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Bayesian models as a unified approach to
estimate relative risk (or prevalence ratio)
in binary and polytomous outcomes
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Abstract

Background: Disadvantages have already been pointed out on the use of odds ratio (OR) as a measure of
association for designs such as cohort and cross sectional studies, for which relative risk (RR) or prevalence ratio (PR)
are preferable. The model that directly estimates RR or PR and correctly specifies the distribution of the outcome as
binomial is the log-binomial model, however, convergence problems occur very often. Robust Poisson regression
also estimates these measures but it can produce probabilities greater than 1.

Results: In this paper, the use of Bayesian approach to solve the problem of convergence of the log-binomial
model is illustrated. Furthermore, the method is extended to incorporate dependent data, as in cluster clinical trials
and studies with multilevel design, and also to analyse polytomous outcomes. Comparisons between methods are
made by analysing four data sets.

Conclusions: In all cases analysed, it was observed that Bayesian methods are capable of estimating the measures
of interest, always within the correct parametric space of probabilities.

Keywords: Bayesian models, Relative risk, Prevalence ratio, Common outcomes, Dependent data, Polytomous
outcomes
Background
Much has been discussed about disadvantages of the odds
ratio (OR) as a measure of association in cross-sectional
studies, cohort studies and clinical trials [1–8], and instead
of it, relative risk (RR) or prevalence ratio (PR) according
to the study design are proposed. Although some authors
suggest that it is enough the outcome to be rare (<10 %)
between unexposed [4, 5, 9] or rare in the general popula-
tion [10, 11], Torman [12] showed that OR is only a good
approximation of PR or RR and therefore can be inter-
preted as such, when the outcome is rare in the two strata
of exposure.
In the case of binary outcomes and independent data,

several alternatives to logistic regression have been pro-
posed. One of them is the log-binomial model [13, 14], a
generalized linear model with binomial response and log
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link function. Another proposal is the use of Poisson re-
gression with robust variance [15–17]. Since robust Pois-
son regression assumes that the outcome has a Poisson
distribution, probabilities larger than 1 can be estimated
[16]. However, there may be convergence problems when
fitting the log-binomial model [16, 18]. The use of the log-
binomial model as a first choice of analysis was recom-
mended by some authors [17, 19, 20] who compared this
and other methods through simulation and observed that,
when the log-binomial model converges, the resulting es-
timates of RR or PR have better properties. The Bayesian
approach for the log-binomial model was proposed as a
way to solve the convergence problems and the median
point estimator and equal-tail credible interval (CI) were
recommended [21]. Torman and Camey (unpublished
manuscript) explored other Bayesian estimators and their
final recommendation was to use the mode as a point esti-
mator and the same credible interval.
For binary outcomes from dependent data, as in cluster

randomized clinical trials or multilevel modelling, only
frequentist proposals are known by the authors. Zou and
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Donner [22] and Yelland et al. [23] proposed Poisson and
log-binomial regression models estimated with General-
ized Estimating Equations (GEE), and compared them
through simulation. They both verified that the GEE log-
binomial model may have convergence problems. Yelland
et al. [23] also found convergence problems with the GEE
Poisson model, though less frequently than the GEE log-
binomial. Zou and Donner [22] stressed that the proposed
GEE models should be used only if the number of clusters
is greater than 50. Moreover, the authors identified that
the GEE Poisson model can estimate probabilities greater
than 1. In the analysis of dependent data, in addition to
GEE based models (also called marginal models), mixed
models (also called conditional models) can be adopted.
Yelland et al. [24] noted that there may be convergence
problems when using the mixed-effects log-binomial
model and that solutions for this problem are lacking.
On the estimation of PR or RR with polytomous out-

comes, only papers with frequentist approach were
found. Camey et al. [25] evaluated the performance of
separated log-binomial and robust Poisson models,
where several dichotomous outcomes are created and
the desired model is fitted for each one. Comparisons
with estimates from multinomial logistic regression were
carried out by simulation and the conclusion was that
the proposed approaches are more accurate and precise.
The final recommendation was that fit of separate log-
binomial models should be tried first and only resort to
separate robust Poisson regressions if convergence prob-
lems occur. However, when considering separate dichot-
omous outcomes, the true multinomial nature of the
response is ignored and there is no guarantee that the
coefficients found will produce valid probabilities for
the reference category. Another proposal is the log-
multinomial model [26], which considers the correct
distribution of the outcome, however, it may face conver-
gence problems and estimate probabilities outside the cor-
rect interval. This last problem was not expected since the
correct distribution of the outcome is adopted.
In this paper it is intended to exemplify the use of the

Bayesian approach for the log-binomial model with inde-
pendent data and extend that approach to support
dependent data and multinomial outcomes. For this pur-
pose four examples will be used.

Methods
Independent data and binary outcome
Data from a cohort of 65 patients admitted to a hospital
in Porto Alegre for acute decompensated heart failure
(ADHF) are used to illustrate the estimation of RR on
binary outcomes with independent data. The outcome is
death in three days after admission. The predictors con-
sidered were sodium (mEq/L), septum (mm) and pulmon-
ary artery systolic pressure (PASP, mmHg), all continuous.
In addition to estimating the RR of predictors, it is
intended to get a formula to calculate a risk of death score
that can be used in a practical way at admission. Since the
estimated probabilities should naturally measure risk of
death, it was decided to use the fitted model itself as a for-
mula to calculate the risk score.
The corresponding log-binomial model is given by:

θi ¼ P Y ijX1i;X2i;X3ið Þ

¼ exp β0 þ β1X1i þ β2X2i þ β3X3i
� �

i ¼ 1;…; 65

where Yi = 1 if the i-th individual died within the follow-
up period and 0 otherwise, X1i is his sodium level, X2i

his septum measure and X3i his measure of PASP. A very
important feature of the log-binomial model, which can
cause convergence problems, is the fact that the coeffi-
cients of the model must be restricted to the condition
that θi ≤ 1, ∀ i, i.e., only where the probabilities of each
individual be between 0 and 1. In this model,
exp(β1), exp(β2) and exp(β3) are the respective RRs of
predictors (in the specific case of this data set, which is a
cohort).
Two frequentist approaches were fitted to these data,

robust Poisson regression and log-binomial model, both
using the R 3.0.0 [27] function glm, with the sandwich
package [28] for robust Poisson; and the Bayesian ap-
proach for the log-binomial model using Markov Chain
Monte Carlo (MCMC) with the OpenBugs 3.2.2 pro-
gram together with the R BRugs package [29, 30]. To
compare the predictive power of the probabilities esti-
mated by each model, ROC curves were obtained with
the R Epi package [31]. The codes for this and other
models used in this article can be found in the support-
ing web material (Additional file 1).

Dependent data and binary outcome
To illustrate RR and PR estimation with the existence of
dependency between observations, two sets of data were
used. The first is from a cluster clinical trial, introduced
by Kerry and Bland [32]. The aim was to verify the effect
of an intervention on the practice of requiring radiology
examinations, used by general practitioners in a certain
hospital. For this, 34 doctors were divided equally in
intervention and control groups, and for each patient re-
ferred for X-ray, it was evaluated if the requirement was
in compliance with the guidelines.
In this context, the mixed-effects log-binomial model

is given by:

θi j ¼ P Y i j ¼ 1jXi j;ui
� � ¼ exp β0 þ β1Xi j þ ui

� �
i ¼ 1;…; 34 j ¼ 1;…; ni

where Yi j = 1 if the j-th examination of the i-th doctor
was in accordance with the guidelines and 0 otherwise,
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Xi j = 1 if the i-th the doctor was in the intervention
group and 0 if it was in the control group, ui is the effect
due to the i-th doctor, for which it is supposed that
ui ~N(0, σu

2) and ni is the number of patients seen by the
i-th physician. The GEE log-binomial model equation is
the same equation of the independent data case, just no
longer assuming independence between observations. In
the GEE Poisson model, assumption of Poisson distribu-
tion is added to the outcome.
Three frequentist models were fitted to this data set,

using SAS version 9.3 (SAS Institute, Cary NC): mixed-
effects log-binomial model with Proc GLIMMIX, GEE
log-binomial model and GEE Poisson model with Proc
GENMOD using an exchangeable working correlation
matrix. This matrix was chosen to make possible the
estimation of the intraclass correlation coefficient (ICC)
[33], which measures the degree of data dependence.
The Bayesian approach for the mixed-effects log-binomial
model was performed again with BRugs.
The second data set comes from a cross-sectional study

with multilevel design on evaluation of the Unified Health
System (Sistema Único de Saúde, SUS) [34] by the users.
Data were collected by the SUS General Ombudsman
Office Department (Departamento de Ouvidoria Geral do
SUS) of the Strategic and Participatory Management
Secretariat (Secretaria de Gestão Estratégica e Participa-
tiva) of the Ministry of Health (Ministério da Saúde),
through telephone contact. The inclusion criteria were to
be 16 years old or older and to have used SUS in the last
12 months. Respondents were inhabitants of 61 munici-
palities, and multilevel analysis was adopted to consider
the expected dependence among individuals residing in
the same municipality. The outcome was user dissatisfac-
tion. Predictor variables related to municipalities and indi-
viduals were considered. For comparison of the different
fits it was used the final model presented by the authors,
obtained from a sample of 12,879 interviews. The mixed
effects logistic regression was fitted using SAS Proc
GLIMMIX and the mixed-effects log-binomial model esti-
mated via MCMC. Here, the use of logistic regression
aims to compare differences between OR and PR in a
large sample. The equation of the mixed-effects log-
binomial model is similar to the one in the cluster clinical
trial example, adding predictors.
The extension of the log-binomial model to incorpor-

ate mixed effects through the Bayesian approach was
made by adding a normally distributed random effect in
the linear predictor of the model, which can be seen in
the given code. This same term was added in the place
where the restriction for probabilities between 0 and 1 is
implemented in the MCMC code.
For the mixed-effects logistic model there is more than

one way to estimate ICC, here we use the following for-
mula [35]:
ICClogist ¼ σ2u
σ2u þ π2

3

This expression is obtained by considering that the
binary outcome comes from a continuous latent variable
and that this one conforms to a model with residuals fol-
lowing the standard logistic distribution. Using the same
reasoning for the mixed effects log-binomial model [see
Additional file 1], a model is reached for the continuous
latent variable with residuals following an exponential
distribution with mean equals to 1, which leads to
following formula for the ICC:

ICClog−bin ¼ σ2
u

σ2u þ 1
;

easily estimated by point and interval estimators in the
Bayesian approach. However, in the frequentist approach
to logistic regression no direct way was found to obtain
the confidence interval (CI) for the ICC in SAS. Like-
wise, in the trial data it was not found a way to estimate
between clusters variance with GEE, nor to estimate the
confidence interval of the ICC for this method.

Independent data and polytomous outcome
The last database evaluated is one provided in the book
of Hosmer and Lemeshow [36] on the birth weight of
189 live births. For illustration of the models with poly-
tomous outcome, birth weight was divided into 4 cat-
egories (<2.5 kg, 2.5 kg to 3 kg, 3 kg to 4 kg, 4 kg or
more) and the third one was considered the reference
category. Thus, a binary variable can be defined for each
category of the outcome: Yi j = 1 if the i-th born had
birth weight belonging to the j-th category, j = 0,1, …, 3,
j = 0 being the reference category and i = 1, …, 189.
Mother’s age (X1i) and her smoking condition during
pregnancy (X2i) were used as predictors.
The log-multinomial model defined in this context is:

θi j ¼ P Y i j ¼ 1jX1i;X2i
� �

¼ exp βj0 þ βj1X1i þ βj2X2i

� �
j ¼ 1;…; 3:

It is redundant to estimate coefficients for the refer-
ence category (j = 0) since

Y i0 ¼ 1−
X3

j¼1
Y i j; ∀i;

then

P Y i0 ¼ 1jX1i;X2ið Þ ¼ 1−
X3

j¼1
P Y i j ¼ 1jX1i;X2i
� �

; ∀i

Three frequentist analyzes were performed on these
data: separated robust Poisson regressions, separate log-
binomial models and log-multinomial model. The log-
multinomial model was fitted in Stata version 9.2 (Stata
Corp, College Station, Texas) with syntax courtesy of
Leigh Blizzard. Separate regressions were performed in
R, the same way as in the case of binary outcomes. To
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implement the log multinomial model via MCMC, in
addition to the restriction for probabilities to be between
0 and 1, it is necessary to restrict the probability of the ref-
erence category be the complement of the sum of the
probabilities of the other categories [see Additional file 1].

Details common to all the examples
To choose the numbers of interactions, burn-in period
and thin for MCMC, graphical analysis and Gelman and
Rubin statistic [37] were used. At least 1000 iterations
were used for estimation. The prior distributions assigned
to the models coefficients were normal with zero mean
and variance 106 as suggested by Chu and Cole [21]. In
the case of models for dependent data, the uniform distri-
bution from 0.01 to 100 for the deviation of the random
effects was adopted, as suggested by Gelman [38] in the
context of normal mixed models. The priors used are all
vague in order to minimize their influence on the results.
The mode and the equal tails credible interval were used
as Bayesian point and interval estimators, respectively.
For all analyzes, point and 95 % confidence/credible

interval estimates will be shown. For comparisons be-
tween methods, the ranges of the intervals were calcu-
lated. For comparison of point estimates, one of the
frequentist methods was adopted as a reference and the
relative difference in percentage (Δ %) from the other
methods was calculated. Additional information about
computational time will also be presented for the Bayesian
models considering running in a computer with 3.40 GHz
processor and 4 GB RAM.

Results
For the Bayesian models, all the chains simulated were
considered well mixed after the chosen burn-in and
thin was applied. This was checked through compari-
son of the trajectory plots before and after the discard
of some generated values. Also, the Gelman and Rubin
statistics was near to one in all situations. Details of con-
vergence check are shown for the cluster randomized trial
Table 1 Results of the ADHF patients cohort analyses

Parameter Point and 95 % CI by Method

Robust Poisson MC

Intercept 9.058 (1.124; 16.992) 7.742 (−2.670; 13

Septum Coefficient 0.229 (0.011; 0.446) 0.184 (0.017; 0

Sodium Coefficient −0.100 (−0.159; −0.042) −0.088 (−0.136; −0

PASP Coefficient 0.018 (0.001; 0.036) 0.011 (−0.015; 0

Septum RR 1.257 (1.012; 1.562) 1.196 (1.018; 1

Sodium RR 0.904 (0.853; 0.958) 0.915 (0.873; 0

PASP RR 1.018 (1.001; 1.036) 1.011 (0.986; 1
1Random effects log-binomial model, mode point estimator and equal tails interval
one plus the first 50000 that were discarded, and a thin of 100 iterations was applie
2 Δ% ¼ � MCMC point estimate − Poisson point estimate

Poisson point estimatej j
�

in the supporting web material (Additional file 1) as an
example.
Independent data and binary outcome
In the cohort of 65 patients with heart failure, 15 died
(23.1 %), therefore, OR may not be a good approxima-
tion to RR. Table 1 shows the results of the analyses
performed. The frequentist log-binomial model did not
converge and therefore does not appear. It can be
observed that the point estimates of the coefficients dif-
fered more than the estimates of RRs, with percentage
differences ranging from 12.5 to 38.6 %. Except for the
intercept, the ranges of the intervals differed in the
second decimal place, and the robust Poisson regression
generally had a shorter range. In terms of significance of
predictors, the methods diverged only on PASP, which
was considered significant by robust Poisson regression
and not significant by the Bayesian method.
Figure 1 shows a scatter plot comparing the probabil-

ities predicted by each method. Although there is a high
correlation (r = 0.984), it is apparent that the predicted
probabilities are different since there are several points
distant from the straight line of equality. It is also appar-
ent that robust Poisson produced two unacceptable esti-
mates of probability, i.e., greater than 1. An individual
with 13 mm septum, 136 mEq/L of sodium and 100
mmHg of PASP got a 1.211 probability of death pre-
dicted by Poisson and another individual with 12 mm
septum, 127 mEq/l of sodium and 53 mmHg of PASP
got a probability of death estimated in 1.008. All those
values are outside the normality ranges recommended,
but are plausible. Both patients died. Figure 2 shows the
ROC curves of the probabilities estimated by Poisson re-
gression and by the log-binomial model via MCMC.
Probabilities predicted by Poisson regression have an
area under the curve slightly larger than the Bayesian
method, but the optimal cutoff point of the Bayesian
method is higher.
Δ% 2 Range of CI by Method

MC1 Robust Poisson MCMC

.980) −14.526 15.868 16.650

.431) −19.580 0.435 0.414

.009) 12.521 0.116 0.126

.027) −38.650 0.035 0.042

.539) −4.860 0.551 0.521

.991) 1.135 0.105 0.118

.028) −0.711 0.036 0.042

. CPU time: 24s. Details of MCMC simulation: 3 chains, 50000 iterations in each
d



Fig. 1 Scatterplot of probabilities predicted through robust Poisson regression versus MCMC Log-binomial and straight line of equality

Fig. 2 ROC curve of probabilities predicted through (a) Robust Poisson regression and (b) Bayesian log-binomial model
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Dependent data and binary outcome
In the cluster clinical trial presented in Kerry and Bland
[33], among the 429 requests in the intervention group,
341 (79.48 %) were in compliance with the guidelines.
Now, among the 702 requests in the control group, 509
(72.51 %) were adequate. In Table 2 the results of the
models fitted for these data are shown. The results of
the GEE Poisson model were virtually identical to the
GEE log-binomial and so were deleted. Convergence was
not obtained when fitting the mixed-effects log-binomial
model via SAS. The largest difference was observed in
the point estimate of the ICC. The ranges of CIs were
slightly wider in the Bayesian approach. Both methods
detected significant effect of the intervention.
Table 3 presents estimates based on the SUS users’ sat-

isfaction survey data. Among the respondents, 7,875
(61.15 %) were classified as dissatisfied with the SUS.
Large differences can be noted between logistic regres-
sion’s OR and the PR estimated by log-binomial model
via MCMC. Range of Bayesian CI was shorter for all pa-
rameters. The methods differed only on the significance
of three variables: percentage of literate population,
health units per hundred thousand inhabitants and
graduate or higher education level and the CI obtained
by MCMC for all of them included the value 1 while
that obtained by logistic regression excluded it.
Independent data and polytomous outcome
Among 189 births in the database taken from Hosmer
and Lemeshow [36], 59 (31.22 %) weighed below 2.5 kg,
38 (20.10 %) between 2.5 and 3 kg, 83 (43.92 %) between
3 and 4 kg, and 9 (4.76 %) of 4 kg or more.
The results of the analyses conducted are shown in

Table 4 and comparative measurements in Table 5.
When fitting the log-binomial model for category 4 kg
or more there was a non-convergence message, but re-
sults were produced and it was decided to show them.
In general, the separated log-binomial models produced
the more similar to the log-multinomial model estimates.
As for the directions of associations, no discrepancy
Table 2 Results of the analyses of the cluster clinical trial on guideli

Parameter Point and 95 % CI by Method

Log-binomial GEE

Intercept −0.315 (−0.371; −0.259) −0.314 (−0.387;

Intervention Coefficient 0.092 (0.007; 0.178) 0.089 (0.006

Intervention RR 1.097 (1.007; 1.195) 1.089 (1.006

Random effect variance - 0.007 (0.001

ICC 0.010 0.007 (0.001
1Random effects log-binomial model, mode point estimator and equal tails interval
each one plus the first 50000 that were discarded, and a thin of 600 iterations was
2 Δ% ¼ � MCMC point estimate − GEE Log−binomial point estimate

GEE Log−binomial point estimatej j
�

occurred. However, for the last category of the outcome,
the Bayesian method was the only one which identified
the association of smoking as significant and the only one
which did not identify association of age as significant.
Bayesian and log-multinomial methods produced, in gen-
eral, wider range intervals.
Making up predictions of probabilities for each Poisson

regression, no case of probability greater than 1 occurred.
However, when adding the predicted probabilities for the
three outcomes, in one case a value greater than 1 is ob-
tained. The same occurred for the separate log-binomial
models and for the log-multinomial model.
Discussion
Some interesting features learned from the analysis per-
formed are worth mentioning. For the cohort of patients
with ADHF, a low degree of agreement between the
probabilities estimates by the Bayesian and the frequen-
tist method was observed. This was expected since the
largest differences were found in the point estimation of
the coefficients. The MCMC log-binomial model produced
lower probabilities estimates. This shrinkage happens
probably because of the correct parametric restriction.
Poisson regression can estimate probabilities greater than
one so the probabilities are inflated for this data. Also, the
Bayesian method produced a higher optimal cutoff point
in the ROC curve, which was more coherent with the out-
come (death).
For the SUS example, the random effects logistic

regression can produce estimates of OR quite distant
from the PR, and all of its estimates overestimate the
association of predictors, a property already widely
discussed about OR in the context of independent
data [2, 4–9, 11].
For the birth data from Hosmer and Lemeshow [36],

regardless of the reference category, at least two other
outcomes cannot be considered rare (occurred for more
than 10 % of the sample). This fact is very likely to occur
with at least one of the categories in polytomous data.
So, for polytomous data, there will be very few situations
nes for radiology requests

Δ% 2 Range of CI by Method

MCMC1 Log-binomial GEE MCMC

−0.256) 0.412 0.112 0.131

; 0.183) −3.684 0.171 0.177

; 1.201) −0.693 0.188 0.195

; 0.020) - - 0.019

; 0.020) −26.042 - 0.019

. CPU time: 100s. Details of MCMC simulation: 3 chains, 210000 iterations in
applied



Table 3 Results of multilevel analysis of the SUS users’ satisfaction data

Parameter Point and 95 % CI by Method Δ%3 Range of CI by Method

Logistic1 MCMC2 Logistic MCMC

Population density (km2/thousand inhab.) PR 1.026 (0.992; 1.061) 1.008 (0.999; 1.017) −1.798 0.069 0.018

% Literate population PR 1.061 (1.017; 1.106) 1.010 (0.998; 1.021) −4.834 0.089 0.023

Per capta income (thousands of reais) PR 0.859 (0.760; 0.971) 0.963 (0.927; 0.999) 12.163 0.211 0.072

Poverty PR 1.006 (0.998; 1.014) 1.001 (0.999; 1.003) −0.479 0.016 0.004

Human development index PR 0.027 (0; 1.922) 0.514 (0.188; 2.035) 1803.236 1.922 1.847

Health Units per one hundred thousand inhab.
PR

0.981 (0.965; 0.998) 0.995 (0.991; 1.000) 1.426 0.033 0.009

Coverage of the Family Health Strategy PR 1.006 (1.002; 1.009) 1.001 (1.000; 1.003) −0.452 0.007 0.003

SUS Index PR 0.940 (0.819; 1.078) 0.982 (0.945; 1.024) 4.507 0.259 0.079

Age PR

Up to 20 years 0.968 (0.811; 1.157) 0.969 (0.911; 1.047) 0.133 0.346 0.136

21 to 30 years 1.320 (1.135; 1.535) 1.068 (1.022; 1.137) −19.056 0.400 0.115

31 to 40 years 1.277 (1.066; 1.483) 1.062 (1.016; 1.127) −16.872 0.384 0.111

41 to 50 years 1.184 (1.013; 1.384) 1.048 (1.004; 1.116) −11.522 0.371 0.112

51 to 60 years 1.133 (0.958; 1.341) 1.046 (0.996; 1.113) −7.706 0.383 0.117

More than 60 years - - - - -

White color PR 1.084 (0.998; 1.177) 1.011 (0.990; 1.028) −6.701 0.179 0.038

Education PR

Illiterate - - - - -

Literate 0.964 (0.686; 1.357) 0.999 (0.892; 1.125) 3.626 0.671 0.233

Elementary 1.150 (0.818; 1.617) 1.063 (0.951; 1.187) −7.576 0.799 0.236

High 1.293 (0.921; 1.815) 1.089 (0.966; 1.204) −15.808 0.894 0.238

Higher 1.665 (1.163; 2.385) 1.098 (0.987; 1.238) −34.059 1.222 0.251

Not attended at home PR 1.488 (1.372; 1.613) 1.092 (1.064; 1.122) −26.618 0.241 0.058

End of attendance PR

Resolved - - - - -

Partially Resolved 1.957 (1.785; 2.146) 1.282 (1.245; 1.324) −34.475 0.361 0.079

Not Resolved 3.726 (3.260; 4.257) 1.366 (1.318; 1.409) −63.348 0.997 0.091

Time for attendance PR

Up to 30 min. - - - - -

Up to 1h 1.304 (1.179; 1.443) 1.115 (1.075; 1.162) −14.527 0.264 0.087

Up to 4h 1.782 (1.626; 1.952) 1.205 (1.172; 1.255) −32.356 0.326 0.083

More than 4h 2.547 (2.157; 3.008) 1.233 (1.188; 1.280) −51.586 0.851 0.092

Random effect variance 0.052 (0.031; 0.106) 0.003 (0.002; 0.007) −93.255 0.075 0.005

ICC 0.015 0.003 (0.002; 0.007) −77.531 - 0.005
1Random-effects logistic model, OR estimates. 2 Random effects log-binomial model, mode point estimator and equal tails interval. Approximate CPU time 1 week.
Details of MCMC simulation: 3 chains, 480000 iterations in each one plus the first 250000 that were discarded, and a thin of 400 iterations was
applied.3 Δ% ¼ MCMC point estimate – Logistic point estimate

Logistic point estimatej j
� �
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in each the OR will be a good approximation of RR or
PR.
Also for this dataset, it was observed that all the fre-

quentist methods estimated probabilities greater than
one for the reference category. So, only the Bayesian
model can be used to obtain valid predicted probabilities
for the reference outcome.
It is important to stress that the choice of the reference
category for the outcome in the log-multinomial model
will not affect the interpretation of the RRs of the other
categories, unlike what happens in the multinomial logis-
tic regression. The chosen category must be the one for
which identifying associated predictors is of no interest.
However, in the separate models it is possible to estimate



Table 4 Results of the analyses of the low birth weight data with multinomial outcome

Parameter Point and 95 % CI for each Method

Separate Poisson Separate Log-binomial Log-multinomial MCMC1

Outcome Weight up to 2.5 kg

Intercept −0.596 (−1.554; 0.363) −0.683 (−1.688; 0.322) −0.667 (−1.673; 0.340) −0.813 (−1.748; 0.278)

Smoke Coefficient 0.461 (0.042; 0.879) 0.444 (0.027; 0.861) 0.439 (0.021; 0.857) 0.430 (0.009; 0.872)

Age Coefficient −0.034 (−0.074; 0.006) −0.030 (−0.073; 0.013) −0.031 (−0.073; 0.012) −0.025 (−0.073; 0.012)

Smoke RR 1.585 (1.043; 2.410) 1.559 (1.028; 2.365) 1.551 (1.021; 2.355) 1.459 (1.009; 2.392)

Age RR 0.966 (0.929; 1.006) 0.971 (0.930; 1.013) 0.970 (0.930; 1.012) 0.975 (0.930; 1.012)

Outcome Weight from 2.5 to 3 kg

Intercept −2.247 (−3.573; −0.920) −2.244 (−3.536; −0.953) −2.288 (−3.619; −0.957) −2.486 (−3.578; −1.045)

Smoke Coefficient 0.136 (−0.438; 0.710) 0.138 (−0.435; 0.711) 0.154 (−0.419; 0.728) 0.196 (−0.470; 0.732)

Age Coefficient 0.025 (−0.027; 0.077) 0.025 (−0.026; 0.075) 0.026 (−0.026; 0.078) 0.032 (−0.024; 0.070)

Smoke RR 1.146 (0.645; 2.034) 1.147 (0.647; 2.035) 1.167 (0.657; 2.071) 1.005 (0.625; 2.078)

Age RR 1.025 (0.973; 1.080) 1.025 (0.975; 1.078) 1.027 (0.975; 1.081) 1.032 (0.976; 1.073)

Outcome Weight above 4 kg

Intercept −5.474 (−7.629; −3.319) −6.122 (−7.758; −4.485) −6.079 (−9.217; −2.940) −4.890 (−7.082; −2.616)

Smoke Coefficient −1.545 (−3.557; 0.488) −1.572 (−3.635; 0.490) −1.478 (−3.517; 0.560) −1.536 (−5.006; −0.122)

Age Coefficient 0.111 (0.041; 0.181) 0.136 (0.099; 0.173) 0.133 (0.025; 0.241) 0.097 (−0.003; 0.150)

Smoke RR 0.216 (0.029; 1.629) 0.208 (0.026; 1.633) 0.228 (0.030; 1.751) 0.054 (0.006; 0.886)

Age RR 1.117 (1.042; 1.198) 1.146 (1.105; 1.188) 1.142 (1.025; 1.272) 1.102 (0.997; 1.162)
1Log-multinomial model, mode point estimator and equal tails interval. CPU time 52 h. Details of MCMC simulation: 3 chains, 3012000 iterations in each one plus
the first 30000 that were discarded, and a thin of 3000 iterations was applied

Table 5 Comparisons among analyses of the low birth weight data with multinomial outcome

Parameter Δ%1/ Range of 95 % CI by Method

Separate Poisson Separate Log-binomial Log-multinomial MCMC

Outcome Weight up to 2.5 kg

Intercept 10.675 / 1.917 −2.455 / 2.009 - / 2.013 −21.967 / 2.026

Smoke Coefficient 5.008 / 0.837 1.207 / 0.833 - / 0.836 −1.975 / 0.863

Age Coefficient −11.694 / 0.079 1.988 / 0.086 - / 0.084 19.127 / 0.085

Smoke RR 2.222 / 1.367 0.531 / 1.337 - / 1.334 −5.927 / 1.383

Age RR −0.356 / 0.077 0.061 / 0.083 - / 0.082 0.505 / 0.082

Outcome Weight from 2.5 to 3 kg

Intercept 1.810 / 2.653 1.907 / 2.582 - / 2.663 −8.665 / 2.533

Smoke Coefficient −11.918 / 1.148 −10.876 / 1.146 - / 1.148 26.956 / 1.202

Age Coefficient −5.462 / 0.104 −5.918 / 0.101 - / 0.104 19.877 / 0.095

Smoke RR −1.822 / 1.388 −1.664 / 1.388 - / 1.414 −13.865 / 1.453

Age RR −0.144 / 0.106 −0.156 / 0.104 - / 0.106 0.473 / 0.097

Outcome Weight above 4 kg

Intercept 9.942 / 4.310 −0.707 / 3.274 - / 6.278 19.558 / 4.466

Smoke Coefficient −3.794 / 4.045 −6.350 / 4.125 - / 4.077 −3.888 / 4.944

Age Coefficient −16.773 / 0.140 2.304 / 0.073 - / 0.216 −26.748 / 0.153

Smoke RR −5.454 / 1.600 −8.961 / 1.606 - / 1.721 −76.265 / 0.879

Age RR −2.205 / 0.156 0.307 / 0.084 - / 0.247 −3.501 / 0.165
1Δ% ¼ point estimate of the method – Log−multinomial point estimate

Log−multinomial point estimatej j
� �
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also a model for that reference category, but this is not in-
teresting because it does not enable comparisons with the
log multinomial model.

Conclusions
The Bayesian approach was presented in this paper as a
unified way to estimate relative risk (or prevalence ratio)
for situations with binary outcomes and dependent or
independent data and for polytomous outcomes in inde-
pendent data. It was not illustrated here, but the exten-
sion to the case of polytomous outcomes and dependent
data can be made with the same fit made for dichotom-
ous outcomes.
It was shown that the Bayesian approach overcomes

difficulties of convergence common in the frequentist
approach for the log-binomial model. It correctly re-
stricts the parameter space to produce valid probabil-
ities, which is especially fundamental in cases such as
the study of patients with ADHF where, besides associ-
ated predictors being known, it is desired to build a
prediction score. Chu and Cole [21] showed that in
addition, a restriction for a space of values of covariates
not observed in the sample can be programmed, so even
for values of the predictors of patients outside the study,
the estimated probabilities may be valid.
For dependent data, the proposed Bayesian method

overcomes the difficulty of convergence of the mixed-
effects log-binomial model. Besides, it has the advantage
that it allows obtaining estimates of the random effect
variance (point and interval) and the ICC interval more
directly than the GEE method. An expression to calcu-
late the ICC for random effects log-binomial models was
also proposed. Such expression still needs to be com-
pared with the ones proposed by Yelland et al. [24].
For polytomous data, it was seen that the separate

methods and the log-multinomial model may not pro-
duce valid probabilities for the reference category of the
outcome. Even though it did not occur in this work, the
use of separate Poisson regressions and the log-
multinomial model can still result in invalid probabilities
for the outcomes analyzed. The log-multinomial model
may still face convergence problems, and is only imple-
mented in a commercial computer application (Stata).
The proposed MCMC methodology produced coherent
estimates and through the use of free programs (R and
OpenBugs).
A limitation of the Bayesian approach is that the com-

putational time can be quite large. This occurred espe-
cially with the data on low birth weight and on
satisfaction about SUS. In the first one there was a high
correlation between the values generated, a large num-
ber of values had to be generated to get a reasonable
sample for estimation, even using a high thin. In the sec-
ond one, the huge sample size and the large number of
parameters to be estimated were responsible for a slow
performance of the routine. One alternative tested to
overcome this problem was the use of Laplace integra-
tion [39] by means of the package INLA [40], which has
the advantage of being much faster than MCMC. The
method worked very well for the examples with dependent
data, but for the patients with ADHF data it produced
probabilities greater than 1, and therefore the results were
not shown. More studies are necessary to understand
whether this limitation can be overcome. Another alterna-
tive that can be investigated is the use of other MCMC
softwares, like JAGS [41] and the more recent STAN [42].
The modification of the considered priors can also be an
alternative to improve the performance of the Bayesian ap-
proach, especially relating the variance of the random ef-
fect. Regarding the priors of the coefficients, Chu and Cole
[21] also evaluated the normal priori with variance 102 and
concluded that it produced results very similar to that of
variance equal to 106.
A limitation of this study is that only empirical com-

parisons between methods were proceeded. So, strong
recommendations about which method is usually better
cannot be made. Bayesian methods appeared to be
promising since they can deal correctly with the prob-
abilities involved in analyzing both binary and polyto-
mous outcomes. Simulations were performed by Chu
and Cole [21] and Torman and Camey (unpublished
manuscript) only for the case of binary outcome and in-
dependent data. Plan is to make simulation studies also
for situations with binary outcome and dependent data
and for polytomous outcomes and independent and
dependent data.

Additional file

Additional file 1: Supporting Web Material. PDF document with R
codes for analyses and with the demonstration of the ICC’s formula.

Abbreviations
OR: Odds Ratio; RR: Relative Risk; PR: Prevalence Ratio; CI: Credible/
confidence interval; GEE: Generalized Estimating Equations; ADHF: Acute
Decompensated Heart Failure; PASP: Pulmonary Artery Systolic Pressure;
MCMC: Markov Chain Monte Carlo; ICC: Intraclass Correlation Coefficient;
SUS: Sistema Único de Saúde.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors selected the datasets, VBLT did the statistical analyses and
prepared the text, SAC supervised the statistical analyses and revised the
text. Both authors read and approved the final manuscript.

Acknowledgements
To Leigh Blizzard for providing the Stata code for the log-multinomial model;
to Havard Rue for trying to implement the log-binomial model in INLA; to
Luís Beck and Rafaela Piccolli for providing the ADHF patients data; to Juliana
Hilgert, Lúcia Gimenez, Jessye Giordani and Fernando Hugo for providing

http://www.ete-online.com/content/supplementary/s12982-015-0030-y-s1.pdf


Torman and Camey Emerging Themes in Epidemiology  (2015) 12:8 Page 10 of 10
the SUS users’ satisfaction data. To Elsa Mundstock for helping with the
English translation.

Received: 7 January 2015 Accepted: 15 June 2015
References
1. Greenland S. Interpretation and choice of effect measures in epidemiologic

analysis. Am J of Epidemiol. 1987;125(5):761–8.
2. Thompson ML, Myers JE, Kriebel D. Prevalence odds ratio or prevalence

ratio in the analysis of cross sectional data: what is to be done? Occup
Environ Med. 1998;55(4):272–7. doi:10.1136/oem.55.4.272.

3. Lee J. Odds ratio or relative risk for cross-sectional data? Int J Epidemiol.
1994;23(1):201–3. doi:10.1093/ije/23.1.201.

4. Schmidt CO, Kohlmann T. When to use the odds ratio or the relative risk?
Int J Public Health. 2008;53(3):165–7. doi:10.1007/s00038-008-7068-3.

5. Sinclair JC, Bracken MB. Clinically useful measures of effect in binary
analyses of randomized trials. J Clin Epidemiol. 1994;47(8):881–9.
doi:10.1016/0895-4356(94)90191-0.

6. Grimes DA, Schulz KF. Making sense of odds and odds ratios. Obstet
Gynecol. 2008;111(2 Pt 1):423–6. doi:10.1097/01.AOG.0000297304.32187.5d.

7. Sackett DL, Deeks JJ, Altman DG. Down with odds ratios! Evid Based Med.
1996;1(6):164–6.

8. Deeks J. When can odds ratios mislead? Odds ratios should be used only in
case–control studies and logistic regression analyses. BMJ.
1998;317(7166):1155–6. doi:10.1136/bmj.317.7166.1155a.

9. Zhang J, Yu KF. What’s the relative risk? A method of correcting the odds
ratio in cohort studies of common outcomes. JAMA. 1998;280(19):1690–1.
doi:10.1001/jama.280.19.1690.

10. McNutt L-A, Wu C, Xue X, Hafner JP. Estimating the relative risk in cohort
studies and clinical trials of common outcomes. Am J Epidemiol.
2003;157(10):940–3. doi:10.1093/aje/kwg074.

11. Zocchetti C, Consonni D, Bertazzi PA. Relationship between prevalence rate
ratios and odds ratios in cross-sectional studies. Int J Epidemiol.
1997;26(1):220–3. doi:10.1093/ije/26.1.220.

12. Torman VBL, Camey SA. Bayesian Models for Estimating Relative Risks with
Binary and Polytomous Outcomes (Portuguese) [dissertation]. Porto Alegre,
RS: Universidade Federal do Rio Grande do Sul; 2013. http://hdl.handle.net/
10183/80066. Accessed 07 Jan 2014.

13. Wacholder S. Binomial regression in GLIM: estimating risk ratios and risk
differences. Am J Epidemiol. 1986;123(1):174–84.

14. Zocchetti C, Consonni D, Bertazzi PA. Estimation of prevalence rate ratios
from cross-sectional data. Int J Epidemiol. 1995;24(5):1064–7. doi:10.1093/
ije/24.5.1064.

15. Zou G. A modified poisson regression approach to prospective studies with
binary data. Am J Epidemiol. 2004;159(7):702–6. doi:10.1093/aje/kwh090.

16. Barros AJD, Hirakata VN. Alternatives for logistic regression in
cross-sectional studies: an empirical comparison of models that directly
estimate the prevalence ratio. BMC Med Res Methodol. 2003;3:21.
doi:10.1186/1471-2288-3-21.

17. Carter RE, Lipsitz SR, Tilley BC. Quasi-likelihood estimation for relative risk
regression models. Biostatistics. 2005;6(1):39–44. doi:10.1093/biostatistics/
kxh016.

18. Williamson T, Eliasziw M, Fick G. Log-binomial models: exploring failed
convergence. Emerg Themes Epidemiol. 2013;10:14. doi:10.1186/
1742-7622-10-14.

19. Blizzard L, Hosmer DW. Parameter estimation and goodness-of-fit in log
binomial regression. Biom J. 2006;48(1):5–22. doi:10.1002/bimj.200410165.

20. Yelland LN, Salter AB, Ryan P. Relative risk estimation in randomized
controlled trials: a comparison of methods for independent observations.
Int J Biostat. 2011;7(1):1–31. doi:10.2202/1557-4679.1278.

21. Chu H, Cole SR. Estimation of risk ratios in cohort studies with common
outcomes: a Bayesian approach. Epidemiol. 2010;21(6):855–62. doi:10.1097/
EDE.0b013e3181f2012b.

22. Zou GY, Donner A. Extension of the modified Poisson regression model to
prospective studies with correlated binary data. Stat Methods Med Res.
2013;22(6):661–70. doi:10.1177/0962280211427759.

23. Yelland LN, Salter AB, Ryan P. Relative risk estimation in cluster randomized
trials: a comparison of generalized estimating equation methods. Int J
Biostat. 2011;7(1):1–26. doi:10.2202/1557-4679.1278.
24. Yelland LN, Salter AB, Ryan P, Laurence CO. Adjusted intraclass correlation
coefficients for binary data: methods and estimates from a cluster-
randomized trial in primary care. Clin Trials. 2011;8(1):48–58. doi:10.1177/
1740774510392256.

25. Camey SA, Torman VBL, Hirakata VN, Cortes RX, Vigo A. Bias of
multinomial logistic regression to estimate relative risk or prevalence ratio
and alternatives. Cad Saude Publica. 2014;30(1):21–9. doi:10.1590/
0102-311X00077313.

26. Blizzard L, Hosmer DW. The log multinomial regression model for nominal
outcomes with more than two attributes. Biom J. 2007;49(6):889–902.
doi:10.1002/bimj.200610377.

27. Team RC. R: A Language and Environment for Statistical Computing. Vienna,
Austria; 2013.

28. Zeileis A. Econometric computing with HC and HAC covariance matrix
estimators. J Stat Softw. 2004;11(10):1–17.

29. Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: Evolution,
critique and future directions. Stat Med. 2009;28(25):3049–67. doi:10.1002/
sim.3680.

30. Thomas A, O’Hara B, Ligges U, Sturtz S. Making BUGS Open. R News.
2006;6(1):12–7.

31. Carstensen B, Plummer M, Laara E, Hills M. Epi: A Package for Statistical
Analysis in Epidemiology. 2013.

32. Kerry SM, Bland JM. Analysis of a trial randomised in clusters. BMJ.
1998;316(7124):54. doi:10.1136/bmj.316.7124.54.

33. Feng Z, Diehr P, Peterson A, McLerran D. Selected statistical issues in group
randomized trials. Annu Rev Public Health. 2001;22:167–87. doi:10.1146/
annurev.publhealth.22.1.167.

34. Giordani JMA, Hilgert JB, Hugo FN, Camey SA, Torman VBL, Passero LG,
et al.. Contextual and individual determinants to satisfaction with the dental
care of the Unified Health System (Portuguese) [abstract]. In: Brazilian Oral
Research, 2013; 27:32. http://www.sbpqo.org.br/resumos/
RevistaSupl2013.pdf Accessed 07 Jan 2015.

35. Snijders TAB, Bosker RJ. Multilevel Analysis: An Introduction to Basic and
Advanced Multilevel Modeling. London: Sage Publications; 1999.

36. Hosmer DW, Lemeshow S. Applied Logistic Regression. 2nd ed. New York:
Wiley; 2000.

37. Gelman A, Rubin DB. Inference from iterative simulation using multiple
sequences. Stat Sci. 1992;7(4):457–72. doi:10.1214/ss/1177011136.

38. Gelman A. Prior distributions for variance parameters in hierarchical models.
Bayesian Anal. 2006;1(3):515–34.

39. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent
Gaussian models by using integrated nested Laplace approximations. J R
Stat Soc Ser B Stat Methodol. 2009;71(2):319–92. doi:10.1111/j.1467-
9868.2008.00700.x.

40. Martins TG, Simpson D, Lindgren F, Rue H. Bayesian computing with INLA:
new features. Comput Stat Data Anal. 2013;67:68–83. doi:10.1016/
j.csda.2013.04.014.

41. Plummer M. JAGS: A program for analysis of Bayesian graphical models
using Gibbs sampling. Proc 3rd Int Work Distrib Stat Comput. Vienna,
Austria, March 20–22, 2003.

42. Stan Development Team. Stan: A C++ Library for Probability and Sampling,
Version 2.5.0. 2014.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://dx.doi.org/10.1136/oem.55.4.272
http://dx.doi.org/10.1093/ije/23.1.201
http://dx.doi.org/10.1007/s00038-008-7068-3
http://dx.doi.org/10.1016/0895-4356(94)90191-0
http://dx.doi.org/10.1097/01.AOG.0000297304.32187.5d
http://dx.doi.org/10.1136/bmj.317.7166.1155a
http://dx.doi.org/10.1001/jama.280.19.1690
http://dx.doi.org/10.1093/aje/kwg074
http://dx.doi.org/10.1093/ije/26.1.220
http://hdl.handle.net/10183/80066
http://hdl.handle.net/10183/80066
http://dx.doi.org/10.1093/ije/24.5.1064
http://dx.doi.org/10.1093/ije/24.5.1064
http://dx.doi.org/10.1093/aje/kwh090
http://dx.doi.org/10.1186/1471-2288-3-21
http://dx.doi.org/10.1093/biostatistics/kxh016
http://dx.doi.org/10.1093/biostatistics/kxh016
http://dx.doi.org/10.1186/1742-7622-10-14
http://dx.doi.org/10.1186/1742-7622-10-14
http://dx.doi.org/10.1002/bimj.200410165
http://dx.doi.org/10.2202/1557-4679.1278
http://dx.doi.org/10.1097/EDE.0b013e3181f2012b
http://dx.doi.org/10.1097/EDE.0b013e3181f2012b
http://dx.doi.org/10.1177/0962280211427759
http://dx.doi.org/10.2202/1557-4679.1278
http://dx.doi.org/10.1177/1740774510392256
http://dx.doi.org/10.1177/1740774510392256
http://dx.doi.org/10.1590/0102-311X00077313
http://dx.doi.org/10.1590/0102-311X00077313
http://dx.doi.org/10.1002/bimj.200610377
http://dx.doi.org/10.1002/sim.3680
http://dx.doi.org/10.1002/sim.3680
http://dx.doi.org/10.1136/bmj.316.7124.54
http://dx.doi.org/10.1146/annurev.publhealth.22.1.167
http://dx.doi.org/10.1146/annurev.publhealth.22.1.167
http://www.sbpqo.org.br/resumos/RevistaSupl2013.pdf
http://www.sbpqo.org.br/resumos/RevistaSupl2013.pdf
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.1111/j.1467-9868.2008.00700.x
http://dx.doi.org/10.1111/j.1467-9868.2008.00700.x
http://dx.doi.org/10.1016/j.csda.2013.04.014
http://dx.doi.org/10.1016/j.csda.2013.04.014

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Independent data and binary outcome
	Dependent data and binary outcome
	Independent data and polytomous outcome
	Details common to all the examples

	Results
	Independent data and binary outcome
	Dependent data and binary outcome
	Independent data and polytomous outcome

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References



