cM
SI of Q4. Across the five runs, the QTLs 1-4 were detected
1, 3, 4, and 5 times, respectively, with SI=10 cM (Table 3).
Therefore, the detection powers for the four QTL were 20%,
60%, 80%, and 100%, respectively. In total, there were
three false QTLs and 16 positive ones. Therefore, FDR
equaled 3/16=19% for IM.

When ICIM was used, the four QTLs were detected 4, 4,
5, and 4 times, respectively (Table 3). Therefore, detection
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Figure 1 Example logarithm of odds (LOD) profiles of interval mapping
five simulated populations under two models of independence.
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Figure 2 Example logarithm of odds (LOD) profiles of interval mapping (IM) and inclusive composite interval mapping (ICIM) on six chromosomes in
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Table 2 QTL mapping and power counts for five populations simulated using the Independent I model

2705

QTL identified in simulated population

Power counting

Method Simulation
Chromosome Position LOD? PVE (%)” Effect SI=10 cM SI=20 cM
M 1 2 25 4.97 11.44 0.503 False Q2
3 35 5.61 13.35 0.541 Q3 Q3
4 40 13.21 26.22 0.761 Q4 Q4
2 2 34 5.36 13.01 0.509 Q2 Q2
3 34 5.82 13.72 0.521 Q3 Q3
4 30 11.59 23.43 0.682 Q4 Q4
3 1 39 5.05 11.22 0.508 Ql Ql
2 32 4.30 10.09 0.482 Q2 Q2
3 54 8.03 18.42 0.651 False False
4 36 8.06 18.55 0.653 Q4 Q4
4 1 45 3.97 10.21 0.420 False Ql
2 36 2.69 6.81 0.343 Q2 Q2
3 34 8.92 19.66 0.583 Q3 Q3
4 36 8.79 20.15 0.591 Q4 Q4
5 3 33 3.08 8.16 0.389 Q3 Q3
4 35 11.71 26.65 0.701 Q4 Q4
ICIM 1 1 47 3.80 5.06 0.335 False False
2 38 6.79 9.11 0.448 Q2 Q2
3 33 9.70 13.81 0.551 Q3 Q3
4 38 16.72 25.50 0.753 Q4 Q4
2 1 35 4.65 6.26 0.352 Ql Ql
2 36 9.07 12.56 0.500 Q2 Q2
3 31 7.93 10.41 0.454 Q3 Q3
4 27 16.77 24.93 0.703 False Q4
3 1 36 7.52 10.23 0.486 Ql Ql
2 32 6.00 8.10 0.432 Q2 Q2
3 38 9.52 13.63 0.560 Q3 Q3
4 38 13.05 19.18 0.664 Q4 Q4
4 1 30 3.99 5.13 0.298 Ql Ql
2 37 4.04 5.89 0.319 Q2 Q2
3 33 14.21 21.68 0.613 Q3 Q3
4 36 13.73 21.23 0.607 Q4 Q4
5 1 35 491 8.04 0.384 Ql Ql
2 51 4.35 6.87 0.356 False False
3 34 535 9.45 0.419 Q3 Q3
4 35 17.46 31.65 0.764 Q4 Q4

a) Logarithm of odds; b) phenotypic variance explained by each identified QTL.

powers of ICIM were 80%, 80%, 100%, and 80%, respec-
tively, for the four QTLs. There were a total of three false
QTLs and 20 positives. Therefore, FDR of ICIM equaled
3/20=15%.

1.4 Position and effect estimates

Precisely locating a QTL’s position and estimating its effect
are both important in QTL mapping. For a significant QTL

detected by test statistics that exceed a predetermined
threshold, the estimate of its genetic effects must be as-
sessed in terms of accuracy and precision. Precision is an-
other criterion by which different statistical methods for
QTL detection can be compared, in addition to high power
and low FDR. In simulation studies, if the estimates of ef-
fect are calculated only from significant QTLs, the effects
are usually over-estimated, because simulated QTLs with
LOD scores below the threshold may have smaller effects
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Table 3 QTL detection frequency and power of interval mapping (IM) and inclusive composite interval mapping (ICIM) estimated from five populations

simulated using the Independent I

Detection times in five runs Power (%)
Method QTL
SI=10 cM SI=20 cM SI=10 cM SI=20 cM
™M Ql 1 2 20.0 40.0
Q2 3 4 60.0 80.0
Q3 4 4 80.0 80.0
Q4 5 5 100.0 100.0
False (FDR") 3 1 19.0 6.0
ICIM Ql 4 4 80.0 80.0
Q2 4 4 80.0 80.0
Q3 5 5 100.0 100.0
Q4 4 5 80.0 100.0
False (FDR) 3 2 15.0 10.0

a) False discovery rate.

but will not be counted. Unbiased estimates can be achieved
if all runs with peaks are counted, whether or not the peaks
are above the LOD threshold.

2 Results

2.1 Power and false discovery rate of IM at a prede-
fined support interval

The QTL detection power of IM was calculated for SI=10
and 20 cM (Table 4). Similar power and FDR were ob-
served for both independent models, indicating that scatter-
ing the distribution of favorable and non-favorable alleles
between parents had no effect on QTL detection when the
QTLs were genetically independent. For the four QTLs
considered, those with large genetic effects also had high
detection power. For example, Q1 explained only 5% of
phenotypic variance, and the power of IM to locate it in the
10 cM SI was 25.8%. In contrast, Q4 explained 20% of
phenotypic variance, and the power of IM to locate it in the
10 cM SI was 85.4%.

Linkage significantly reduced detection power and in-
creased FDR (Table 4). Linkage in repulsion (Linkage
model II; Table 1) represented the worst case of QTL map-
ping. Both the LOD score and power were the lowest, and
the standard errors of both QTL position and effects were
the highest among the four models (Table 4). That larger SI
will result in higher power and lower FDR (Tables 3 and 4)
is understandable. In this sense, the SI length must be speci-
fied when estimating QTL detection power; otherwise, pos-
itive and false QTLs cannot be distinguished.

2.2 Power and false discovery rate of ICIM at a prede-
fined support interval

The QTL detection power of ICIM was calculated for SI=10
and 20 cM (Table 5). Almost identical power and FDR were
observed for both independent models. QTLs with large

genetic effects also had high detection power. For example,
Q1 explained 5% of phenotypic variance, and the power of
ICIM to locate it in the 10 cM SI was 49.5%. In contrast,
Q4 explained 20% of phenotypic variance, and the power of
ICIM to locate it in the 10 cM SI was 89.0%.

Linkage reduced ICIM’s detection power and increased
FDR (Table 5). Linkage in repulsion (Linkage model II)
resulted in the lowest LOD score and power and the highest
standard error of QTL position and effects among the four
models. For Linkage II, IM had powers of 0.3%, 25.35%,
6.85%, and 40.6% to detect the respective QTLs and FDR=
38.8%. In contrast, ICIM had powers 11.65%, 33.05%,
56.25%, and 60.9%, respectively, and FDR=23.8%. In addi-
tion, ICIM resulted in smaller standard errors for QTL posi-
tion and effect.

2.3 Detection power of IM and ICIM on marker in-
tervals

The detection power could be calculated for each interval
defined by markers. Power thus determined allows moni-
toring of QTL locations if not on the putative intervals. For
the two independent models, IM and ICIM located QTLs at
their flanking intervals in most times. However, there were
chances that QTLs were located in other neighboring inter-
vals (Figure 3). For the two linkage models, IM located the
two QTLs on chromosome 1 at the middle of the two posi-
tions in most times, and so as the two QTL on chromosome
2. ICIM located the two linked QTL on chromosomes 1 and
2 in their flanking intervals in most times, indicating its
ability in separating linkage. Generally speaking, linkage
complicates the QTL mapping procedure. In other words,
much larger population is needed to dissect close linkage.

3 Discussion

Several QTL mapping methods have been developed in the
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Figure 3 Power of interval mapping (IM) and inclusive composite interval mapping (ICIM) on each marker interval on the first four chromosomes. Power
was estimated from 1000 populations simulated using each of two independent and two linkage genetic models.

past two decades, and the most efficient and powerful
method should be applied in genetic studies. Statistically,
the best QTL mapping method should meet two criteria:
high detection power and low FDR. The asymptotic proper-
ties of most test statistics used in QTL mapping are barely
known theoretically. Computer simulation may be the only
way to effectively compare different methods. We used IM
and ICIM as examples, but the principles shown in this pa-
per are applicable to any other QTL mapping methods, es-
pecially those based on interval tests.

In statistics, Type I error can be controlled by choosing
the proper critical values, whereas Type II error is deter-
mined by the experimental design and the size of the QTL
effect. Statistical power is the probability that the null hy-
pothesis is rejected when it is indeed false. Before conduct-
ing a potentially costly experiment, an investigator would
like to be certain that the design ensures sufficiently high
power given the study’s objectives. Statistical power de-
pends not only on sample size and the actual values of the
unknown distribution parameters being estimated, but also
on the assumed level of the significance threshold. In QTL
mapping, power tells the likelihood that a real QTL was
detected and is therefore the most important indicator of a
method’s efficiency.

The Type I error rate and FDR are often mistakenly
equated, but their difference is actually very important.
Given a rule for calling features significant, the Type I error
rate is the probability that truly null features are called sig-
nificant. FDR is the rate that statistically significant features
are truly null. For example, a Type I error rate of 5% means
that, on average, 5% of the truly null features in the study
will be called significant. A FDR of 5% means that, among
all the features identified as significant, 5% on average are

truly null. In addition, a much higher FDR can be tolerated
than a P-value. For instance, a P-value of 0.30 is statistical-
ly unacceptable in any situation; but an FDR as high as 0.50
or even higher could be quite meaningful.

Quantitative traits are normally polygenic. Therefore, a
number of QTLs must be considered simultaneously in
power simulation. To tell which identified QTL belongs to
which predefined QTL, and which are true or false, an SI
must be predefined. We used both SI=10 and 20 cM in this
study, but other SIs can be used as long as consistent stand-
ards are used to compare different methods. When more
than one QTL are identified in a predefined SI, the one with
the highest LOD score is chosen to ensure that the estimated
power will not exceed 100%. Any QTL that falls beyond all
predefined SI is considered false. In this sense, more than
one false QTL may exist in a population, and the total
number of false QTLs may exceed the number of runs, es-
pecially when a narrow SI is used. Defined by the propor-
tion of false QTLs to all positives (true+false QTLs), FDR
avoids a false rate greater than 100%, and has been widely
used in QTL simulation studies.

High power and low FDR are the two most important
statistical requirements for efficient QTL mapping methods.
However, precisely estimating QTL position and effect is
also important. These factors must also be considered when
conducting simulation studies to provide perspective on the
mapping methods. Extensive simulation studies previously
completed have proved the great advantage of ICIM in im-
proving QTL detection power, separating linked QTLs,
mapping interacting QTLs, and assessing multi-parental
populations and QTL-by-environment interaction [5—10].
The ICIM method has been implemented in the freely-
available public software QTL IciMapping (available from
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www.isbreeding.net). In addition to QTL mapping, the
software can build high-density linkage genetic maps as
well. The simulation functionality in QTL IciMapping pro-
vides a useful tool to compare different mapping methods
using a wide range of genetic models.
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