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ABSTRACT:

Indoor mobile laser scanning (IMLS) based on the Simultaneous Localization and Mapping (SLAM) principle proves to be the preferred
method to acquire data of indoor environments at a large scale. In previous work, we proposed a backpack IMLS system containing
three 2D laser scanners and an according SLAM approach. The feature-based SLAM approach solves all six degrees of freedom
simultaneously and builds on the association of lines to planes. Because of the iterative character of the SLAM process, the quality
and reliability of the segmentation of linear segments in the scanlines plays a crucial role in the quality of the derived poses and
consequently the point clouds. The orientations of the lines resulting from the segmentation can be influenced negatively by narrow
objects which are nearly coplanar with walls (like e.g. doors) which will cause the line to be tilted if those objects are not detected as
separate segments. State-of-the-art methods from the robotics domain like Iterative End Point Fit and Line Tracking were found to not
handle such situations well. Thus, we describe a novel segmentation method based on the comparison of a range of residuals to a range
of thresholds. For the definition of the thresholds we employ the fact that the expected value for the average of residuals of n points
with respect to the line is σ/

√
n. Our method, as shown by the experiments and the comparison to other methods, is able to deliver

more accurate results than the two approaches it was tested against.

1. INTRODUCTION

In the recent years, “as-built” three-dimensional acquisition of
indoor environments with the aim of establishing or updating
Building Information Models (BIMs) for various applications has
gradually moved to the focus of a wider range of research. Due to
the unfavorable characteristics of indoor scenes for image-based
methods (lighting, intersection angles) most acquisition methods
build on active sensing, i.e. laser scanning. In order to reduce
the amount of manual interaction needed for e.g. co-registration
of scans to a common coordinate system, mobile laser scanning
using the Simultaneous Localization and Mapping (SLAM) prin-
ciple is the preferred method for experimental - e.g. (Cinaz and
Kenn, 2008, Wen et al., 2016, Filgueira et al., 2016) - as well as
commercial - Viametris iMS3D, NavVIS M3, ZEB1/ZEB REVO,
Google Cartographer - systems.

In our previous work we described the design of a backpack-
worn indoor mobile laser scanning system as well as a SLAM
approach solving the full six degrees of freedom simultaneously
based on the measurements of three 2D laser scanners (Vossel-
man, 2014). This SLAM method belongs to the family of feature-
based SLAM approaches, relying on linear features, i.e. line
segments, which are associated to planes representing the map.
The line segments have to be extracted from the laser scanlines
using an approriate segmentation method. The accuracy of this
segmentation method’s results, i.e. the quality of the segments’
orientations - together with the line-plane association approach -
highly influences the resulting drift. As an example, a thin ob-
ject attached or close to a wall plane and parallel to it (e.g. a
whiteboard or door, see figure 1) can cause a slightly wrong ori-
entation of the resulting line segment if not detected reliably. This
wrong line segment is in turn used to establish or update a slightly
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wrongly oriented plane to which the next wrong line is associated.
The result is obvious: As the position and orientation of the sen-
sor system are computed simultaneously, the errors accumulate
resulting in deteriorated poses and point clouds.

For our backpack system and the experiments in this paper, we
use the Hokuyo UTM-30LX 2D laser scanner. According to the
manufacturer, the UTM-30LX has a range noise of ±30 mm (in-
door, <3000lx, up to 10 m). In our own experiments for smaller
distances (<5 m), however, we identified a much better noise
level of around ±3 to ±3.5 mm.

Figure 1 shows a single scanline captured by the Hokuyo UTM-
30LX as well as the ground truth segmentation to linear segments
(manually performed). It depicts the two problematic cases men-
tioned before: a whiteboard attached to one of the walls which
has a depth of 2 cm and a door with a depth of 1.5 cm. While the
whiteboard has clear, steep edges (see figure 2 left), the detec-
tion of the door is further complicated by the fact that its frame
forms a sloped edge which results in a continuous transition from
wall to door leaf (see figure 2 right). It is obvious that these two
objects’ depths are very close to the sensor noise, which makes
them difficult to be detected as segments separate from the walls
they are attached to.

This paper’s contribution is a novel segmentation method for the
detection of linear segments in 2D lidar scanlines. To this end,
subsection 1.1 gives an overview over related work in this field.
Section 2 describes the segmentation approach. Results and their
evaluation as well as a comparison to other approaches are dis-
cussed in section 3. Section 4 concludes the paper and gives an
outlook to possible future work.
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Figure 1. Problematic cases for line segmentation (red o:
scanner position)

Figure 2. Whiteboard (left) and door (right) edges

1.1 Related Work

SLAM approaches, firstly building on ultrasound, later on 2D
laser scanning, originated as a solution for two of the fundamen-
tal problems of autonomous robots : localization, mapping, and
wayfinding. Consequently, this field is the main source for re-
search related to this work. As with upcoming 3D sensors re-
search in the field of 2D robotics SLAM has lost some traction,
most of the related work is rather old.

In (Siadat et al., 1997) three different approaches for linear seg-
mentation of 2D laser scans are described: Successive Edge
Following (SEF), Line Tracking (LT), Iterative End Point Fit
(IEPF). A good comparison of those approaches (with their
variations) and other prominent ones can be found in (Nguyen
et al., 2005). According to the authors, other methods based
on Kalman-filters, Hough-transform, RANSAC, or Expectation-
Maximization (EM) were found to be less reliable in terms of
their correctness. (Sack and Burgard, 2004) also come to the con-
clusion that IEPF outperforms EM, especially in the case of small
structures.

SEF methods work directly on the polar coordinates (angle and
range) delivered by the 2D scanning system. A point is included
into the current segment if the difference between its range and
the previous point’s range is below a threshold.

LT - or sometimes also called incremental - methods work on the
Cartesian coordinates. They decide about including a point into a
segment by adding the point to the segment and checking its dis-
tance to the resulting recomputed line against a metric threshold

(Siadat et al., 1997). Alternatively, the distance of the point to be
included can be computed with respect to the line defined by the
points contained in the segment only, as done in our own previous
work, see (Vosselman, 2014).

IEPF - or split-and-merge - starts with the full scanline, splitting
it recursively at the point with the largest distance to the fitted line
as long as this distance is larger than a threshold (Duda and Hart,
1973, Pavlidis and Horowitz, 1974, Siadat et al., 1997, Borges
and Aldon, 2004). In the subsequent merge step, possibly exist-
ing collinear segments are merged again. IEPF generally refers
to methods which connect the first and last point in a segment,
while split-and-merge methods rely on an estimation of the line
(mostly using least-squares adjustment).

According to the comparison described in (Nguyen et al., 2005),
IEPF and LT methods were found to be the most reliable ones
in terms of true positives as well as false positives (they will be
used for the comparison to our method, see section 3). Being
parts of the processing chain of real-time robotic systems (which
rely on the results for further steps like localization, mapping,
and wayfinding), most of the approaches mentioned in subsec-
tion 1.1 focus on fulfilling run-time constraints. As our indoor
mapping system is human-operated and the SLAM problem is
solved (so far) solely in post-processing, run-time was not taken
into account when developing and evaluating the method.

2. METHODOLOGY

2.1 Line segmentation using a range of residuals

The detection of the narrow objects described before poses a
problem for the LT method used in (Vosselman, 2014). This is
due to the fact that it accepts a point as part of the segment if its
distance to the line is less than 3σ (for a confidence interval of
99.7%). Thus, an object with a distance of e.g. 2σ will remain
undetected if testing points individually. The average residual
over a number of points, however, will deviate significantly.

If a set of n points form a valid line, the expected value for their
residuals’ mean value is σ/

√
(n) with σ being the residual of

each point with respect to the line. If the goal is the identification
of linear segments in a set of points, this fact can be employed by
comparing a range of average residuals against a range of thresh-
olds in order to test a point for its inclusion into a segment. Those
residuals are: The residual of the next point itself, tested against
the threshold 3σ; the next point and the last point contained in
the segment, tested against 3σ/

√
(2); and so forth until 3σ/

√
k,

where k is defined as a number of points contained in the segment.
Figure 3 depicts the threshold curve and curves of average resid-
uals for a point to be included in the segment, the point before
the split and the split point. It can be seen that the average resid-
uals of the point within the line (shorter because the smaller size
of the segment results in a smaller amount of points to be tested)
are low which caused the point to be included into the segment.
At the split point, however, the curve of average residuals crosses
the threshold curve, causing a new segment to be initiated.

The full method with its parameters is outlined in algorithm 1.
The input is a single scanline captured by the scanning system,
the output will be sets of points representing the segments (which
can be used to assign segment labels to the points). Furthermore,
the method requires input for the four parameters N - the number
of points being used for initialization of a segment, σ - a metric
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Figure 3. Decision curves for a point within the segment (*), the
point just before the split point (2) and the split point (o);

threshold curve (continuous line)

threshold, percentage - the percentage of points contained in the
segment which will be used for testing, and minLen - the min-
imum number of points considered to form a reliable segment.
The parameters will be explained further in the following.

For the initialization of a segment the current point together with
the N next points are used to fit a line using least squares adjust-
ment. The line is accepted as a candidate if they form a valid line,
i.e. if the mean value of the residuals is lower than σ. If the line is
not accepted, the current point gets the label “unsegmented” and
the next point is chosen.

The parameter percentage is used to select a number of points
contained in the segment which will used for testing the next
point for inclusion. The next point is tested by comparing a range
of residuals to a range of thresholds as described above. If all the
threshold checks are passed successfully, the point is added to the
segment and the line parameters are recomputed. If not, the point
is not included, the segment is added to the list of segments (if
the number of points in the segment is greater than minLen), and
the point is used to initiate a new segment (together with the next
N points).

An exemplary result using the dataset shown in figure 1 can be
seen in figure 4 (using the parameters N=3, percentage=20%,
σ=0.01 m, minLen=15).

2.2 Combination of forward-backward processing

While - in the aforementioned figure - the whiteboard (segment
number 2) is detected quite accurately, it can clearly be seen that
the door segment (number 5) contains some surrounding parts
as well. This results from the fact that the door’s “upper” edge
is only tested based on the small amount of points in the wall
segment next to it, causing the line fitting to be inaccurate and
allowing inclusion of door points. The “lower” edge, however,
gets detected, because it is tested based on the larger number of
points in segment 6.

During our experiments we realized that running the method for-
ward and backward on the dataset and combining the results can
help to overcome this shortcoming. Figure 5 shows the result of
running the method backward. It can be seen that, in this direc-
tion, the door’s “upper” edge is detected and the resulting small

Algorithm 1: Line segmentation using a range of residuals
input : points; N; σ; percentage; minLen; pt=0
output: segments
while pt 6= end do

segment← points(pt..N);
if segment.meanResiduals(pt..N)< σ then

pt+=N+1;
while pt 6= end do

endpt=pt-round(percentage*len(segment));
for j=pt;j>endpt;j-- do

if segment.meanResiduals(pt..j)< 3σ/
√

(j − pt+ 1)
then
segment← points(pt)

else
if len(segment)>minLen then

segments← segment;
break while

else
pt+=1;

segment is discarded because it contains less points than minLen
requests.

Figure 6 shows the combination of the results using the following
strategy: a) if a point in one result is unsegmented it is set to
unsegmented, b) if a point marks the change from one segment
to another (or an unsegmented point) in the forward, backward,
or both segmentation, a new segment starts also in the combined
result. Finally, a check is performed if the resulting segments still
fulfill the minLen requirement. In figure 6 it is also visible that
this method helps to clearly separate the segments, see e.g. the
gaps between segments 4 and 5 (the fuzzy transition area from
wall to door where the split also is difficult for a human operator
to be identified). It is also obvious that the results tend to show a
certain amount of oversegmentation as a tradeoff.

Figure 4. Forward result

3. EXPERIMENTS AND RESULTS

In order to analyze the impact of the different parameters on the
results as well as understand the performance of the method, we
compare its results with ground truth segmentation results defined
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Figure 5. Backward result

Figure 6. Forward and backward results combined

manually (see figure 1). The comparison is carried out in the
following way:

1. Assign each segment in the result to the ground truth seg-
ment with the biggest overlap, compute overlap1 (i.e. the ra-
tio between the number of overlapping points and the num-
ber of points in the ground truth segment). A value of 1 for
overlap1 means there is no oversegmentation present and all
points in the ground truth segment were found by the seg-
mentation method using one segment.

2. Compute the overlap of all segments assigned to one ground
truth segment with the ground truth segment (=overlap2). A
value of 1 for overlap2 means all the points in the ground
truth segment were found, possibly using more than one seg-
ment.

3. Save the number of segments overlapping with one ground
truth segment (“oversegmentation”)

4. Compute the angle between the resulting segment and the
assigned ground truth segment.

Thus, for each set of parameters the average overlap1,
average overlap2, the median angle and the amount of

over/undersegmentation (i.e. average number of resulting seg-
ments per ground truth segment) are computed and plotted (see
e.g. figure 7).

3.1 Influence of the parameters on the results

Obviously, the number of points in a segment - minLen - does not
have an impact on the quality of the individual segment, but will
cause small (and possibly unreliable) segments to be discarded,
therefore affecting the overall accuracy. The number of points
used for the initial line - N - does not have an impact on the qual-
ity of the individual segment, neither. However, as more points
will be tested for the initial line estimation, an increase in N can
lead to a greater amount of unsegmented points. Those two pa-
rameters were fixed to N=3 and minLen=15.

The most influential parameter on the quality is σ, as can be seen
in figure 7. It steers the amount of over/undersegmentation as
well as the angle trueness and the overlaps with the ground truth.
According to figure 7 small values produce a high amount of
oversegmentation (which can be seen in the low overlap1 as well
as the under/oversegmentation values). The method works best
with σ values between 0.0095m and 0.011m (for a value of 15%
for percentage), of which the lower bound is selected because of
a slightly higher overlap1.

Figure 7. Influence of the σ parameter, percentage=0.15

For a fixed σ, the influence of the last remaining parameter - per-
centage - can be analyzed (see figure 8). This parameter also in-
fluences mostly the amount of over/undersegmentation, but also
the angle trueness, as well as the overlap, apart from the fact that
increasing it has a negative effect on run-time because of an in-
crease of computations per point. However, an increase of the
parameter beyond 15% anyway influences the oversegmentation
and angle trueness negatively, so that this parameter was fixed at
15%.

The best result for the dataset shown in figure 1 is depicted in
figure 9. It was derived using the parameters σ=0.0095 m and
percentage=15%. When comparing this figure with the ground
truth in figure 1 it becomes obvious that - except for a small over-
shoot at the “upper” end of the door and the missing wall part
next to the door - all segments were detected correctly and with-
out oversegmentation.
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Figure 8. Influence of the percentage parameter, σ=0.0095 m

Figure 9. Best result, range of residuals segmentation, σ=0.0095
m, percentage=15%

3.2 Comparison to other methods and discussion

According to (Nguyen et al., 2005) the most reliable approaches
in terms of true positives as well as false positives are those based
on IEPF and LT. Those will be used for the comparison to our
method.

In figures 10 and 11 the impact of an IEPF method’s threshold
parameter and the best result can be seen, respectively. The best
result in figure 11 shows a small amount of oversegmentation,
but does not manage to detect the door segment’s start and end
points, missing the left edge of the whiteboard as well. Already
at a threshold value of 0.0115m the left edge of the whiteboard
gets missed.

Figures 12 and 13 show the influence of the threshold parameter
of the LT method used in (Vosselman, 2014) and the best result,
respectively. As clearly visible in figure 12, the method is able to
perform very well when using the correct threshold which can be
derived from the range noise (here: 0.003m). However, results
deteriorate rapidly when deviating from it, a fact which is already
described by (Nguyen et al., 2005): “algorithm performances are
very sensitive to the values used”. The best result using the op-
timal threshold (figure 13) thus is very close to the ground truth,

Figure 10. Influence of the threshold parameter on the IEPF
segmentation

Figure 11. Best result IEPF segmentation, threshold=0.011m

despite the lower door edge being detected late which results in a
slightly tilted wall segment next to it. When increasing the thresh-
old to 0.004m only, the door is not separated from the wall any-
more; starting from 0.005m, the whiteboard also is missed which
can also be seen in the increasing overlap1 curve.

Despite the fact that (Nguyen et al., 2005) rates it more accurate
than LT methods, the applied IEPF method’s results are not con-
vincing for the challenges in this data set.

In contrast, the simple LT approach performs reasonably well for
the problematic case described here. However, its high depen-
dency on the correct choice of the threshold parameter dimin-
ishes its applicability, especially when using an acquisition sys-
tem whose noise changes e.g. with the distance between scanner
and surface.

Our range of residuals segmentation approach, on the other hand,
is able to deliver a segmentation result very close to the ground
truth segmentation (compare figures 9 and 1). The disadvantages
of our method are a) a tendency to oversegmentation, b) a lower
overlap2 because of unsegmented points between segments as
well as missing too small segments, and c) high computational
complexity which depends on the size of the segments and the
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Figure 12. Influence of the threshold parameter on the LT
segmentation

Figure 13. Best result LT segmentation, threshold=0.003 m

percentage parameter. Disadvantage a) is not a problem for our
SLAM approach, tilted lines would have a higher impact on the
results. Disadvantage b) is balanced out by the more accurate re-
sults which are visible in the very low median angles in figure 7.
Disadvantage c) currently cannot be prevented, see section 4 for
ideas on how to tackle this in the future. However, the resulting
segmentation is very accurate over a wider range of σ parameters,
reflected in the high overlaps as well as the very small median an-
gles. The door gets detected using σ values between 0.008 and
0.011m, the whiteboard between 0.007 and 0.014m. Even when
using a σ of 0.015 m the results are similar to the best result de-
livered by the IEPF method.

Figure 14 shows more scanlines of the same scene using per-
centage=15% and σ=0.0095 m. In order to plot the subsequent
scanlines, the time was used as offset along the z axis. From the
left edge of the figure to the right, the data shows the wall, white-
board, wall, corner, wall, door, and wall, split by white points
which represent the “unsegmented” label. It can be seen that, de-
spite the scanner being moved (see the “curve” in the corner, for
example), the separation between walls and whiteboard/door is
detected reliably. In the area of the door and the wall next to it,
however, the tendency to oversegment is clearly visible.

Figure 14. More scanlines of the same scene, plotted using the
time as offset along the z axis of the scanner (white points =

unsegmented)

4. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel line segmentation method for
2D lidar scanlines based on testing a range of residuals against a
range of thresholds. Despite the higher computational complexity
when compared to the other methods (which do not analyze each
point several times), the method is capable of producing accurate
linear segments and preventing tilted lines which can be caused
by narrow, nearly collinear objects.

In the future, we will investigate if the computational complexity
can be reduced. This could e.g. be done by not testing the full
range of residuals, but only at discrete steps, thus reducing the
number of tests per point. Furthermore, we will thoroughly test
the impact of different segmentation methods on the results of our
SLAM method. Lastly, we plan to analyze if forward-backward
processing can also improve the results of the LT method.
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