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Abstract. The current study proposes an integrated un-
certainty and ensemble-based data assimilation framework
(ICEA) and evaluates its viability in providing operational
streamflow predictions via assimilating snow water equiva-
lent (SWE) data. This step-wise framework applies a pa-
rameter uncertainty analysis algorithm (ISURF) to iden-
tify the uncertainty structure of sensitive model parame-
ters, which is subsequently formulated into an Ensemble
Kalman Filter (EnKF) to generate updated snow states for
streamflow prediction. The framework is coupled to the
US National Weather Service (NWS) snow and rainfall-
runoff models. Its applicability is demonstrated for an op-
erational basin of a western River Forecast Center (RFC) of
the NWS. Performance of the framework is evaluated against
existing operational baseline (RFC predictions), the stand-
alone ISURF and the stand-alone EnKF. Results indicate that
the ensemble-mean prediction of ICEA considerably out-
performs predictions from the other three scenarios inves-
tigated, particularly in the context of predicting high flows
(top 5th percentile). The ICEA streamflow ensemble pre-
dictions capture the variability of the observed streamflow
well, however the ensemble is not wide enough to consis-
tently contain the range of streamflow observations in the
study basin. Our findings indicate that the ICEA has the po-
tential to supplement the current operational (deterministic)
forecasting method in terms of providing improved single-
valued (e.g., ensemble mean) streamflow predictions as well
as meaningful ensemble predictions.

1 Introduction

Hydrologic forecasting is of primary importance in the con-
text of flood and drought mitigation as well as for opti-
mal water resources planning and management. The Na-
tional Weather Service (NWS), the US agency responsible
for short- and long-term hydrologic forecasting across the
nation, primarily applies a joint snow accumulation and ab-
lation model (i.e., SNOW17; Anderson, 1973) and rainfall-
runoff model (i.e., SAC-SMA model; Burnash et al., 1973)
for operational streamflow prediction in snow-dominated
watersheds. For these watersheds, the accuracy of stream-
flow prediction largely relies on the accuracy of initial snow-
pack states (Clark and Hay, 2004; Franz et al., 2008). In the
current NWS forecasting system, model initialization is con-
ducted by running the calibrated joint model to the beginning
of the forecast period. Subsequently, simulated states are
manually updated based on the observed states. These state
adjustments are typically not archived and are fairly subjec-
tive, varying significantly among forecasters who have dif-
ferent understanding and knowledge of the forecast basins,
models, and prediction errors. Forecast accuracy thus varies
across forecasters with different levels of forecasting skills
(Seo et al., 2003). In addition, potential uncertainties in
model forcing and parameters are typically ignored in the
adjustment process. The non-systematic and manual pro-
cedures of the current model initialization method, as well
as the need for more systematic uncertainty assessment mo-
tivate the development of a coupled automated uncertainty
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analysis and data assimilation approach. The developed ap-
proach described herein includes the following capabilities:
(1) treating errors in model forcing and parameters in a sys-
tematic and meaningful way, and (2) automatically merging
state measurements into the operational model(s).

Over the past several decades, a variety of uncertainty
analysis methods and data assimilation techniques have been
developed and reported in the hydrologic literature. Some
of the uncertainty analysis methods, among many others,
include the generalized likelihood uncertainty estimation
(GLUE) (Beven and Binley, 1992), the Bayesian total er-
ror analysis (BATEA) (Kavetski et al., 2002), the Inte-
grated Bayesian Uncertainty Estimator (IBUNE) (Ajami et
al., 2007), the Framework for Understanding Structural Er-
rors (FUSE) (Clark et al., 2008b; Clark and Kavetski, 2010),
and Markov Chain Monte Carlo (MCMC) methods includ-
ing the Random Walk Metropolis algorithm (Kuczera and
Parent, 1998), the Shuffled Complex Evolution Metropolis
(SCEM-UA) algorithm (Vrugt et al., 2003), and the Differ-
ential Evolution Adaptive Metropolis (DREAM) algorithm
(Vrugt et al., 2008). Most of above methods have not been
commonly applied in practice, particularly for the NWS op-
erational models SNOW17 and SAC-SMA. This is partly due
to their high computational requirements, since efficiency
is extremely important in hydrologic forecasting operations
(Weerts and El Serafy, 2006). Most recently, He (2010)
proposed an Integrated Sensitivity and UnceRtainty analy-
sis Framework (ISURF). The ISURF first applies the Gen-
eralized Sensitivity Analysis (GSA) (Hornberger and Spear,
1981) method as a screening tool to identify sensitive model
parameters. Subsequently, ISURF applies the DREAM al-
gorithm (Vrugt et al., 2008) to explicitly quantify the uncer-
tainty structure of these identified parameters. This step-wise
method significantly reduces the computational load and has
been demonstrated to efficiently and adequately identify the
uncertainty structure of the SNOW17 and SAC-SMA param-
eters at a set of study sites with contrasting hydroclimatic
conditions (He, 2010; He et al., 2011b).

Data assimilation techniques have been extensively ap-
plied in meteorological and ocean sciences. Currently ex-
isting data assimilation techniques were primarily developed
for numerical weather prediction (Daley, 1993) and more re-
cently applied in hydrologic fields including operational hy-
drologic forecasting. The earliest data assimilation approach
applied to operational hydrologic models (i.e., SAC-SMA)
is the extended Kalman filter (EKF) (Kitanidis and Bras,
1980a,b). Another data assimilation technique applied to an
operational model (i.e., SAC-SMA) is the variational method
(VAR) (Seo et al., 2003, 2009). A third data assimilation
technique applied in hydrologic modeling is the Ensemble
Kalman Filter (EnKF) (Evensen, 1994). The EnKF has been
applied to both the SNOW17 model (Slater and Clark, 2006)
and SAC-SMA model (Vrugt et al., 2006), as well as other
hydrologic models including the TOPNET model (Clark et
al., 2008a) and the HBV model (Weerts and El Serafy, 2006).

These data assimilation techniques have their own advan-
tages and disadvantages (Liu and Gupta, 2007). The EKF
is inherently associated with instabilities and divergence for
models with strong non-linearities (Evensen, 1994). The
VAR requires the development of the adjoint model which
is complicated and labor-intensive (Margulis and Entekhabi,
2001). In comparison to the EKF and VAR, the EnKF
does not require reformulation or modification of the original
model, which is important in an operational setting. In addi-
tion, the EnKF provides more flexibility in explicitly han-
dling various sources of uncertainty. This distinctive charac-
teristic of the EnKF makes it a potentially robust technique
for assimilation of a range of hydrologic data into operational
forecasting. There are also other ensemble data assimilation
algorithms including the Ensemble Kalman Smoother (e.g.,
Dunne and Entekhabi, 2006), and particle filter (e.g., Morad-
khani et al., 2005a) which have similar strengths as the EnKF.
However, previous studies have shown the EnKF is easy to
implement and is more computationally efficient (Weerts and
El Serafy, 2006).

In spite of the above-mentioned attempts to integrate data
assimilation approaches into the NWS operational SNOW17
model (Slater and Clark, 2006) and SAC-SMA model (Ki-
tanidis and Bras, 1980a,b; Seo et al., 2003, 2009), most of
these studies assumed uncertainty-free model parameters and
thus did not capitalize on the full capabilities of the EnKF
to propagate parameter uncertainty and subsequently reduce
forecasting uncertainty. Recent studies (e.g., Moradkhani et
al., 2005a,b; Vrugt et al., 2006; Su et al., 2011) explored
the capability of data assimilation techniques (i.e., EnKF
and/or particle filter) in sequentially updating model param-
eters and states at measurement times. However, the tradi-
tional premise in operational hydrologic forecasting is that
model parameters are time-invariant. Parameter uncertainty
can be addressed by defining an ensemble set of parameters
which approximately covers the uncertain parameter ranges.
This can be achieved by perturbing parameters in the same
way as the model forcing (Margulis et al., 2002).

The objectives of the current study are two-fold: (1) to ex-
plicitly quantify uncertainty in model parameters; and (2) to
develop an ensemble-based data assimilation technique con-
figured with derived parameter uncertainty and evaluate the
applicability of this technique in improving NWS operational
streamflow predictions. To achieve our objectives, we pro-
pose an Integrated unCertainty and Ensemble-based data As-
similation (ICEA) approach for the coupled SNOW17/SAC-
SMA model of the NWS. The ICEA has two components, the
ISURF framework (He, 2010) and an EnKF framework. The
ISURF is applied to identify sensitive model parameters and
the uncertainty structure of these parameters. Based on the
parameter uncertainty structure identified along with preset
uncertainty structure for model forcing, an EnKF framework
is developed for the SNOW17 model to generate rain plus
snowmelt (defined here as rain falling on bare ground plus
melt out of the snowpack) via assimilation of snow water
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Table 1. SNOW17 model parameters and state variables that are updated in the data assimilation applications. Parameter ranges are estimated
from Anderson (1973) and He et al. (2011a,b).

Parameters Explanation Unit Ranges

SCF Snow fall correction factor – 0.7–1.4
MFMAX Maximum melt factor mm/6 h/◦C 0.5–2.0
MFMIN Minimum melt factor mm/6 h/◦C 0.05–0.49
UADJ The average wind function during rain-on-snow periods mm/mb/◦C 0.03–0.19
NMF Maximum negative melt factor mm/6 h/◦C 0.05–0.50
MBASE Base temperature for non-rain melt factor ◦C 0–1.0
PXTEMP Temperature that separates rain from snow ◦C −2.0–2.0
PLWHC Percent of liquid-water capacity – 0.02–0.3
DAYGM Daily melt at snow-soil interface mm/day 0–0.3
TIPM Antecedent snow temperature index parameter – 0.1–1.0
SI Areal SWE above which all the area is covered by snow mm 0–2000

State variables Explanation Unit

TWE Snow water equivalent mm
WE Water equivalent of ice portion of snowpack mm
LIQW Amount of liquid water held against gravity drainage mm
S Amount of lagged excess liquid water in storage mm
El Average hourly lagged excess water for each time step mm
PACKRO Snowpack runoff mm
ROBG Runoff over bare ground mm
NEGHS Heat deficit mm

equivalent (SWE) observations. The rain plus snowmelt
serves as input to the SAC-SMA model to produce stream-
flow predictions. An operational watershed in California is
used as the study basin to demonstrate the applicability of
ICEA to the coupled SNOW17/SAC-SMA model in terms
of providing streamflow predictions. Results are evaluated
against the RFC predictions as well as that from a stand-alone
EnKF.

2 Study area, datasets, and models

2.1 NWS operational models

The SNOW17 is a lumped process-based model that simu-
lates snow accumulation and ablation processes (Anderson,
1973). The model requires mean areal precipitation (MAP)
and mean air temperature (MAT) as inputs and simulates
SWE and a rain plus snowmelt timeseries. Snow is modeled
as a single layer in the model. The heat storage of the snow-
pack, liquid water retention and transmission, and snowmelt
are computed using empirical functions, an areal depletion
curve (ADC), and 11 parameters (Table 1). The model ap-
plies a snow correction factor (SCF (−)) to account for pre-
cipitation gage catch deficiencies. The actual snowfall input
to the model,Ps (mm), is computed as:

Ps = SCF× P × fs (1)

whereP (mm) represents the observed precipitation (MAP
in this study);fs (−) is fraction of snow in the precipitation
and is determined as:

fs =

{
1, whenTa < PXTEMP
0, whenTa ≥ PXTEMP

(2)

whereTa (◦C) is the observed air temperature (MAT in this
study); PXTEMP is the threshold temperature to distinguish
snowfall from rainfall in precipitation. Parameters SCF and
PXTEMP jointly determine the snowfall input to the model
for given precipitation and air temperature forcing.

The SAC-SMA model is a saturation excess rainfall-runoff
model that simulates infiltration, percolation, soil moisture
storage, drainage, and evapotranspiration processes (Burnash
et al., 1973). Inputs to the model typically include MAP (or
rain plus snowmelt when used in junction with the SNOW17
model) and potential evapotranspiration (PET). Outputs are
estimated evapotranspiration and a basin-averaged runoff
depth. A separate unit hydrograph is then applied to convert
the runoff depth to streamflow. The model has 16 parame-
ters, 13 of which must be estimated and three are generally
set to default values (Hogue et al., 2000, 2006; Ajami et al.,
2004).

2.2 Study area and datasets

The current study focuses on the North Fork of the Amer-
ica River Basin (NFARB) located on the western side of the
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Fig. 1. Location and elevation ranges of the North Fork of the
American River Basin (NFARB) as well as locations of streamflow
and snow observational stations used in the current study.

Sierra Nevada Mountains in northern California (Fig. 1). The
basin is one of the study locations for the Distributed Model
Intercomparison Project (DMIP) of the NWS (Koren et al.,
2004; Reed et al., 2004; Smith et al., 2004). The NFARB
drains into Lake Folsom with an area of 868 km2. Eleva-
tion in the NFARB ranges from about 200 m at the basin
outlet to about 2870 m at the highest boundary. The basin is
characterized by deep winter snowpack (November to Febru-
ary) resulting from orographic precipitation processes. The
snowpack melts out in the spring (March to June). The
long-term annual precipitation and runoff are 1514 mm and
837 mm, respectively. The vegetation is elevation-dependent,
with thin alpine tundra forest, dense mixed coniferous for-
est, and grassland chaparral and woodland species in the up-
per, medium, and lower elevations of the basin, respectively
(Shamir and Georgakakos, 2006).

The snowline at the end of the accumulation period is es-
timated at around 1500 m. In the NWS modeling system,
the NFARB is delineated into the upper sub-basin and lower
sub-basin using the snowline as the divide. The upper sub-
basin accounts for 37 % of the total basin area. The upper
and lower sub-basins receive an annual average precipitation
of about 1643 mm and 1397 mm, respectively. The long-term
annual average temperatures for the upper and lower sub-
basins are approximately 5.7◦C and 10.7◦C, respectively.
There are three snow stations which provide daily SWE ob-
servations in the upper sub-basin (Fig. 1, Table 1). One of
them (CS) is a SNOw TELemtry (SNOTEL) site maintained
by the National Water and Climate Center (NRCS). The other
two are maintained by the California Data Exchange Center
(CDEC). Additional climatic and geographic characteristics
of the upper and lower sub-basins are presented in Fig. 2.

Model forcing data, including the historical MAP, MAT,
and PET for both upper and lower sub-basins, are avail-

Fig. 2. Climatic characteristics of the NFARB sub-basins during the
entire study period (WY 1979–2002), training period (WY 1979–
1984), and prediction period (WY 1991–1996). Mean annual tem-
perature at various percentiles over the lower(a) and upper(b) sub-
basins are highlighted, as well as the annual areal precipitation at
various percentiles over the lower(c) and upper(d) sub-basins.

able at a 6-hourly time step from water year (WY) 1979–
2002 (hereafter refer to as the “whole period”). The daily
streamflow discharge data at the basin outlet (recoded at
USGS gage # 11427000) and daily SWE at the snow stations
are also available from WY 1979–2002 and WY 1991–2002,
respectively. For demonstration purposes, a 6-year train-
ing period (WY 1979–1984) is selected to identify parame-
ter uncertainty. An equivalent length of period is selected
as the prediction period (WY 1991–1996), when the SWE
observations are assimilated to produce streamflow predic-
tions. The MAT and MAP during both training and predic-
tion periods generally resemble their counterparts during the
whole period, however, MAT during the prediction period is
slightly higher and MAP during the training period is higher
at both sub-basins (Fig. 2). Further details on the hydrocli-
matic characteristics of the study basin (NFARB) during the
prediction period are provided in Table 3.

3 Methodology

3.1 Integrated uncertainty and Ensemble-based data
Assimilation (ICEA)

The ICEA consists of a parameter uncertainty analysis com-
ponent, ISURF, and a data assimilation component, the
EnKF. These two components are described as follows.

3.1.1 Uncertainty analysis

The ISURF utilizes the GSA (Hornberger and Spear, 1981)
as an initial step to screen and identify sensitive parameters.
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The GSA first samples the parameter space and then clas-
sifies the sampled parameters into behavioral and non-
behavioral categories according to the performance of the
model configured with these parameters. The behavioral pa-
rameter sets are then divided into an amount of equally sized
groups. Cumulative distributions of each parameter within
each group are calculated and the Kolmogorov-Smirnov (KS)
test is applied to quantify the closeness between these distri-
butions. The resultingKS value (from 0 to 1) is the maxi-
mum vertical distance observed between these distributions,
with higher value indicating higher parameter sensitivity. A
KS value greater than 0.25 is utilized as a threshold for pa-
rameter sensitivity following He et al. (2011b). More de-
tailed explanation and application of the GSA appears in He
et al. (2011b).

The ISURF employs the DREAM algorithm for subse-
quent uncertainty assessment of sensitive model parame-
ters. The DREAM was recently introduced by Vrugt et
al. (2008) to estimate optimal parameter values and their un-
derlying posterior probability density. This is accomplished
by minimizing the sum of squared residuals between model-
predicted and observed variables. In DREAM, a preset num-
ber of Markov Chains (a chain refers to a vector containing
model parameters considered) are simultaneously run in par-
allel. For each chain, a candidate vector is generated by tak-
ing a discrete proposal distribution containing a fixed multi-
ple of the difference between randomly chosen chains. The
Metropolis ratio is used to decide whether to accept the can-
didate point or not. The convergence of a DREAM run is
monitored with theR̂ statistic of Gelman and Rubin (1992).
The reader is referred to Vrugt et al. (2008) for detailed de-
scriptions on DREAM. In the current study, we use standard
algorithm settings for both the GSA and DREAM applied by
He et al. (2011b).

3.1.2 Ensemble Kalman filter (EnKF)

The EnKF, first introduced by Evensen (1994), is a Monte
Carlo approach which approximates a Bayesian updating
scheme to determine the evolution of model states over time
(between measurements) and updating of these states at mea-
surement times. Detailed description of EnKF can be found
in Evensen (1994, 2003) and Reichle et al. (2002). Basically,
the EnKF involves a recursive propagation and updating pro-
cess. The propagation step produces an ensemble of model
state outputs between measurements based on an ensemble
of model inputs as follows:

yj (t) = A
[
µj (t), θj ,yj (t − 1)

]
; yj (t = 0) = y0j (3)

where A is the model operator investigated (SNOW17 in
this case) which is subject to time-varying forcing (µ(t))
and time-invariant parameters (θ ); y represents model states
(Table 1) andy0 denotes initial states;j (∈ [1, 2, ..., N]),
N designates ensemble size) is a single ensemble member.

The probability distributions of model forcing and parame-
ters (from which samplesµj (t) andθj are generated) need to
be specified a priori and are further discussed in Sect. 3.3.3.

The ensemble of model states is systematically updated
when the new measurement is available. This update
largely relies on the differences between actual and predicted
measurements, as illustrated below,

y+

j (ti) = y−

j (ti) + K
{
zi + ωi − M

[
y−

j (ti)
]}

(4)

where superscripts “−” and “+” denote the state estimates
before and after the update, respectively, at a specific mea-
surement time (ti); zi is thei-th measurement (areal SWE in
this case);ωi is a random error term generated by the EnKF
and has the same characteristics of the systematic measure-
ment errors associated withzi ; M is a measurement operator
(linear in this case) mapping model states to the measure-
ment variable(s); andK is the Kalman gain determined from
the ensemble statistics and the measurement error specified.
Definition of measurement error is presented in Sect. 3.3.
Figure 3 illustrates how EnKF is applied in ICEA.

3.2 Implementation of ICEA and proposed scenarios

Given that most snow events occur above the snowline (i.e.,
within the upper sub-basin), the current study focus on as-
similation of SWE observations from the upper sub-basin.
Model parameters (SNOW17 and SAC-SMA) used for the
lower sub-basin remain unchanged from those applied in
RFC operational forecasting. The two components of ICEA,
the ISURF and the EnKF, are applied in the training period
and prediction period, respectively. The general application
procedure is illustrated in Fig. 4 and described as follows
(specific details explained in Sect. 4).

– Step 1:
The ISURF is applied to the joint SNOW17/SAC-SMA
model in the upper sub-basin to identify sensitive model
parameters, their optimal values, and their uncertainty
structures (i.e., distribution type and characteristics)
during the training period.

– Step 2:
The determined uncertainty structure of sensitive
SNOW17 parameters, along with preset forcing un-
certainty and areal SWE data uncertainty (Sects. 3.3
and 3.4), is embedded into the EnKF formulation. The
EnKF is subsequently employed to assimilate the daily
areal SWE data (during the prediction period) to up-
date SNOW17 model states (Table 1) for the upper sub-
basin. The assimilation frequency is set to be one week
to mimic the operational environment.

– Step 3:
Rain plus snowmelt prediction is correspondingly pro-
duced by the SNOW17 based on the updated states.
The rain plus snowmelt timeseries ouput is then utilized
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Fig. 3. Flowchart of the EnKF applied in ICEA to recursively update SNOW17 model states with the uncertainty of sensitive model
parameters considered.N andp indicate the ensemble size and the number of sensitive parameters, respectively;y0 andµ represent model
initial condition and forcing, respectively;zi andM designate the observation and measurement operator, respectively;Cv , Cyz, andCzz

denote the variance of observation error, the covariance between model states and observations, and the variance of observations, respectively.

as input to the SAC-SMA model to produce stream-
flow predictions for the upper sub-basin. The joint
SNOW17/SAC-SMA model for the lower sub-basin is
run to generate streamflow for the lower sub-basin.
The streamflow obtained for both upper and lower sub-
basins is combined according to the size (area) of each
sub-basin, as is the case in operations. The aggregated
flow is routed using the operational unit hydrograph,
yielding streamflow predictions at the NFARB outlet.

Four scenarios are considered in our study. The first two
scenarios produce single-valued streamflow predictions. The
last two involve EnKF applications and thus produce an en-
semble of streamflow predictions. The first scenario (entitled
“RFC”) directly adopts model parameters used in RFC oper-
ations. The second scenario (named “ISURF”) differs from
the first one in that it uses ISURF-derived parameter set with
the maximum likelihood (both SNOW17 and SAC-SMA) for
the upper sub-basin. The third scenario (entitled “EnKF”)
applies a stand-alone EnKF technique configured with pre-
set forcing uncertainty and limited information (i.e., the type

of posterior distribution) on parameter uncertainty derived
from the ISURF. The fourth scenario (entitled “ICEA”) dif-
fers from the third one in that it uses both the posterior distri-
bution and optimal posterior parameter ranges derived from
the ISURF as inputs to the EnKF. For comparison to the first
two deterministic scenarios, the ensemble mean is estimated
in the last two scenarios. It is worth noting that, in all scenar-
ios, streamflow (at 6-hourly time step) generated from both
the training and prediction periods at the basin outlet are ag-
gregated to the daily time step in order to compare with daily
streamflow observations from the USGS gauge.

3.3 Areal SWE data

Snow information, including SWE, is routinely recorded by
both in situ observational networks (e.g., the SNOTEL in the
western US) and remote sensing platforms (e.g., satellites).
However, in situ snow stations are generally sparse and not
sufficient to provide accurate areal SWE information. For in-
stance, in the western US there are over 1700 snow stations
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Fig. 4. Flowchart of modeling and assimilation (of areal SWE) procedures in generating ensemble daily streamflow. RM andQ represent
rain plus snowmelt and streamflow, respectively; UH stands for unit hydrograph;t indicates time step (t = 1, 2, ...,T ; 6 hourly); ta is the
daily time step aggregated from 6-hourly step;ti reprsents the measurement time when areal SWE is assimilated (refer to Fig. 2 for detailed
assimilation procedure);j is the ensemble number (j = 1, 2, ...,N ); subscriptsU andL denote variables for upper and lower sub-basins,
respectively; subscriptc designates the combined variable.

which provide SWE observations. Nevertheless, they are still
not adequate to resolve the variability of SWE at the basin
scale (Bales et al., 2006). There are studies which produce
areal SWE estimates from point SWE observations either
through interpolation (Fassnacht et al., 2003) or binary tree
methods (Molotch and Bales, 2005); however, these studies
are limited to specific regions and are less readily applied
over broad areas. These conversion methods have also not
been applied in operations. There are also remotely sensed
SWE data available (e.g., from AMSR-E). However, the data
suffers from poor spatial resolution (e.g., AMSR-E at 25 km
resolution) and poor accuracy (e.g., Andreadis and Letten-
maier, 2006; De Lannoy et al., 2009). There are also re-
motely sensed snow cover area (SCA) data available (e.g.,
from MODIS), which can be transformed to SWE via a snow
depletion curve (Andreadis and Lettenmaier, 2006; Durand
et al., 2008a,b; Su et al., 2008, 2010; Zaitchik and Rodell,
2009; Thirel et al., 2011). However, the SCA data is error
prone (e.g., MODIS SCA data is highly impacted by cloud
cover). Furthermore, the relationship between SCA and
SWE varies across different hydroclimatic and geographic
regimes. Additionally, incorporation of SCA information
into hydrologic models may not necessarily lead to improved
streamflow simulations (Clark et al., 2006).

Parsimonious methods are typically used to derive areal
SWE from in situ SWE measurements in operations. For
instance, the NWS RFCs in the western US typically use
a regression-based technique to reconcile the SNOW17-
simulated areal SWE and the SWE observations from avail-
able snow stations. In the current study, we use a similar
regression method. The method utilizes SWE information
from both the SNOW17 model and the snow stations but as-
sumes that the areal SWE is a linear combination of point
SWE measurements so that it resembles the SNOW17 simu-
lated SWE as much as possible. Specifically, the areal SWE

is calculated as a linear combination of the SWE observations
from three snow stations. The weight associated with each
snow station is determined via a non-negative least-squares
algorithm as follows:

min

∥∥∥∥∥∥
T∑

t=1

[
3∑

k=1

(
Ck × SWEt

k

)
− SWEt

model

]2
∥∥∥∥∥∥, ∀ SWEt

k ≥ 0 (5)

where SWEtk represents the SWE observations from thek-th
snow station (k = 1, 2, 3) at timet (t = 1, 2, ...,T , whereT is
the total length of prediction period in days);Ck is the weight
corresponding to thek-th snow station; SWEtmodel denotes
the SNOW17-modeled SWE for the upper sub-basin at time
t . By applying the above equation, the weights of three snow
stations (Ck) are calculated (Table 2). It should be noted that
the final weights do not necessarily add up to be 1.

The measurement error associated with the areal SWE is
assumed to be normally distributed white noise with zero
mean and a standard deviation of 25 mm. Sensitivity tests at
six SNOTEL sites illustrates that this error definition leads to
satisfactory ensemble SWE estimates via the EnKF in multi-
ple years with contrasting wetness when using an ensemble
size of 100 (He, 2010). In the EnKF applications (the last
two scenarios) in this study, the ensemble size is also set to
be 100.

3.4 Model forcing uncertainty

In previous EnKF applications (e.g., Margulis et al., 2002;
Durand and Margulis, 2006; Clark et al., 2008a; Leisen-
ring and Moradkhani, 2011; Wu and Margulis, 2011, among
others), model forcing uncertainty is generally considered
by treating input variables (i.e., precipitation and air tem-
perature observations) as random variables and perturbing
these variables according to predefined error distributions
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Table 2. Basic information for the three study snow stations and the corresponding weights used in determining the areal snow water
equivalent.

Site Name Latitude Longitude Elevation 1 April Maximum Length Peak Melt Weight
(m) SWE SWE of SWE out

(mm) (mm) melting date date
period
(days)

BL Blue 39.276 −120.708 1609 142 349 38 February April 0.31
Canyon 27 5

HY Huysink 39.282 −120.527 2011 870 943 61 April June 0.54
4 6

CL CSS Lab 39.333 −120.370 2089 873 1016 64 March May 0.44
21 24

Table 3. Precipitation and observed streamflow characteristics during the prediction period.

Water Year 1991 1992 1993 1994 1995 1996

Precipitation (mm) 957 955 1723 870 2366 1792
Peak Flow (m3 s−1) 256.23 120.05 311.44 31.14 515.29 427.52
Median Flow (m3 s−1) 1.64 2.53 15.09 2.80 26.53 8.96
Flow Volume (× 108 m3) 3.28 2.45 9.22 2.15 15.40 10.10

and characteristics. In operations, however, it may be diffi-
cult to determine credible information on error distributions
and characteristics that regional forecasters would agree on
and implement in their forecasting practices.

This study adopts an alternative, but simpler, method to
address the uncertainty of SNOW17 model forcing, which
can be easily implemented in an operational environment.
This method draws upon how precipitation and air tempera-
ture forcing are currently utilized within the SNOW17 model
to determine snowfall input. Specifically, the SNOW17
model uses the air temperature and the PXTEMP parame-
ter to determine whether precipitation is snowfall or rain-
fall (Eq. 2). Rainfall goes directly to runoff while snow-
fall first accumulates and then melts out. The snowfall in-
put to the model is then adjusted by a snow correction fac-
tor (SCF) (Eq. 1). As such, the actual snowfall digested by
SNOW17 model is determined by precipitation and air tem-
perature forcing, as well as parameters SCF and PXTMEP.
Hence, instead of perturbing precipitation and air tempera-
ture timeseries, we determine the uncertainty of parameters
SCF and PXTEMP and assume that this implicitly represent
the uncertainty in precipitation and air temperature. This
is achieved by applying the same method used in defining
the uncertainty of these two SNOW17 parameters in one of
our previous studies (He et al., 2011a). This method is rel-
atively easier to understand in concept and requires no ex-
plicit quantification of the distribution type of precipitation
and air temperature.

3.5 Evaluation metrics

In addition to the deterministic metrics utilized in this study,
including the correlation coefficient (R), Root Mean Squared
Error (RMSE), Nash-Sutcliffe Efficiency (NSE), and percent
bias (Bias), we apply two metrics to quantity the spread
dispersion of the EnKF-derived ensemble streamflow pre-
dictions: the Normalized Root Mean Square Error Ratio
(NRR) (Anderson, 2002; Moradkhani et al., 2005b) and
the 95th Percentile Uncertainty Ratio (UR95) (Hossain and
Anagnostou, 2005; Moradkhani et al., 2006). These two met-
rics are defined as:

NRR =

√
1
T

T∑
t=1

(
Q̄t − Q̂t

)2

1
N

{
N∑

i=1

√
1
T

T∑
t=1

(
Qi

t − Q̂t

)2
} √

N + 1
2 N

(6)

UR95 =

T∑
t=1

(
Q97.5,t − Q2.5,t

)
T∑

t=1
Q̂t

× 100 % (7)

where N designates the ensemble size (N = 100 in this
study); T is the length of the prediction period (in days);
Q̂t represents the observed flow at timet ; Qi

t indicates the
predicted flow at timet of the i-th ensemble (1≤ i ≤ N );

Hydrol. Earth Syst. Sci., 16, 815–831, 2012 www.hydrol-earth-syst-sci.net/16/815/2012/



M. He et al.: Data assimilation approach for improved operational streamflow predictions 823

Q̄t denotes the ensemble mean flow at timet ; Q97.5,t and
Q2.5,t signify the 97.5th and 2.5th percentiles of the ensem-
ble flow values at timet , respectively; and subsequently,
(Q97.5,t − Q2.5,t ) is the 95th percentile prediction uncer-
tainty bound of the ensemble at timet .

NRR is a normalized measure of ensemble dispersion rela-
tive to the deviation of the ensemble mean (Anderson, 2002).
It is always greater than 0, with a perfect score equivalent
to 1. A value of NRR greater than 1 signifies too little
spread. A value of NRR between 0 and 1 indicates too much
spread. UR95 is a measure of the aggregate variability of the
95th percentile prediction range relative to the observations,
generally ranging from 0 to 100 % (Moradkhani et al., 2006).

4 Results

4.1 Parameter uncertainty

The GSA method is applied to derive “behavioral” SNOW17
and SAC-SMA model parameters for the upper sub-basin.
Subsequent sensitivity analysis focuses on the behavioral
SNOW17 parameter set since only SNOW17 parameter un-
certainty is addressed in the data assimilation applications.
The analysis shows that two forcing-related SNOW17 pa-
rameters, SCF and PXTEMP as well as parameter MFMAX
(which determines the non-rain melt rate) and parameter SI
(which determines the areal extent of the snow cover) are
sensitive (Fig. 5). TheKS value of other parameters are
consistently lower than 0.2. Sensitivity of SCF and PX-
TEMP is expected because they control the snowfall input
to the model. Sensitivity of MFMAX is also intuitive be-
cause non-rain melt is deemed the dominant melting mecha-
nism in western basins (Franz et al., 2008). The sensitivity of
SI reflects the importance of the snow cover area parameter
when the SNOW17 model is applied at the areal scale. Only
these four sensitive parameters are analyzed in the follow-
ing uncertainty analysis and data assimilation applications.
Other SNOW17 parameters and all SAC-SMA parameters
for the upper sub-basin are fixed at the values which pro-
vide the best streamflow simulations (highest NSE) during
the training period.

The DREAM algorithm is subsequently applied to derive
posterior information for the four sensitive parameters. The
marginal distributions of parameters SCF, MFMAX, and SI
generally follow a similar distribution type, which can be
roughly identified as a normal distribution (Fig. 6). Param-
eter PXTEMP shows no apparent distribution in its optimal
range. As such, a uniform distribution is assigned for PX-
TEMP. SCF is significantly correlated to MFMAX (with a
correlation coefficient of 0.77). This is due to the fact that in-
creasing SCF leads to a deeper snowpack. A deep snowpack
results in a higher maximum melt rate (MFMAX) in compar-
ison to a shallower snowpack. MFMAX shows medium cor-
relation to SI. The correlation between other parameter sets is

Fig. 5. Kolmogorov-Smirnov (KS) values for SNOW17 parameters
for the upper sub-basin.

not significant. Despite the existence of the cross-correlation
among sensitive parameters, for simplicity, this correlation is
not accounted for when formulating the EnKF in the current
study (in the last two scenarios considered). However, im-
plementation of the cross-correlation among parameters into
the EnKF is being explored in our ongoing work.

4.2 Streamflow simulation

The maximum likelihood values of the four sensitive pa-
rameters, along with other SNOW17 parameters and SAC-
SMA parameters determined from the GSA for the upper
sub-basin, are applied to simulate streamflow at the outlet
(scenario “ISURF”) following the procedure described in
Sect. 3.2. The outflow is compared to that simulated using
the RFC parameter set (scenario “RFC”). Observed flow at
the outlet is used as the benchmark for comparison. The an-
nual statistics between observed flow and the flow simulated
from both scenarios are calculated both on an annual basis as
well as for the entire training period (Table 4).

In general, the ISURF parameters outperform the RFC pa-
rameters in providing streamflow simulations, not only dur-
ing the entire training period, but also for each individual
year. Particularly, the RFC parameters consistently underes-
timate streamflow, while the ISURF parameters largely cor-
rect these biases. For example, the RFC parameters pro-
vide relatively poor streamflow simulations during WY 1979
(e.g., bias of−55.96 % and correlation coefficient of 0.38).
In comparison, the ISURF simulation during this year is
fairly satisfactory (e.g., with a bias of 1.8 % and a correla-
tion coefficient of 0.77). These results illustrate that there
is room to optimize the parameters currently under use by
the RFCs and improve model performance. However, it is
worth noting that during real-time forecasting, RFC forecast-
ers routinely apply run-time modifications (MODs) in adjust-
ing initial (i.e., initial model states) and boundary (e.g., pre-
cipitation forcing) conditions in order to improve the quality
of streamflow predictions (Seo et al., 2003). In the current
study, no MODs are applied for the RFC simulations.

4.3 Streamflow prediction

For the stand-alone EnKF (scenario “EnKF”), identified sen-
sitive SNOW17 parameters (SCF, PXTEMP, MFMAX, and
SI) from the upper sub-basin model are perturbed following
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Table 4. Statistics for observed and simulated streamflow using the RFC parameters and ISURF parameters during the training period.

Metrics Scenarios Period (Water year)

1979–1984 1979 1980 1981 1982 1983 1984

R ISURF 0.89 0.77 0.96 0.89 0.83 0.87 0.91
RFC 0.78 0.38 0.86 0.85 0.68 0.76 0.84

Bias ISURF −9.02 1.89 −8.48 12.73 −11.11 −13.33 −10.98
(%) RFC −31.87 −55.96 −36.17 −16.04 −37.29 −29.33 −14.02

RMSE ISURF 19.18 10.45 14.32 3.92 35.53 20.01 14.67
(m3 s−1) RFC 27.62 17.11 28.03 4.55 48.51 27.48 19.22

NSE ISURF 0.95 0.91 0.98 0.95 0.91 0.94 0.96
RFC 0.91 0.77 0.97 0.93 0.86 0.91 0.93

Fig. 6. Marginal distributions (in bars) and scatter plots (in dots) for posterior SNOW17 parameters.R signifies the linear correlation
between parameters.

the identified distributions (Fig. 6) within the pre-defined fea-
sible parametric ranges (Table 1) to produce parameter en-
sembles. Note that it is ideal to sample parameters from their
joint distribution. However, joint distribution of DREAM-
derived posterior parameters is generally of a complex form
and not straightforward to explicitly derive (He et al., 2011b).
The last scenario, ICEA, differs from the stand-alone EnKF
only in parameter ranges where the perturbations are con-
ducted. The ICEA scenario uses the optimal parameter
ranges identified via the ISURF (i.e., the ranges shown in
Fig. 6), which is significantly narrower than the feasible pa-
rameter ranges (Table 1). In both scenarios, perturbation
of SNOW17 forcing (precipitation and air temperature) is
assumed to be implicitly included in perturbing parameters
SCF and PXTEMP, as discussed in Sect. 3.4. Areal SWE

data for the upper sub-basin is assimilated into the SNOW17
model to produce rain plus snowmelt ensembles, which are
consequently applied to generate ensemble streamflow pre-
dictions at the basin outlet following the general procedure
outlined in Sect. 3.2.

Streamflow prediction is investigated in terms of both de-
terministic (single-valued) and probabilistic (ensemble) pre-
dictions. For the former, streamflow predictions within the
prediction period from all four scenarios are compared to
the observed streamflow during the same period, using the
ensemble mean from the two data assimilation scenarios
(i.e., EnKF and ICEA). This comparison focuses on the
whole streamflow timeseries as well as the high flows. High
flows in each scenario are defined as those greater than the
95th percentile of the observed streamflow timeseries during
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Fig. 7. Statistics between observed and predicted streamflow during
the prediction period (WY 1991–1996) under four scenarios consid-
ered for Bias(a), RMSE (b), Correlation(c) and NSE(d). The
ensemble-mean prediction is used in estimating statistics for the
EnKF and ICEA scenarios.

Table 5. Statistics for observed and predicted high flows (above
the 95th percentile of observed streamflow) during the prediction
period. The EnKF and ICEA statistics are based on the ensemble
mean predictions.

RFC ISURF EnKF ICEA

R 0.80 0.85 0.83 0.87
Bias (%) −19.58 −13.70 −14.91 −10.02
RMSE (m3 s−1) 65.37 56.47 58.33 49.59
NSE 0.50 0.62 0.60 0.71

the prediction period. The 95th percentile flow and the num-
ber of days (with high flows) are 83 m3 s−1 and 110, respec-
tively. Streamflow predictions from the two data assimilation
scenarios are inter-compared from two perspectives. The first
involves the ensemble statistics (i.e., NRR and UR95) as well
as hydrographs. The second focuses on the predictability of
both scenarios for different lead times. Specifically, since
the areal SWE is assimilated once per week (once SNOW17
states are updated, the model is run up to seven days before
the next update occurs), lead times are considered varying
from one day to seven days with a daily interval. Streamflow
prediction with a specific lead time, dayL (L = 1, 2, ..., 7), is
a vector containing predicted flow of theL-th day following
each measurement (and update) time during the entire pre-
diction period.

Deterministic metrics (including NSE, RMSE, percent
bias, and correlation) from all scenarios during the predic-
tion period are calculated (Fig. 7). In comparison to the RFC

Fig. 8. Scatter plot of predicted and observed high flows during the
prediction period under scenarios(a) RFC, (b) ISURF, (c) EnKF,
and(d) ICEA. For the EnKF(c) and ICEA(d) scenarios, the entire
ensemble prediction ranges (error bars) are also shown except for
the ensemble mean prediction (dots).

prediction, the ISURF prediction has a lower bias and RMSE
and a higher correlation and NSE. However, when compared
to the EnKF predictions, the ISURF prediction is poorer.
This reflects the potential of data assimilation approaches for
providing improved streamflow predictions over traditional
(i.e., the RFC parameter calibration method) and advanced
(i.e., ISURF) parameter identification methods. The com-
bination of ISURF and EnKF, the ICEA, shows further im-
provement over the stand-alone EnKF. The NSE of the ICEA
prediction is 2.4 % higher than that of the stand-alone EnKF,
while the RMSE value of the ICEA prediction is 7.7 % lower.
Compared to the RFC prediction, the ICEA NSE is 14.5 %
higher and the RMSE is 27.6 % lower. The superior per-
formance of the ICEA is even more significant in terms of
percent bias. The ICEA prediction has a bias of 2.8 %, in
comparison to−10.4 % for the stand-alone EnKF. As a refer-
ence, the bias of the RFC prediction is−31.6 %, suggestive
of significant improvements in flow volume using the data
assimilation approaches, especially the ICEA.

The performance of the four scenarios in providing high
flow predictions is also investigated (Table 5; Fig. 8). Over-
all, all scenarios underestimate high flows, while the ICEA
(mean) prediction outperforms the other three scenarios and
the RFC prediction is least satisfactory (Table 5; Fig. 8). The
ISURF predictions are comparable to the EnKF mean predic-
tion (Fig. 8), yet the former has slightly better statistics (Ta-
ble 5).Comparing the two ensemble scenarios specifically,
the ICEA considerably outperforms the EnKF in terms of all
four metrics (Table 5). Further investigation shows the aver-
age replicate-wise RMSE (averaged RMSE of all individual
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Table 6. Ensemble performance statistics associated with the EnKF and ICEA scenarios during the prediction period.

Metrics Scenarios Period (Water year)

1991–1996 1991 1992 1993 1994 1995 1996

UR95 EnKF 25.85 28.15 37.14 25.22 43.19 24.15 21.84
(%) ICEA 20.58 20.82 8.47 27.12 3.01 29.59 34.43

NRR EnKF 1.33 1.40 1.35 1.37 1.35 1.30 1.32
ICEA 1.33 1.40 1.35 1.36 1.39 1.30 1.32

ensemble prediction traces) values associated with the EnKF
and ICEA are 62.90 m3 s−1 and 53.18 m3 s−1, respectively.
These observations trace back to the fact that EnKF sample
sensitive parameters in wider ranges relative to the ICEA.
Part of these derived parameter sets may lead to flow pre-
dictions with larger biases. It is thus likely that the (mean)
predictive skill of the EnKF is somewhat diluted by those bi-
ased predictions. The error bars of the EnKF predictions and
ICEA predictions are also presented (Fig. 8c–d), while both
the RFC and the ISURF only provide a single-valued predic-
tion. It is evident that the ensemble predictions of both EnKF
and ICEAs encompass the highest peak flow.

The dispersion of the ensemble streamflow predictions de-
rived from the two data assimilation applications is also in-
vestigated (Table 6). Overall, the stand-alone EnKF ensem-
bles show higher UR95 (25.85 %) when compared to that of
the ICEA ensembles (20.58 %), indicating that the 95th un-
certainty bound of the EnKF is wider than that of the ICEA
(Table 6). At the annual scale, on average, the ensemble
spread associated with the EnKF accounts for around 22 %
to (WY 1996) to 43 % (WY 1995) of the magnitude of the
observations. For the ICEA, the range is from about 3 %
(WY 1995) to 34 % (WY 1996). This further indicates that
the 95th percentile uncertainty bounds of the ICEA ensem-
bles are relatively narrower. When looking at the entire en-
semble, however, the spread of predictions from both scenar-
ios are almost identical; not only during the entire prediction
period but also in each individual year. The NRR values are
consistently greater than 1, indicating that ensemble predic-
tions of both scenarios have too little spread relative to the
deviation of the mean prediction. Additionally, it is evident
that the inter-annual variation pattern of NRR is similar for
both scenarios. However, the inter-annual variation pattern
of UR95 is very different in the two scenarios, suggesting
that the stand-alone EnKF and ICEA provide significantly
different ensemble predictions though the overall spread of
both ensemble sets (NRR) are similar.

To examine the performance of the stand-alone EnKF
and ICEA methods at a higher temporal resolution, en-
semble streamflow predictions derived from both ap-
proaches are investigated at the daily scale against the RFC
single-valued predictions as well as observed streamflow.

For demonstration purposes, the results from one year
(WY 1995) are presented (Fig. 9). The selection of WY 1995
is based on the facts that (1) it is the wettest year in the pre-
diction period in terms of both annual precipitation and the
total annual flow volume; and (2) the maximum peak flow
(515.29 m3 s−1) within the prediction period occurs in this
year (Table 3). Results indicate that both the EnKF and ICEA
ensembles are fairly narrow, which is consistent with previ-
ously discussed results (Table 6). Both ensembles capture the
primary peak at day 103 (Fig. 9), while this peak is underesti-
mated by the RFC predictions. Both ensembles also contain
the secondary peak at day 162. The high flows at days 106
and 213 are not totally encompassed by both ensembles. Per-
formances of the EnKF and ICEA prior to day 230 are almost
identical in terms of the ensemble spread and variation pat-
tern. However, between day 230 and day 289, the perfor-
mances of both approaches are considerably different. First,
from day 230 to day 252, in comparison to the ICEA ensem-
ble, the EnKF ensemble is much wider and well encompasses
the observations; second, from day 265 to day 289, the ICEA
ensemble reasonably captures the variation pattern of stream-
flow observations in this period, while the EnKF ensemble
follows the variation of RFC predictions which deviate from
the observed streamflow with a negative bias.

Recall that both the EnKF and ICEA assimilate areal SWE
to update SNOW17 model states and thus produce rain plus
snowmelt, which serves as input to SAC-SMA model to
generate streamflow. To examine the underlying cause of
the deviations in the approaches from days 230 to 289, it
is necessary to scrutinize the corresponding SWE and rain
plus snowmelt predictions. Given the high variability of
the rain plus snowmelt time series, only the ensemble-mean
values during the same year are plotted (Fig. 10). It is
evident that prior to day 230, the mean SWE predictions
from both approaches are almost identical, as are the rain
plus snowmelt predictions. After day 230, the EnKF pre-
dicted SWE declines faster, which is most likely caused by
the inconsistent non-rain melt parameter (MFMAX, which
controls the non-rain melt rate of the snowpack) applied in
both approaches. The enhanced decline in SWE produces
higher rain plus snowmelt onward until day 252, which is
the period when the EnKF ensemble streamflow predictions
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Fig. 9. Basin-average precipitation(a), ensemble streamflow predictions from the stand-alone EnKF(b), and ensemble streamflow predic-
tions from the ICEA(c) for water year 1995. Also shown are observed streamflow (circles) and RFC streamflow predictions (black line)
during the same period. The grey regions correspond to the entire ensemble range.

Fig. 10. Ensemble mean SWE(a) and Rain plus Snowmelt(b) time series for WY 1995 derived from the stand-alone EnKF (black line) and
the ICEA (dash line). Also shown in the upper panel is the areal SWE (circles) derived from SWE observations at three snow stations.

significantly spread. From days 253–264, when there is a
significant rainfall event (Fig. 9a), rainfall dominates the rain
plus snowmelt. As such, the rain plus snowmelt predictions
and thus streamflow prediction during this period again be-
come nearly identical for both approaches (Figs. 10b and 9b–
c). From day 265 until the snow melts out, there are no ma-
jor rainfall events (Fig. 9a). Snowmelt thus dominates the
rain plus snowmelt. From days 278–289, it is evident that
the EnKF predicted SWE reduces to zero earlier than ICEA
predicted SWE (Fig. 10a). This is most likely due to the fact

that the EnKF employs parameter values for MFMAX and SI
that produce large non-rain melt in this period, particularly
given the fact that the EnKF samples these two parameters in
significantly larger ranges (Table 1) than the ICEA (Fig. 6).
During the same period, the rain plus snowmelt prediction of
the ICEA is thus considerably greater than that of the EnKF
(Fig. 10b). As a result, the ICEA predicted streamflow en-
sembles mimics the observed streamflow much better than
the EnKF predicted ensembles in this period (Fig. 9b–c).
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The stand-alone EnKF and ICEA predictions at different
lead times are also examined. Both deterministic (using en-
semble mean prediction) and ensemble statistics are calcu-
lated for lead times up to seven days (Fig. 11). The ICEA
mean prediction on average outperforms the EnKF mean pre-
diction at all lead times investigated (Fig. 11a–d), except at
lead time day 2, where the NSE and correlation values of the
ICEA mean prediction are slightly lower (Fig. 11c–d). This
is similar to what is observed for the ICEA and EnKF mean
predictions over the entire prediction period (Fig. 8). Par-
ticularly, the ICEA predictions have considerably lower bias
(Fig. 11a) and generally smaller RMSE (Fig. 11b) compared
to the EnKF predictions, indicating that ICEA outperforms
the EnKF in providing both overall and high flow predictions.
At all lead times, the 95th percentile ensemble predictions of
the EnKF are wider than that of the ICEA (Fig. 11e), which
is also the case when looking at the entire prediction period
(Table 6). In contrast, the whole EnKF predicted streamflow
ensemble is less overconfident than the ICEA ensemble at
several lead times (day 2, day 6, and day 7), while the en-
semble is more overconfident at other lead times (Fig. 9f).
In general, the performance of both approaches remain fairly
stable across all lead times (Fig. 11), while the predictive
skill of operational models normally decreases with increas-
ing lead times in real-time hydrologic forecasting. This is
due to the fact that the precipitation and forcing data applied
in the current study are actually observed values. In real-time
forecasting, precipitation and air temperature are predicted
future values (from numerical weather models) where accu-
racy decreases with increasing lead times (e.g., Cloke and
Pappenberger, 2009; Wu et al., 2011).

5 Discussion and conclusions

The current study proposes an integrated uncertainty and
ensemble-based data assimilation framework ICEA. This
framework, consisting of a parameter uncertainty analysis al-
gorithm (ISURF) and a data assimilation technique (EnKF),
systematically addresses uncertainty in model forcing and
parameters for the SNOW17 model. The performance of
the framework is evaluated against observed streamflow and
compared to the performance of three alternative scenar-
ios: the current RFC operational parameters, the stand-alone
ISURF, and the stand-alone EnKF. Datasets from a NWS op-
erational basin are applied in the evaluation and comparison.
The key findings of the study include:

1. The automatic RFC prediction is improved by applying
a parameter identification tool (i.e., the ISURF) to up-
date model parameters or by employing a data assimila-
tion technique (i.e., the EnKF) which assimilates SWE
information to provide updated snow model states, or by
using a combination of both (i.e., ICEA). The improve-
ment over the current RFC prediction is most significant
for the ICEA (in terms of ensemble-mean prediction),

Fig. 11. Statistics for streamflow predictions at various lead
times from the stand-alone EnKF and ICEA, including:(a) Bias,
(b) RMSE,(c) Correlation,(d) NSE,(e)UR95, and(f) NRR.

followed by the EnKF (ensemble-mean prediction) and
then the ISURF. However, when evaluating only high
flows (top 5th percentile), ISURF and EnKF (mean)
predictions are comparable to each other and the ICEA
(mean) prediction shows the most skill.

2. The 95th percentile streamflow prediction range of the
stand-alone EnKF is generally wider than that of the
ICEA, which is expected since the uncertainty ranges of
the four sensitive SNOW17 parameters employed in the
EnKF are wider. However, the spread of the whole en-
semble (rather than 95th percentile) associated with the
EnKF is comparable to that of the ICEA. The spread,
based on the ensemble metric calculated (i.e., NRR), is
too narrow relative to the (ensemble) mean prediction.
This most likely stems from the definitions of uncer-
tainty in forcing as well as areal SWE measurements.
Specifically, precipitation and air temperature uncer-
tainty are implicitly accounted for by the uncertainty
of parameters SCF and PXTEMP. While this method is
straightforward in concept and easy to implement in op-
erations, it limits the spread of forcing ensemble since
theoretically there are feasible bounds for those parame-
ter values. Furthermore, a consistent standard deviation
is assigned to the SWE measurement error. Sensitivity
tests at the point scale illustrate that this error defini-
tion provides satisfactory ensemble results, leading to
limited variations to large SWE values (He, 2010). Our
ongoing work is investigating an alternative definition,
namely, assuming this deviation is proportional to the
observed SWE value.

3. Both the stand-alone EnKF and ICEA predicted stream-
flow ensembles contain peak flows during the prediction
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period, while the RFC prediction generally underesti-
mate peaks. For the selected (extreme wet) year, both
EnKF and ICEA ensembles perform similarly in the
snow accumulation period, but dramatically different
in the ablation period. This deviation stems from dif-
ferent melt rate values produced by both approaches
which ultimately produce different rain plus snowmelt
output. The streamflow ensembles predicted by both
approaches reasonably capture the variation patterns of
the observed streamflow; however, the ensembles are
not wide enough to enclose all the observations. This
further indicates that the uncertainty defined in the cur-
rent study can be improved upon.

4. On average, the ICEA mean prediction outperforms the
mean prediction of the stand-alone EnKF for all lead
times investigated (day 1 to day 7 in with daily interval).
However, the EnKF 95th percentile prediction bound
is consistently larger than that of the ICEA at all lead
times, which is also the case for the entire prediction
period as previously discussed. As for the ensemble
predictions at different lead times derived from both ap-
proaches, their spreads are again too narrow when com-
pared to the (ensemble) mean prediction at each lead
time.

Despite its demonstrated advantages, the ICEA can be fur-
ther improved by addressing several issues in addition to us-
ing time-variant error for SWE measurement as previously
mentioned. First, it should be highlighted that the SNOW17
model applies air temperature input to calculate melt rate
during the snow ablation periods in addition to applying it
as a threshold for distinguishing rainfall from snowfall to-
gether with model parameter PXTEMP. As such, the uncer-
tainty of parameter PXTEMP only partially mimics uncer-
tainty in air temperature forcing. To investigate the impacts
of air temperature measurement error on melt rate, snowmelt,
and ultimately streamflow prediction, this error needs to be
explicitly defined. This error can be simply assumed to be a
systematic error with zero mean and a certain variance, as
with previous studies (e.g., Margulis et al., 2002; Durand
and Margulis, 2006). Moreover, the uncertainty of param-
eter SCF derived from ISURF represents only partial uncer-
tainty of precipitation. This is due to the fact that ISURF
is applied over the entire training period to produce the un-
certainty range and distribution information of SCF. Thus,
the uncertainty of SCF is more representative of the average
precipitation error in the training period rather than errors as-
sociated with individual precipitation events. To more com-
prehensively account for uncertainty in precipitation, it may
be necessary to implicitly consider the error for each precip-
itation event. This could be achieved by assigned a random
multiplier (with a certain distribution) to observed precipita-
tion at each time step following previous studies (e.g., Mar-
gulis et al., 2002; Leisenring and Moradhkani, 2011). In ad-
dition, it should also be pointed out that model error is not

considered in the current study, while model structural error
is shown to considerably impact SNOW17 performance and
lead to SNOW17-predicted SWE ensemble with significant
spread (He et al., 2011a). This error can be addressed by
perturbing the predicted SWE using a uniformly distributed
and auto-correlated error assumption as explored in previous
studies (e.g., Evensen, 1994; Leisenring and Moradkhani,
2011). Addressing this error is promising for resolving the
narrow-ensemble issue encountered by the ICEA and stand-
alone EnKF. Furthermore, it is worth noting that the ensem-
ble streamflow predictions are evaluated only in terms of dis-
persion, while other aspects of ensemble predictions (e.g.,
reliability and discrimination) also contains meaningful in-
formation on the predictions (e.g., Franz et al., 2003; Brown
et al., 2010; Demargne et al., 2010; Franz and Hogue, 2011).
Our ongoing work, which attempts to enhance the ICEA
framework to further improve streamflow predictions includ-
ing real-time predictions, comprehensively considers the un-
certainty in forcing, model structure, and measurement, the
cross-correlation between parameters, and adopts alternative
statistical metrics to verify the ensemble predictions.
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