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We studied the evolution of cooperation in the prisoner’s dilemma game on a square lattice where the size of the interaction 
neighborhood is considered. Firstly, the effects of noise and the cost-to-benefit ratio on the maintenance of cooperation were in-
vestigated. The results indicate that the cooperation frequency depends on the noise and cost-to-benefit ratio: cooperation reaches 
a climax as noise increases, but it monotonously decreases and even vanishes with the ratio increasing. Furthermore, we investi-
gated how the size of the interaction neighborhood affects the emergence of cooperation in detail. Our study demonstrates that 
cooperation is remarkably enhanced by an increase in the size of the interaction neighborhood. However, cooperation died out 
when the size of the interaction neighborhood became too large since the system was similar to the mean-field system. On this 
basis, a cluster-forming mechanism acting among cooperators was also explored, and it showed that the moderate range of the 
neighborhood size is beneficial for forming larger cooperative clusters. Finally, large-scale Monte Carlo simulations were carried 
out to visualize and interpret these phenomena explicitly. 
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Various mechanisms of evolutionary game theory have been 
presented to explain the survival, sustenance and emergence 
of cooperation among selfish individuals in biological and 
social systems; e.g. kin selection [1], direct [2–4] and indi-
rect [5,6] reciprocity, voluntary participation [7–10] and 
spatial extensions [11–16]. As a paradigm of pair-wise in-
teraction games, the prisoner’s dilemma game (PDG) has 
attracted much attention [17–21]. In the original form of the 
PDG, there are two behavior options: each of two players 
must simultaneously choose to cooperate (C) or to defect 
(D). If both players choose C, they will receive the reward R 
separately, but only the punishment P for mutual defection. 
If two players take different strategies, then the defector will 
get the highest payoff of temptation T, while the cooperator 

will be left with the lowest sucker’s payoff S. These payoffs 
usually satisfy the elementary payoff ranking T > R > P > S 
and the additional required condition (T + S) < 2R in repeat-
ed interactions. Henceforth, defection is the optimal choice 
for each player irrespective of the decision of his opponent, 
and defection will become widespread. Every player will 
end up with the payoff P instead of the payoff R, which 
yields the social dilemmas as depicted in [22]. 

According to the motivation of the non-equilibrium ki-
netic Ising model in statistical physics, the PDG has been 
well studied for a spatially structured population in past 
decades [11–23]. In these models, players are distributed at 
the sites of different lattices or graphs, and each player can 
update his/her strategy and has a given probability of 
adopting his/her neighbor’s strategies at each time step. 
Recently, many real systems have been found to exhibit 
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complex topological characteristics that include small-world 
and scale-free properties, and complex networking ap-
proaches have become a powerful tool to analyze and un-
derstand complex real systems, such as those of global cli-
mate change and ecological research [24], language cluster 
formation in linguistic networks [25], biological interaction 
among proteins [26], and statistical analyses of Chinese 
semantic networks [27]. In addition, epidemic dynamics 
taking place in complex networks have received much in-
terest in the scientific communities [28,29]. Thus, investi-
gating cooperative dynamics in systems with complex to-
pology has become an active topic, and the great enhance-
ment of cooperative behavior can be attributed to heteroge-
neous interactions among players within real systems. For 
example, when the PDG on scale-free networks was con-
sidered, a dramatic improvement in cooperation was ob-
served because competition between the cooperation and 
defection hubs was the main force accelerating cooperation 
among players [30,31]. Besides the above-mentioned topo-
logical inhomogeneity, synchronous or asynchronous up-
dating activities, such as different teaching capabilities [32], 
random selections [33], and heterogeneous aspirations [34], 
which play an important role in promoting cooperation, 
have also been identified. However, systematic investiga-
tion becomes increasingly difficult for more complex to-
pologies and various updating rules. Apart from a large 
number of parameters describing the payoffs, the connectiv-
ity structure and the evolution rules need to be further con-
sidered when we discuss the cooperative dynamics preva-
lently found in the real world.  

In this paper, we discuss the effects of noise and strategy 
payoffs on cooperative behavior considering a PDG on a 
regular lattice. Notably, increasing the number of neighbors 
n has a favorable effect on defection [35–40]. Our goal is to 
explore whether the effect of the size of the neighborhood n 
is beneficial for the maintenance of cooperation. For this 
purpose, five neighborhoods of different size, namely the 
von Neumann neighborhood including only the nearest 
neighbors (n = 4), the Moore neighborhood with the nearest 
and second-nearest neighbors (n = 8), a 5 × 5 box excluding 
the player in question (n = 24), a 7 × 7 box excluding the 
player in question (n = 48) and a 9 × 9 box excluding the 
player in question (n = 80), are considered on a regular lat-
tice. Figure 1 exactly shows the distribution of the interac-
tion neighborhood. Our observations suggest that cooperation 
frequency fc relies on the noise and strategy payoff. Addition-
ally, we predict that cooperation is heavily promoted for a 
moderate size range of the interaction neighborhood. 

1  The game model 

In our game model, we consider the evolutionary PDG on a 
square lattice with a periodic boundary. Each player, occu-    
pying one of nodes on the square lattice, is a pure strategist  

 

Figure 1  Examples of the number of neighbors n in the PDG on regular 
lattices. The gray shaded areas represent the players who participate in the 
games at a time step. The white dots denote the focal players, whereas the 
black dots characterize the neighbors surrounding the focal players. From 
(a) to (e), the values of n are 4, 8, 24, 48 and 80, respectively. 

and can only follow one of two strategies: cooperation (C) 
or defection (D). In the procedure of evolution, each player 
is confined to interact only with his/her local neighbors and 
the payoff depends on his/her strategy as well as that of 
his/her neighbors. For simplicity and without loss of gener-
ality, we suppose that the cooperation yields a benefit b to 
the co-player at a cost c (b > c). If both players are coopera-
tive, both gain the benefit R = bc. If both choose to defect, 
neither is rewarded and both get the benefit P = 0. When one 
player betrays the other one, the defector avoids any cost 
and receives benefit T = b, whereas the cooperator’s benefit 
is reduced by the cost and obtains S = c. Following previous 
studies [11,31], we adopt the rescaled payoffs depending on a 
single parameter; i.e. R = 1, T = 1+r, S = r and P = 0, where  
r = c/(bc) denotes the cost-to-benefit ratio (or the ratio of 
the cost of cooperation to the net benefit of cooperation). 

In the PDG, the payoff Px for a player x is determined by 
the payoffs accumulated in his/her interaction with his/her 
neighbors. After each time step, player x can reassess and 
imitate one of the more successful neighbor’s strategies by 
comparing his/her payoff with that of a randomly selected 
neighbor y. Following previous studies [11–14,22,33–40], 
player x can follow the strategy of a randomly selected 
neighbor y with the probability depending on the payoff 
difference (PxPy): 
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where the parameter K denotes the amplitude of noise in the 
strategy adoption. In the limit of K, the strategy of neighbor 
y is always adopted if Py > Px. In the case of K→∞, player x 
switching to the strategy of neighbor y is a stochastic selec-
tion. In this work, we focus on the case of K>0. 



726 Wang J, et al.   Chin Sci Bull   March (2012) Vol.57 No.7 

In this model, Monte Carlo simulations are performed for 
a population consisting of N = 100 × 100 individuals. Each 
individual is initially assigned with equal probability (50%) 
of randomly selecting one of the two strategies: C or D. In 
what follows, we mainly study the average frequency of 
cooperators fc when the system is in a stationary state. The 
key quantity fc is measured by averaging over 20 realiza-
tions, each of which is an average of the last 50000 of the 
60000 Monte Carlo time steps. 

2  Numerical results and discussion 

We start by analyzing the effects of the amplitude of noise 
and the strategy payoff on the frequency of cooperators. For 
simplicity of expression, we use the variation in parameter r 
to represent the variation in strategy payoff. Figure 2 
demonstrates clearly that when the variation in noise is con-
sidered, the trend of the variation in cooperator’s frequency 
fc is similar irrespective of the value of r. As noise K in-
creases, the cooperator’s frequency fc increases monoto-
nously until reaching a maximum value; i.e. there is a 
threshold Ks for the optimum composition of cooperation, 
which is analogous to the so-called coherence resonance 
[19]. Naturally, for K > Ks, the cooperator’s frequency fc 
decreases evidently and even vanishes. This means that co-
operation is affected by the amplitude of the noise K. How-
ever, under the same noise level, how does the cooperator’s 
frequency fc change with the parameter r? From Figure 2, 
we find that the smaller that r is, the larger fc will be. In the 
case of r = 0, because the value of T equals that of R, the 
temptation to defect is reduced severely, and the probabili-
ties of choosing C or D are nearly equal. For r > 0, it is well 
known that defection is more beneficial, and cooperation is 
seriously inhibited. It is more interesting that within the 
special region of K, cooperators cannot remain alive if the 
value of r increases; i.e. the system will convert from a state 
of co-existence of cooperators and defectors to an absorbing 
state of only defectors. This phenomenon reveals a common 
view that a decrease in the cost-to-benefit ratio (i.e. tempta-
tion to defection) promotes cooperation greatly. Thus, ap-
propriate values of K and r favor the sustenance of coopera-
tion to some extent. 

Next, we turn to the role of the size of the interaction 
neighborhood n in promoting cooperation. In this case, our 
model can be considered a more accurate extension of the 
model of Szabó [38] where w = 1 for players of type B. Fig-
ure 3 shows the effect of n on the cooperator’s frequency fc 
by varying K while keeping r fixed. It is clear that except in 
the case of n=80, the frequency of cooperators fc increases 
non-monotonously with the continuous increase in K; that is, 
increasing K results in a climax of fc for other types of 
neighborhood, which is in accordance with the phenomenon 
in Figure 2. 

More importantly, it is clearly seen that fc remarkably  

 
Figure 2  Frequency of cooperators fc as a function of the amplitude of 
noise K for different values of r (r = 0, 0.01, 0.02, 0.03 and 0.04 from top to 
bottom). The simulations are performed on a regular lattice with the num-
ber of interaction neighbors n=4. 

 
Figure 3  Frequency of cooperators fc as a function of the amplitude of 
noise K for r = 0.015 on a square lattice. The simulation results are for 
different values of n (n=48, 24, 8, 4 and 80 from top to bottom). 

increases and cooperators ultimately dominate the games if 
n increases for mid-range values of n=24 and 48. Apparent-
ly, for n=4, cooperators become extinct if the value of K is 
low enough. In the case of n=8, the robustness of coopera-
tion is slightly weaker than in the cases of n=24 and 48, but 
better than that in the case of n=4. When the size of the in-
teraction neighborhood is sufficiently large (i.e. n=80), the 
result is consistent with mean-field-type behavior and the 
extinction of cooperation is thus inevitable. Consequently, 
these results show that the cooperator’s frequency fc does 
not monotonously depend on the size of the neighborhood, 
which assumes an important role in the emergence of coop-
eration. Cooperation can be better promoted under the con-
dition of a moderate size-range of the interaction neighbor-
hood, but is inhibited in the sufficiently large case. 

To investigate the procedure of cooperation sustenance in 
detail, we plot fc versus r for different sizes of neighborhood 
n in Figure 4. On one hand, we see that as the cost-to-benefit 
ratio (i.e. the temptation to defect) r increases, fc decreases 
and even vanishes as depicted in Figure 2. On the other 
hand, it is clear that fc depends on n. We find that in the 
cases of n=80 and 48, although cooperators absolutely govern  



 Wang J, et al.   Chin Sci Bull   March (2012) Vol.57 No.7 727 

 
Figure 4  Frequency of cooperators fc as a function of the cost-to-benefit 
ratio r for K=0.1 on square lattices. The simulation results are obtained for 
different values of n (solid triangles, hollow triangles, hollow squares, solid 
squares and solid diamonds represent results for n=80, 8, 48, 24 and 4). 

the games at first, they inevitably tend to die out as r reach-
es larger values, where defection becomes influential. When 
the focal player has a moderate number of neighbors (i.e. 
n=24), it becomes instantly obvious that mutual cooperation 
is more successful in obtaining a higher profit irrespective 
of the value of r. Choosing defection results in the scene 
that if most neighbors of the focal player also choose defec-
tion, which results in clusters of defectors because of the 
many interaction neighbors, his/her expected payoff will be 
much less than that of the cooperators. Evidently, coopera-
tion is the best strategy in such a situation. With the value of 
n decreasing monotonously, cooperation becomes increas-
ingly difficult and there is even a saturation state of global 
defectors (n=4). The reason for this kind of cooperation 
deterioration is that the cluster-forming of defectors be-
comes relatively easy, which results in the smaller loss of 
defectors. Thus, we argue that it is a valuable observation 
that the maintenance of cooperation is supported remarka-
bly by a mid-sized interaction neighborhood. 

It is notable that cooperators are able to survive by form-
ing clusters that minimize exploitation by invading defec-
tors in spatial games [11,13]. A cooperator cluster consists 
of many cooperators that are fully conjoint. Along the 
boundary of these clusters, cooperators can make up their 
loss exploited by defectors by choosing cooperation as a 
member of the cooperative clusters. Here, to confirm the 
effect of the size of the interaction neighborhood n on the 
cooperation explicitly, we present typical snapshots of the 
strategy distribution on the square lattice for different values 
of n. Figure 5 shows that the clusters of cooperators become 
larger as n appropriately increases, while they cannot sur-
vive for a sufficiently large neighborhood. 

Interestingly, we find that cooperative clusters form within 
a small area to minimize exploitation by defectors (Figure 
5(a)). Since the size of the interaction neighborhood affects 
the interplay between cooperators and defectors, this further 
affects their payoffs. In the case of a small neighborhood, 
the payoff of a cooperator’s clusters does not sufficiently  

 
Figure 5  Five typical snapshots of the distribution of the strategies C 
(black) and D (gray) on a 100×100 regular lattice. The parameters are K = 

0.1 and r = 0.015 for different values of n (from (a) to (e), n=4, 8, 24, 48 
and 80 respectively). 

exceed that of defectors, which restricts the infection and 
spreading of cooperation strategy due to the limited neigh-
borhood size. However, this situation is reversed for in-
creasing interaction sizes. Therefore, more cooperators 
spontaneously form clusters on the lattice for a more prof-
itable outcome; i.e. small cooperator clusters do not receive 
an optimal payoff. This is more apparent in the case of mid- 
range n values (Figure 5(c) and (d)). Meanwhile, our results 
suggest that if the value of n is moderate, defectors are 
highly dispersive and surround the boundary of the cooper-
ator’s clusters, which may be similar to realistic results for 
human society. Of course, if the size of the interaction 
neighborhood is large enough, the situation is similar to the 
mean-field prediction in which cooperation does not have 
survival space (Figure 5(e)). 

The reason why the moderate size of the interaction 
neighborhood sustains cooperation is now easily understood. 
Cooperators among cooperative clusters usually have a 
higher payoff than defectors. With the size of the neighbor-
hood increasing little by little, the dominant payoff for co-
operators within the cluster becomes more visible; hence, 
cooperation is greatly facilitated. 

3  Conclusions 

We investigated the general question of cooperation evolution 
in the PDG with different sizes of interaction neighborhoods 
on regular lattices. Beginning with the variation in noise K 
and cost-to-benefit ratio r, we showed that the frequency of 
cooperators fc relies on the values of these parameters and 
varies quantitatively with them. When increasing the noise, 
we observed that the peaks of fc are independent of the val-
ue of r. At the same time, we demonstrated that an increase 
in r is not beneficial for the promotion and sustenance of 
cooperation. Thus, the noise K and cost-to-benefit ratio r 
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play an indispensable role in the evolution of cooperation. 
In addition, we mainly analyzed the effect of the size of 
neighborhood n on the emergence and sustenance of coop-
eration. We found that the largest increase in cooperation is 
obtained for a moderately sized interaction neighborhood, 
which confirms our conjecture and differs from previous 
results. More interestingly, in the procedure of evolution, 
cooperators form compact clusters to survive and these 
clusters become larger as n increases little by little, which 
can protect the cooperators from being exploited by defec-
tors. Consequently, the size of the interaction neighborhood 
is important in maintaining cooperation, and provides new 
views and explanations of some social phenomena. 

In light of the above conclusions, many further investiga-
tions need to be carried out. Investigations need to ascertain 
whether the results obtained in this work also apply to the 
snowdrift game on a lattice, and how the results vary if oth-
er non-regular lattices are introduced. Additionally, the 
greatest issues of concern relate to the individual payoffs in 
these social dilemmas, such as how the payoffs vary in de-
tail with a change in the parameter n. 
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