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Abstract. Increasing resolution and accuracy is an impor-
tant issue in almost any type of radar sensor application.
However, both resolution and accuracy are strongly related to
the available signal bandwidth and energy that can be used.
Nowadays, often several sensors operating in different fre-
quency bands become available on a sensor platform. It is an
attractive goal to use the potential of advanced signal mod-
elling and optimization procedures by making proper use of
information stemming from different frequency bands at the
RF signal level. An important prerequisite for optimal use of
signal energy is coherence between all contributing sensors.
Coherent multi-sensor platforms are greatly expensive and
are thus not available in general. This paper presents an ap-
proach for accurately estimating object radar responses using
subband measurements at different RF frequencies. An ex-
ponential model approach allows to compensate for the lack
of mutual coherence between independently operating sen-
sors. Mutual coherence is recovered from thea-priori infor-
mation that both sensors have common scattering centers in
view. Minimizing the total squared deviation between mea-
sured data and a full-range exponential signal model leads
to more accurate pole angles and pole magnitudes compared
to single-band optimization. The model parameters (range
and magnitude of point scatterers) after this full-range opti-
mization process are also more accurate than the parameters
obtained from a commonly used super-resolution procedure
(root-MUSIC) applied to the non-coherent subband data.

1 Introduction

It is well known that the fundamental limit for radar range
resolution is the signal bandwidth, provided there is no ad-
ditional limitation through noise. Classical radar signal
theory (seeCook and Bernfeld, 1993, for a comprehen-
sive overview) relates range resolution to the effective band-
width of the radar transmit signal. Super-resolution methods
like autoregressive modelling (AR) or eigenanalysis methods
(e.g. MUSIC) can achieve better resolution compared to the
classical limits. They are basically model-based parameter
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estimators that use prior knowledge about the signal. Their
performance and properties have been exhaustively investi-
gated in the past (Pesavento et al., 2000; Zhang, 1998; Rao
and Hari, 1989; Marple, 1987) just to mention a few).

In recent times and even more in the future there will be
sensor platforms with not only one but several radar sensors
designed for various purposes. Automotive radar equipment
for parking aid, adaptive cruise control and a variety of driver
assistance and comfort functions is an example from the low-
cost sector. Also nowadays there are remote sensing plat-
forms that gather information with more than one radar sys-
tem. This rises the question for making optimum use of infor-
mation that comes from different radar sensors and in differ-
ent frequency areas. A prerequisite for optimum processing
of multi-band radar information would be mutual coherency
between the sensors in order to utilize also mutual phase in-
formation. For expenditure reasons, individual sensors on a
platform are most often mutually incoherent so this condition
is normally not fulfilled.

The purpose of this work is to investigate signal process-
ing methods to restore coherency between the data from mu-
tually incoherent radar sensors. The approach is different to
sensor fusion techniques. It attempts to merge radar sensor
information directly on the raw radar data level while sensor
fusion techniques apply to fully processed sensor data for the
sake of a more convenient object classification or multi-static
radar measurements (e.g.Meinecke et al., 2003; Schiementz
et al., 2003; Thomopoulos and Okello, 1993).

An important assumption behind the published approach
is that the contributing sensors bring information about the
same scenery. In a first approach, it is further assumed that
the common scenery is observed from the same direction by
two sensors as depicted in Fig.1. The sensors generally op-
erate at different carrier frequencies and with different signal
bandwidths.

It is further assumed that the radar scenery is well approx-
imated by an ensemble of real or effective discrete scattering
centers and that the same scatterers are active in both sensors’
frequency regimes. As a consequence, the radar response
is considered to be mainly a multi-path response including
P paths with identical round trip timesτp in both sensors.
Let us also assume that the radar data is given in frequency
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Fig. 1. Dual-band radar sensing of a common object area
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Fig. 1. Dual-band radar sensing of a common object area.
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Fig. 2. Illustration of the parameters used to specify bandwidth and
band gap.

domain. Both sensors deliver a discrete-frequency measure
of the complex reflectivity, using the same angular frequency
increment1ω. If the bandwidth of frequency bandB1,2 is
B1,2, then the length of the data sequence isL1,2=B1,2/1ω,
respectively. The distance in between bandsB1 andB2 is also
given in terms of angular frequency incrementsD. The start
index of each band isk01,2= + −ω01,2/1ω where1ω01,2
are the lower angular frequencies of each band. See Fig.2
for illustration.

With these assumptions, the discrete-frequency complex
reflectivity is

r[k] =

P∑
p=1

Ap · e−j�pk (1)

where�p=1ω·τp andk=ω/1ω. If Eq. 1 is measured by
a radar system no.n with angular frequency increment1ω,
starting from the lower frequencyω0n, and with bandwidth
Bn=Ln·1ω, then the noiseless data from this sensor is

rn[k] =

P∑
p=1

Apzp
k+k0n =

P∑
p=1

apnzp
k (2)

with k = 0, 1, . . . , Ln−1. In this notationzp=e−j�p and
apn=Ape−jω0nτp=Apzp

k0n . If the measurements are mutu-
ally coherent and Eq.1 is valid in frequency bandsB1 and
B2, then necessarily

ap2

ap1
= e−j�p(k02−k01) . (3)
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Fig. 3. Cramér-Rao lower bound for dual-band dual-frequency es-
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Fig. 4. Maximum achievable resolution versus band gap.

Equation3 can be considered as the condition for mutual co-
herence between the data inB1 andB2.

2 Cramér-Rao lower bound

Estimating the range parameter of point scatterers observed
by a radar system can be considered equivalent to estimating
the frequency of a real or complex sinusoid in the frequency
response of the radar scenery. With frequency modulated
continuous wave (FMCW) or stepped-frequency radar this
is task naturally appears. But the information delivered by
any arbitrary impulse response measurement technique can
in principal be processed in the frequency domain, where
the round trip time of discrete echos corresponds to the fre-
quencies of sinusoids. To investigate the maximum achiev-
able resolution through dual-band estimation, the Cramér-
Rao lower bound (CRLB) for frequency estimation of a si-
nusoid from dual-band data under the presence of a second
sinusoid with equal magnitude is derived. It is assumed that
the observed discrete data from bandsB1,2 have the form

x1,2[k] = s1,2[k, θ ] + w1,2[k] (4)

where the noiseless signals are

s1[k, θ ]=A cos(2πf1k+φ1) +A cos(2πf2k+φ2) (5a)

s2[k, θ ]=A cos(2πf1k+φ12)+A cos(2πf2k+φ22) (5b)
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Fig. 5. Block diagram of the proposed global model fitting procedure.

andw1,2[k] is white Gaussian noise. Coherency between the
bands implies that

φ12 = φ1 − 2πf1(L1 + D) (6a)

φ22 = φ2 − 2πf2(L1 + D) (6b)

and the parameter vector isθ=[f1 f2 φ1 φ2]
T. Assuming that

the noise is white and Gaussian, the Fisher information ma-
trix following Kay (1993) is

[I (θ)]ij =

1

σ 2

(∑
B1

∂s1[k, θ ]

∂θi

·
∂s1[k, θ ]

∂θj

+

∑
B2

∂s2[k, θ ]

∂θi

·
∂s2[k, θ ]

∂θj

)
.(7)

From this, the CRLB for thei-th parameter is

var(θi) ≥ [I−1(θ)]ii . (8)

A plot of [I−1(θ)]ii under the presumption thatf2=0.25 and
φ1=φ2=0 is shown in Fig.3. In this figure the distanceD
between the data windows varies while the window widths
remain constantL1=L2=5. It is seen that estimation of fre-
quencyf1 becomes inaccurate asf1 approaches either DC
or the Nyquist limit or iff1 comes close tof2. Furthermore
it can be recognized that the increase of the CRLB nearby
frequencyf2 is the slower, the wider the gapD.

Let us now define the minimum achievable resolutionδf

as the frequency difference|f2−f1| where the CRLB off1
exceeds the difference|f2−f1| that is to be resolved. Using
this definition, the minimum resolvable frequency difference
can be derived from Eq.8 for any values ofL1, L2, andD.
As an example, the minimum achievable resolution (in this
sense) is plotted in Fig.4 versus the band gapD. In this fig-
ure, the length of the available data isL1+L2=20 and the
signal-to-noise ratio is SNR=0 dB. The classical Rayleigh
resolution limit1R in this case is1R=0.5/20=250·10−4. It
is seen that the resolution limit of an efficient estimator im-
proves as the gapD between the frequency bands increases.

3 Model-based dual-band processing

Assuming that Eq.1 is globally valid, then the signal model
for the measured datâr1,2[k] in the subbandsB1,2 is

r1[k] =

P∑
p=1

Apzp
k+k01 (9a)

r2[k] =

P∑
p=1

Apzp
k+k02 . (9b)
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Table 1. Simulation parameters.: 5

Quantity Value

Length L1 of subband 1 32
Length L2 of subband 2 32
Number of complex sinusoids 2
Frequency difference variable
Model order P one of 4/8
Length D of interband gap one of 0/32/128
Signal-to-noise ratio SNR variable
no. of trials 2 000

Table 1: Simulation parameters
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Fig. 6: Resolution properties of an autoregressive model (co-
variance method)

This figure compares the single-band case (D = 0, fig. 6a)
to the dual-band case (D = 32, fig 6b). The model order
is P = 8 and the frequency distance between the two si-
nusoids is twice the Rayleigh resolution bound. Resolution
is achieved also in the dual-band situation but the estimates
are biased, however. Therefore, AR estimation is not suf-
ficient to provide accurate initial values for the exponential
model optimizer although AR modelling can be applied to
dual-band data.

As a comparison, the same approach using the root-
MUSIC algorithm are shown in fig. 7, additionally for the
case where the frequency distance is only half the Rayleigh
bound ∆R (figures 7c,d). It is seen that the root-MUSIC
result is not influenced by missing samples and that root-
MUSIC still achieves resolution below the Rayleigh bound,

provided the signal-to-noise ratio is sufficiently high. For
these properties, root-MUSIC was chosen as the initial pole
angle estimator.

In fig. 8 the statistical properties of the two poles clos-
est to the true pole angles after the optimization procedure
explained in section 3 are shown. The model order in this
simulation is P = 4 and the frequency distance is equal to
the Rayleigh resolution bound. In fig. 8a the optimization
result using a single band (D = 0) is shown in comparison
to a dual-band optimized model in fig. 8b. It is seen that
in both cases the pole angle variance decreases considerably
when SNR > 22 dB. The variance also increases rapidly
for SNR < 0 dB. In the region 0 dB < SNR < 22 dB the
variance of the two poles closest to the true positions is con-
siderably smaller when using dual-band data for the global
model fitting procedure.

5 Conclusion

A model-based signal processing procedure for dual-band
radar range estimation has been proposed. The algorithm ba-
sically recovers coherency between the distinct radar data by
making use of the prior knowledge that identical scatterers
form the radar range profile in both subbands. The Cramér-
Rao lower bound indicates a smaller range estimation vari-
ance for the dual-band case compared to equal bandwidth
single-band estimation, yielding a better resolution. A root-
MUSIC algorithm is used to achieve initial range estimates
from incoherent subband data. These initial estimates are
further improved by making use of mutual phase informa-
tion. This is achieved by fitting a global exponential model
to the observed subband data and presuming that the expo-
nential components are identical in both subbands. Simu-
lation results show the improved accuracy of the coherent
dual-band estimates compared to the result of conventional
super-resolution methods.
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This can be written in matrix notation

Z · A =

(
Z1
Z2

)
· A =

(
r1
r2

)
(10)

whereA=[A1, . . . , AP ]
T, rn=

[
rn[0], . . . , rn[Ln − 1]

]T and

Zn =


zn

k0n+0 z2
k0n+0

· · · zP
k0n+0

zn
k0n+1 z2

k0n+1
· · · zP

k0n+1

...
...

. . .
...

zn
k0n+Ln−1 z2

k0n+Ln−1
· · · zP

k0n+Ln−1

 .

The purpose is to estimate the poleszp under the bound-
ary condition that the same valuesAp apply to both sub-
bands. Throughτp=�p/1ω the pole angles�p then yield
the round trip times to be estimated. Generally, the ampli-
tudesAp may take any complex value and no prior knowl-
edge is available about them. Given a set of poleszp, opti-
mum valuesAp can be found by the least-squares solution
of Eq.10when substitutingr1,2 with the measured datâr1,2.
With these parameters the signal model Eq.9 is complete.
As a measure for the modelling quality, the total square de-
viation

J =

∑
B1

∣∣r̂1[k] − r1[k]
∣∣2 +

∑
B2

∣∣r̂2[k] − r2[k]
∣∣2 (11)

between the signal modelr1,2 and the measured datar̂1,2 is
used. This clarifies the exponential model fitting procedure
under consideration. See Fig.5 for a block diagram. A set of
poleszp forms the degrees of freedom while the correspond-
ing amplitudesAp follow from a least-squares comparison
betweenP complex sinusoids with frequencies�p and the
measured datâr1,2. This global exponential model can be
optimized iteratively by varying the pole angles.

Tuning the pole angles is a highly ambiguous problem, es-
pecially when the band gapD is large. Therefore it is re-
quired that the initial estimates for the pole angles are as ac-
curate as possible. Super-resolution methods that are based
on auto-covariance estimation are principally sufficient for
processing mutually incoherent multi-band data. They do not
employ mutual phase information even if the subband data
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sically recovers coherency between the distinct radar data by
making use of the prior knowledge that identical scatterers
form the radar range profile in both subbands. The Cramér-
Rao lower bound indicates a smaller range estimation vari-
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single-band estimation, yielding a better resolution. A root-
MUSIC algorithm is used to achieve initial range estimates
from incoherent subband data. These initial estimates are
further improved by making use of mutual phase informa-
tion. This is achieved by fitting a global exponential model
to the observed subband data and presuming that the expo-
nential components are identical in both subbands. Simu-
lation results show the improved accuracy of the coherent
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Fig. 6. Resolution properties of an autoregressive model (covari-
ance method).

were coherent, however. Phase information is introduced by
the global signal model Eq.1 that leads to the subband rep-
resentation Eq.2 and the phase condition Eq.3.

In Fig. 5 the input measurement data is represented by
the row vectorsr1,2. To achieve initial estimates for the
poleszp the root-MUSIC algorithm is chosen. The accord-
ing complex amplitudesAp are determined by the minimum-
least-squares solution of Eq.10 where the measured data
is substituted in the row vector on the right side. In the
following the total squared deviation between the signal
model and the measured data is minimized through an itera-
tive nonlinear least-squares minimization algorithm based on
the Levenberg-Marquardt method. During this optimization
|zp|=1 so the pole angles are the actual optimization param-
eters. In general, the differencek02−k01 is another degree
of freedom when the dataB1 andB2 are not coherent. It
is used to set up the matrixZ in Eq. 10. In the following
simulations it is assumed to be known, however. It should
be noted that without any knowledge about the phase angles
arg{Ap} only the differencek02−k01 can be estimated. The
valuesk01,2 are ambiguous because multiplication ofA with
[z1

m, . . . , zp
m
]
T in Eq. 10 with an arbitrary valuem can al-

ways be compensated by adding−m to all exponents inZ.
Once the model parameters are optimized, the signal
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Fig. 7: Resolution properties of the root-MUSIC algorithm
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model can be used to compute the range profile. This can
be done by either evaluating the pole angles directly or by
using the model to compute an arbitrary number of inter-
polated and extrapolated samples along the frequency axis
to achieve a closed data vector without any missing sam-
ples. Such a data series is then sufficient to provide a discrete
Fourier transform (DFT) range profile. Although the signal
model allows to extrapolate the measured data to any desired
wide bandwidth, leading to arbitrary narrow pulses in the
time/range domain, this bandwidth extrapolation yields nei-
ther additional information nor increased resolution. Radar
pulses become narrow through bandwidth extrapolation but
no additional targets or reflections will appear.

4 Simulation results

In the following simulations the mean and variance of pole
angle estimates in the single-band and in the dual-band
case are investigated. The length of the subband data is
L1=L2=32 and the signals[k] consists of two complex si-
nusoids with equal magnitude. Their normalized frequency
difference is given in comparison to the Rayleigh resolu-
tion bound1R=1/(L1+L2). The mean and variance esti-
mates are based on 2000 trials and they are plotted versus
the signal-to-noise ratio of the input data. A survey on the
simulation parameter setup is given in Table1.

From the resulting pole angle estimates the probability of
resolutionp(R) is computed. Since the total number of poles
is given by the chosen model order, a criterion for proper de-
tection and resolution of the targets based on the actual pole
angles has to be introduced. The following procedure was
used to plotp(R) in Figs.6 to 8: Provided that�i and�j

are the true pole angles to represent the two complex sinu-
soids then first findzi of which arg{zi} is closest to�i . Next
find zj of which arg{zj } is closest to�j . The sinusoids are
considered to be resolved if, and only if|i−j |=1.

Figure6 shows the resolution properties and the quality of
the pole angle estimates using an autoregressive (AR) model.
This figure compares the single-band case (D=0, Fig. 6a
to the dual-band case (D=32, Fig.6b. The model order is
P=8 and the frequency distance between the two sinusoids is
twice the Rayleigh resolution bound. Resolution is achieved
also in the dual-band situation but the estimates are biased,
however. Therefore, AR estimation is not sufficient to pro-
vide accurate initial values for the exponential model opti-
mizer although AR modelling can be applied to dual-band
data.

As a comparison, the same approach using the root-
MUSIC algorithm are shown in Fig.7, additionally for the
case where the frequency distance is only half the Rayleigh
bound1R (Figs.7c, d. It is seen that the root-MUSIC result
is not influenced by missing samples and that root-MUSIC
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band model fit.

still achieves resolution below the Rayleigh bound, provided
the signal-to-noise ratio is sufficiently high. For these prop-
erties, root-MUSIC was chosen as the initial pole angle esti-
mator.

In Fig. 8 the statistical properties of the two poles clos-
est to the true pole angles after the optimization procedure
explained in section3 are shown. The model order in this
simulation isP=4 and the frequency distance is equal to the
Rayleigh resolution bound. In Fig.8a the optimization re-
sult using a single band (D=0) is shown in comparison to
a dual-band optimized model in Fig.8b. It is seen that in
both cases the pole angle variance decreases considerably
when SNR>22 dB. The variance also increases rapidly for
SNR<0 dB. In the region 0 dB<SNR<22 dB the variance
of the two poles closest to the true positions is considerably
smaller when using dual-band data for the global model fit-
ting procedure.

5 Conclusion

A model-based signal processing procedure for dual-band
radar range estimation has been proposed. The algorithm
basically recovers coherency between the distinct radar data
by making use of the prior knowledge that identical scat-
terers form the radar range profile in both subbands. The
Cramér-Rao lower bound indicates a smaller range estima-
tion variance for the dual-band case compared to equal band-
width single-band estimation, yielding a better resolution.
A root-MUSIC algorithm is used to achieve initial range

estimates from incoherent subband data. These initial esti-
mates are further improved by making use of mutual phase
information. This is achieved by fitting a global exponential
model to the observed subband data and presuming that the
exponential components are identical in both subbands. Sim-
ulation results show the improved accuracy of the coherent
dual-band estimates compared to the result of conventional
super-resolution methods.
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