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Abstract. We derive rigorous results on the link between

the principle of maximum entropy production and the prin-

ciple of maximum Kolmogorov–Sinai entropy for a Markov

model of the passive scalar diffusion called the Zero Range

Process. We show analytically that both the entropy produc-

tion and the Kolmogorov–Sinai entropy, seen as functions

of a parameter f connected to the jump probability, admit a

unique maximum denoted fmaxEP and fmaxKS
. The behaviour

of these two maxima is explored as a function of the system

disequilibrium and the system resolution N . The main result

of this paper is that fmaxEP and fmaxKS
have the same Tay-

lor expansion at first order in the deviation from equilibrium.

We find that fmaxEP hardly depends on N whereas fmaxKS

depends strongly on N . In particular, for a fixed difference

of potential between the reservoirs, fmaxEP(N) tends towards

a non-zero value, while fmaxKS
(N) tends to 0 when N goes

to infinity. For values of N typical of those adopted by Pal-

tridge and climatologists working on maximum entropy pro-

duction (N ≈ 10–100), we show that fmaxEP and fmaxKS
coin-

cide even far from equilibrium. Finally, we show that one can

find an optimal resolution N∗ such that fmaxEP and fmaxKS

coincide, at least up to a second-order parameter propor-

tional to the non-equilibrium fluxes imposed to the bound-

aries. We find that the optimal resolution N∗ depends on the

non-equilibrium fluxes, so that deeper convection should be

represented on finer grids. This result points to the inade-

quacy of using a single grid for representing convection in

climate and weather models. Moreover, the application of

this principle to passive scalar transport parametrization is

therefore expected to provide both the value of the optimal

flux, and of the optimal number of degrees of freedom (reso-

lution) to describe the system.

1 Introduction

A major difficulty in the modelling of nonlinear geophysical

or astrophysical processes is the taking into account of all

the relevant degrees of freedom. For example, fluid motions

obeying Navier–Stokes equations usually require of the order

ofN = Re9/4 modes to faithfully describe all scales between

the injection scale and the dissipative scale (Frisch, 1995). In

atmosphere, or ocean, where the Reynolds number exceeds

109, this amounts to N = 1020, a number too large to be han-

dled by any existing computers (Wallace and Hobbs, 2006).

The problem is even more vivid in complex systems such

as planetary climate, where the coupling of litho- bio- and

cryosphere with ocean and atmosphere increases the number

of degrees of freedom beyond any practical figure. This jus-

tifies the long historical tradition of parametrization and sta-

tistical model reduction, to map the exact equations describ-

ing the system onto a set of simpler equations involving few

degrees of freedom. The price to pay is the introduction of

free parameters, describing the action of discarded degrees

of freedom, that need to be prescribed.

When the number of free parameters is small, their pre-

scription can be successfully done empirically through cal-

ibrating experiments or by a posteriori tuning (Rotstayn,

2000). When the number of parameters is large, such as in

climate models where it reaches several hundreds (Murphy

et al., 2004), such empirical procedure is inapplicable, be-

cause it is impossible to explore the whole parameter space.

In that respect, it is of great interest to explore an alternative

road to parametrization via application of a statistical opti-

mization principle, such as minimizing or maximizing of a

suitable cost functional. As discussed by Turkington (2013)

and Pascale et al. (2012), this strategy usually leads to closed

reduced equations with adjustable parameters in the closure
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appearing as weights in the cost functional that can be com-

puted explicitly. A renowned example in climate is given by

a principle of maximum entropy production (MEP) that al-

lowed (Paltridge, 1975) to derive the distribution of heat and

clouds at the Earth surface with reasonable accuracy, with-

out any parameters and with a model of a dozen of degrees

of freedom (boxes). Since then, refinements of the Paltridge

model have been suggested to increase its generality and

range of prediction (Herbert et al., 2011). MEP states that

a stationary non-equilibrium system chooses its final state in

order to maximize the entropy production as is explained in

Martyushev and Seleznev (2006). Rigorous justifications of

its application have been searched using e.g. information the-

ory (Dewar and Maritan, 2014) without convincing success.

More recently, we have used the analogy of the climate box

model of Paltridge with the asymmetric exclusion Markov

process (ASEP) to establish numerically a link between the

MEP and the principle of maximum Kolmogorov–Sinai en-

tropy (MKS) (Mihelich et al., 2014). The MKS principle is

a relatively new concept which extends the classical results

of equilibrium physics (Monthus, 2011). This principle ap-

plied to Markov chains provides an approximation of the op-

timal diffusion coefficient in transport phenomena (Gómez-

Gardeñes and Latora, 2008) or simulates random walk on

irregular lattices (Burda et al., 2009). It is therefore a good

candidate for a physically relevant cost functional in passive

scalar modelling.

The goal of the present paper is to derive rigorous results

on the link between MEP and MKS using a Markov model

of the passive scalar diffusion called the Zero Range Process

(Andjel, 1982). We find that there exists an optimal resolu-

tion N∗ such that both maxima coincide to second order in

the distance from equilibrium. The application of this prin-

ciple to passive scalar transport parametrization is therefore

expected to provide both the value of the optimal flux, and of

the optimal number of degrees of freedom (resolution) to de-

scribe the system. This suggests that the MEP and MKS prin-

ciple may be unified when the Kolmogorov–Sinai entropy is

defined on opportunely coarse-grained partitions.

2 From passive scalar equation to ZRP model

The equation describing the transport of a passive scalar like

temperature in a given velocity field u(x, t) reads as

∂tT + u∂xT = κ∂
2
xT , (1)

with appropriate boundary conditions, or equivalently, in

non-dimensional form:

∂tT + u∂xT =
1

ReP r
∂2
xT , (2)

where κ , Re and Pr are respectively the molecular diffusiv-

ity, the Reynolds and the Prandtl number. To solve this equa-

tion, one must know both the velocity field and the boundary

conditions, and use as many number of modes as necessary to

describe the range of scales up to the scales at which molec-

ular diffusivity takes place, i.e. roughly (ReP r)3/2 modes,

where Re is the Reynolds number of the convective flow,

and Pr is its Prandtl number. In geophysical flows, this num-

ber is too large to be handled even numerically (Troen and

Mahrt, 1986). Moreover, in typical climate studies, the veloc-

ity flow is basically unknown as it must obey a complicated

equation involving the influence of all the relevant climate

components. In order to solve the equation, one must nec-

essarily prescribe the heat flux f =−uT + κ∇T . The idea

of Paltridge was then to discretize the passive scalar equa-

tion in boxes and prescribe the heat flux fi(i+1) between

boxes i and i+ 1 by maximizing the associated thermody-

namic entropy production Ṡ =
∑
ifi(i+1)(

1
Ti+1
−

1
Ti
). Here,

we slightly modify the Paltridge discretization approxima-

tion to make it amenable to rigorous mathematical results on

Markov chains. For simplicity, we stick to a one-dimensional

case (corresponding to boxes varying only in latitude) and

impose the boundary conditions through two reservoirs lo-

cated at each end of the chain (mimicking the solar heat flux

at pole and equator). We consider a set of N boxes that can

contain an arbitrary number n ∈ N of particles. We then al-

low transfer of particles in between two adjacent boxes via

decorrelated jumps (to the right or to the left) following a 1-D

Markov dynamics governed by a coupling with the two reser-

voirs imposing a difference of chemical potential at the ends.

The resulting process is called the Zero Range Process (ZRP)

(Andjel, 1982). The different jumps are described as follows.

At each time step a particle can jump right with probability

pwn or jump left with probability qwn wherewn is a parame-

ter depending of the number of particles inside the box. Phys-

ically it represents the interactions between particles. At the

edges of the lattice the probability rules are different: at the

left edge a particle can enter with probability α and exit with

probability γwn whereas at the right edge a particle can exit

with probability βwn and enter with probability δ. Choices of

different wn give radically different behaviours. For example

wn = 1+ b/n where b ≥ 0 described condensation phenom-

ena (Großkinsky et al., 2003) whereas w1 = w and wn = 1

if n≥ 2 has been used to modelled road traffic. We consider

in this paper the particular case where w = 1 by convenience

of calculation. Moreover, without loss of generality we will

take p ≥ q which corresponds to a particle flow from the left

to the right and denote f = p− q. After a sufficiently long

time the system reaches a non-equilibrium steady state. The

interest of this toy model is that it is simple enough so that

exact computations are analytically tractable.

Taking the continuous limit of this process, it may be

checked that the fugacity z, which is a quantity related to

the average particle density (see Eq. 9 below) of stationary

solutions of a system consisting of boxes of size 1
N

, follows
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the continuous equation (Levine et al., 2005) :

f
∂z

∂x
−

1

2N

∂2z

∂x2
= 0, (3)

corresponding to a stationary solution of a non-dimensional

passive scalar equation with non-dimensional velocity f and

a non-dimensional diffusivity 1
ReP r

=
1

2N
. Therefore, the fu-

gacity of the Zero Range Process is a passive scalar obeying a

convection–diffusion equation, with advection velocity con-

trolled by the probability to jump to the right or to the left,

and diffusivity controlled by the number of boxes: the larger

the number of boxes (the finer the resolution) the smaller the

diffusivity. This observation illuminates the well-known ob-

servation that the numerical diffusion of a discrete model of

diffusion is inversely proportional to the resolution. The pa-

rameter f controls the regime: f = 0 corresponds to a purely

conductive regime whereas the larger f the more convective

the regime. In the sequel, we calculate the entropy production

and the Kolmogorov–Sinai entropy function of f . These two

quantities reach a maximum denoted respectively fmaxEP and

fmaxKS
. The MEP principle (resp. the MKS principle) states

that the system will choose f = fmaxEP (resp f = fmaxKS
).

We will first show that numerically fmaxEP ≈ fmaxKS
even

far from equilibrium for a number of boxes N roughly cor-

responding to the resolution taken by Paltridge (1975) in his

climate model. This result is similar to what we found for

the ASEP model (Mihelich et al., 2014) and thus gives an-

other example of a system in which the two principles are

equivalent. Moreover we will see analytically that fmaxEP and

fmaxKS
have the same behaviour in first order in the differ-

ence of the chemical potentials between the two reservoirs

for N large enough. These results provide a better under-

standing of the relationship between the MEP and the MKS

principles.

3 Notation and useful preliminary results

This Markovian process is a stochastic process with an infi-

nite number of states in bijection with NN . In fact, each state

can be written n= (n1,n2, . . .,nN ) where ni is the number

of particle lying in site i. We call Pn the stationary proba-

bility to be in state n. In order to calculate this probability

it is easier to use a quantum formalism than the Markovian

formalism (Domb, 2000; Levine et al., 2005).

The probability to find m particles in the site k is equal

to pk(nk =m)=
zmk
Zk

where Zk is the analogue of the grand

canonical repartition function and zk is the fugacity between

0 and 1. Moreover Zk =
∑
∞

i=0z
i
k =

1
1−zk

. So, finally

pk(nk =m)= (1− zk)z
m
k . (4)

We can show that the probability P over the states is the ten-

sorial product of the probability pk over the boxes:

P = p1⊗p2⊗ ·· ·⊗pN .

Thus events (nk =m) and (n′k =m
′) for k 6= k′ are indepen-

dent and so

P(m1,m2, . . .,mN )= p1(n1 =m1) ∗ · · · ∗pN (nN =mN ). (5)

So finally

P(m1,m2, . . .,mN )=

N∏
k=1

(1− zk)z
mk
k . (6)

Moreover, with the Hamiltonian equation found from the

quantum formalism we can find the exact values of zk func-

tion of the system parameters:

zk =
(
p
q
)k−1
[(α+ δ)(p− q)−αβ + γ δ] − γ δ+αβ(

p
q
)N−1

γ (p− q −β)+β(p− q + γ )(
p
q
)N−1

, (7)

and the flux of particles c:

c = (p− q)
−γ δ+αβ(

p
q
)N−1

γ (p− q −β)+β(p− q + γ )(
p
q
)N−1

. (8)

Finally, the stationary density is related to the fugacity by the

relation

ρk = zk
∂ logZk

∂zk
=

zk

1− zk
. (9)

3.1 Entropy production

For a system subject to internal forces Xi and associated

fluxes Ji the macroscopic entropy production is well known

(Onsager, 1931) and takes the form

σ =
∑
i

Ji ·Xi .

The physical meaning of this quantity is a measure of irre-

versibility: the larger σ the more irreversible the system.

In the case of the ZRP, irreversibility is created by the fact

that p 6= q. We will parametrize this irreversibility by the pa-

rameter f = p−q and we will take p+q = 1. In the remain-

der of the paper, we take, without loss of generality, p ≤ q

which corresponds to a flow from left to right. Moreover, the

only flux to be considered here is the flux of particles c and

the associated force is due to the gradient of the density of

particles ρ :X =∇ logρ (Balian, 1992).

Thus, when the stationary state is reached, i.e. when c is

constant,

σ =

N−1∑
i=1

c.(log(ρi)− log(ρi+1))= c · (log(ρ1)− log(ρN )). (10)

Thus, according to Eqs. (7), (8), (9) and (10) when N tends

to +∞ we obtain:

σ(f )=
αf

f + γ

(
log

(
α

f + γ −α

)
− log

(
(α+ δ)f + γ δ

f (β −α− δ)+βγ − γ δ

))
. (11)

Because f ≥ 0 the entropy production is positive if and only

if ρ1 ≥ ρN and iff z1 ≥ zN . This is physically coherent be-
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cause fluxes are in the opposite direction of the gradient. We

remark that if f = 0 then σ(f )= 0. Moreover, when f in-

creases ρ1(f ) decreases and ρ2(f ) increases until they take

the same value. Thus there exists f , large enough, for which

σ(f )= 0. Between these two values of f the entropy pro-

duction has at least one maximum.

3.2 Kolmogorov–Sinai entropy

There are several ways to introduce the Kolmogorov–Sinai

entropy which is a mathematical quantity introduced by Kol-

mogorov and developed by the renowned mathematicians

Sinai and Billingsley (Billingsley, 1965). Nevertheless, for

a Markov process we can give it a simple physical interpre-

tation: the Kolmogorov–Sinai entropy is the time derivative

of the Jaynes entropy (entropy over the path):

SJaynes(t)=−
∑
0[0,t]

p0[0,t] log(p0[0,t]), (12)

For a Markov Chain we thus have

SJaynes(t)− SJaynes(t − 1)=−
∑
(i,j)

µistatpij log(pij ), (13)

where µstat = µistat i = 1, . . .,N is the stationary measure and

where the pij are the transition probabilities.

Thus the Kolmogorov–Sinai entropy takes the following

form:

hKS =−

∑
(i,j)

µistatpij log(pij ). (14)

For the ZRP, we show in the Appendix that it can be writ-

ten as

hKS =−(α logα+ δ logδ+ γ logγ +β logβ

+ (N − 1)(p log(p)+ q log(q)))+ (p log(p)+ q log(q))

N∑
i=1

(1− zi)+ (γ log(γ )+p log(p))(1− z1)

+ (β log(β)+ q log(q))(1− zN ). (15)

4 Results

We start by pointing to some interesting properties of fmaxEP

and fmaxKS
, then present numerical experiments on the ZRP

model and conclude with some analytical computations.

Note that forN , α, β, γ and δ fixed the entropy production

as well as the Kolmogorov–Sinai entropy seen as functions of

f both admit a unique maximum. When N tends to infinity

and f = 0, using Eq. (7) (i.e. the symmetric case), we find

that z1 =
α
γ

and zN =
δ
β

. Thus, the system is coupled with

two reservoirs with respective chemical potential α
γ

(left) and
δ
β

(right). For α
γ
6=

δ
β

the system is out of equilibrium. We as-

sume, without loss of generality, z1 ≥ zN , which corresponds

to a flow from left to right. As a measure of deviation from

equilibrium we take s = z1− zN : the larger s, the more den-

sity fluxes we expect into the system.

First we remark that fmaxEP hardly depends on N whereas

fmaxKS
depends strongly on N . This is easily understood be-

cause σ depends only on z1 and zN whereas hKS depends on

all the zi . Moreover, the profile of the zi depends strongly on

N . In particular, for a fixed difference of potential between

the reservoirs, fmaxEP(N) tends towards a non-zero value,

while fmaxKS
(N) tends to 0 when N goes to infinity.

Moreover, fmaxEP and fmaxKS
coincide even far from equi-

librium forN corresponding to the choice of Paltridge (1975)

N ≈ 10∼ 100. For N fixed, as large as one wants, and for

all ε, as small as one wants, there exists ν such that for all

s ∈ [0;ν] |fmaxEP − fmaxKS
| ≤ ε.

These observations are confirmed by the results presented

in Figs. 1 and 3 where EP and KS are calculated using

Eqs. (7) and (15) for s = 0.13 and three different parti-

tions: N = 20, N = 100 and N = 1000. The figure shows

that fmaxEP and fmaxKS
coincide with good approximation for

N = 20 andN = 100. But then whenN increases fmaxKS
(N)

tends to 0 whereas fmaxEP(N) tends to a non-zero value.

In Fig. 2 we represent the entropy production (top) and

KS entropy (bottom) as functions of f for N = 1000 and

for three value of s: s = 0.13; s = 0.2; s = 0.04. This sup-

ports the claim that forN fixed, we can try different values of

s such that s ∈ [0;ν] |fmaxEP − fmaxKS
| ≤ ε. Figure 3 shows

that 1fmax is minimum when the system is close to equi-

librium whereas the further the system is from equilibrium

(when s increases) the more 1fmax increases. Moreover, the

optimal resolution where fmaxEP and fmaxKS
coincide is ap-

proximately 10–100. Then 1fmax is maximum at N = 500

and s = 0.05. 1fmax is obviously linear in s, for small val-

ues of s, but the behaviour with N is more complicated.

Such numerical investigations help to understand why

fmaxKS
(N) and fmaxEP(N) have different behaviour functions

of N , and why for N large enough fmaxKS
and fmaxEP have

the same behaviour of first order in the deviation from equi-

librium measured by the parameter s. We will see that we can

get a precise answer to such questions by doing calculations

and introducing a sort of hydrodynamics approximation.

4.1 Taylor expansion

From Eq. (15) it is apparent that fmaxKS
depends on N

whereas from Eq. (10) we get that fmaxEP hardly depends

on N . Indeed there is a difference between fmaxEP and

fmaxKS
, i.e. a difference between the two principles for the

ZRP. Nevertheless, we have seen numerically that there is a

range ofN , namelyN ≈10–100 for which the maxima fairly

coincide.

Using Eqs. (15), (7), and (11) we compute analytically the

Taylor expansion of fmaxEP and fmaxKS
in s. We will show

the main result: fmaxEP and fmaxKS
have the same Taylor ex-

pansion in first order in s for N large enough. Their Taylor
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Figure 1. Entropy production calculated using Eq. (11) (left) and KS entropy calculated using Eqs. (7) and (15) (right) as functions of f for

s = 0.13 and respectively N = 20, N = 100 and N = 1000.

expansions are different up to the second order in s but there

exists an N , i.e. a resolution, such that fmaxEP and fmaxKS

coincident up to the second order.

Let us start by computing fmaxKS
. It does not depend of the

constant terms of hKS in Eq. (15) and therefore we need only

concern ourselves with

− (p log(p)+ q log(q))

(
N∑
i=1

(zi)− 1

)
+ (γ log(γ )

+p log(p))(1− z1)+ (β log(β)+ q log(q))(1− zN )

=N ·H(f,N,α,γ,β,δ). (16)

Using Eq. (7), the expression of H(f,N,α,γ,β,δ) takes

an easy form. To simplify the calculations, we restrict the

space of parameter by assuming α+ γ = 1 and β + δ = 1

and we parametrize the deviation from equilibrium by the

parameter s = α− δ. Moreover let us denote a = 1
N

. Thus,

we haveH(f,N,α,γ,β,δ)=H(f,a,α,s). In order to know

the Taylor expansion to the first order in s of fmaxKS
we

develop H(f,a,α,s) up to the second order in f ; i.e. we

have H(f,a,α,s)= C+Bf +Af 2
+ o(f 2). Then we find

fmaxKS
=−B/2A which we will develop in the power of s.

This is consistent if we assume f � a.

After some tedious but straightforward calculations, we

get at the first order in s:

fmaxKS
(s)=

1

4

(1−α)− a(α+ 2)

α(1−α)+ 2aα(α− 1)
s+ o(s) (17)

and so

fmaxKS
(s)=

1

4α
s+

3a

4(α− 1)
s+ o(s)+ o(as). (18)

We repeat the same procedure starting from Eq. (11) and we

obtain

fmaxEP(s)=
s

4α
+ o(s)+ o(a). (19)

Thus, since a = 1
N
� 1 the behaviour of fmaxKS

(s) and

fmaxEP(s) is the same for s small enough.

We remark that we can strictly find the same result by

solving the hydrodynamics continuous approximation given

by Eq. (3). This equation is a classical convection–diffusion

www.nonlin-processes-geophys.net/22/187/2015/ Nonlin. Processes Geophys., 22, 187–196, 2015
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Figure 2. Entropy production (left) and KS entropy (right) as functions of f for N = 1000 and respectively s = 0.13, s = 0.2 and s = 0.04.

Figure 3. 2-D plot representing 1fmax = fmaxEP − fmaxKS in the

(N,s) space.

equation. We remark that, by varying f , we change the con-

vective behaviour: f = 0 corresponds to a purely diffusive

regime whereas by increasing f we enhance the role of

convection. If the system is near equilibrium then fmaxEP ≈

fmaxKS
≈ 0 and the system is purely diffusive. When the sys-

tem is out of equilibrium fmaxEP and fmaxKS
are different

from 0 and the system corresponds to an (optimal) trade-off

between purely diffusive and convective behaviour.

One can verify this numerically: we first calculate the ex-

act values of the entropy production function of f using

Eq. (7) and the Kolmogorov–Sinai entropy function of f us-

ing Eqs. (7) and (15). Then we approximate these two curves

with a cubic spline approximation in order to find fmaxEP and

fmaxKS
.

In order to find the optimal resolution N∗ we can go one

step further by expanding fmaxEP and fmaxKS
up to the second

order in s:

fmaxEP(s)=
s

4α
+
s2(α+ 1)

8α2(α− 1)
+ o(s2)+ o(a), (20)

fmaxKS
(s)=

1

4

(1−α)− a(α+ 2)

α(1−α)+ 2aα(α− 1)
s

+
(1−α)2+ a(α2

− 2α+ 1)

8α2(α− 1)2(1− 2a)
s2
+ o(s2). (21)

Thus, fmaxEP and fmaxKS
coincide in second order in s iff a

satisfies the quadratic equation

(4α− 6α2
+ 6α3

− 4s+ 3α2s)a2

−
1

2
(8α− 8s+ 3α2s− 6α2

+ 6α3)a− (1−α)= 0. (22)
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Figure 4. fmaxEP (left) and fmaxKS (right) as functions of s for α = 0.5 and N = 100. Both fmaxKS and fmaxEP have a linear behaviour with

slope respectively 0.48 and 0.49, close to 1
4α
= 0.5.

Figure 5. fmaxKS(s) (left) and fmaxEP(s) (right) as functions of α and in black the curve f (s)= 1
4α
s. Note that the approximation fmaxKS(s)≈

fmaxEP(s)≈
1

4α
s is good.

This equation has a unique positive solution because the

leading coefficient is positive for s small enough (4α−

6α2
+6α3

−4s+3α2s)≥ 0 and the constant term is negative

−(1−α)≤ 0. We remark that the optimal resolutionN∗ =
1
a∗

depends on the parameters of the system namely on the de-

gree of non-equilibrium. This fact can be the explanation for

two well-known issues in climate/weather modelling. First,

it explains that, when downgrading or upgrading the resolu-

tion of convection models, the relevant parameters must be

changed as they depend on the grid size. Second, it suggests

that if the resolution is well tuned to represent a particular

range of convective phenomena, it might fail in capturing the

dynamics out of this range: since finer grids are needed to

better represent deep convection phenomena, the deviations

between model and observations observed in the distribution

of extreme convective precipitation may be due to an inade-

quacy of the grid used.

5 Conclusions

We have shown how a simple 1-D Markov process, the Zero

Range Process, can be used to obtain rigorous results on the

problem of parametrization of the passive scalar transport

problem, relevant to many geophysical applications includ-

ing temperature distribution in climate modelling. Using this

model, we have derived rigorous results on the link between

a principle of maximum entropy production and the princi-

ple of maximum Kolmogorov–Sinai entropy using a Markov

model of the passive scalar diffusion called the Zero Range

Process. The Kolmogorov–Sinai entropy seen as a function

of the convective velocity admits a unique maximum. We

show analytically that both have the same Taylor expansion

at the first order in the deviation from equilibrium. The be-

haviour of these two maxima is explored as a function of

the resolution N (equivalent to the number of boxes, in the

box approximation). We found that, for a fixed difference of

potential between the reservoirs, the maximal convective ve-

locity predicted by the maximum entropy production princi-

ple tends towards a non-zero value, while the maximum pre-

dicted using Kolmogorov–Sinai entropy tends to 0 when N

goes to infinity. For values of N typical of those adopted by

climatologists (N ≈10–100), we show that the two maxima

nevertheless coincide even far from equilibrium. Finally, we

show that there is an optimal resolution N∗ such that the two

maxima coincide to second order in s, a parameter propor-

tional to the non-equilibrium fluxes imposed to the bound-

aries. The fact that the optimal resolution depends on the in-

tensity of the convective phenomena to be represented, points

to new interesting research avenues, e.g. the introduction of

convective models with adaptive grids optimized with max-

imum entropy principles on the basis of the convective phe-

nomena to be represented.

The application of this principle to passive scalar trans-

port parametrization is therefore expected to provide both the

value of the optimal flux, and of the optimal number of de-

grees of freedom (resolution) to describe the system. It would

be interesting to apply it to a more realistic passive scalar

transport problem, to see if it would yield a model that could

be numerically handled (i.e. corresponding to a number of

bows that is small enough to be handled by present com-

puters). In view of applications to atmospheric convection, it
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would be interesting to apply this procedure to the case of

an active scalar, coupled with a Navier–Stokes equation for

the velocity. In such a case, the role of f will be played by

the turbulent subgrid Reynolds stresses. The heat fluxes and

N∗ will be fixed by the coarse-graining length, and the op-

timization procedure will in principle provide the optimum

subgrid Reynolds stresses at a given resolutionN . Moreover,

by imposing coincidence of MKS and MEP, one could get

both the Reynolds stresses, heat fluxes and the optimum res-

olution. Further, on the theoretical side, it will be interesting

to study whether for general dynamical systems, there exists

a smart way to coarse grain the Kolmogorov–Sinai entropy

such that its properties coincide with the thermodynamic en-

tropy production. This would eventually justify the use of the

MEP principle and explain the deviations as well as the dif-

ferent representations of it due to the dependence of the dy-

namic (Kolmogorov–Smirnov–Tsallis–Jaynes) entropies on

the kind of partition adopted.
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Appendix A: Computation of the K-S entropy

In this appendix, we compute the Kolmogorov–Sinai entropy

for the Zero Range Process, starting from its definition in

Eq. (14). In the frame of our Zero Range Process, we use

Eqs. (14) and (6) to write it as

hKS =−

∑
i

µistat

∑
j

pij log(pij )=−

+∞∑
m1=0

. . .

+∞∑
mN=0

P(m1,m2, . . .,mN )
∑
j

p(m1,...,mN )→j log(p(m1,...,mN )→j )

=−

+∞∑
m1=0

P(m1). . .

+∞∑
mN=0

P(mN )
∑
j

p(m1,...,mN )→j log(p(m1,...,mN )→j ). (A1)

We thus have to calculate
∑
j p(m1,...,mN )→j

log(p(m1,...,mN )→j ) that we will refer to as (∗). We

will take p+ q = α+ δ = β + γ = 1 and dt = 1
N

in order to

neglect the probabilities to stay in the same state compare to

the probabilities of changing state. There are five different

cases to consider:

1. if ∀imi ≥ 1 so the possible transitions are:

(m1,m2, . . .,mN )→ (m1±1,m2, . . .,mN ) with respec-

tive probabilities α and δ;

(m1,m2, . . .,mN )→ (m1,m2, . . .,mN±1) with respec-

tive probabilities γ and β;

and (m1, . . ., ,mk, . . .,mN )→ (m1, . . .,mk±1, . . .,mN )

with respective probabilities p and q;

thus,

(∗)= α logα+ δ logδ+ γ logγ +β logβ

+ (N − 1)(p log(p)+ q log(q)); (A2)

2. if m1 ≥ 1 and mN ≥ 1 and let i be the number of mi
between 2 andN−1 equal to 0. With the same argument

as previously we have

(∗)= α logα+ δ logδ+ γ logγ +β logβ

+ (N − 1− i)(p log(p)+ q log(q)); (A3)

3. if m1 = 0 and mN ≥ 1 and let i the number of mi be-

tween 2 and N − 1 equal to 0 we have

(∗)= α logα+ δ logδ+β logβ

+ (N − 2− i)p log(p)+ (N − 1− i)q log(q);

(A4)

4. the same applies if m1 ≥ 1 and mN = 0 and let i the

number of mi between 2 and N − 1 equal to 0 we have

(∗)= α logα+ δ logδ+ γ logγ

+ (N − 1− i)p log(p)+ (N − 2− i)q log(q);

(A5)

5. finally, if m1 = 0 and mN = 0 and let i the number of

mi between 2 and N − 1 equal to 0 we have

(∗)= α logα+ δ logδ

+ (N − 2− i)(p log(p)+ q log(q). (A6)

Using Eq. (4) we find that P(mk = 0)= 1− zk and∑
+∞

i=1P(mk = i)= zk .

We thus obtain that

hKS =−(α logα+ δ logδ+ γ logγ +β logβ)

+ (N − 1)(p log(p)+ q log(q))

+ (p log(p)+ q log(q))(
N∑
r=0

r
∑
i1...iN

∏
i=i1,...ir

(1− zi)
∏

i 6=i1...ir

zi

)
+ (γ log(γ )+p log(p))zN (1− z1) ∑
i2...iN−1

∏
i=i2,...ir

(1− zi)
∏

i 6=i2...ir

zi


+ (β log(β)+ q logq)z1(1− zN ) ∑
i2...iN−1

∏
i=i2,...ir

(1− zi)
∏

i 6=i2...ir

zi


+ (β log(β)+ γ logγ +p logp+ q logq) ∑
i2...iN−1

∏
i=i2,...ir

(1− zi)
∏

i 6=i2...ir

zi

 . (A7)

This expression, though complicated at first sight, can

be simplified. Indeed, interested in the function F(a)=∏N
1 (zk + a(1− zk)) and by deriving subject to a we show

that

N∑
r=0

r
∑
i1...iN

∏
i=i1,...ir

(1− zi)
∏

i 6=i1...ir

zi =

N∑
i=1

(1− zi). (A8)

Thus we can simplify the earlier equation to obtain

hKS =−(α logα+ δ logδ+ γ logγ +β logβ

+ (N − 1)(p log(p)+ q log(q)))

+ (p log(p)+ q log(q))

N∑
i=1

(1− zi)

+ (γ log(γ )+p log(p))(1− z1)

+ (β log(β)+ q log(q))(1− zN ). (A9)
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