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1 Introduction
The difference equations play an important role in many fields such as science, biology,
engineering, and technology where discrete phenomena abound, in addition, from the
advent and the rise of computers, where differential equations are solved by employing
their approximative difference equations formulations; e.g., see [–] and the references
therein.

One of the difference equations that has attracted some attention is

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = f

(
k, y(k)

)
, k ∈ {, . . . , N} =: I,

�y() = , �y(N) = ,
(.)

where �y(k) = y(k + ) – y(k) for all k ∈ Z, p : {, , . . . , N} →R, q : I →R are functions.
In , Cabada and Otero-Espinar [] studied the existence of solutions of (.) by

the method of upper and lower solutions whenever p(·) ≡ , q(·) = . Anderson et al. []
obtained the existence of solutions of (.) by a fixed point theorem whenever p(·) ≡ 
and Lu and Gao [] obtained the existence of positive solutions of (.) by the fixed point
theorem in cones. Jun Ji, Bo Yang, Candito, G. D’Aguì and Gao also studied the discrete
Neumann problem by different methods, see [, , –] and references therein.

However, very little work has been done for the existence of positive solutions of second-
order difference equation involving superlinear nonlinearity with zeros. It is worth point-
ing out that Ma obtained the existence of multiple solutions for some discrete Sturm-
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Liouville problems; see []. Inspired by the above work, we study the global structure of
positive solutions of the following discrete Neumann boundary value problem:

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = λa(k)f

(
k, y(k)

)
, k ∈ I,

�y() = , �y(N) = ,
(.)

where the functions p : {, , . . . , N} → (,∞), q, a : I → [,∞) with a(k) >  on k ∈ I and
the nonlinearity f satisfies:

(C) f ∈ C(I × [,∞), [,∞)) and there exists a function m : I → (,∞), satisfying
m(k) + m(k) ≤ m( k+k

 ) with k, k ∈ I , such that f (k, ) = f (k, m(k)) =  and
f (k, y) >  if  < y < m(k).

(C) There exists a function h : I → (,∞) such that

lim
y→+

f (k, y)
y

= h(k) uniformly in k ∈ I. (.)

(C) There exists a subset I ⊂ I such that

lim
y→∞

f (k, y)
y

= ∞ uniformly in k ∈ I.

(C) The function fy := ∂f
∂y exists and is continuous in the set {(k, y) : k ∈ I, y ∈ [, m(k)]};

further,

fy(k, y) < y–f (k, y), (k, y) ∈ {
(k, y) : k ∈ I, y ∈ (

, m(k)
)}

. (.)

Through careful analysis we have found that the nonlinearity has a zero at a variable
positive value and has linear growth at zero and locally superlinear growth at infinity. The
effect of the variable zero and the condition of superlinear growth in a small interval are
the main differences when comparing to the results in [, ]. For the results concern-
ing the existence of positive solutions for nonlinear differential equation boundary value
problems involving nonlinearity with zero points, see, e.g. [–] and references therein.

Let λ,ah be the first eigenvalue of the eigenvalue problem

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = λa(k)h(k)y(k), k ∈ I,

�y() = , �y(N) = .
(.)

It is well known (cf. Kelly and Peterson [], Gao []) that λ,ah >  is positive and simple,
and that it is a unique eigenvalue with positive eigenfunctions ϕ,ah.

Theorem . Let (C)-(C) hold. Then for every  < λ < λ,ah, the problem (.) has at least
one positive solution.

Theorem . Let (C)-(C) hold. Then for every λ > λ,ah, the problem (.) has at least
two ordered positive solutions.

Theorem . Let (C)-(C) hold. Suppose {yλ} is a family of positive solutions of (.).
Then

(i) one has ‖yλ‖ → ∞ as λ → +;
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Figure 1 The branch � of positive solutions of (1.2).

(ii) if f (k, y) >  for y 	= m(k), y 	= , then

yλ → m pointwise in I and ‖yλ‖ → ‖m‖, as λ → ∞.

Remark . Theorems .-. give the global structure of positive solutions of (.) under
the conditions (C)-(C); see Figure . The condition (C) is used to obtain the second so-
lution, by a nice homotopy argument, which is a technical hypothesis. We conjecture this
condition may be not imposed here if we use another technique to deal with the problem
(.).

Remark . Notice that (C) means that f has asymptotically linear growth at u = . From
Figure , we see that (.) has a positive solution u satisfying mink∈I u(k) > ‖m‖ for any λ ∈
(,λah) and (.) has two positive solutions u and u with ‖u‖ < ‖m‖ and mink∈I u(k) >
‖m‖ for any λ > λah.

If f = ∞, then for any λ >  (.) has two positive solutions u and u with ‖u‖ < ‖m‖
and mink∈I u(k) > ‖m‖. Especially, under the conditions (C)-(C), we can show (.) has
at least one positive solution u with ‖u‖ < ‖m‖ for any λ >  by using the fixed point theo-
rem and Proposition .. Compared with the main results of [], the interval of λ is sharp.
However, Theorem .-Theorem . and [], Theorem ., Theorem ., Theorem .,
with p =  complement each other but cannot contain each other.

The rest of this paper is organized as follows. In Section , we state some notations
and preliminary results. Section  contains the proof of existence of one solution for λ

small enough and the proof of the existence of two solutions for λ large enough. Finally,
we study the asymptotic behavior of the solutions compact operator equation and prove
Theorem . in Section .

2 Preliminaries
Let Î := {, , . . . , N , N + }, and define E = {y | y : Î → R} be the space of all maps from Î
into R. Then it is a Banach space with the norm ‖y‖ = maxk∈Î |y(k)|.

Let P := {y ∈ E | y(k) ≥ , k ∈ Î}. Then P is a cone which is normal and has a nonempty
interior and E = P – P.

Let φ(k), ψ(k) be the solution of the initial value problem

–�
[
p(k – )�φ(k – )

]
+ q(k)φ(k) =  for k ∈ I,

φ() = , �φ() = ,
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and

–�
[
p(k – )�ψ(k – )

]
+ q(k)ψ(k) =  for k ∈ I,

ψ(N + ) = , �ψ(N) = ,

respectively. It is easy to compute and show that
(i) φ(k) =  +

∑k–
s= (

∑k–
j=s


p(j) )q(s)φ(s) > , and φ is increasing on Î ;

(ii) ψ(k) =  +
∑N

s=k+(
∑s–

j=k


p(j) )q(s)ψ(s) > , and ψ is decreasing on Î .

Lemma . ([], Lemma .) Let h : I → R. Then the linear boundary value problem

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = h(k), k ∈ I,

�y() = , �y(N) = ,
(.)

has a unique solution

y(k) =
N∑

s=

G(k, s)h(s), k ∈ Î, (.)

where

G(k, s) =


p(N)�φ(N)

⎧
⎨

⎩
φ(s)ψ(k),  ≤ s ≤ k ≤ N + ,

φ(k)ψ(s),  ≤ k ≤ s ≤ N .
(.)

Moreover, if h(k) ≥  and h 	≡  on I , then y(k) >  on Î .

Lemma . G(k, s) has the following properties:
(i) G(k, s) ≥ , ∀(k, s) ∈ Î × Î ; G(k, s) > , ∀(k, s) ∈ I × I .

(ii) G(k, s) ≤ G(s, s), ∀(k, s) ∈ Î × Î .
(iii) G(k, s) ≥ min{ φ(k)

φ(N+) , ψ(k)
ψ() }G(s, s), ∀(k, s) ∈ Î × Î .

Let b : I →R be a function and consider the following eigenvalue problem:

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = λb(k)y(k), k ∈ I,

�y() = , �y(N) = .
(.)

It is well known (cf. Ma et al. [], Theorem ; Gao [], Theorem .; Ji and Yang [], The-
orem .) that the problem (.) has finite simple eigenvalues and there exist a sequence
of positive eigenvalues

λ,b < λ,b < · · · < λM–,b < λM,b,

provided b >  in a subset of I and M ≤ N ; there exist a sequence of negative eigenvalues

λ–(N–M),b < λ–(N–M–),b < · · · < λ–,b < λ–,b,

provided b <  in a subset of I .
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In particular, λ,b >  is the positive principal eigenvalue of (.) and the associated
eigenfunction ϕ,b satisfies ϕ,b(k) > , k ∈ I , while ϕi,b changes its sign i –  for |i| > .
In addition, it yields, for any y ∈ E,

N∑

k=

p(k)
∣∣�y(k)

∣∣ –
N∑

k=

q(k)
∣∣y(k)

∣∣ ≥ λ,b

N∑

k=

b(k)
∣∣y(k)

∣∣,

where equality holds if and only if y is a multiple of ϕ,b (see [, ]).
First, we introduce the following strict monotonicity property with respect to the weight

function b for the problem (.) (see Gao [], Lemma . and Ji and Yang [], Theorem .).

Lemma . Let b and b̃ be two bounded weights with b ≤ b̃, and let j ∈ {–N , . . . , –, ,
. . . , N}. Then the eigenvalue λj,b > λj,b̃.

Let A : E → E be defined by

Ay(k) = λ

N∑

s=

G(k, s)a(s)f
(
s, y(s)

)
, (.)

and P = {y ∈ P | mink∈I y(k) ≥ c‖y‖}, here c = mink∈I{ φ(k)
φ(N+) , ψ(k)

ψ() }. It is easy to see that A
is a completely continuous operator. By Lemma . and Lemma ., it follows that A(P) ⊂
P and its nontrivial fixed points in P correspond to the positive solutions of (.).

3 The existence of one solution and two solutions for (1.2)
In this section, we will show the existence of a solution for λ ∈ (,λ,ah) and the existence
of two solutions for λ ∈ (λ,ah,∞).

Lemma . Suppose (C)-(C) hold. Then for all �, B > , there exists R >  such that for
any fixed λ > � and y ∈ {y ∈ P | ‖y‖ ≥ R}, we have

‖Ay‖ > B‖y‖.

Proof By the condition (C), for any fixed M > , there exists X >  such that y > X implies
f (k, y) ≥ My, ∀k ∈ I. By Lemma . and Lemma ., it is easy to see that

y(k) ≥ min
k∈I

{
φ(k)

φ(N + )
,
ψ(k)
ψ()

}
‖y‖ ≥ c‖y‖, for k ∈ I.

Then, if we choose ‖y‖ ≥ R > X
c

, by using f ≥ , it implies that

‖Ay‖ ≥ Ay() = λ

N∑

s=

G(, s)a(s)f
(
s, y(s)

)

≥ λ
∑

s∈I

G(, s)a(s)f
(
s, y(s)

)

≥ λ
∑

s∈I

G(, s)a(s)Mc‖y‖

=
(

λMc
∑

s∈I

G(, s)a(s)
)

‖y‖. (.)
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Set M > B(�c
∑

s∈I
G(, s)a(s))–. Then we obtain

‖Ay‖ > λB�–‖y‖ ≥ B‖y‖. �

Lemma . Suppose (C) and (C) hold. Then for any fixed λ ∈ (,λ,ah), there exist a
norm ‖ · ‖∗ equivalent to ‖ · ‖ and r >  such that for all y ∈ {y ∈ P | ‖y‖∗ = r}, we have

‖Ay‖∗ < ‖y‖∗.

Proof For some ε >  small enough, it follows from λ ∈ (,λ,ah) that

 < λ < ( + ε)λ < λ,ah.

Next, take M >  such that

Mλ,ah sup
k∈Î

ω(k)
ϕ,ah(k)

<
λ,ah

λ( + ε)
– ,

where ω(k) =
∑N

s= G(k, s)a(s)h(s).
Consider the norm ‖y‖∗ = inf{η : η(ϕ,ah + M) ≥ y} = ‖ y

ϕ,ah+M
‖, which is equivalent to

‖ · ‖.
From (C)-(C), there exists a ρ = ρ(ε) >  such that  < y < ρ implies that f (k, y) < ( +

ε)h(k)y(k) for all k ∈ I . Let r >  be such that r(‖ϕ,ah‖ + M) < ρ , so that ‖y‖∗ = r implies
‖y‖ < ρ .

If y ∈ P with ‖y‖∗ = r, we imply

Ay(k) = λ

N∑

s=

G(k, s)a(s)f
(
s, y(s)

)

≤ λ

N∑

s=

G(k, s)a(s)( + ε)h(s)
ϕ,ah(s) + M

ϕ,ah(s) + M
y(s)

≤ λ

N∑

s=

G(k, s)a(s)( + ε)h(s)
(
ϕ,ah(s) + M

)‖y‖∗

= λ( + ε)

{ N∑

s=

G(k, s)a(s)h(s)ϕ,ah(s) + M

N∑

s=

G(k, s)a(s)h(s)

}

‖y‖∗

= ( + ε)
{

λ

λ,ah
ϕ,ah(k) + λMω(k)

}
‖y‖∗

= ( + ε)ϕ,ah(k)
λ

λ,ah

{
 + λ,ahM

ω(k)
ϕ,ah(k)

}
‖y‖∗

≤ ϕ,ah(k)‖y‖∗ <
(
ϕ,ah(k) + M

)‖y‖∗.

Therefore ‖Ay‖∗ < ‖y‖∗. �

Lemma . and Lemma . may imply the existence of a positive solution of (.).
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Proof of Theorem . The existence of a positive solution is a consequence of the
fixed point theorem (see Deimling [], Theorem .) by virtue of Lemma . and
Lemma .. �

Now we shall show (.) has at least two positive solutions for λ > λ,ah. First of all, we
start with the existence of a first solution y which satisfies y(k) ≤ m(k).

Proposition . Suppose (C)-(C) hold. Then for every λ > λ,ah, the problem (.) has a
positive solution y which satisfies y(k) ≤ m(k).

Proof By (C)-(C), we may use the method of lower and upper solutions (see []).
From (C), m is positive and f (k, m(k)) = , we see that m(k) is always an upper solution

of (.). Clearly, it is a strict upper solution, because m(k) >  and the concave of m implies
that it cannot satisfy �y() = �y(N) = . We recall that a strict lower solution of (.) is a
lower solution which is not a solution of (.).

Let λ > λ,ah. By (C), fix a τ ∈ (, ), there exists sufficiently small � = �(τ ) such that

( – τ )h(k)y(k) < f
(
k, y(k)

)
, y ∈ (,�]. (.)

Hence, if τ is chosen such that λ,ah < ( – τ )λ, then

λ,aha(k)h(k)y(k) < λa(k)f
(
k, y(k)

)
, for y ∈ (,�], (.)

and if ε >  is such that ε‖ϕ,ah‖ < �, then

–�
[
p(k – )�

(
εϕ,ah(k – )

)]
+ q(k)εϕ,ah(k) = λ,aha(k)h(k)

(
εϕ,ah(k)

)

< λa(k)f
(
k, εϕ,ah(k)

)
,

that is, εϕ,ah is a (strict) lower solution for (.). Finally, ε can always be chosen such that
ε‖ϕ,ah‖ ≤ m(k). Thus, the method of lower and upper solutions implies that there exists
a solution y satisfying  < εϕ,ah ≤ y ≤ m. �

Remark . Obviously, the choice of τ , the values of � and ε in the preceding proof de-
pends on λ. However, once chosen τ for a given value of λ, the same choice works for any
larger value of λ. Thus, for any given λ̂ > λ,ah, it is possible to find a unique function εϕ,ah

which is a lower solution for any λ > λ̂.

In the following we will show the existence of a second solution for all λ > λ,ah. From
(C)-(C), we fix λ and denote by y = y(λ) the solution of (.) found above.

Consider the auxiliary problem

–�
[
p(k – )�

(
y(k – ) + w(k – )

)]
+ q(k)

(
y(k) + w(k)

)
= λa(k)f

(
k, y + w+)

,

�w() = , �w(N) = ,
(.)

where w+ = max{w, }, w– = max{–w, }, and w = w+ – w–.
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It is easy to see that w ≥  is a nontrivial solution of (.), then y + w is a second positive
solution of (.), which satisfies y + w ≥ y.

For ϑ , τ ∈ [, ] and ρ ≥ , we consider the following parameterized family operators:

Aϑ ,τ ,ρw(k) = λϑ

N∑

k=

G(k, s)a(s)
f (s, y(s) + τw+(s))

τ
+ ρ,

Aϑ ,,ρw(k) = λϑ

N∑

k=

G(k, s)a(s)fy
(
s, y(s)

)
w+(s) + ρ.

Clearly, it follows from (C) that A is a continuous operator with respect to the parameters
ϑ , τ , ρ .

From this definition, a solution of (.) is a fixed point of A,,, since λa(k)f (k, v) =
–�[p(k – )�y(k – )] + q(k)y(k). On the other hand, a fixed point of A,,ρ is a solution of
the more general problem,

–�
[
p(k – )�

(
y(k – ) + w(k – )

)]
+ q(k)

(
y(k) + w(k)

)

= λa(k)
[
f
(
k, y + w+)

+ ρ
]
,

�w() = , �w(N) = ,

(.)

while a fixed point of Aϑ ,, is a solution of

–�
[
p(k – )�w(k – )

]
+ q(k)w(k) = λϑa(k)fy

(
k, y(k)

)
w+(k), k ∈ I,

�w() = , �w(N) = .
(.)

Our purpose is to find a nontrivial fixed point of A,,. We need the following lemmas.

Lemma . Suppose (C), (C), and (C) hold. Then if w is a solution of (.) (or of (.)),
then w ≥ .

Proof Let w be a solution of (.) and w– be a test function. Then

λ

N∑

k=

a(k)f
(
k, y(k) + w+(k)

)
w–(k)

=
N∑

k=

–�
[
p(k – )�

(
y(k – ) + w(k – )

)]
w–(k) +

N∑

k=

q(k)y(k)w–(k)

+
N∑

k=

q(k)w(k)w–(k)

=
N∑

k=

p(k)�y(k)�w–(k) +
N∑

k=

p(k)�w(k)�w–(k) +
N∑

k=

q(k)y(k)w–(k)

+
N∑

k=

q(k)w(k)w–(k)
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=
N∑

k=

p(k)�y(k)�w–(k) +
N∑

k=

p(k)�w+(k)�w–(k) –
N∑

k=

p(k)
(
�w–(k)

)

+
N∑

k=

q(k)y(k)w–(k) +
N∑

k=

q(k)w+(k)w–(k) –
N∑

k=

q(k)
(
w–(k)

).

Consequently, this yields

λ

N∑

k=

a(k)f
(
k, y(k)

)
w–(k)

=
N∑

k=

p(k)�y(k)�w–(k) +
N∑

k=

q(k)y(k)w–(k) –
N∑

k=

p(k)
(
�w–(k)

)

–
N∑

k=

q(k)
(
w–(k)

).

Since y is a solution of (.), we conclude that

N∑

k=

p(k)
(
�w–(k)

) +
N∑

k=

q(k)
(
w–(k)

) = .

Furthermore, we obtain w– ≡ . In the case that w is a solution of (.), by the same argu-
ment, we also have w ≥ . �

Lemma . Suppose (C)-(C) hold. Then there exists a constant M > , which does not
depend on ρ , such that A,,ρw = w implies ‖w‖ ≤ M for any ρ ≥ .

Proof Suppose on the contrary that {wn} is a sequence of fixed points of A,,ρn with
‖wn‖ → ∞ and arbitrary ρn. Then

y(k) + wn(k) = λ

N∑

s=

G(k, s)a(s)
[
f
(
s, y(s) + w+

n(s)
)

+ ρn
]
.

Since y + wn satisfies (.), it is a concave and positive function. Then

y(k) + w+
n(k) ≥ y(k) + wn(k) ≥ c‖y + wn‖ in I. (.)

Moreover, we get

y(k) + wn(k) ≥ λ
∑

s∈I

G(k, s)a(s)
[
y(s) + w+

n(s)
] f (s, y(s) + w+

n(s))
y(s) + w+

n(s)

≥ λ
∑

s∈I

G(k, s)a(s)c‖y + wn‖ f (s, y(s) + w+
n(s))

y(s) + w+
n(s)

.
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From (C) and (.), for any M > , one has f (s,y(s)+w+
n (s))

y(s)+w+
n (s) ≥ M in I for n large enough,

then

y(k) + wn(k) ≥ (λcM)
∑

s∈I

G(k, s)a(s)‖y + wn‖.

This leads to the contradiction

 ≥ y(k) + wn(k)
‖y + wn‖ ≥ λcM

∑

s∈I

G(k, s)a(s), k ∈ I

for any M > . So the conclusion is true. �

Lemma . Suppose (C), (C), and (C) hold. Then, given any R̃ > , there exists ρ̃(R̃) > ,
which does not depend on λ > λ,ah, such that A,,ρw = w has no solution in BR̃ for any
ρ > ρ̃(R̃). In addition,

deg(I – A,,ρ , BR̃, ) =  for ρ > ρ̃(R̃). (.)

Proof It is easy to see that

y(k) + w(k) = λ

N∑

s=

G(k, s)a(s)
[
f
(
s, y(s) + w+(s)

)
+ ρ

]

≥ λρ

N∑

s=

G(k, s)a(s).

Set ‖w‖ ≤ R̃. Then ‖y‖ + R̃ ≥ y(k) + w(k), k ∈ I , and so

‖y‖ + R̃ ≥ λρ

N∑

s=

G(k, s)a(s).

This is a contradiction for large ρ , that is, no fixed point lies in BR̃ and the degree in (.)
must be zero.

Obviously, y depends on λ, and ‖y‖ ≤ ‖m‖, thus ρ̃(R̃) can be chosen uniformly with
respect to λ > λ,ah. �

Lemma . Suppose (C)-(C) hold. Set R̃ ≥ M + , where M is the constant from
Lemma ., then

deg(I – A,,, BR̃, ) = . (.)

Proof By the a priori bound estimate in Lemma ., there are no fixed points on ∂BR̃ for
any ρ > . Then, it follows from (.) and the homotopy invariance of the degree that

 = deg(I – A,,ρ̃(R̃), BR̃, ) = deg(I – A,,, BR̃, ). (.)
�
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Lemma . Suppose (C), (C), and (C) hold. Then Aϑ ,,w = w implies w =  for any
ϑ ∈ [, ]. Moreover, A,, =  implies that

deg(I – Aϑ ,,, Bρ , ) = deg(I, Bρ , ) =  for any ρ >  and ϑ ∈ [, ]. (.)

Proof Suppose that ϑ > , otherwise w ≡ . Define

b̂(k) := ϑa(k)fy
(
k, y(k)

)
, b̃(k) := a(k)

f (k, y(k))
y(k)

.

From (C), it follows that b̂(k) ≤	≡ b̃(k) in I and then by Lemma ., we have

λj,b̂ > λj,b̃ for any j ∈ {–N , . . . , –, , . . . , N}.

Since y >  satisfies the equation

–�
[
p(k – )�u(k – )

]
+ q(k)u(k) = λb̃(k)u(k)

and b̃(k) ≥ , we deduce that λ = λ,b̃.
On the other hand, if w is a nontrivial fixed point of Aϑ ,,, then it is a solution of (.).

Subsequently, w ≥ , and it is also a solution of

–�
[
p(k – )�w(k – )

]
+ q(k)w(k) = λb̂(k)w(k),

�w() = , �w(N) = .
(.)

Hence, λ has to be an eigenvalue of (.), i.e. λ = λj,b̂ for some j ∈ {–N , . . . , –, , . . . , N}.
However, since λ > , it cannot coincide with any λj,b̂ with j < , and because λ = λ,b̃ <

λ,b̂, it cannot coincide with any λj,b̂ with j >  neither. This concludes that w ≡ . �

Proposition . Suppose (C)-(C) hold. Then the problem (.) has a nontrivial positive
solution w, that is, (.) has a second positive solution.

Proof Obviously, if A,τ ,w = w for some τ >  and w 	= , then

–�
[
p(k – )τ�w(k – )

]
+ q(k)τw(k) = λa(k)

[
f
(
k, y + τw+(k)

)
– f

(
k, y(k)

)]
,

�w() = , �w(N) = .

This implies that τw is a solution of (.) and so it is positive by Lemma ..
To this end, we suppose on the contrary that A,τ ,w = w has no nontrivial solution for

τ > . This together with (.) implies that

 = deg(I – A,,, BR̃, ) = deg(I – A,,, BR̃, ),

contradicting equation (.). �
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4 Asymptotic behavior of solutions for (1.2)
Proposition . Suppose (C) and (C) hold. If {yλ} is a family of positive solutions of (.),
then ‖yλ‖ → ∞ as λ → +.

Proof Suppose by way of contradiction that there exist a sequence λn → + and a con-
stant σ >  such that ‖yλn‖ ≤ σ . From the continuity of f and (C), there exists a positive
constant C such that f (k, y) ≤ Cy for any  ≤ y ≤ σ . Then,

yλn (k) = λn

N∑

s=

G(k, s)a(s)f
(
s, yλn (s)

) ≤ λnC‖yλn‖
N∑

s=

G(k, s)a(s).

Therefore,

 ≤ λnC
N∑

s=

φ(s)ψ(s)a(s).

However, since λn → +, this is impossible. �

Next, we study the asymptotic behavior of the positive solutions of (.) as λ → ∞, we
need to prove a uniform estimate for the positive solutions of (.), for λ large enough.

Lemma . Suppose (C)-(C) hold. Then there exist constant �,�, M >  such that if yλ

is a positive solution of (.) with λ > �, then

� ≤ ‖yλ‖ ≤ M.

Proof By Lemma ., there exists R >  such that

‖yλ‖ = ‖Ayλ‖ > ‖yλ‖ for all λ ≤ , provided ‖yλ‖ ≥ R.

This is a contradiction. Hence, we obtain ‖yλ‖ ≤ R +  := M for all λ > .
On the other hand, from (C), choose a suitably small ε > , there exists � >  such that

f (k, y) > (h(k) – ε)y > ,  < y < �. Let yλ be a positive solution of (.) with ‖yλ‖ < �. Using
Lemma ., it follows that

‖yλ‖ ≥ yλ() = λ

N∑

s=

G(, s)a(s)f
(
s, yλ(s)

)

≥ λ

N∑

s=

G(, s)a(s)
(
h(s) – ε

)
yλ(s)

≥ λ
∑

s∈I

G(, s)a(s)
(
h(s) – ε

)
yλ(s)

≥ λ
∑

s∈I

G(, s)a(s)
(
h(s) – ε

)
c‖yλ‖

≥
(

λc
∑

s∈I

G(, s)a(s)
(
h(s) – ε

))‖yλ‖.
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This is a contradiction if the term in brackets is greater than . Thus, for large enough
λ > , it is necessary that ‖yλ‖ ≥ �. �

Finally, we shall give the proof of Theorem ., with the following result, which reveals
the asymptotic behavior of the solutions of (.) as λ → ∞.

Proposition . Suppose (C)-(C) hold and f (k, y) >  with y 	= , y 	= m(k). If {yλ} is a
family of positive solutions of (.), then

yλ → m pointwise in I and ‖yλ‖ → ‖m‖, as λ → ∞.

Proof Set k ∈ I , and let a sequence λn → ∞ and λn > �, where � is given by Lemma .,
and assume yn are positive solutions of (.) with λ = λn. Suppose on the contrary that
there exists ζ >  such that yn(k) > m(k) + ζ . Then we claim that there exists a subset
I ⊆ I such that k ∈ I and

yn(k) > m(k) +



ζ > m(k) +
ζ


> a(k) for k ∈ I and every n.

Subsequently, G(k, s)a(s)f (s, y(s)) is a positive function for (s, y) ∈ I × [m(k) + ζ /, M],
where M is given by Lemma ., and since this set is compact, it follows that there exists
χ >  such that G(k, s)a(s)f (s, y(s)) ≥ χ >  in I × [m(k) + ζ /, M], so

N∑

s=

G(k, s)a(s)f
(
s, y(s)

) ≥
∑

s∈I

G(k, s)a(s)f
(
s, yλ(s)

) ≥
∑

s∈I

χ ≥ kχ .

However,

M ≥ ‖yn‖ ≥ yn(k) = λn

N∑

s=

G(k, s)a(s)f
(
s, yn(s)

) ≥ λnkχ > ,

which is a contradiction since λn → ∞.
Now suppose that yn(k) < m(k)–δ. Using again the same argument, there exists a subset

I ⊆ I such that k ∈ I and

 < c� ≤ yn(k) < m(k) –



δ < m(k) –
δ


< m(k) for k ∈ I and every n,

where � is given by Lemma .. Then there exists � >  such that G(k, s)a(s)f (s, y(s)) ≥
� >  in I × [c�, m(k) – δ

 ], so

N∑

s=

G(k, s)a(s)f
(
s, y(s)

) ≥
∑

s∈I

G(k, s)a(s)f
(
s, y(s)

) ≥
∑

s∈I

� ≥ k� > .

Thus,

M ≥ ‖yn‖ ≥ yn(k) = λn

N∑

s=

G(k, s)a(s)f
(
s, yn(s)

) ≥ λnk� > .
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This is a contradiction, since λn → ∞.
Consequently, ‖yλ‖ → ‖m‖, as λ → ∞. �
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