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Abstract

Background: The differentiation of naive CD4+ helper T (Th) cells into effector Th17 cells is steered by extracellular
cytokines that activate and control the lineage specific transcriptional program. While the inducing cytokine signals
and core transcription factors driving the differentiation towards Th17 lineage are well known, detailed mechanistic
interactions between the key components are poorly understood.

Results: We develop an integrative modeling framework which combines RNA sequencing data with mathematical
modeling and enables us to construct a mechanistic model for the core Th17 regulatory network in a data-driven
manner.

Conclusions: Our results show significant evidence, for instance, for inhibitory mechanisms between the
transcription factors and reveal a previously unknown dependency between the dosage of the inducing cytokine
TGFβ and the expression of the master regulator of competing (induced) regulatory T cell lineage. Further, our
experimental validation approves this dependency in Th17 polarizing conditions.

Keywords: T cell differentiation, T helper 17 cell, Sequencing data, Mathematical modeling, Statistical modeling,
Computational statistics

Background
Adaptive immunity is largely mediated by CD4+ T cells
which are a subclass of lymphocytes [1]. When a naive
CD4+ T cell encounters an antigen in the presence of
cytokine signals, the cell is activated through T cell recep-
tor and the differentiation into one of the effector T helper
(Th) cell subsets can be initiated [1]. There are four well
characterized subsets of CD4+ T cells, Th1, Th2, Th17,
and induced regulatory T (iTreg) cells, all of them hav-
ing distinct functions in the adaptive immune system [1].
The subset of Th17 cells is the most recently discovered
subset and, consequently, there has been a keen inter-
est in studying the properties of this subset during the
past decade [2–5]. The primary function of Th17 cells is
to clear pathogens during host defense reactions and, in
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general, Th17 cells have been noted to have important
functions in various autoimmune diseases such as psori-
asis, rheumatoid arthritis, multiple sclerosis, asthma, and
inflammatory bowel disease [4, 5].
The differentiation from a naive CD4+ T cell into a Th17

cell is induced by two cytokines, transforming growth fac-
tor β (TGFβ) and interleukin 6 (IL6) and both of these
cytokines are required for a successful differentiation
[4, 6]. The key transcription factors for Th17 cell genera-
tion are the retinoic acid receptor-related orphan receptor
gamma t (RORγ t) and signal transducer and activator
of transcription 3 (STAT3) [4, 6]. In the course of the
differentiation, STAT3 is activated through an extracellu-
lar IL6 signal and, in the presence of a sufficient TGFβ
level, STAT3 induces RORγ t expression which leads to
Th17 differentiation and interleukin 17 secretion [4, 6].
Th17 cell differentiation is also closely related to the gen-
eration of iTreg cells. The relation between iTreg and
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Th17 lineages is reciprocal in nature, differentiation into
both subtypes requires a sufficient amount of TGFβ , and
these subtypes have also been shown to exhibit plasticity
[4, 7–9]. Recent experimental studies provide a plethora
of information about the Th17 lineage specific regulatory
network [6, 10] but precise mechanistic understanding of
the transcription factor dynamics is yet to be attained. In
this study, we take the first steps towards a mechanistic
characterization of the Th17 specific core regulatory net-
work by using mathematical modeling that is employed
to extract information from time-course measurements of
mRNA kinetics.
Mathematical modeling can be used to construct

detailed descriptions for kinetics of molecular processes
and, consequently, it offers rigorous and objective means
to test whether the current understanding about the
molecular system is in agreement with observed data
or otherwise expected behavior. During the past years,
mathematical models have been developed to study the
differentiation from naive CD4+ T cells into Th1, Th2,
Th17, and iTreg subsets [11–22]. Some of the published
models describe the differentiation into several distinct
subsets and, in the context of lineage specification, these
models describe also the differentiation into Th17 sub-
set [17, 18, 20–22]. However, to our best knowledge,
a detailed dynamic model describing the dynamics of
core transcription factors behind Th17 cell differentia-
tion has not been published. Developing this kind of
detailed model is timely because recent experimental
studies provide us with sufficient amount of information
about the dependencies between the key transcription
factors and, on the other hand, learning the mechanistic
underpinnings of regulatory relationships during the dif-
ferentiation process is crucial, for instance, for the design
of experimental approaches to modulate the immune
response.
In this study, we construct a dynamic description for the

core molecular mechanisms steering Th17 cell differen-
tiation and use mathematical modeling to quantitatively
predict the resulting molecular dynamics. The dynamic
description is calibrated in a data-driven manner, and
both the calibrated dynamic model and biological find-
ings are further validated experimentally. Our analysis
rests upon comprehensive time-course RNA sequencing
measurements that provide us with a system level under-
standing of dynamic gene expression kinetics during the
Th17 cell differentiation of primary murine T cells in
vitro. In order to combine mathematical modeling with
these data and enable experimentally-based modeling, we
develop a statistical framework that is designed specifi-
cally for time-course RNA sequencing data and, further,
we elaborate the statistical techniques that are essential
for obtaining our results. Our treatment of sequencing
data is based on the negative binomial distribution that

is also used in the state-of-the-art statistical data anal-
ysis methods and this approach enables us to integrate
mathematical modeling with sequencing data in a natural
way.
In summary, we present a computational framework

that is used to derive the first detailed dynamic model
for the core network behind Th17 cell differentiation and,
further, we validate the model experimentally. Our results
show significant evidence, for instance, for inhibitory
mechanisms between the transcription factors and also
reveal a previously unknown dependency between the
dosage of TGFβ and the expression of the master reg-
ulator of competing iTreg lineage in Th17 polarizing
conditions.

Methods
RNA-seq data
The flow cytometry sorted naive (CD4+ CD44low CD25-)
T cells isolated from lymph nodes and spleens of C57BL/6
mice were activated with plate-bound anti-CD3 (0.5
ug/ml; 2C11 eBioScience) and anti-CD28 (5 ug/ml; 37.51;
eBioScience) and cultured in Th17 conditions with IL6
(20 ng/ml) and TGFβ (1 ng/ml) both mouse origin, R&D
Systems. Cultures were performed in triplicates. The
culture media used was IMDM (Sigma-Aldrich) supple-
mented with 5 % FCS, 2× 10−3 M L-glutamine, 100 U/ml
penicillin, 100 mg/ml streptomycin and 5 × 10−5 M b-
mercaptoethanol (all Sigma). Samples were harvested at
indicated time points. The sequencing data were prepro-
cessed and analyzed as described below. The data used
in this study (read counts, library sizes, and estimated
dispersion parameters) are given in Additional file 1.

FOXP3 protein data
Naive T cells were isolated and activated as described
above. Cells were cultured in Th17 conditions with a
constant concentration of IL6 (20 ng/ml) and five dif-
ferent concentrations of TGFβ (1/16, 1/8, 1/4, 1/2, and 1
ng/ml) both mouse origin, R&D Systems. Cultures were
performed in triplicates using culture media described
above. At day 3, the cells were stimulated with PdBu and
ionomycin and stained for intracellular FOXP3.

Data analysis
Sequence reads were mapped using Tophat (version 1.3.2)
with default parameters to the NCBIM37 mouse refer-
ence genome and Ensembl mouse transcriptome (release
63). Expression levels were estimated for all the Ensembl
genes using Python script rpkmforgenes with parameters
-readcount -no3utr [23], which ignores 3’ UTRs. Bio-
conductor package edgeR [24] was used to estimate the
dispersion parameters. Dispersion estimation was done
for each time point separately and by taking into account
the paired experimental design.



Intosalmi et al. BMC Systems Biology  (2015) 9:81 Page 3 of 12

The core network
The differentiation of naive CD4+ T cells into effector
Th17 cells is a highly complex process which is affected by
a large number of interacting molecules and many of the
regulated interactions are still unknown [4, 6, 10]. How-
ever, it is intriguing that the key transcription factors such
as the master regulator RORγ t and STAT3 show clear
dynamics during Th17 polarization. Given these strong
lineage specific dynamics, we hypothesize that a simpli-
fied view on the differentiation kinetics can be captured
by observing the time evolution of the core components
driving the differentiation. In order to implement these
ideas, we construct a dynamic description for the core
Th17 network based on the current literature and test
the description quantitatively against experimental data
by means of statistical analysis. Here, the use of math-
ematical modeling is crucial because a direct statistical
analysis of the time-course data is not capable of captur-
ing the dependencies and dynamics that originate from
the molecular kinetics. Our dynamic description for the
core network involves the inducing cytokine signals, IL6
and TGFβ and the transcription factors RORγ t, STAT3,
and FOXP3 (see the schematic illustration in Fig. 1). The
mechanistic reasoning for the core network is based on
the central dogma, mRNA molecules are translated into
proteins which in turn are phosphorylated and regulate
the expression of their target genes. The master regulator
of induced regulatory T (iTreg) cells, FOXP3 is included
to allow possible balancing effects of this competing
lineage.
Th17 lineage specification is highly dependent on the

inducing extracellular cytokine signals IL6 and TGFβ .
In our dynamic description, we treat the amount of
added cytokines, that is the initial levels of extracellu-
lar cytokines, as the input signals. When activated CD4+
T cells are exposed to these signals, the intracellular
cytokine levels gradually start to increase and the Th17

lineage specific differentiation program becomes acti-
vated. The IL6 signal has a central role as it participates
in the phosphorylation of STAT3 protein [4] and phos-
phorylated STAT3 protein activates the master regulator
RORγ t together with TGFβ (Fig. 1). Along with activating
RORγ t, the phosphorylated STAT3 protein affects STAT3
expression in an autoregulatory manner. This feedback
describes implicitly all autoregulatory mechanisms affect-
ing STAT3 as well as possible autocrine STAT3 activa-
tion that might occur via different cytokine signals, for
instance, interleukin 21 [4]. Experimental studies show
that RORγ t does not participate in the regulatory feed-
back mechanisms of STAT3 [6] and, consequently, we do
not allow RORγ t to affect STAT3 dynamics.
In addition to the mechanisms described above, we

also include four additional regulatory mechanisms in our
dynamic description. These mechanisms are hypothetical
in the sense that it is not clear if they play significant roles
in controlling the transcriptional dynamics in Th17 polar-
izing conditions. The hypothetical mechanisms include
(i) basal activation of FOXP3, (ii) FOXP3 activation by
TGFβ [1], (iii) RORγ t inhibition by FOXP3 [4], and (iv)
FOXP3 inhibition by STAT3 [1]. The schematic illustra-
tion in Fig. 1 highlights these interactions using dashed
connectors. By including different subsets of the hypo-
thetical mechanisms into the core network, we construct
altogether 12 alternative scenarios for regulatory mecha-
nisms (Table 1). In order to analyze the observed mRNA
dynamics by objective means, we convert our schematic
description into a rigorous mathematical model and use
experimental data and statistical testing to quantita-
tively assess the amount of evidence for each alternative
scenario.

Mathematical model
We use ordinary differential equations (ODEs) to con-
struct a mechanistic model for the core network driving

Fig. 1 Schematic illustration of the dynamic description. Illustration shows the assumed (solid connectors) and hypothetical (dashed connectors)
interactions during Th17 lineage specification
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Table 1 Construction of alternative models

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

Basal FOXP3 induction × × × × – – – – × × × ×
TGFβ induces FOXP3 – – – – × × × × × × × ×
FOXP3 inhibits RORγ t – – × × – – × × – – × ×
STAT3 inhibits FOXP3 – × – × – × – × – × – ×
Alternative models (Mi , i = 1, . . . , 12) are obtained by considering different combinations of hypothetical interactions. Here, active and inactive interactions are denoted by ×
and –, respectively

the Th17 cell differentiation process. The mathematical
model is based on the description of the core network
introduced above.
The cytokine IL6 is indispensable for successful Th17

cell differentiation. In our model, we discriminate the
extracellular IL6 (IL6ext) and intracellular IL6 (IL6int) lev-
els. At time t = 0 h, when the activated cells are treated
with cytokines, IL6ext has its maximum value and, as time
evolves, it starts gradually turn into intracellular IL6. This
conversion is modeled using the equations

d[IL6ext]
dt

= −θ1[IL6ext] (1)

d[IL6int]
dt

= θ1[IL6ext] , (2)

where θ1 is an unknown conversion rate. Initial level of
intracellular IL6 equals zero and the initial value of [IL6ext]
corresponds to the amount of added IL6 [IL6added] scaled
by the Th17 specific level of IL6 input [IL6input] (in this
study [IL6input] takes the value of 20 ng/ml). This yields an
analytical solution for intracellular IL6 dynamics

[IL6int] (t) = [IL6added]
[IL6input]

(
1 − e−θ1t) . (3)

In the context of Th17 cell differentiation, IL6 plays an
important role as it participates in the activation of STAT3
which, in turn, together with TGFβ activates the Th17
lineage specific master regulator RORγ t [4]. In order to
incorporate detailed STAT3 dynamics into our model,
we construct dynamic descriptions for STAT3 transcrip-
tion, translation and IL6 driven activation. In addition,
we allow STAT3 autoregulation that implicitly describes
several possible feedback mechanisms (e.g. amplification
through IL21 signals and positive feedback loops through
other genes [4, 6]). We denote the relative abundances
of STAT3 mRNA, STAT3 protein, and STAT3 phospho-
protein by [STAT3mRNA], [STAT3prot], and [STAT3∗

prot],
respectively, and write the dynamic system describing
their interactions in the following form

d[STAT3mRNA]
dt

= θ2 (4)

+ θ3[STAT3prot∗ ] (5)
− θ4[STAT3mRNA] (6)

d[STAT3prot]
dt

= θ5[STAT3mRNA] (7)

− θ6[IL6int] [STAT3prot] (8)
− θ7[STAT3prot] (9)

d[STAT3prot∗ ]
dt

= θ6[IL6int] [STAT3prot] (10)

− θ8[STAT3prot∗ ] , (11)

where θ2 − θ8 are unknown rate parameters (see Table 2).
Given the strong basal expression level of STAT3, we
assume that the initial level of STAT3 protein is non-zero.
Without losing any generality, we treat [STAT3prot] as a
unitless quantity and set its initial level to equal one. The
initial level of STAT3 phosphoprotein is taken to be zero.

Table 2 Descriptions for the model parameters

Parameter Description

θ1 conversion rate for IL6

θ2 basal expression, STAT3

θ3 autoregulation, STAT3

θ4 mRNA degradation, STAT3

θ5 translation, STAT3

θ6 phosphorylation, STAT3

θ7 protein degradation, STAT3

θ8 phosphoprotein degradation, STAT3

θ9 conversion rate for TGFβ

θ10 RORγ t activation by TGFβ and STAT3

θ11 RORγ t inhibition by FOXP3

θ12 RORγ t degradation

θ13 basal expression, FOXP3

θ14 FOXP3 activation by TGFβ

θ15 FOXP3 inhibition by STAT3

θ16 mRNA degradation, FOXP3

θ17 translation/phosphorylation, FOXP3

θ18 protein degradation, FOXP3
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In addition to IL6, TGFβ cytokine is also required
for successful Th17 cell differentiation. We model TGFβ
dynamics in the same manner as IL6 dynamics i.e. we
discriminate the extracellular TGFβ (TGFβext) and intra-
cellular TGFβ (TGFβint) and describe the conversion of
extracellular TGFβ to intracellular by means of the ODEs

d[TGFβext]
dt

= −θ9[TGFβext] (12)

d[TGFβ int]
dt

= θ9[TGFβext] (13)

where θ9 is an unknown conversion rate parameter. Here,
the initial level of intracellular TGFβ is taken to be zero
and the initial value of [TGFβext] corresponds to the
amount of added TGFβ [TGFβadded] scaled by the Th17
specific level of TGFβ input [TGFβ input] (in this study
[TGFβ input] takes the value of 1 ng/ml). The analytical
solution for intracellular TGFβ level is

[TGFβ int] (t) = [TGFβadded]
[TGFβinput]

(
1 − e−θ9t) . (14)

The master regulator of Th17 lineage is RORγ t and
thus it is one of the most interesting components in our
model. Because the basal expression of RORγ t can be
assumed to be very low (initial mRNA level is low, see
data in Additional file 1 , Section 2), we do not include it
into the model. Instead, the activation of RORγ t is taken
to be induced by TGFβ and STAT3 phosphoprotein. We
also allow FOXP3, the master regulator of the induced
regulatory T cells, to inhibit RORγ t. These molecular
interactions are modeled using the following ODE

d[RORγ tmRNA]
dt

= θ10[TGFβ int] [STAT3prot∗ ] (15)

− θ11[FOXP3prot∗ ] [RORγ tmRNA]
(16)

− θ12[RORγ tmRNA] , (17)

where θ10, θ11, and θ12 are unknown rate constants (see
Table 2).
Within our model, we allow FOXP3 activation to be reg-

ulated by the dynamic intracellular TGFβ level and by
basal mechanisms. In addition, we allow Th17 lineage spe-
cific signals to inhibit FOXP3 expression through STAT3
phosphoprotein. These mechanisms are described by the
ODEs

d[FOXP3mRNA]
dt

= θ13 (18)

+ θ14[TGFβ int] (19)
− θ15[STAT3prot∗ ] [FOXP3mRNA]

(20)
− θ16[FOXP3mRNA] (21)

d[FOXP3prot∗ ]
dt

= θ17[FOXP3mRNA] (22)

− θ18[FOXP3prot∗ ] , (23)

where θ13−θ18 are unknown rate parameters (see Table 2).
We assume that the initial level of FOXP3 protein is non-
zero. Without losing any generality, we treat [FOXP3prot∗ ]
as a unitless quantity and set its initial level to equal one.
Initial values for all mRNA levels are taken from RNA-seq
measurement (mean abundance of three replicates at time
0 h). Other initial values are as stated above.
All model parameters are defined to be strictly posi-

tive, and to introduce prior knowledge on the parameter
ranges, we use standard normal prior distributions in
logarithmic parameter space and assume that a priori
dependencies between the parameters do not exist. The
model was also implemented in COPASI [25] to gener-
ate Systems Biology Markup Language (SBML) encoded
version of the model. The SBML encoded version can be
found in Additional file 2.

Linking mathematical model with RNA-seq data
In order to combine our mathematical model with time-
course RNA-seq measurements, we need to construct a
statistical model that is capable of integrating continuous-
state model responses with discrete count data. The tra-
ditional way of doing this would be to carry out some
kind of ad hoc normalization for the count data and then
fit the model responses to the normalized data using for
example least squares or maximum likelihood methods.
However, this kind of approach can be detrimental for
many reasons. First, we do not typically know the statisti-
cal properties of the normalized count data and assuming
a normal distribution for normalized count data might in
some cases corrupt the analysis [26, 27]. Second, even if
we knew the exact statistical model for the normalized
data, we might not be able parameterize it. To prevent
these kinds of problems when combining our mathemat-
ical model with count data, we make use of the negative
binomial (NB) distribution which is also used in state-
of-the-art statistical data analysis methods for sequencing
data [24, 28].
Let us consider an arbitrary (time-course) RNA-seq data

set that is organized in a three dimensional matrix D so
that each element Dijk , (i = 1, . . . , n; j = 1, . . . ,m; k =
1, . . . , l) represents the read count of gene i at the jth time
point tj in the kth replicate. We model these data as NB
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distributed and using the same notation as Robinson et al.
[24], we can write

Dijk ∼ NB(Ljkpij,φij), (24)

where Ljk is the library size, φij is the gene specific, time-
dependent dispersion parameter, and pij is the relative
mRNA abundance of gene i at time tj. The parameteriza-
tion which Robinson et al. [24, 29] use lets us also express
the mean in the form μij = Ljkpij and variance in the form
μij(1 + φijμij).
Let us now consider the output of a mathematical

model, x(t, θ) ∈ Rn≥0 that describes the relative mRNA
abundancies for n genes as a function of time t. Here,
all model parameters are collected into a vector θ ∈
Rd . By assuming independent measurements and denot-
ing xij(θ) = xi(tj, θ), the likelihood of reproducing the
observed data using the model can now be defined as

p(D|θ) =
n∏

i=1

m∏
j=1

l∏
k=1

g(Dijk ; Ljkxij(θ),φij), (25)

where g(·;μ,φ) is the probability mass function of NB dis-
tribution with the mean μ and dispersion parameter φ.
The function g can be written in the form

g(y;μ,φ) = �(y + φ−1)

�(φ−1)�(y + 1)

(
1

1 + μφ

)φ−1 (
μ

φ−1 + μ

)y

(26)

giving the variance μ + φμ2 [30, 31].

Statistical framework
Bayesian methodology offers a powerful formalism to
carry out parameter inference, model discrimination,
and experimental design for mathematical models (see
e.g. [32–36]). In this study, we also adapt the Bayesian
approach. According to Bayes’ theorem, the parame-
ter posterior distribution takes the form p(θ |D,M) ∝
p(D|θ ,M)p(θ |M), where θ is a vector of parameters, M
denotes the model of interest, D denotes the observed
data, and p(θ |M) is a model specific prior distribution for
the parameters (for details about Bayesian data analysis,
see e.g. [37]). As we have already defined the likelihood
function p(D|θ ,M) to combine mathematical models with
RNA-seq data, the statistical tools provided by Bayesian
methodology are available for us in their full power.

Model discrimination
In the above notation, we have written the densities con-
ditional to a specific model M. The reason for this is that
we are interested in considering alternative models and,
more specifically, evaluating the evidence for alternative
models given the observed data. The evidence (marginal
likelihood) for a given modelM is

p(D|M) =
∫

θ∈�

p(D|θ ,M)p(θ |M)dθ . (27)

If we consider a set of alternative models Mi, i =
1, . . . ,N and do not assume any a priori preference for
any of the models, the marginal likelihoods p(D|Mi) can
be directly used to assess the evidence for different mod-
els. In other words, the higher the marginal likelihood, the
more evidence the data provides for that particular model.
This approach also inherently penalizes overly complex
models and overfitting (for details, see e.g. [38]).

Posterior predictions
The posterior predictive distribution of a continuous-time
model response is defined by writing

p(y∗(t)|D,M) =
∫

θ∈�

p(y∗(t)|θ ,M)p(θ |D,M)dθ , (28)

where y∗(t) = (y∗
1(t), . . . , y∗

n(t)) ∈ Rn≥0 is the predicted
model output at time t. However, this formulation cannot
be applied directly because we have defined the likeli-
hood function p(y∗(t)|θ ,M) only for the observed points
in the space of model output. Consequently, we need to
define an interpolated version of the likelihood function
that can be used to estimate the posterior predictive dis-
tributions in continuous-time. The interpolated version of
the likelihood function for this purpose is defined by

p̄(y∗(t)|θ ,M) =
n∏

i=1
g(L̄y∗

i (t); L̄xi(t, θ), φ̄i(t)), (29)

where L̄ is the average library size estimated from the
data and φ̄i(t) is a continuous time dispersion param-
eter interpolated from the original estimated dispersion
parameters.

Thermodynamic integration
The estimation of marginal likelihood is challenging in
general and there exists several numerical techniques for
this purpose (for a review, see [39, 40]). Thermodynamic
integration is one of the most powerful approaches pro-
posed and it has also been successfully applied in the
context of mathematical models (see e.g. [33, 34, 41, 42]).
To estimate marginal likelihood by means of thermody-
namic integration, we need to define the so-called power
posterior distribution

pβ(θ |D,M) ∝ p(D|θ ,M)βp(θ |M), (30)

where β ∈ [0, 1]. Clearly, the power posterior distribu-
tion can be used to define a discrete set of bridging
distributions between the prior and posterior distribution.
Further, it can be shown (see e.g. [39]) that
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ln(p(D|M)) =
∫ 1

0

[∫
ln(p(D|θ ,M))pβ(θ |D,M)dθ

]
dβ

(31)

and this allows us to define the estimator

̂ln(p(D|M)) =
Nβ∑
i=2

(βi − βi−1)

( Iβi + Iβi−1

2

)
, (32)

where

Iβi = 1
Ns

Ns∑
j=1

ln(p(D|θβj ,M)), θβj ∼ pβi(θ |D,M)

(33)

for some fixed 0 = β1 < β2 < · · · < βNβ = 1, where Nβ

and Ns are the number of bridging distributions and the
number of samples from each distribution, respectively.
To compute Iβi , i = 1, . . . ,Nβ , we need samples from
the bridging distributions pβi(θ |D,M). A very convenient
way of obtaining these samples is to use population-based
Markov Chain Monte Carlo sampling.

Population-basedmarkov chain monte carlo
The performance of optimization and sampling tech-
niques is often hampered by complex dependencies
between parameters as well as multi-modality of the tar-
get distribution. Population-based Markov Chain Monte
Carlo (MCMC) sampling algorithms of various types have
been developed to enable sampling also from these kinds
of complex distributions [43]. In this study, we construct a
population-based MCMC sampling algorithm that serves
two purposes. First, we need a sampler that is capable
of sampling from complex multimodal distributions and,
second, the sampler should provide us with samples that
can be used to estimate the marginal likelihood by means
of thermodynamic integration.
We construct our population-based MCMC algorithm

according to the guidelines given by Friel and Pettit [39]
and Calderhead and Girolami [41], and define a product
form of the target density

p∗(θβ1 , θβ2 , . . . , θβNβ
|D,M) =

Nβ∏
i=1

pβi(θβi |D,M), (34)

where 0 = β1 < β2 < · · · < βNβ = 1 and pβi are as
defined above. The product form of target density has all
bridging distributions as its marginal distributions and we
draw samples from each of these distributions in paral-
lel. In other words, our sampler runs Nβ parallel MCMC
chains, one chain sampling from each pβi , i = 1, . . . ,Nβ

and in addition to local exploration of the target distribu-
tion we allow the parallel chains to exchange information
through global moves between the chains. A detailed
description of our sampling algorithm can be found in

Additional file 1 and an example implementation can be
found in Additional file 3.

Computational implementation
We implement the mathematical models and sampling
algorithm in Matlab (The MathWorks Inc., Natick, MA,
USA) and use ode15s solver to numerically solve ordinary
differential equation systems. We use 30 temperatures
(i.e. Nβ = 30) to carry out population-based MCMC
sampling and to discretize the thermodynamic integral.
To construct an efficient sampling algorithm, the bridg-
ing distributions must allow free movement of MCMC
chains close to the prior distribution and, on the other
hand, the bridging distributions should be appropriately
related to enable efficient information exchange between
temperatures. Consequently, the selection of values for
β2 < · · · < βNβ−1 plays an important role in the effi-
ciency of the algorithm and the accuracy of estimates
computed based on the samples. In this study, we set
βj = ((j − 1)/(Nβ − 1))5 j = 1, . . . ,Nβ and initially run
the sampler using a symmetric normal proposal distribu-
tion. After approximate convergence is obtained, we tune
the proposal distributions based on the observed covari-
ances of samples and the final sample is then generated
using the tuned, fixed proposal distributions. For each
model we run five independent samplers, collect every
1000th sample, and the convergence of Markov chains is
monitored using the potential scale reduction factors [37]
(see Additional file 1: Figures S1 and S2) as well as visual
inspection of log-likelihood and sample traces. The final
MCMC sample size for each model was 10,000 samples
before the incorporation of FOXP3 protein data and 5000
samples after the incorporation of these data.

Results
Dynamic description is consistent with data
In the previous section, we proposed a dynamic descrip-
tion for the core regulatory network steering Th17 cell
differentiation and converted this description into amath-
ematical model. The dynamic description includes four
hypothetical mechanisms and, by considering different
combinations of these mechanisms, we chose to study 12
alternative scenarios for molecular interactions (see Fig. 1
and Table 1). To quantitatively assess if these alternative
scenarios are in agreement with experimental data, we
combined the corresponding mathematical models with
time-course RNA-seq measurements using our frame-
work for sequencing data and carried out statistical infer-
ence using the methodology described above. As a result
of the statistical analysis, we conclude that our numer-
ical methods work well and that all alternative models
are identifiable (the parameter posterior distributions get
notably updated when compared with our uninforma-
tive standard normal prior distributions in log-scale, see
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Additional file 1: Figures S3 and S4). Further, by observ-
ing the posterior predictive distributions over the mRNA
dynamics it is easy to conclude that all alternative mod-
els are capable of describing the dynamics observed in
the experimental data (Additional file 1: Figure S5). Con-
sequently, it is not possible to evaluate the alternative
models solely by visual inspection and we need to utilize
statistical testing to quantitatively assess the evidence for
different models.

Statistical testing shows strong evidence for inhibitory
mechanisms
We estimate the evidence (marginal likelihood) for each
model to quantitatively evaluate the alternative models.
Results show that Models 4, 8, and 12 have clearly higher
evidence than the other models (Fig. 2a). The common
feature of the highly ranked models is that they all include
both hypothetical inhibitory mechanisms, RORγ t inhibi-
tion by FOXP3 and FOXP3 inhibition by STAT3. Further,
Model 4 which has the highest evidence does not allow
the dependency between TFGβ and FOXP3. In biolog-
ical terms, this would suggest that in Th17 polarizing
condition the level of TFGβ is so low that it does not
affect the FOXP3 expression at all. To experimentally val-
idate this prediction, we quantified the FOXP3 protein
abundance at time 72 h in Th17 polarization conditions

using five different concentrations of added TGFβ that
were diluted with respect to the original dose. Surpris-
ingly, these data show that FOXP3 protein expression
depends on the TGFβ dose in Th17 polarizing condi-
tions (Fig. 2c). To test if any of the highly ranked models
(Models 4, 8, and 12) is capable of reproducing this behav-
ior, we generated the corresponding posterior predictive
distributions for FOXP3 levels at 72 h and plotted the
estimated mean FOXP3 protein levels against the data
(dashed lines in Fig. 2c). BecauseModel 4 allows only con-
stant basal activation of FOXP3, it is naturally not capable
of reproducing the dependency that is seen in experimen-
tal data. On the other hand, Models 8 and 12 predict
similar trend as seen in the data (Fig. 2c). Our conclusion
here is that the time-course RNA-seq data shows signifi-
cant evidence for the hypothetical inhibitory mechanisms
but to be able to make any conclusions about the FOXP3
activationmechanisms and its dependency on the amount
of added TGFβ , we need to incorporate also the additional
data on FOXP3 levels into our statistical framework and
repeat the statistical testing.

Incorporation of FOXP3 protein data approves the
inhibitory mechanisms and FOXP3 dependence on TGFβ
To incorporate the dilution experiment data on FOXP3
levels into our statistical framework, we extend the

Fig. 2 Estimated evidence for alternative models and comparison of model predictions with experimental data. a Estimated marginal likelihoods for
12 alternative models. b Estimated marginal likelihoods for highly ranked models (Models 4, 8, and 12) after incorporation of additional data on
FOXP3 protein levels. c Experimental data on FOXP3 protein levels (the percentage of cells expressing FOXP3 protein at time 72 h) plotted with the
corresponding predicted average FOXP3 levels as a function of added TGFβ (predictions are generated using Models 4, 8, and 12, and the
dimensionless latent FOXP3 level is multiplied by 104 for illustrative purposes). The experimental data (black squares) shown as mean ± standard
deviation are representative of 3 independent experiments. The dashed and solid lines represent the predictions generate before and after
incorporation of FOXP3 protein level data, respectively
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likelihood function by multiplying it by distributions
for observed protein levels in different dilutions. These
distributions are taken to be normal distributions that
have the scaled predicted protein level as their mean and
the variance is estimated from observed protein levels
(i.e. the variance corresponds to the standard deviations
shown in Fig. 2c). Having extended the likelihood func-
tion, we can repeat the estimation of evidence for the
models 4, 8, and 12 using the full data that includes
also the protein measurements. The updated estimated
marginal likelihoods are shown in Fig. 2b and, as sup-
posed, Model 4 is not highly ranked when the dependency
between FOXP3 and TGFβ is taken into account in the
statistical testing. Instead, Model 8 has now the high-
est evidence and Fig. 2c (solid lines) shows that also
the predictions generated by the Model 8 are in a bet-
ter agreement with the data than the predictions gener-
ated by Models 4 and 12. We conclude here that based
on our statistical analysis Model 8 has the highest evi-
dence meaning that our data supports the existence of
the both inhibitory interactions in the model. In addition,
our results show, in agreement with validation data, that
FOXP3 protein level depends on TGFβ level during Th17
lineage specification. Figure 3 shows the estimated pos-
terior predictive distributions for the mRNA levels given
the full data containing the both RNA-seq and FOXP3
protein measurements. The posterior predictive distribu-
tions are in a good agreement with the observed mRNA
abundances.

Discussion and conclusions
While the cytokines that induce naive CD4+ T cells to
differentiate into specific subsets are well known, the
mechanistic detailed interactions between the key tran-
scription factors are not known. As a comprehensive
experimental determination of the detailed dynamics is
out of reach, mathematical modeling is an indispensable
aid to learn more about the differentiation processes. In
this study, we observe Th17 specific transcription fac-
tor dynamics through time-course mRNA data (RNA-seq
measurements) and use objective computational tools to
learn the mechanistic interactions of the key transcription
factors. By integrating the mathematical models with our
comprehensive set of time-course RNA-seq data as well as
qualitative information about the differentiation dynam-
ics, we construct an experimentally-based dynamic model
that is capable of producing meaningful predictions that
we also validate experimentally.
We model the Th17 differentiation process on the same

level as the process is typically experimentally observed.
Our modeling approach is unique in three ways. First,
we use time-course RNA-seq data as a basis of our work
and integrate the data with dynamic modeling using a
framework that makes use of statistical characterization

of sequencing data. Second, we apply powerful statisti-
cal methodology that allows us to evaluate the alternative
model topologies and, even more importantly, allows us
to estimate the posterior predictive distributions for any
process included into the model. Because we have a sta-
tistical model for the experimental data, the predictive
distributions conveniently reflect the uncertainty in the
observations as well as in the structure of our models.
Third, we can generate probabilistic predictions in a con-
tinuous range of cytokine conditions on contrary to just
knocking down a gene or removing a cytokine input from
themodel. In other words, we are able tomake predictions
in a continuous range of cytokine conditions (e.g. different
dilution levels for TGFβ , see Fig. 2).
Previously published models for Th17 differentiation

have been a part of larger studies which have aimed
at modeling CD4+ T cell differentiation into various
subsets [17, 18, 22] or have been especially designed
to describe the reciprocal differentiation into Th17 and
iTreg cells [20, 21]. Although these studies provide us
with valuable information about the Th17 cell differen-
tiation process, the models do not allow efficient use
of time-course data and, more importantly, the model
structure cannot be quantitatively judged by experimental
observations.
The applicability of our modeling approach is not

restricted to themodeling of Th17 cell differentiation. The
statistical framework that we develop to combine mathe-
matical models with sequencing data is fully general and
can be used to analyze any RNA-seq data given an ade-
quate continuous-state dynamic model. Our framework
incorporates all available information on the statistical
properties of sequencing data into the likelihood function
which has the form of the negative binomial (NB) distri-
bution. TheNB distribution is also used in state-of-the-art
data analysis methods [24, 28] and, thus, all important
features of data, such as time-dependent gene-wise over-
dispersion, can be automatically taken into account when
constructing the likelihood function. Further, the NB like-
lihood function conveniently links the discrete read count
data with continuous-state dynamic models. The NB dis-
tribution is unarguably the most well suited distribution
for read count data [24, 28] and, for this reason, our frame-
work is inherently better suited for linking dynamic mod-
els with sequencing data than standard methods such as
maximum likelihood fit via normal distribution. In some
parameter regimes, the NB distribution can be approxi-
mated using the normal distribution and, in these cases,
maximum likelihood fit might also well approximate the
best fit obtained from our rigorous model. However,
to construct this kind of normal approximations, one
still needs to extract information from the sequencing
data to incorporate, for example, time-dependent features
and, importantly, one needs to check that the normal



Intosalmi et al. BMC Systems Biology  (2015) 9:81 Page 10 of 12

Fig. 3 Posterior predictive distributions generated using the Model 8 after the incorporation of FOXP3 protein data. Time-dependent marginal
posterior predictive distributions for [STAT3mRNA], [RORγ tmRNA], and [FOXP3mRNA] are illustrated using the estimated 5 % and 95 % percentiles (grey
lines) and the median (dashed line). The data are plotted using circles. The data are normalized by dividing each value by the corresponding library
size and the scaling constant that is used in the model

approximation is valid in all ranges of data at all time
points considered. In general, normal approximations for
count data are noted to perform poorly [26, 27] and by
means of our framework, these kinds of cumbersome
approximations can be simply avoided.
In summary, we introduce an experimentally-based

modeling approach for Th17 cell differentiation and use
it to generate predictions that are experimentally vali-
dated. The modeling is carried out within a novel sta-
tistical framework and, by using statistical methodology,
we carry out experimentally based construction of a
mathematical model. Our study approves the important
role of quantitative dynamic modeling in identifying and
studying regulatory mechanisms. Advanced application
of mathematical modeling takes the analysis of time-
course data well beyond the standard statistical analyses
and offers powerful means to test the existing knowl-
edge against data as well as to hypothesize alternative
mechanisms that can generate the observed data. There
are two central requirements for successful application of
mathematical modeling to these kinds of analysis tasks.

First, the model construction process needs to be data
and knowledge driven and, second, the resulting mod-
els must be suitable for quantitative evaluation. Our
experimentally-based modeling framework for Th17 cell
differentiation is designed to serve these needs in the best
possible way and can be regarded powerful in the sense
that it enables us to fully account for the uncertainty in the
data as well in the model structure.
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