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Abstract

In this study, Mann-type iterative process is considered for finding a common
element in the fixed point set of strict pseudocontractions and in the zero point set
of the operator which is the sum of inverse strongly- monotone operators and
maximal monotone operators. Weak convergence theorems of common elements
are established in the framework of Hilbert spaces. Some applications of main results
are also provided.
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1 Introduction and preliminaries
Throughout this article, we always assume that H is a real Hilbert space with the inner

product 〈 ·, ·〉, and the norm ||·|| and that C is a nonempty closed convex subset of H.

Let A : C ® H be a mapping. Recall that A is said to be monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C.

A is said to be inverse strongly-monotone if there exists a constant a >0 such that

〈Ax − Ay, x − y〉 ≥ α
∥∥Ax − Ay

∥∥2, ∀x, y ∈ C.

For such a case, A is also said to be a-inverse strongly monotone.

Let M : H ® 2H be a set-valued mapping. The set D(M) defined by D(M) = {x Î H:

Mx ≠ ∅} is said to be the domain of M. The set R(M) defined by R(M) =
⋃

x∈H Mx is

said to be the range of M. The set G(M) defined by G(M) = {(x, y) Î H × H: x Î D

(M), y Î R(M)} is said to be the graph of M.

Recall that M is said to be monotone if

〈x − y, f − g〉 ≥ 0, ∀(x, f ), (y, g) ∈ G(M).

M is said to be maximal monotone if it is not properly contained in any other mono-

tone operator. Equivalently, M is maximal monotone if R(I + rM) = H for all r >0. The

class of monotone mappings is one of the most important classes of mappings. Within

the past several decades, many authors have been devoting to the studies on the
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existence and convergence of zero points for maximal monotone mappings, see [1-15]

and the references therein. For a maximal monotone operator M on H and r >0, we

may define the single-valued resolvent Jr = (I + rM)-1 : H ® D(M). It is known that Jr
is firmly nonexpansive and M-1 (0) = F(Jr), where F (Jr) denotes the fixed point set of Jr.

Let S : C ® C be a nonlinear mapping. In this study, we use F (S) to denote the

fixed point set of S. Recall that the mapping S is said to be nonexpansive if
∥∥Sx − Sy

∥∥ ≤ ∥∥x − y
∥∥ , ∀x, y ∈ C.

S is said to be �-strictly pseudocontractive if there exists a constant � Î [0, 1) such

that

∥∥Sx − Sy
∥∥2 ≤ ∥∥x − y

∥∥2 + κ
∥∥(x − Sx) − (y − Sy)

∥∥2, ∀x, y ∈ C.

The class of strictly pseudocontractive mappings was introduced by Browder and

Petryshyn [16]. If � = 0, the class of strictly pseudocontractive mappings is reduced to

the class of nonexpansive mappings. In case that � = 1, we call S a pseudocontractive

mapping. Marino and Xu [17] proved that fixed point sets of strictly pseudocontractive

mappings are closed and convex. They also proved that I - S is demi-closed at zero.

To be more precise, if {xn} is a sequence in C with xn⇀ x and xn - Sxn ® 0, then x Î
F (S).

Let A : C ® H be an inverse strongly-monotone mapping. Recall that the classical

variational inequality problem is to find x Î C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1:1)

Denote by V I(C, A) of the solution set of (1.1). It is known that x Î C is a solution

to (1.1) if and only if x is a fixed point of the mapping PC (I - lA), where l >0 is a

constant and I is the identity mapping. In [3], Iiduka and Takahashi showed that if l
Î [0, 2a], then I - lA is nonexpansive.

Let F be a bifunction from C × C to ℝ, where ℝ denotes the set of real numbers.

Recall the following equilibrium problem.

Find x ∈ C such that F(x, y) ≥ 0, ∀y ∈ C. (1:2)

To study the equilibrium problems (1.2), we may assume that F satisfies the follow-

ing conditions:

(A1) F (x, x) = 0 for all x Î C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y Î C;

(A3) for each x, y, z Î C,

lim sup
t↓0

F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) for each x Î C, y ↦ F (x, y) is convex and lower semi-continuous.

Putting F (x, y) = 〈Ax, y - x〉 for every x, y Î C, we see that the equilibrium problem

(1.2) is reduced to the variational inequality (1.1).
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Recently, many authors considered the convergence of iterative sequences for the

variational inequality (1.1), the equilibrium problem (1.2) and fixed point problems of

nonlinear mappings; see, for example, [2,4-7,11-15,18-26].

In 2003, Takahashi and Toyoda [13] proved the following weak convergence

theorem.

Theorem 1.1. Let C be a closed convex subset of a real Hilbert space H. Let A be an

a-inverse strongly-monotone mapping from C into H and S be a non-expansive map-

ping from C into itself such that F(S) ∩ VI (C, A) ≠ ∅. Let {xn} be a sequence generated

by

x0 ∈ C, xn+1 = αnxn + (1 − αn)SPC(xn − λnAxn), ∀n ≥ 0,

where ln Î [a, b] for some a, b Î (0, 2a) and an Î [c, d] for some c, d Î (0, 1). Then,

{xn} converges weakly to z Î F(S) ∩ VI (C, A), where z = limn®∞ PF(S)∩VI (C, A)xn.

In 2007, Tada and Takahashi [11] obtained the following weak convergence theorem.

Theorem 1.2. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let F be a bifunction from C × C to ℝ satisfying (A1)-(A4) and S be a nonexpansive

mapping from C into H such that F (S) ∩ EP (F) ≠ ∅. Let {xn} and {un} be sequences

generated by x1 = x Î H and let
⎧⎨
⎩
un ∈ C such that F(un, u) +

1
rn

〈u − un, un − xn〉 ≥ 0, ∀u ∈ C,

xn+1 = αnxn + (1 − αn)Sun

for each n ≥ 1, where {an} ⊂ [a, b] for some a, b Î (0, 1) and {rn} ⊂ (0, ∞) satisfies

lim infn®∞ rn> 0. Then, {xn} converges weakly to w Î F(S)∩EP(F) where w = limn®∞ PF

(S)∩EP(F)xn.

A very common problem in diverse areas of mathematics and physical sciences con-

sists of trying to find a point in the intersection of convex sets. This problem is

referred to as the convex feasibility problem; its precise mathematical formulation is as

follows. Find an x ∈
⋂N

m=1
Cr , where N ≥ 1 is an integer and each Cm is a nonempty

closed convex subset of H. There is a considerable investigation on the convex feasibil-

ity problem in the setting of Hilbert spaces which captures applications in various dis-

ciplines such as image restoration, computer tomography, and radiation therapy

treatment planning.

Let K be an integer, S : C ® C a strict pseudocontraction, Am : C ® H be an am-

inverse strongly-monotone mapping and Mm : H ® 2H be a maximal monotone opera-

tor such that D(Mm) ⊂ C, where D(Mm) is the domain of Mm, where m Î {1, 2, ..., K}.

In this article, motivated by Theorems 1.1 and 1.2, we consider the problem of finding

a common element in the following set: F(S) ∩
⋂K

m=1
(Am +Mm)

−1(0) , where F (S) is

the fixed point set of S and (Am + Mm)
-1 (0) is the zero point set of Am + Mm. Weak

convergence theorems of common elements are established in real Hilbert spaces. The

results presented in this article improve and extend the corresponding results

announced by Tada and Takahashi [11] and Takahshi and Toyoda [13].

In order to prove our main results, we also need the following lemmas.

Lemma 1.3. [16]Let C be a nonempty closed convex subset of a real Hilbert space H

and S : C ® C be a �-strict pseudo-contraction with a fixed point. Define S : C ® C
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by Sax = ax + (1 - a)Sx for each x Î C. If a Î [�, 1), then Sa is nonexpansive with F (Sa)

= F (S).

Lemma 1.4. [17]Let C be a nonempty closed convex subset of a real Hilbert space H

and S : C ® C be a �-strict pseudocontraction. Then

(a) S is 1+κ
1−κ

-Lipschitz;

(b) I - S is demi-closed, this is, if {xn} is a sequence in C with xn ⇀ x and xn - Sxn ®
0, then x Î F (S).

Lemma 1.5. [27]Let H be a real Hilbert space and 0 < p ≤ tn ≤ q <1 for all n ≥ 1.

Suppose that {xn} and {yn} are sequences in H such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

∥∥yn∥∥ ≤ r

and

lim
n→∞

∥∥tnxn + (1 − tn)yn
∥∥ = r

hold for some r ≥ 0. Then limn®∞ ||xn-yn|| = 0.

Lemma 1.6. [13]Let C be a nonempty closed convex subset of a real Hilbert space H

and PC be the metric projection from H onto C. Let {xn} be a sequence in H. Suppose

that, for all y Î C
∥∥xn+1 − y

∥∥ ≤ ∥∥xn − y
∥∥ , ∀n ≥ 1.

Then {PC xn} converges strongly to some z Î C.

Lemma 1.7. [28]Let C be a nonempty closed convex subset of a real Hilbert space H,

A : C ® H be a mapping and M : H ® 2H be a maximal monotone mapping. Then

F(Jr(I − rA)) = (A +M)−1(0), ∀r > 0.

Lemma 1.8. [29]Let H be a Hilbert space and suppose {xn} converges weakly to x.

Then

lim inf
n→∞ ‖xn − x‖< lim inf

n→∞
∥∥xn − y

∥∥
for all y Î H with x ≠ y.

2 Main results
Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let

S : C ® C be a �-strict pseudocontraction, A : C ® H be an a-inverse strongly mono-

tone mapping and B : C ® H be a b-inverse strongly monotone mapping. Let M : H ®
2H and W : H ® 2H be maximal monotone operators such that D(M) ⊂ C and D(W)

⊂ C. Assume that F := F(S) ∩ (A +M)−1(0) ∩ (B +W)−1(0) = ∅. Let {xn} be a

sequence generated in the following manner:
⎧⎨
⎩
x0 ∈ C,
yn = γnJrn(xn − rnAxn) + (1 − γn)Jsn(xn − snBxn),
xn+1 = αnxn + (1 − αn) (βnyn + (1 − βn)Syn), n ≥ 0,

Zhang Fixed Point Theory and Applications 2012, 2012:21
http://www.fixedpointtheoryandapplications.com/content/2012/1/21

Page 4 of 14



where Jrn = (I + rnM)−1 , Jsn = (I + snW)−1 , {rn} is a sequence in (0, 2a), {sn} is a

sequence in (0, 2b) and {an}, {bn}, and {gn} are sequences in (0, 1). Assume that the fol-

lowing restrictions are satisfied

(a) 0 < a ≤ rn ≤ b <2a and 0 < c ≤ sn ≤ d <2b;
(b) 0 ≤ � ≤ bn < e <1, 0 < h ≤ an ≤ i <1 and 0 < j ≤ gn ≤ k <1,

where a, b, c, d, e, h, i, j, k are real numbers. Then the sequence {xn} converges weakly

to x̄ ∈ F , where x̄ = limn→∞ PFxn .
Proof. Note that (I - rnA) and (I - snB) are nonexpansive for each fixed n ≥ 0.

Indeed, for any x, y, Î C, we see from the restriction (a) that

∥∥(I − rnA)x − (I − rnA)y
∥∥2 =

∥∥x − y
∥∥2 − 2rn〈x − y, Ax − Ay〉 + r2n

∥∥Ax − Ay
∥∥2

≤ ∥∥x − y
∥∥2 − rn(2α − rn)

∥∥Ax − Ay
∥∥2

≤ ∥∥x − y
∥∥2
.

This shows that (I - rnA) is nonexpansive for each fixed n ≥ 0, so is (I - snB).

Put

Snx = βnx + (1 − βn)Sx, ∀x ∈ C.

In the restriction (b), we obtain from Lemma 1.3 that Sn is nonexpansive for each

fixed n ≥ 0. Fixing p ∈ F and since Jrn , Jsn , I - rnA, and I - snB are nonexpansive, we

see that
∥∥yn − p

∥∥ ≤ γn
∥∥Jrn(xn − rnAxn) − p

∥∥ + (1 − γn)
∥∥Jsn(xn − snBxn) − p

∥∥
≤ ∥∥xn − p

∥∥ .
Since Sn is nonexpansive, we see that

∥∥xn+1 − p
∥∥ | ≤ αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥Snyn − p
∥∥

≤ αn
∥∥xn − p

∥∥ + (1 − αn)
∥∥yn − p

∥∥
≤ ∥∥xn − p

∥∥ .
(2:1)

Hence, the limit of the sequence {||xn - p||} exists. This shows that the sequence {xn}

is bounded, so is {yn}. Without loss of generality, we may assume that limn®∞ ||xn-p||

= d > 0. Notice that

∥∥yn − p
∥∥2 ≤ γn

∥∥Jrn(xn − rnAxn) − p
∥∥2 + (1 − γn)

∥∥Jsn(xn − snBxn) − p
∥∥2

≤ γn
∥∥(xn − rnAxn) − p

∥∥2 + (1 − γn)
∥∥(xn − snBxn) − p

∥∥2
≤ γn

(∥∥xn − p
∥∥2 − rn(2α − rn)

∥∥Axn − Ap
∥∥2)

+ (1 − γn) (
∥∥xn − p

∥∥2 − sn(2β − sn)
∥∥Bxn − Bp

∥∥2)
≤ ∥∥xn − p

∥∥2 − rnγn(2α − rn)
∥∥Axn − Ap

∥∥2
− sn(1 − γn)(2β − sn)

∥∥Bxn − Bp
∥∥2.
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This in turn implies that

∥∥xn+1 − p
∥∥2 ≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥Snyn − p
∥∥2

≤ αn
∥∥xn − p

∥∥2 + (1 − αn)
∥∥yn − p

∥∥2
≤ ∥∥xn − p

∥∥2 − (1 − αn)rnγn(2α − rn)
∥∥Axn − Ap

∥∥2
− (1 − αn)sn(1 − γn)(2β − sn)

∥∥Bxn − Bp
∥∥2.

(2:2)

It follows from the restrictions (a) and (b) that

(1 − i)aj(2α − b)
∥∥Axn − Ap

∥∥2 ≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2.
Since limn®∞ ||xn-p|| = d, we see that

lim
n→∞

∥∥Axn − Ap
∥∥ = 0. (2:3)

In view of (2.2), we see from the restrictions (a) and (b) that

(1 − i)c(1 − k)(2β − d)
∥∥Bxn − Bp

∥∥2 ≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2.
Since limn®∞ ||xn-p|| = d, we see that

lim
n→∞

∥∥Bxn − Bp
∥∥ = 0. (2:4)

Notice that Jrn is firmly nonexpansive. Putting un = Jrn(xn − rnAxn) and

vn = Jsn(xn − snBxn) , we see that

∥∥un − p
∥∥2 =

∥∥Jrn(xn − rnAxn) − Jrn(p − rnAp)
∥∥2

≤ 〈un − p, (xn − rnAxn) − (p − rnAp)〉
=
1
2

(∥∥un − p
∥∥2 + ∥∥(xn − rnAxn) − (p − rnAp)

∥∥2
−∥∥(un − p) − ((xn − rnAxn) − (p − rnAp))

∥∥2)

≤ 1
2

(∥∥un − p
∥∥2 + ∥∥xn − p

∥∥2 − ∥∥un − xn + rn(Axn − Ap)
∥∥2)

=
1
2

(∥∥un − p
∥∥2 + ∥∥xn − p

∥∥2 − ‖un − xn‖2 − r2n
∥∥Axn − Ap

∥∥ 2

−2rn〈un − xn, Axn − Ap〉)
≤ 1

2

(∥∥un − p
∥∥2 + ∥∥xn − p

∥∥2 − ‖un − xn‖2 + 2rn ‖un − xn‖
∥∥Axn − Ap

∥∥)
.

This in turn implies that

∥∥un − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖un − xn‖2 + 2rn ‖un − xn‖
∥∥Axn − Ap

∥∥ . (2:5)

In a similar way, we can obtain that

∥∥vn − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖vn − xn‖2 + 2sn ‖vn − xn‖
∥∥Bxn − Bp

∥∥ . (2:6)
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Combining (2.5) with (2.6) yields that

∥∥xn+1 − p
∥∥2 ≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥Snyn − p
∥∥2

≤ αn
∥∥xn − p

∥∥2 + (1 − αn)
∥∥yn − p

∥∥2
≤ αn

∥∥xn − p
∥∥2 + (1 − αn)(γn

∥∥un − p
∥∥2 + (1 − γn)

∥∥vn − p
∥∥2)

≤ ∥∥xn − p
∥∥2 − (1 − αn)γn‖un − xn‖2 + 2rn ‖un − xn‖

∥∥Axn − Ap
∥∥

− (1 − αn)(1 − γn)‖vn − xn‖2 + 2sn ‖vn − xn‖
∥∥Bxn − Bp

∥∥ .

(2:7)

It follows that

(1 − αn)γn‖un − xn‖2 ≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2 + 2rn ‖un − xn‖
∥∥Axn − Ap

∥∥
+ 2sn ‖vn − xn‖

∥∥Bxn − Bp
∥∥ .

In view of (2.3) and (2.4), we see from the restrictions (a) and (b) that

lim
n→∞ ‖un − xn‖ = 0. (2:8)

It also follows from (2.7) that

(1 − αn)(1 − γn)‖vn − xn‖2 ≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2 + 2rn ‖un − xn‖
∥∥Axn − Ap

∥∥
+ 2sn ‖vn − xn‖

∥∥Bxn − Bp
∥∥ .

In view of (2.3) and (2.4), we see from the restrictions (a) and (b) that

lim
n→∞ ‖vn − xn‖ = 0 (2:9)

Notice that
∥∥yn − xn

∥∥ ≤ ‖un − xn‖ + ‖vn − xn‖ .

It follows from (2.8) and (2.9) that

lim
n→∞

∥∥yn − xn
∥∥ = 0. (2:10)

On the other hand, we have

lim
n→∞

∥∥αn(xn − p) + (1 − αn)(Snyn − p)
∥∥ = d.

Notice that
∥∥Snyn − p

∥∥ ≤ ∥∥yn − p
∥∥ ≤ ∥∥xn − p

∥∥ .
This implies that

lim sup
n→∞

∥∥Snyn − p
∥∥ ≤ d.

In view of Lemma 1.5, we arrive at

lim
n→∞

∥∥Snyn − xn
∥∥ = 0. (2:11)
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Note that

Syn − xn =
Snyn − xn
1 − βn

+
βn(xn − yn)

1 − βn
.

From (2.10), (2.11) and the restriction (b), we get that

lim
n→∞

∥∥Syn − xn
∥∥ = 0. (2:12)

On the other hand, we see from Lemma 1.4 that

‖Sxn − xn‖ ≤ ∥∥Sxn − Syn
∥∥ +

∥∥Syn − xn
∥∥

≤ 1 + κ

1 − κ

∥∥xn − yn
∥∥ +

∥∥Syn − xn
∥∥ .

It follows from (2.10) and (2.12) that

lim
n→∞ ‖Sxn − xn‖ = 0. (2:13)

Since {xn} is bounded, we see that there exists a subsequence {xni} of {xn} which con-

verges weakly to x̄ . By virtue of Lemma 1.4, we obtain that x̄ ∈ F(S) . Next, we show

that x̄ ∈ (A +M)−1(0). Notice that

xn − rnAxn ∈ un + rnMun.

Let μ Î Mν. Since M is monotone, we have
〈
xn − un

rn
− Axn − μ, un − ν

〉
≥ 0.

In view of the restriction (a), we see from (2.8) that

〈−Ax̄ − μ, x̄ − ν〉 ≥ 0.

This implies that −A x̄ ∈ Mx̄ , that is, x̄ ∈ (A +M)−1(0). In a similar way, we can

obtain that x̄ ∈ (B +W)−1(0) . This proves that x̄ ∈ F .

Assume that there exists another subsequence {xnj} of {xn} such that {xnj} converges
weakly to x’. By the above proof, we also have x′ ∈ F . If x̄ = x′ , we get from Lemma

1.8 that

lim
n→∞ ‖xn − x̄‖ = lim inf

i→∞
∥∥xni − x̄

∥∥ < lim inf
i→∞

∥∥xni − x′∥∥
= lim

n→∞
∥∥xn − x′∥∥ = lim inf

j→∞
∥∥xnj − x′∥∥

< lim inf
j→∞

∥∥xnj − x̄
∥∥ = lim

n→∞ ‖xn − x̄‖ .

This derives a contradiction. Hence, we have x̄ = x′ . This implies that xn ⇀ x̄ ∈ F .

Let en = PFxn . In view of (2.1), we obtain from Lemma 1.6 that {en} converges strongly

to some e ∈ F . On the other hand, we see from x̄ ∈ F that 〈xn − en, en − x̄〉 ≥ 0.

Note that {xn} converges weakly to x̄ . It follows that

〈x̄ − e, e − x̄〉 ≥ 0.

This implies that x̄ = e = limn→∞ PFxn . The proof is completed. □
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From Theorem 2.1, we can obtain the following immediately.

Theorem 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let S : C ® C be a �-strict pseudocontraction, Am : C ® H be an am-inverse strongly

monotone mapping and Mm : H ® 2H be a maximal monotone operator such that D

(Mm) ⊂ C, where m Î {1, 2, ..., K}. Assume that

F := F(S) ∩
⋂N

m=1
(Am +Mm)

−1(0) = ∅. Let {xn} be a sequence generated in the follow-

ing manner:
⎧⎨
⎩
x0 ∈ C,
yn =

∑K
m=1 γn,mJrn ,m(xn − rn,mAmxn),

xn+1 = αnxn + (1 − αn)(βnyn + (1 − βn)Syn), n ≥ 0,

where Jrn ,m = (I + rn,mMm)−1 , {rn,m} is a sequence in (0, 2am), {an}, {bn}, and {gn,m}

are sequences in (0, 1). Assume that the following restrictions are satisfied

(a) 0 <am ≤ rn,m ≤ bm <2am for each m Î {1, 2, ..., K};

(b)
∑K

m=1
γn,m = 1;

(c) 0 ≤ k ≤ bn <c < 1, 0 <d ≤ an ≤ e < 1 and 0 <hm ≤ gn,m ≤ im < 1, where a1, a2, ...,

aK, b1, b2, ..., bK, c, d, e, h1, h2, ..., hK, i1, i2, ..., iK are real numbers. Then the

sequence {xn} converges weakly to x̄ ∈ F , where x̄ = limn→∞ PFxn .

If S = I, where I denotes the identity, then Theorem 2.2 is reduced to the following.

Corollary 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let Am : C ® H be an am-inverse strongly monotone mapping and Mm : H ® 2H be a

maximal monotone operator such that D(Mm) ⊂ C, where m Î {1, 2, ..., K}. Assume

that F :=
⋂N

m=1
(Am +Mm)

−1(0) = ∅ . Let {xn} be a sequence generated in the following

manner:

x0 ∈ C, xn+1 = αnxn + (1 − αn)
K∑

m=1

γn,mJrn ,m(xn − rn,mAmxn), n ≥ 0,

where Jrn ,m = (I + rn,mMm)−1 , {rn,m} is a sequence in (0, 2am) and {an}, {bn} and {gn,

m} are sequences in (0, 1). Assume that the following restrictions are satisfied

(a) 0 <am ≤ rn,m ≤ bm < 2am for each m Î {1, 2, ..., K};

(b)
∑K

m=1
γn,m = 1;

(c) 0 <c ≤ an <d < 1 and 0 <hm ≤ gn,m ≤ im < 1,

where a1, a2, ..., aK, b1, b2, ..., bK, c, d, h1, h2, ..., hK, i1, i2, ..., iK are real numbers.

Then the sequence {xn} converges weakly to x̄ ∈ F , where x̄ = limn→∞ PFxn .

3 Applications
Let H be a Hilbert space and f : H ® (-∞, +∞] a proper convex lower semicontinuous

function. Then the subdifferential ∂f of f is defined as follows:
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∂f (x) = {y ∈ H : f (z) ≥ f (x) + 〈z − x, y〉, z ∈ H}, ∀x ∈ H.

From Rockafellar [9,30], we know that ∂f is maximal monotone. It is easy to verify

that 0 Î ∂f(x) if and only if f(x) = minyÎH f(y).

First, we consider the problem of finding common minimizers of proper convex

lower semicontinuous functions.

Theorem 3.1. Let H be a real Hilbert space. Let f : H ® (-∞, +∞] and g : H ® (-∞,

+∞] be proper convex lower semi-continuous functions. Assume that

F := (∂f )−1(0) ∩ (∂g)−1(0) = ∅. Let {xn} be a sequence generated in the following man-

ner:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0 ∈ H,

zn = argminz∈H{g(z) + ‖z−xn‖2
2sn

},
yn = argminz∈H{f (z) + ‖z−xn‖2

2rn
},

xn+1 = αnxn + (1 − αn)(γnyn + (1 − γn)zn), n ≥ 0,

where {an}, {bn}, and {gn} are sequences in (0, 1). Assume that the following restric-

tions are satisfied

(a) 0 < a ≤ rn ≤ b < ∞ and 0 < c ≤ sn ≤ d < ∞;

(b) 0 < h ≤ an ≤ i <1 and 0 < j ≤ gn ≤ k <1,

where a, b, c, d, h, i, j, k are real numbers. Then the sequence {xn} converges weakly to

x̄ ∈ F , where x̄ = limn→∞ PFxn .
Proof. Putting A = B = 0 and S = I, the identity mapping, we can conclude from The-

orem 2.1 the desired conclusion immediately. □
Let IC be the indicator function of C, i.e.,

IC(x) =
{

0, x ∈ C,
+∞, x ∈ C.

(3:1)

Since IC is a proper lower semicontinuous convex function on H, we see that the

subdifferential ∂IC of IC is a maximal monotone operator.

Lemma 3.2. [12]Let C be a nonempty closed convex subset of a real Hilbert space H.

Let PC be the metric projection from H onto C, ∂IC be the subdifferential of IC, where IC
is as defined in (3.1) and Jr = (I + r∂IC )-1. Then

y = Jrx ⇔ y = PCx, x ∈ H, y ∈ C.

Second, we consider the variation inequality (1.1).

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H

and PC be the metric projection from H onto C. Let S : C ® C be a �-strict pseudocon-

traction, A : C ® H be an a-inverse strongly monotone mapping and B : C ® H be a

b-inverse strongly monotone mapping. Assume that

F := F(S) ∩ VI(C, A) ∩ VI(C, B) = ∅ . Let {xn} be a sequence generated in the following

manner:
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⎧⎨
⎩
x0 ∈ C,
yn = γnPC(xn − rnAxn) + (1 − γn)PC(xn − snBxn),
xn+1 = αnxn + (1 − αn) (βnyn + (1 − βn)Syn), n ≥ 0,

where {rn} is a sequence in (0, 2a), {sn} is a sequence in (0, 2b) and {an}, {bn} and {gn}
are sequences in (0, 1). Assume that the following restrictions are satisfied

(a) 0 < a ≤ rn ≤ b <2a and 0 < c ≤ sn ≤ d <2b;
(b) 0 ≤ � ≤ bn < e <1, 0 < h ≤ an ≤ i <1 and 0 < j ≤ gn ≤ k <1,

where a, b, c, d, e, h, i, j, k are real numbers. Then the sequence {xn} converges weakly

to x̄ ∈ F , where x̄ = limn→∞ PFxn .
Proof. Put M = W = ∂IC. Next, we show that V I(C, A) = (A + ∂IC)

-1(0) and VI(C, B)

= (B + ∂IC)
-1(0), respectively. Notice that

x ∈ (A + ∂IC)−1(0) ⇔ 0 ∈ Ax + ∂ICx

⇔ −Ax ∈ ∂ICx

⇔ 〈Ax, y − x〉 ≥ 0

⇔ x ∈ VI(C, A)

In the same way, we can obtain that x Î (B + ∂IC)
-1 ⇔ (0) x Î V I(C, B). From

Lemma 3.2, we can conclude the desired conclusion immediately. □
Remark 3.1. Let S be a nonexpansive mapping, A = B, M = W and bn = 0 in Theo-

rem 3.3. Then Theorem 3.3 is reduced to Theorem 1.1 in Section 1.

Third, we consider the problem of finding common fixed points of three strict

pseudocontractions.

Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let S : C ® C be a �-strict pseudocontraction, T : C ® C be an a-strict pseudocontrac-
tion and R : C ® C be a b-strict pseudocontraction. Assume that

F := F(R) ∩ F(S) ∩ F(T) = ∅ . Let {xn} be a sequence generated in the following manner:

⎧⎨
⎩
x0 ∈ C,
yn = γn((1 − rn)xn + rnTxn) + (1 − γn)((1 − sn)xn + snRxn),
xn+1 = αnxn + (1 − αn)(βnyn + (1 − βn)Syn), n ≥ 0,

where {rn} is a sequence in (0, 1 - a), {sn} is a sequence in (0, 1 - b) and {an}, {bn}
and {gn} are sequences in (0, 1). Assume that the following restrictions are satisfied

(a) 0 < a ≤ rn ≤ b <1 - a and 0 < c ≤ sn ≤ d <1 - b;
(b) 0 ≤ � ≤ bn < e <1, 0 < h ≤ an ≤ i <1 and 0 < j ≤ gn ≤ k <1,

where a, b, c, d, e, h, i, j, k are real numbers. Then the sequence {xn} converges weakly

to x̄ ∈ F , where x̄ = limn→∞ PFxn .

Proof. Putting A = I - T, we see that A is 1−α
2 -inverse-strongly monotone. We also

have F (T) = V I(C, A) and PC (xn - rnAxn) = (1 - rn)xn + rnTxn. Putting B = I - R, we

see that B is 1−β

2 -inverse-strongly monotone. We also have F(R) = V I(C, B) and PC
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(xn - snBxn) = (1 - sn)xn + snRun. In view of Theorem 3.2, we can obtain the desired

result immediately. □
The following lemma can be found in [31,32].

Lemma 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H and

let F be a bifunction from C × C to ℝ which satisfies (A1)-(A4). Then, for any r >0 and

xÎ H, there exists zÎ C such that

F(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, define

Trx =
{
z ∈ C : F(z, y) +

1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
(3:2)

for all r >0 and x Î H. Then, the following hold:

(a) Tr is single-valued;

(b) Tr is firmly nonexpansive, i.e., for any x, y Î H.,

∥∥Trx − Try
∥∥2 ≤ 〈Trx − Try, x − y〉;

(c) F (Tr) = EP (F);

(d) EP (F) is closed and convex.

Lemma 3.6. [12]Let C be a nonempty closed convex subset of a real Hilbert space H.

Let F be a bifunction from C × C to ℝ which satisfies (A1)-(A4) and AF be a multiva-

lued mapping from H into itself defined by

AFx =
{ {z ∈ H : F(x, y) ≥ 〈y − x, z〉, ∀y ∈ C}, x ∈ C,

∅, x ∈ C.
(3:3)

Then AF is a maximal monotone operator with the domain

Trx = (I + rAF)−1x, ∀x ∈ H, r > 0,and

Trx = (I + rAF)−1x, ∀x ∈ H, r > 0,

where Tr is defined as in (3.2).

Finally, we consider the problem of finding common elements in solution set of

equilibrium problems and in the fixed point set of strict pseudocontractions.

Theorem 3.7. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let F be a bifunction from C × C to ℝ which satisfies (A1)-(A4), G be a bifunction from

C × C to ℝ which satisfies (A1)-(A4) and S : C ® C be a �-strict pseudocontraction.

Assume that F := F(S) ∩ EP(F) ∩ EP(G) = ∅. Let {rn} and {sn} be two positive sequences

and {an}, {bn}, and {gn} sequences in (0, 1). Let {xn} be a sequence generated in the fol-

lowing manner:
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⎧⎨
⎩
x0 ∈ C,
yn = γnun + (1 − γn)vn,
xn+1 = αnxn + (1 − αn) (βnyn + (1 − βn)Syn), n ≥ 0,

where un is such that

F(un, u) +
1
rn

〈u − un, un − xn〉 ≥ 0, ∀u ∈ C

and vn is such that

G(vn, v) +
1
sn

〈v − vn, vn − xn〉 ≥ 0, ∀v ∈ C.

Assume that the following restrictions are satisfied

(a) 0 < a ≤ rn ≤ b < ∞ and 0 < c ≤ sn ≤ d < ∞;

(b) 0 ≤ � ≤ bn < e <1, 0 < h ≤ an ≤ i <1 and 0 < j ≤ gn ≤ k <1,

where a, b, c, d, e, h, i, j, k are real numbers. Then the sequence {xn} converges weakly

to x̄ ∈ F , where x̄ = limn→∞ PFxn .
Proof. Putting A = B = 0, we can conclude from Lemma 3.6 the desired conclusion

immediately. □
Remark 3.2. Let S be a nonexpansive mapping, F = G and bn = 0 in Theorem 3.7.

Then Theorem 3.7 is reduced to Theorem 1.2 in Section 1.
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