
Chapter 6
Computing Theoretical Drugs
in the Two-Dimensional Case

Let us briefly recall the difficulty we want to overcome with the theoretical drug.
The difficulty is that in the prototypical reaction defined by the Markov model

C
koc

�
kco

O

the rates may change under various mutations. One case that we have focused on in
these notes is CO-mutations where the reaction rate from C to O is increased. The
reaction of a CO-mutation takes the form
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where we assume that � > 1 is a constant. We refer to this constant as the
mutation severity index and the mutation is typically worse the larger the value of
�; furthermore, � D 1 refers to the wild type case. Our aim is to devise a theoretical
drug of the form
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where the constants kbc; kcb; kbo, and kob are used to tune the drug such that the effect
of the mutation is reduced as much as possible. As above, we will consider blockers
associated with the closed state, which means that kob D 0, or blockers associated
with the open state, which means that kcb D 0. The model and discretization
parameters used throughout this chapter are given in Table 6.1.
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Table 6.1 Parameters reused
from the previous chapter
(i.e., Table 5.1)

vd 1 ms�1

vr 0.1 ms�1

vs 0.01 ms�1

c0 0.1 �M

c1 1,000 �M

kco 1 ms�1

koc 1 ms�1

�t 0.001 ms

�x 0.92 �M

�y 9.3 �M

6.1 Effect of the Mutation in the Two-Dimensional Case

When the effect of the mutation is taken into account, the probability density
functions are governed by the system

@�o

@t
C @

@x

�
ax

o�o
� C @

@y

�
ay

o�o
� D �kco�c � koc�o; (6.1)
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� D koc�o � �kco�c; (6.2)

where we recall that the fluxes are given by

ax
o D vr .y � x/ C vd .c0 � x/ ;

ay
o D vr .x � y/ C vs .c1 � y/ ; (6.3)

ax
c D vd .c0 � x/ ;

ay
c D vs .c1 � y/

(see page 102). In Fig. 6.1, we compare the solution of this system when � D 1

(wild type) and � D 3 (mutant) and in Table 6.2 we give the statistics of the
solutions. The total open probability increases from 0.430 for the wild type to
0.743 for the mutant. In addition, the expected concentrations of both the dyad
and the junctional sarcoplasmic reticulum (JSR) decrease considerably. In the one-
dimensional (1D) case we observed that the variability of the solution decreased
when the mutation was introduced. This observation seems to carry over to the two-
dimensional (2D) case.
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Fig. 6.1 The open state probability density function for the wild type case (left) and the mutant
case (right, � D 3)

Table 6.2 Properties of the
open probability density
function in the wild type and
mutant cases

Case �o Exo Eyo �xo �yo

Wild type 0.430 12:63 202.4 4.948 46.27

Mutant 0.743 9:64 131.7 2.419 18.90

6.2 A Closed State Drug

In the 1D case, we were able to compute a characterization of the closed state drug
based on considering the equilibrium solution of the reaction scheme. Since the
reaction scheme is the same in the 1D and 2D problems, we can use exactly the
same characterization as above. Let us first recall that the reaction scheme of the
closed state drug takes the form

B
kcb

�
kbc

C
koc

�
�kco

O:

We found above (see (3.9) on page 59) that the parameters of the closed state blocker
should be related as

kcb D .� � 1/kbc; (6.4)

so the optimal value of kbc remains to be determined. To find the optimal value
of this parameter, we need to extend the system (6.1) and (6.2) to account for the
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theoretical drug. When the closed state blocker is added, the steady state version of
the probability density system reads
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Our aim is now to compute the value of the single parameter kbc such that the open
probability density function defined by the system (6.5)–(6.7) is as close as possible
to the solution of the system (6.1) and (6.2) in the case of � D 1 (i.e., the wild type
case). In other words, we want to use the drug to repair the effect of the mutations
in the sense that we want the open probability densities to be as close as possible to
the wild type open probability densities.

In Fig. 6.2 we show the solution of the system (6.5)–(6.7) using � D 3 and
kbc D 0:01, 0.1, 1, and 10 ms�1. As expected, we note that the solution becomes
increasingly similar to the wild type solution (see Fig. 6.1) as kbc increases.
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Fig. 6.2 Closed state blocker applied to the mutant case (� D 3). As the value kbc increases, the
probability density function approaches the wild type solution
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Fig. 6.3 The solution with the closed state blocker approaches the wild type case as kbc increases

6.2.1 Convergence as kbc Increases

Again we observe that the theoretical closed state blocker becomes more efficient
for larger values of kbc: To obtain a more precise impression of the convergence, we
compute the norm of the difference between the open probability of the wild type
case and the open probability of the solution of the system (6.5)–(6.7) as a function
of kbc using the norm defined by (2.40) on page 46. The result is shown in Fig. 6.3
and we again observe that, when kbc becomes sufficiently large, the effect of the
mutation is repaired completely.

6.3 An Open State Drug

The reaction scheme of an open state blocker for a mutant is

C
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�
�kco

O
kbo

�
kob

B:

We learned above that we had limited success in using the equilibrium solution to
derive an optimal characterization of the open state drug. We will therefore directly
optimize the two parameters kbo and kob:
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6.3.1 Probability Density Model for Open State Blockers in 2D

The probability density model in the presence of an open state drug is
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In Fig. 6.4, we show the cost function defined by the norm (see (2.40) on page 46)
of the difference between the open probability density function of the wild type
(solution of (6.1) and (6.2) with � D 1/ and the open probability density function
of the solution of the system (6.8)–(6.10) with � D 3: By minimizing the cost
function, using Matlab’s Fminsearch with default parameters and kob D kbo D 1 as
an initial guess, we find that an optimal open state blocker is given by

kob D 0:3225 ms�1; kbo D 0:3346 ms�1: (6.11)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

kbo

k ob

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6.4 Relative difference between the wild type and the mutant with an open state blocker for
the case � D 3. There is a minimum around .kbo; kob/ � .0:3; 0:3/ ms�1 marked by a small �
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Fig. 6.5 Relative difference between the wild type and the mutant with an open state blocker for
the case � D 10. There is a minimum around .kbo; kob/ D .0:53; 0:63/ ms�1

6.3.1.1 Does the Optimal Theoretical Drug Change with the Severity
of the Mutation?

One issue here is to see if the drug changes with the mutation severity index.
Numerical experiments show that the optimal drug does change. In Fig. 6.5, we
show the case in which � D 10 and the optimum has shifted compared to Fig. 6.4.

6.4 Statistical Properties of the Open and Closed State
Blockers in 2D

We introduced statistical properties of probability density functions in Sect. 4.2 (see
page 72). In Sect. 4.6 (page 88), we observed that, for the 1D release problem,
the closed state blocker completely repaired the statistical properties of the open
state probability density functions. In addition, an optimized version of an open
state blocker gave good results, but it was unable to repair the standard deviation
of the open state probability density functions for the particular CO-mutations we
considered.

The statistical properties of the solutions for 2D release are summarized in
Table 6.3. The results are quite similar to the 1D case. Again, for the CO-mutations,
the closed state blocker improves as the value of kbc increases and the optimized
version of the open state blocker also provides good results.
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Table 6.3 Statistical properties of the open probability density function in the mutant case when
a blocker is applied. For the mutant case, we use � D 3

Case �o Exo Eyo �xo �yo

Closed blocker, kbc= 0.01 0.547 10.55 144.2 4.726 58.93

Closed blocker, kbc=0.1 0.465 13.60 188.9 5.890 73.66

Closed blocker, kbc=1 0.422 13.69 205.7 5.231 53.08

Closed blocker, kbc=10 0.428 12.80 203.2 5.014 47.15

Open blocker, kbo=0.33, kob=0.32 0.484 13.04 187.5 4.724 48.34

Wild type 0.430 12.63 202.4 4.948 46.27

Mutant, no drug 0.743 9.64 131.7 2.419 18.90
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Fig. 6.6 Open probability density function for the wild type, the mutant (� D 3), the mutant plus
the closed state blocker, and the mutant plus the open state blocker. We compute the stationary
solution by solving the time-dependent equations until T D 100 ms. In the computation we use
�t D 0:001 ms, �x D 0:92 �M, and �y D 9:3 �M. The model parameters are specified in
Table 6.1

6.5 Numerical Comparison of Optimal Open and Closed
State Blockers

In the 1D case, we saw that for CO-mutations the closed state blocker was able
to completely remove the effect of the mutation, whereas the open state blocker
was less efficient. This result also holds in the 2D case. In Fig. 6.6, we compare
the open probability density function of the steady state solution of the wild type
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(solution of (6.1) and (6.2) with � D 1/; the mutant (solution of (6.1) and (6.2) with
� D 3/; the optimal closed state blocker (solution of (6.5)–(6.7) using � D 3 and
kbc D 10 ms�1/ and the optimal open state blocker (solution of (6.8)–(6.10) with
� D 3; kob D 0:3225 ms�1; kbo D 0:3346 ms�1/: We observe that it is hard to see
any difference between the open probability density function of the wild type and
the mutant when the closed state blocker is applied. In addition, the optimal open
state blocker improves the solution, but not as much as the closed state blocker does.

6.6 Stochastic Simulations in 2D Using Optimal Drugs

We have used the probability density approach to find an optimal closed state
blocker. In Fig. 6.7 we show how the closed state blocker works in a dynamic
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Fig. 6.7 Stochastic simulation of dyad concentrations (left, x D x.t/) and JSR concentrations
(right, y D y.t/) for the wild type (upper), the mutant (� D 3, middle), and the mutant where
the closed state drug is applied (lower, kbc D 10 ms�1). Here we use �t D 0:01 ms. The model
parameters are specified in Table 6.1, and the initial conditions are given by x.0/ D c0 and y.0/ D
c1 with the channel being closed
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simulation based on the scheme (5.11) and (5.12). We plot the concentrations of
the wild type, the mutant (� D 3), and the mutant when the closed state blocker is
applied (kbc D 10 ms�1; kcb D .� � 1/kbc). The dyad concentrations (x D x.t/) are
on the left-hand side and the JSR concentrations (y D y.t/) are on the right-hand
side. As for the 1D simulations, we observe that the mutations significantly reduce
the variability of the solutions and that this effect is basically completely repaired
by the closed state blocker.

6.7 Notes

1. The 2D stochastic differential equation and the associated probability density
system is taken from Huertas and Smith [35].

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits use,
duplication, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/

	6 Computing Theoretical Drugs in the Two-Dimensional Case
	6.1 Effect of the Mutation in the Two-Dimensional Case
	6.2 A Closed State Drug
	6.2.1 Convergence as kbc Increases

	6.3 An Open State Drug
	6.3.1 Probability Density Model for Open State Blockers in 2D
	6.3.1.1 Does the Optimal Theoretical Drug Change with the Severity of the Mutation?


	6.4 Statistical Properties of the Open and Closed State Blockers in 2D
	6.5 Numerical Comparison of Optimal Open and Closed State Blockers
	6.6 Stochastic Simulations in 2D Using Optimal Drugs
	6.7 Notes


