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Many QTL mapping methods have been developed in the past two decades. Statistically, the best method should have a high de-
tection power but a low false discovery rate (FDR). Power and FDR cannot be derived theoretically for most QTL mapping 
methods, but they can be properly evaluated using computer simulations. In this paper, we used four genetic models (two for in-
dependent loci and two for linked loci) to illustrate power and FDR estimation for interval mapping (IM) and inclusive composite 
interval mapping (ICIM). For each model, we simulated 1000 populations each of 200 doubled haploids. A support interval (SI) 
was first defined to indicate to which predefined QTL the significant QTL belonged. Power was calculated by counting the num-
ber of simulation runs with significant peaks higher than the logarithm of odds (LOD) threshold in the SI. Quantitative trait loci 
not identified in any SIs were viewed as false positives. The FDR is the rate at which QTLs are identified as significant when they 
are actually non-significant. Simulation results allowed us to estimate power and FDR of IM and ICIM for two independent and 
two linkage genetic models. Our estimates allowed us to readily compare the efficiencies of different statistical methods for QTL 
mapping, including the ability to separate linkage, under a wide range of genetic models. We used IM and ICIM as examples of 
how to estimate power and FDR, but the principles shown in this paper can be used for power analysis and comparison of any 
other QTL mapping methods, especially those based on interval tests. 
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Quantitative trait locus (QTL) mapping has become routine 
for genetic studies of complex traits in plants, animals, and 
humans. Interval mapping (IM) has been viewed as a mile-
stone in QTL mapping methods; IM uses a likelihood ratio 
test for the existence of QTLs based on maximum likeli-
hood parameter estimation [1]. However, conventional IM 
cannot properly separate linked QTLs [2,3], and its power 
of detection is low, because of the lack of a background 
control. Composite interval mapping (CIM), proposed by 
Zeng [4], is one of the most commonly used methods, but 
CIM can result in biased mapping because it simultaneously 
estimates QTLs and background effects [5]. Inclusive com-
posite interval mapping (ICIM) is a critical step forward 

that highlights the importance of model selection and inter-
val testing in QTL linkage mapping, and is able to separate 
linked QTLs through a two-step mapping strategy [5–8]. In 
addition, ICIM can be readily extended to epistasis mapping 
and QTL mapping in multi-parental populations [9–11].  

There are many other QTL mapping methods in addition 
to IM, CIM, and ICIM [5,12–14]. To appropriately evaluate 
the efficiency of these methods, we need to compare the true 
QTL positions and effects with their estimate and calculate 
the statistical power and false discovery rate (FDR). As with 
any statistical test, two types of error, Type I and Type II, 
can occur in QTL mapping [5,8,11]. (1) A Type I error is a 
false positive, in which a segregating QTL is detected when 
in fact it is not present. (2) A Type II error is a false nega-
tive, in which a QTL is not detected when it actually exists. 
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Type I error can be controlled by choosing proper critical 
values, whereas Type II error is determined by the experi-
ment design and the size of the QTL effect. Statistical pow-
er is the probability that the null hypothesis is rejected when 
it is indeed false. In other words, if  is the probability of 
Type II error, the power equals 1. In QTL mapping, 
power indicates the probability that a real QTL is detected 
and is therefore the most important indicator of the meth-
od’s efficiency. The FDR offers an intuitive balance be-
tween false and true positives [15]. The FDR is defined by 
the rate at which significant features are truly null.  

The asymptotical properties of test statistics used in most 
QTL mapping methods are hardly known, therefore the sta-
tistical power and the FDR cannot be estimated theoretically 
[8,16]. When using actual mapping populations, the true 
QTL positions and effects are usually unknown. Another 
problem with using real data to compare methods is that the 
parameter ranges are usually limited by experimental condi-
tions, genetic architectures, and species. Collecting real data 
occupying the full range of parameter spaces is usually im-

possible.  
Monte Carlo computer simulation is often used in physi-

cal and mathematical systems when computing an exact 
result with a deterministic algorithm is infeasible or impos-
sible. It provides an efficient way to calculate the power and 
FDR of different QTL mapping methods to evaluate and 
compare their efficiencies. Our objective in this paper was 
to illustrate how detection power and FDR can be estimated 
in simulated populations under various genetic models, us-
ing two QTL mapping methods (i.e., IM and ICIM) as ex-
amples. 

1  Materials and methods  

1.1  Genetic model 

In our simulation studies, we considered four QTLs with 
different additive effects affecting a quantitative trait and a 
genome of six chromosomes (Table 1). Each chromosome 
was 120 cM in length with 13 evenly-distributed markers.  

Table 1  Characteristics of four genetic models for four QTLs used to estimate the power and false discovery rate of interval mapping and inclusive com-
posite interval mapping  

Model Chromosome Position (cM) Additive effect PVE (%)a) 

Independent I 
   

 

Q1 1 35 0.316  5.0 

Q2 2 35 0.447  10.0 

Q3 3 35 0.548  15.0 

Q4 4 35 0.633  20.0 

Genetic variance 1.000  
  

 

Error variance 1.000  
  

 

Heritability 0.500  
  

 

Independent II 
   

 

Q1 1 35 0.316  5.0 

Q2 2 35 0.447  10.0 

Q3 3 35 0.548  15.0 

Q4 4 35 0.633  20.0 

Genetic variance 1.000  
  

 

Error variance 1.000  
  

 

Heritability 0.500  
  

 

Linkage I 
   

 

Q1 1 35 0.316  3.9 

Q2 1 65 0.447  7.9 

Q3 2 35 0.548  11.8 

Q4 2 65 0.633  15.8 

Genetic variance 1.535  
  

 

Error variance 1.000  
  

 

Heritability 0.606  
  

 

Linkage II 
   

 

Q1 1 35 0.316  6.8 

Q2 1 65 0.447  13.7 

Q3 2 35 0.548  20.5 

Q4 2 65 0.633  27.3 

Genetic variance 0.465  
  

 

Error variance 1.000  
  

 

Heritability 0.317  
  

 
a) PVE, phenotypic variance explained by each QTL.  
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Each marker interval was 10 cM. Two independent models 
(Independents I and II) and two linkage models (Linkages I 
and II) were defined. When there was no linkage, the four 
QTLs were located on the first four chromosomes at posi-
tion 35 cM. Each independent model represented a different 
scenario of QTL effects. In Independent I, the four QTLs 
had additive effects 0.316, 0.447, 0.548, and 0.633, respec-
tively, indicating that one parent had the four favorable al-
leles, and the other parent had the four non-favorable alleles. 
When error variance was 1.00, they explained 5%, 10%, 
15%, and 20% of phenotypic variance, respectively. In In-
dependent II, the four QTLs had additive effects 0.316, 
0.447, 0.548, and 0.633, respectively, indicating that one 
parent had the favorable alleles for two loci, and the other 
parent had the favorable alleles for the other two loci. They 
explained the same amount of phenotypic variance as in 
Independent I. The total genetic variance is sum of individ-

ual QTL variances, i.e., 
4

2

1
G i

i

V a


  , where ai is the addi-

tive effect of the ith QTL. When the error variance was 
fixed at 1 in the independent models, genetic variance was 1 
and heritability was 0.5.  

For the two linkage models, Q1 and Q2 were located at 
35 and 65 cM on chromosome 1, and Q3 and Q4 were lo-
cated at 35 and 65 cM on chromosome 2 (Table 1). In 
Linkage I, the QTLs had the same effects as in Independent 
I, representing coupling linkage. In Linkage II, the QTLs 
had the same effects as in Independent II, representing re-
pulsion linkage. If r is the recombination frequency between 
two linked QTLs having a genetic distance of d cM, 

/501
(1 )

2
dr e   in Haldane’s mapping function. The total 

genetic variance is  
4

2
12 1 2 34 3 4

1

2(1 ) 2(1 )G i
i

V a r a a r a a


     , 

where ai is the additive effect of the ith QTL, r12 is the re-
combination frequency between Q1 and Q2, and r34 is the 
recombination frequency between Q3 and Q4. When the 
error variance was fixed at 1.00 in the linkage models, ge-
netic variance was 1.535 for Linkage I and 0.465 for Link-
age II, resulting in heritabilities of 0.606 and 0.317, respec-
tively.  

1.2  Simulation of genetic populations and their QTL 
mapping 

One thousand doubled haploid populations, each of size 200, 
were simulated for each model, and QTL mapping was 
completed using the QTL IciMapping software package, 
which is freely available from http://www.isbreeding.net. 
IM and ICIM were used on each simulated population. In 
the first step of ICIM, marker selection was conducted 
through stepwise regression by considering all marker in-
formation simultaneously. The two probabilities for enter-

ing and removing variables in the first step were set at 0.001 
and 0.002, respectively. Phenotypic values were then ad-
justed for all markers retained in the regression equation, 
except for the two markers flanking the current mapping 
interval. In the second step, the adjusted phenotypic values 
are used in one-dimensional scanning. The logarithm of 
odds (LOD) threshold was set at 2.5 for IM and ICIM.  

1.3  Estimation of statistical power and false discovery 
rate  

Both IM and ICIM are based on an interval test, which is 
not a point estimation procedure [5]. The LOD score is the 
test statistic used in IM and ICIM and is calculated for each 
position in the genome through one-dimensional scanning. 
Example LOD profiles from IM and ICIM in five simulated 
populations are shown in Figures 1 and 2 for the independent 
and linkage models, respectively. QTLs are identified at the 
peaks on the LOD profiles. One QTL was unlikely to be 
located exactly at the predefined position in each simulated 
population. The multiple non-independent and non-point 
tests complicate the calculation of power, even though sim-
ulation. In particular, when QTLs are closely linked, deter-
mining which putative QTL the LOD peak belongs to is 
difficult.  

A support interval (SI) has to be used to indicate to 
which predefined QTL the significant QTL belonged in the 
simulations. Each predefined QTL was assigned to a prede-
fined interval length centered at the true QTL location, and 
then the power was determined by counting the number of 
simulation runs with significant peaks higher than the LOD 
threshold along the LOD profile in this interval. QTLs not 
identified in the corresponding SI were viewed as false pos-
itives. Five simulated populations from Independent I were 
used to illustrate how the detection power and FDR were 
calculated through computer simulation.  

When an LOD threshold value of 2.5 was used, IM iden-
tified a total of 16 and ICIM identified a total of 20 QTLs in 
five simulation runs (Table 2). Using the first run as an ex-
ample, IM did not detect Q1, so its power was 0. One QTL 
was identified at 25 cM on chromosome 2, but this QTL 
was not located within the 10 cM SI of the actual position of 
Q2, i.e., from 30 to 40 cM, and was treated as a false posi-
tive. IM identified one QTL at 35 cM, within the 10 cM SI, 
on chromosome 3, so the detection power for Q3 was 1. The 
detection power for Q4 was 1 as well, because one QTL 
was identified on chromosome 4 at 40 cM, within the 10 cM 
SI of Q4. Across the five runs, the QTLs 1–4 were detected 
1, 3, 4, and 5 times, respectively, with SI=10 cM (Table 3). 
Therefore, the detection powers for the four QTL were 20%, 
60%, 80%, and 100%, respectively. In total, there were 
three false QTLs and 16 positive ones. Therefore, FDR 
equaled 3/16=19% for IM.  

When ICIM was used, the four QTLs were detected 4, 4, 
5, and 4 times, respectively (Table 3). Therefore, detection  
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Figure 1  Example logarithm of odds (LOD) profiles of interval mapping (IM) and inclusive composite interval mapping (ICIM) on six chromosomes in 
five simulated populations under two models of independence. 

 

Figure 2  Example logarithm of odds (LOD) profiles of interval mapping (IM) and inclusive composite interval mapping (ICIM) on six chromosomes in 
five simulated populations under two linkage models.  
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Table 2  QTL mapping and power counts for five populations simulated using the Independent I model  

Method Simulation 
QTL identified in simulated population  Power counting 

Chromosome Position LODa) PVE (%)b) Effect  SI=10 cM SI=20 cM 

IM 1 2 25 4.97  11.44  0.503   False Q2 

 
 

3 35 5.61  13.35  0.541   Q3 Q3 

 
 

4 40 13.21  26.22  0.761   Q4 Q4 

 2 2 34 5.36  13.01  0.509   Q2 Q2 

 
 

3 34 5.82  13.72  0.521   Q3 Q3 

 
 

4 30 11.59  23.43  0.682   Q4 Q4 

 3 1 39 5.05  11.22  0.508   Q1 Q1 

 
 

2 32 4.30  10.09  0.482   Q2 Q2 

 
 

3 54 8.03  18.42  0.651   False False 

 
 

4 36 8.06  18.55  0.653   Q4 Q4 

 4 1 45 3.97  10.21  0.420   False Q1 

 
 

2 36 2.69  6.81  0.343   Q2 Q2 

 
 

3 34 8.92  19.66  0.583   Q3 Q3 

 
 

4 36 8.79  20.15  0.591   Q4 Q4 

 5 3 33 3.08  8.16  0.389   Q3 Q3 

 
 

4 35 11.71  26.65  0.701   Q4 Q4 

ICIM 1 1 47 3.80  5.06  0.335   False False 

 
 

2 38 6.79  9.11  0.448   Q2 Q2 

 
 

3 33 9.70  13.81  0.551   Q3 Q3 

 
 

4 38 16.72  25.50  0.753   Q4 Q4 

 2 1 35 4.65  6.26  0.352   Q1 Q1 

 
 

2 36 9.07  12.56  0.500   Q2 Q2 

 
 

3 31 7.93  10.41  0.454   Q3 Q3 

 
 

4 27 16.77  24.93  0.703   False Q4 

 3 1 36 7.52  10.23  0.486   Q1 Q1 

 
 

2 32 6.00  8.10  0.432   Q2 Q2 

 
 

3 38 9.52  13.63  0.560   Q3 Q3 

 
 

4 38 13.05  19.18  0.664   Q4 Q4 

 4 1 30 3.99  5.13  0.298   Q1 Q1 

 
 

2 37 4.04  5.89  0.319   Q2 Q2 

 
 

3 33 14.21  21.68  0.613   Q3 Q3 

 
 

4 36 13.73  21.23  0.607   Q4 Q4 

 5 1 35 4.91  8.04  0.384   Q1 Q1 

 
 

2 51 4.35  6.87  0.356   False False 

 
 

3 34 5.35  9.45  0.419   Q3 Q3 

 
 

4 35 17.46  31.65  0.764   Q4 Q4 

a) Logarithm of odds; b) phenotypic variance explained by each identified QTL. 

powers of ICIM were 80%, 80%, 100%, and 80%, respec-
tively, for the four QTLs. There were a total of three false 
QTLs and 20 positives. Therefore, FDR of ICIM equaled 
3/20=15%.  

1.4  Position and effect estimates 

Precisely locating a QTL’s position and estimating its effect 
are both important in QTL mapping. For a significant QTL 

detected by test statistics that exceed a predetermined 
threshold, the estimate of its genetic effects must be as-
sessed in terms of accuracy and precision. Precision is an-
other criterion by which different statistical methods for 
QTL detection can be compared, in addition to high power 
and low FDR. In simulation studies, if the estimates of ef-
fect are calculated only from significant QTLs, the effects 
are usually over-estimated, because simulated QTLs with 
LOD scores below the threshold may have smaller effects  
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Table 3  QTL detection frequency and power of interval mapping (IM) and inclusive composite interval mapping (ICIM) estimated from five populations 
simulated using the Independent I  

Method QTL 
Detection times in five runs  Power (%) 

SI=10 cM SI=20 cM  SI=10 cM SI=20 cM 

IM Q1 1 2  20.0 40.0 

 Q2 3 4  60.0 80.0 

 Q3 4 4  80.0 80.0 

 Q4 5 5  100.0 100.0 

 False (FDRa)) 3 1  19.0 6.0 

ICIM Q1 4 4  80.0 80.0 

 Q2 4 4  80.0 80.0 

 Q3 5 5  100.0 100.0 

 Q4 4 5  80.0 100.0 

 False (FDR) 3 2  15.0 10.0 
a) False discovery rate.  

but will not be counted. Unbiased estimates can be achieved 
if all runs with peaks are counted, whether or not the peaks 
are above the LOD threshold.  

2  Results  

2.1  Power and false discovery rate of IM at a prede-
fined support interval 

The QTL detection power of IM was calculated for SI=10 
and 20 cM (Table 4). Similar power and FDR were ob-
served for both independent models, indicating that scatter-
ing the distribution of favorable and non-favorable alleles 
between parents had no effect on QTL detection when the 
QTLs were genetically independent. For the four QTLs 
considered, those with large genetic effects also had high 
detection power. For example, Q1 explained only 5% of 
phenotypic variance, and the power of IM to locate it in the 
10 cM SI was 25.8%. In contrast, Q4 explained 20% of 
phenotypic variance, and the power of IM to locate it in the 
10 cM SI was 85.4%.  

Linkage significantly reduced detection power and in-
creased FDR (Table 4). Linkage in repulsion (Linkage 
model II; Table 1) represented the worst case of QTL map-
ping. Both the LOD score and power were the lowest, and 
the standard errors of both QTL position and effects were 
the highest among the four models (Table 4). That larger SI 
will result in higher power and lower FDR (Tables 3 and 4) 
is understandable. In this sense, the SI length must be speci-
fied when estimating QTL detection power; otherwise, pos-
itive and false QTLs cannot be distinguished.  

2.2  Power and false discovery rate of ICIM at a prede-
fined support interval 

The QTL detection power of ICIM was calculated for SI=10 
and 20 cM (Table 5). Almost identical power and FDR were 
observed for both independent models. QTLs with large 

genetic effects also had high detection power. For example, 
Q1 explained 5% of phenotypic variance, and the power of 
ICIM to locate it in the 10 cM SI was 49.5%. In contrast, 
Q4 explained 20% of phenotypic variance, and the power of 
ICIM to locate it in the 10 cM SI was 89.0%.  

Linkage reduced ICIM’s detection power and increased 
FDR (Table 5). Linkage in repulsion (Linkage model II) 
resulted in the lowest LOD score and power and the highest 
standard error of QTL position and effects among the four 
models. For Linkage II, IM had powers of 0.3%, 25.35%, 
6.85%, and 40.6% to detect the respective QTLs and FDR= 
38.8%. In contrast, ICIM had powers 11.65%, 33.05%, 
56.25%, and 60.9%, respectively, and FDR=23.8%. In addi-
tion, ICIM resulted in smaller standard errors for QTL posi-
tion and effect. 

2.3  Detection power of IM and ICIM on marker in-
tervals 

The detection power could be calculated for each interval 
defined by markers. Power thus determined allows moni-
toring of QTL locations if not on the putative intervals. For 
the two independent models, IM and ICIM located QTLs at 
their flanking intervals in most times. However, there were 
chances that QTLs were located in other neighboring inter-
vals (Figure 3). For the two linkage models, IM located the 
two QTLs on chromosome 1 at the middle of the two posi-
tions in most times, and so as the two QTL on chromosome 
2. ICIM located the two linked QTL on chromosomes 1 and 
2 in their flanking intervals in most times, indicating its 
ability in separating linkage. Generally speaking, linkage 
complicates the QTL mapping procedure. In other words, 
much larger population is needed to dissect close linkage. 

3  Discussion  

Several QTL mapping methods have been developed in the  
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Figure 3  Power of interval mapping (IM) and inclusive composite interval mapping (ICIM) on each marker interval on the first four chromosomes. Power 
was estimated from 1000 populations simulated using each of two independent and two linkage genetic models. 

past two decades, and the most efficient and powerful 
method should be applied in genetic studies. Statistically, 
the best QTL mapping method should meet two criteria: 
high detection power and low FDR. The asymptotic proper-
ties of most test statistics used in QTL mapping are barely 
known theoretically. Computer simulation may be the only 
way to effectively compare different methods. We used IM 
and ICIM as examples, but the principles shown in this pa-
per are applicable to any other QTL mapping methods, es-
pecially those based on interval tests.  

In statistics, Type I error can be controlled by choosing 
the proper critical values, whereas Type II error is deter-
mined by the experimental design and the size of the QTL 
effect. Statistical power is the probability that the null hy-
pothesis is rejected when it is indeed false. Before conduct-
ing a potentially costly experiment, an investigator would 
like to be certain that the design ensures sufficiently high 
power given the study’s objectives. Statistical power de-
pends not only on sample size and the actual values of the 
unknown distribution parameters being estimated, but also 
on the assumed level of the significance threshold. In QTL 
mapping, power tells the likelihood that a real QTL was 
detected and is therefore the most important indicator of a 
method’s efficiency.  

The Type I error rate and FDR are often mistakenly 
equated, but their difference is actually very important. 
Given a rule for calling features significant, the Type I error 
rate is the probability that truly null features are called sig-
nificant. FDR is the rate that statistically significant features 
are truly null. For example, a Type I error rate of 5% means 
that, on average, 5% of the truly null features in the study 
will be called significant. A FDR of 5% means that, among 
all the features identified as significant, 5% on average are 

truly null. In addition, a much higher FDR can be tolerated 
than a P-value. For instance, a P-value of 0.30 is statistical-
ly unacceptable in any situation; but an FDR as high as 0.50 
or even higher could be quite meaningful.  

Quantitative traits are normally polygenic. Therefore, a 
number of QTLs must be considered simultaneously in 
power simulation. To tell which identified QTL belongs to 
which predefined QTL, and which are true or false, an SI 
must be predefined. We used both SI=10 and 20 cM in this 
study, but other SIs can be used as long as consistent stand-
ards are used to compare different methods. When more 
than one QTL are identified in a predefined SI, the one with 
the highest LOD score is chosen to ensure that the estimated 
power will not exceed 100%. Any QTL that falls beyond all 
predefined SI is considered false. In this sense, more than 
one false QTL may exist in a population, and the total 
number of false QTLs may exceed the number of runs, es-
pecially when a narrow SI is used. Defined by the propor-
tion of false QTLs to all positives (true+false QTLs), FDR 
avoids a false rate greater than 100%, and has been widely 
used in QTL simulation studies.  

High power and low FDR are the two most important 
statistical requirements for efficient QTL mapping methods. 
However, precisely estimating QTL position and effect is 
also important. These factors must also be considered when 
conducting simulation studies to provide perspective on the 
mapping methods. Extensive simulation studies previously 
completed have proved the great advantage of ICIM in im-
proving QTL detection power, separating linked QTLs, 
mapping interacting QTLs, and assessing multi-parental 
populations and QTL-by-environment interaction [5–10]. 
The ICIM method has been implemented in the freely- 
available public software QTL IciMapping (available from 
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www.isbreeding.net). In addition to QTL mapping, the 
software can build high-density linkage genetic maps as 
well. The simulation functionality in QTL IciMapping pro-
vides a useful tool to compare different mapping methods 
using a wide range of genetic models.  

This work was supported by the NationalBasic Research Program of China 
(2011CB100100) and the National Natural Science Foundation of China 
(31000540).  

1 Lander E S, Botstein D. Mapping Mendelian factors underlying 
quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 
185–199  

2 Haley C S, Knott S A. A simple regression method for mapping 
quantitative loci in line crosses using flanking markers. Heredity, 
1992, 69: 315–324  

3 Martinez O, Curnow R N. Estimating the locations and the sizes of 
the effects of quantitative trait loci using flanking markers. Theor 
Appl Genet, 1992, 85: 480–488  

4 Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 
136: 1457–1468 

5 Li H, Ye G, Wang J. A modified algorithm for the improvement of 
composite interval mapping. Genetics, 2007, 175: 361–374  

6 Zhang L, Li H, Li Z, et al. Interactions between markers can be 
caused by the dominance effect of QTL. Genetics, 2008, 180: 1177– 
1190  

7 Wang J. Inclusive composite interval mapping of quantitative trait 
genes. Acta Agron Sin, 2009, 35: 239–245  

8 Li H, Hearne S, Bänziger M, et al. Statistical properties of QTL link-
age mapping in biparental genetic populations. Heredity, 2010, 105: 
257–267  

9 Li H, Ribaut J M, Li Z, et al. Inclusive composite interval mapping 
(ICIM) for digenic epistasis of quantitative traits in biparental popu-
lations. Theor Appl Genet, 2008, 116: 243–260  

10 Li H, Bradbury P, Ersoz E, et al. Joint QTL linkage mapping for mul-
tiple-cross mating design sharing one common parent. PLoS ONE, 
2011, 6: e17573  

11 Li H, Zhang L, Wang J. Analysis and answers to frequently asked 
questions in quantitative trait locus mapping (in Chinese). Acta Agron 
Sin, 2010, 36: 918–931  

12 Wright A J, Mowers R P. Multiple regression for molecular-marker, 
quantitative trait data from large F2 populations. Theor Appl Genet, 
1994, 89: 305–331  

13 Whittaker J C, Thompson R, Visscher P M. On the mapping of QTL 
by regression of phenotype on marker-type. Heredity, 1996, 77: 23–32  

14 Doerge R W, Zeng Z B, Weir B S. Statistical issues in the search for 
genes affecting quantitative traits in experimental populations. Statist 
Sci, 1997, 12: 195–219  

15 Benjamini Y, Hochberg Y. Controlling the false discovery rate: A 
practical and powerful approach to multiple testing. J R Stat Soc Se-
ries B, 1995, 57: 289–300  

16 Mayer M, Liu Y, Freyer G. A simulation study on the accuracy of 
position and effect estimates of linked QTL and their asymptotic 
standard deviations using multiple interval mapping in an F2 scheme. 
Genet Sel Evol, 2004, 36: 455–479 

 
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction 

in any medium, provided the original author(s) and source are credited. 

 


