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Abstract. Increasing resolution and accuracy is an impor- estimators that use prior knowledge about the signal. Their
tant issue in almost any type of radar sensor applicationperformance and properties have been exhaustively investi-
However, both resolution and accuracy are strongly related t@ated in the pastResavento et al200Q Zhang 1998 Rao

the available signal bandwidth and energy that can be usedand Harj 1989 Marple, 1987 just to mention a few).

Nowadays, often several sensors operating in different fre- |n recent times and even more in the future there will be
quency bands become available on a sensor platform. Itis agensor platforms with not only one but several radar sensors
attractive goal to use the potential of advanced signal modgesigned for various purposes. Automotive radar equipment
elling and optimization procedures by making proper use offor parking aid, adaptive cruise control and a variety of driver
information stemming from different frequency bands at the assistance and comfort functions is an example from the low-
RF signal level. An important prerequisite for optimal use of cost sector. Also nowadays there are remote sensing plat-
signal energy is coherence between all contributing sensorgorms that gather information with more than one radar sys-
Coherent multi-sensor platforms are greatly expensive andem. This rises the question for making optimum use of infor-
are thus not available in general. This paper presents an agnation that comes from different radar sensors and in differ-
proach for accurately estimating object radar responses usingnt frequency areas. A prerequisite for optimum processing
subband measurements at different RF frequencies. An eXof multi-band radar information would be mutual coherency
ponential model approach allows to compensate for the laclyetween the sensors in order to utilize also mutual phase in-
of mutual coherence between independently operating serformation. For expenditure reasons, individual sensors on a

sors. Mutual coherence is recovered fromahgriori infor- platform are most often mutually incoherent so this condition
mation that both sensors have common scattering centers i@ normally not fulfilled.

view. Minimizing the total squared deviation between mea-

sured data and a full-range exponential sigqal model lead g methods to restore coherency between the data from mu-
to mprtT atc):curdate p_olt_a angles _?_Ed poI((ej rr|1agn|tudes comparé ally incoherent radar sensors. The approach is different to
to j'ng e 'and ogtlm!zatlon. € mc;t € Egr?rrl}eters (rangesensor fusion techniques. It attempts to merge radar sensor
and magnitude o pom'i scatterers) after t r'f u h—range OPU-jnformation directly on the raw radar data level while sensor
mt;za_nor; ?rocess area sol more daccurate t "Tn t € pararr(;etelrﬁsion techniques apply to fully processed sensor data for the
obtained from a commonly US€d SUper-reso ution procedurg ;e of a more convenient object classification or multi-static
(root-MUSIC) applied to the non-coherent subband data. radar measurements (eleinecke et a|.2003 Schiementz

et al, 2003 Thomopoulos and Okel]d993.

An important assumption behind the published approach
1 Introduction is that the contributing sensors bring information about the
. o same scenery. In a first approach, it is further assumed that
It is well known that the fundamental limit for radar range he common scenery is observed from the same direction by
resolution is the signal bandwidth, provided there is no ad—tWO sensors as depicted in Fiy. The sensors generally op-

ditional limitation through noise. Classical radar signal g a1 ot different carrier frequencies and with different signal
theory (seeCook and Bernfeld1993 for a comprehen- - qidths

sive overview) relates range resolution to the effective band- Itis further med that the radar nerv is well rox
width of the radar transmit signal. Super-resolution methods tsdlfa erassu EI ? ? a faf‘ Sfe Z.V ste aF:tp(.) i
like autoregressive modelling (AR) or eigenanalysis methodd 2 1€d DY an €nsemble otreal or Elective discrele scattering ,
(e.9. MUSIC) can achieve better resolution compared to th centers and that the same scatterers are active in both sensors
classical limits. They are basically model-based parameteetrequen_Cy regimes. AS. a consequence, the radaT response
Is considered to be mainly a multi-path response including
Correspondence tdJ. Siart P paths with identical round trip times, in both sensors.

(uwe.siart@tum.de) Let us also assume that the radar data is given in frequency

The purpose of this work is to investigate signal process-
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domain. Both sensors deliver a discrete-frequency measure
of the complex reflectivity, using the same angular frequency

incrementAw. If the bandwidth of frequency ban8 » is
Bi1.2, then the length of the data sequencéig=B12/Aw,
respectively. The distance in between baBgandBs is also
given in terms of angular frequency incrememsThe start
index of each band i8p12= + —wo12/Aw Where Awo1 2
are the lower angular frequencies of each band. See2Fig.
for illustration.

With these assumptions, the discrete-frequency comple>p

reflectivity is

P
rikl=>"A, eIk (1)
p=1

whereQ,=Aw-1, andk=w/Aw. If Eq. 1 is measured by
a radar system no: with angular frequency incremeXw,
starting from the lower frequenayg,, and with bandwidth
B,=L,-Aw, then the noiseless data from this sensor is

P P

ktk K

ralkl =) Apzp" o =3 " apuzy
p=1 p=1

with k = 0,1,..., L,—1. In this notationg,=e~/*» and
apn=Ape /o =A ,z ko If the measurements are mutu-
ally coherent and EdL is valid in frequency band8; and
B2, then necessarily

()

4p2 — ¢S (koa—ko1)
ap1

©)

Equation3 can be considered as the condition for mutual co-
herence between the data3a and 3.

2 Cramér-Rao lower bound

Estimating the range parameter of point scatterers observed
y a radar system can be considered equivalent to estimating
the frequency of a real or complex sinusoid in the frequency
response of the radar scenery. With frequency modulated
continuous wave (FMCW) or stepped-frequency radar this
is task naturally appears. But the information delivered by
any arbitrary impulse response measurement technique can
in principal be processed in the frequency domain, where
the round trip time of discrete echos corresponds to the fre-
qguencies of sinusoids. To investigate the maximum achiev-
able resolution through dual-band estimation, the Cramér-
Rao lower bound (CRLB) for frequency estimation of a si-
nusoid from dual-band data under the presence of a second
sinusoid with equal magnitude is derived. It is assumed that
the observed discrete data from baits have the form

x1,2[k] = s1,2[k, 0] + w1, 2[k] (4)

where the noiseless signals are
silk, 0]=A cos2x fik+¢1) +A cod2n fok+¢2)  (5a)
salk, 0]1=A coS2r fik+¢12)-+A COS2n fok+p22)  (5b)
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Fig. 5. Block diagram of the proposed global model fitting procedure.

andw1 2[k] is white Gaussian noise. Coherency between the Let us now define the minimum achievable resolutigh
bands implies that as the frequency differendg>— f1| where the CRLB off;
exceeds the differendg>— f1]| that is to be resolved. Using

¢12 = ¢1 — 2nf1(L1+ D) this definition, the minimum resolvable frequency difference
@22 = ¢ — 2 fo(L1 + D) can be derived from E@ for any values ofL.1, Lo, andD.

As an example, the minimum achievable resolution (in this

and the parameter vectordls=[ f1 f2 ¢1¢2]". Assuming that  sense) is plotted in Figl versus the band gap. In this fig-

the noise is white and Gaussian, the Fisher information maure, the length of the available datalig+L,=20 and the

trix following Kay (1993 is signal-to-noise ratio is SNROdB. The classical Rayleigh

resolution limitAr in this case isA\g=0.5/20=25010"4. It

(6a)
(6b)

@) = is seen that the resolution limit of an efficient estimator im-
1 Z ds1[k, 0] 9salk, 0] n Z dsalk, 0] 9salk, 0] (7)  Pproves as the gap between the frequency bands increases.
O’2 By 391‘ 39j B 89,' 39]'

F this, the CRLB for the-th teri .
rom this, the or the-th parameter s 3 Model-based dual-band processing

var(9;) > [171(0);; . €)

A plot of [I~1(6)];; under the presumption th#=0.25 and
$1=¢2=0 is shown in Fig.3. In this figure the distanc®

Assuming that Eql is globally valid, then the signal model
for the measured dafa »[k] in the subband8; » is

between the data windows varies while the window widths P

remain constanft ;=L»=5. It is seen that estimation of fre- rilk] = Z Apzpk+k01 (9a)
quency f1 becomes inaccurate g% approaches either DC r=1

or the Nyquist limit or if f1 comes close tgf. Furthermore P

it can be recognized that the increase of the CRLB nearby ralk] = Z ApzpFthoz, (9b)
frequencyys is the slower, the wider the gap. p=1
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Table 1. Simulation parameters. 100%
Z so%
o
Quantity Value 0%
200 [:  wca
Length L, of subband 1 32 = To
Length Ly of subband 2 32 S N 1215 P
Number of complex sinusoids 2 © 180t | [ [T L::i S
Frequency difference variable o 170 T trrEe———————
Model order P one of 4/8 2 N [
Length D of interband gap one of 0/32/128 160
Signal-to-noise ratio SNR variable ~20-15-10-5 0 5 10 15 20 25 30
no. of trials 2000 SNR (dB)
(@D =0,P=8 A0 =2Ag
This can be written in matrix notation _. 100%
E 50%
o
Z A= (Zl> A= (rl) (10) 0%
Z2 2 200
g
whereA=[Ay, ..., Ap]", r,=[ra[0l, ..., ra[L, — 11]" and g 190
‘_%7’ 180
Zn kon+0 sz0n+0 7 pkon +0 2 170
Z”k0n+l Z2/<on+1 - ZPk0n+l a 160
Zn= : : - : ‘ -20-15-10-5 0 5 10 15 20 25 30
anonian—l szon-;-Ln—l Zpkon-.i-Ln—l SNR (dB)

. . (b) D =32, P =8, AQ = 2AR
The purpose is to estimate the polgs under the bound-

ary condition that the same values, apply to both sub-
bands. Through,=,/Aw the pole angles2, then yield
the round trip times to be estimated. Generally, the ampli-
tudesA, may take any complex value and no prior knowl-

edge is available about them. Given a set of pe|gsopti-  \vere coherent, however. Phase information is introduced by
mum valuesA, can be found by the least-squares solutionthe global signal model Ed. that leads to the subband rep-
of_Eq. 10when substltutlngl,g_wnh the measgred dafa ». resentation EqR and the phase condition E3.

With these parameters the signal model Bds complete. In Fig. 5 the input measurement data is represented by
As a measure for the modelling quality, the total square deyhe row vectorsr; ». To achieve initial estimates for the

Fig. 6. Resolution properties of an autoregressive model (covari-
ance method).

viation polesz, the root-MUSIC algorithm is chosen. The accord-
_ . 2 . 2 ing complex amplituded , are determined by the minimum-

J = k] —rilk k] — rolk 11 . P
%l]rl[ 1= ralk)]” + %2: Palk] = ralk] (11) least-squares solution of E4O where the measured data

is substituted in the row vector on the right side. In the

between the signal mode} » and the measured data is following the total squared deviation between the signal
used. This clarifies the exponential model fitting proceduremodel and the measured data is minimized through an itera-
under consideration. See Figjfor a block diagram. A set of tive nonlinear least-squares minimization algorithm based on
polesz,, forms the degrees of freedom while the correspond-the Levenberg-Marquardt method. During this optimization
ing amplitudesA, follow from a least-squares comparison |z,|=1 so the pole angles are the actual optimization param-
betweenP complex sinusoids with frequenci€s, and the  eters. In general, the differenég,—ko1 is another degree
measured datd; ». This global exponential model can be of freedom when the dat8; and B, are not coherent. It
optimized iteratively by varying the pole angles. is used to set up the matriZ in Eqg. 10. In the following

Tuning the pole angles is a highly ambiguous problem, essimulations it is assumed to be known, however. It should
pecially when the band gap is large. Therefore it is re- be noted that without any knowledge about the phase angles
quired that the initial estimates for the pole angles are as acarg{A,} only the differenceoz—ko1 can be estimated. The
curate as possible. Super-resolution methods that are basa@lueskoy 2 are ambiguous because multiplicationdfvith
on auto-covariance estimation are principally sufficient for [z1™. ..., z,™]" in Eq. 10 with an arbitrary valuen can al-
processing mutually incoherent multi-band data. They do noways be compensated by adding: to all exponents irZ.
employ mutual phase information even if the subband data Once the model parameters are optimized, the signal
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Fig. 7. Resolution properties of the root-MUSIC algorithm.

model can be used to compute the range profile. This can From the resulting pole angle estimates the probability of
be done by either evaluating the pole angles directly or byresolutionp(R) is computed. Since the total number of poles
using the model to compute an arbitrary number of inter-is given by the chosen model order, a criterion for proper de-
polated and extrapolated samples along the frequency axiection and resolution of the targets based on the actual pole
to achieve a closed data vector without any missing samangles has to be introduced. The following procedure was
ples. Such a data series is then sufficient to provide a discretesed to plotp(R) in Figs.6 to 8: Provided that2; andQ;
Fourier transform (DFT) range profile. Although the signal are the true pole angles to represent the two complex sinu-
model allows to extrapolate the measured data to any desiresbids then first find; of which ardz;} is closest ta2;. Next
wide bandwidth, leading to arbitrary narrow pulses in thefind z; of which ardz;} is closest ta2;. The sinusoids are
time/range domain, this bandwidth extrapolation yields nei-considered to be resolved if, and onlyiif- j|=1.

ther additional information nor increased resolution. Radar
pulses become narrow through bandwidth extrapolation buE
no additional targets or reflections will appear.

Figure6 shows the resolution properties and the quality of
he pole angle estimates using an autoregressive (AR) model.
This figure compares the single-band cags=Q, Fig. 6a
to the dual-band caséDE32, Fig.6b. The model order is
P=8 and the frequency distance between the two sinusoids is
twice the Rayleigh resolution bound. Resolution is achieved

. . . . also in the dual-band situation but the estimates are biased,
In the following simulations the mean and variance of pole oo -
however. Therefore, AR estimation is not sufficient to pro-

angle estimates in the single-band and in the dual—ban%ide accurate initial values for the exponential model opti-

E?S:eLjf;Zm;iz“tghaetes?én;?;] l:?)nngstir;tsfo;ht\?v:L::gt)naglgxd;fa Fizer although AR modelling can be applied to dual-band
nusoids with equal magnitude. Their normalized frequency

difference is given in comparison to the Rayleigh resolu- As a comparison, the same approach using the root-
tion boundAr=1/(L1+L2). The mean and variance esti- MUSIC algorithm are shown in Fig/, additionally for the
mates are based on 2000 trials and they are plotted versusase where the frequency distance is only half the Rayleigh
the signal-to-noise ratio of the input data. A survey on theboundARg (Figs.7c, d. It is seen that the root-MUSIC result
simulation parameter setup is given in Talble is not influenced by missing samples and that root-MUSIC

4  Simulation results
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200 ¢ . . . . estimates from incoherent subband data. These initial esti-
I mates are further improved by making use of mutual phase
190 : For information. This is achieved by fitting a global exponential

T3 11z z model to the observed subband data and presuming that the
: exponential components are identical in both subbands. Sim-
‘ ulation results show the improved accuracy of the coherent
dual-band estimates compared to the result of conventional
super-resolution methods.
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