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Background
The aim of this work is to study the existence of mild solutions and the optimal controls 
of some systems that arise in the analysis of heat conduction in materials with memory 
(Grimmer 1983), and viscoelasticity and take the form of the following partial functional 
integrodifferential equation with finite delay in a Banach space (X , � · �).

where f : I × C → X is a function satisfying some conditions; A : D(A) → X is the 
infinitesimal generator of a C0-semigroup (T (t))t≥0 on a separable reflexive Banach 
space X; for t ≥  0, B(t) is a closed linear operator with domain D(B(t)) ⊃ D(A). The 
control u(t) takes values from another separable reflexive Banach space U. The operator 
C(t) belongs to L(U ,X), the Banach space of bounded linear operators from U into X, 
and C([−r, 0],X) denotes the Banach space of continuous functions ϕ: [−r, 0] → X with 

(1)

{

x′(t) = Ax(t)+
∫ t
0
B(t − s)x(s)ds + f (t, xt)+ C(t)u(t) for t ∈ I = [0, b]

x0 = ϕ ∈ C = C([−r, 0];X),
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supremum norm �ϕ� = supθ∈[−r,0] �ϕ(θ)�, xt denotes the history function of C defined 
by

In many areas of applications such as engineering, electronics, fluid dynamics, physi-
cal sciences, etc..., integrodifferential equations appear and have received considerable 
attention during the last decades. In Grimmer (1983), Grimmer has proved the exist-
ence and uniqueness of resolvent operators for these integrodifferential equations that 
give the variation of parameter formula for the solution. In recent years, much work has 
been done on the existence and regularity of solutions of nonlinear integrodifferential 
equations with finite delay by many authors by applying the resolvent operator theory, 
for integral equations see e.g., Ezzinbi et al. (2009) and the references therein. Problems 
of existence of optimal controls for nonlinear differential equations have been studied 
extensively by many authors under various hypotheses (see e.g., Boyarsky 1976; Flytzanis 
and Papageorgiou 1991; Hongwei 2003; Jakszto and Skowron 2003; Noussair et al. 1981; 
Papageorgiou 1987), but little is known and done about the existence of optimal controls 
for integrodifferential equations using the resolvent operator theory.

Wang and Zhou (2011) discussed the optimal controls of a Lagrange problem for the 
following fractional evolution equations:

where Dq denotes the Caputo fractional derivative of order q ∈ (0, 1) and 
−A : D(A) → X is the infinitesimal generator of a compact analytic semigroup of uni-
formly bounded linear operators.

In Li and Liu (2015), the authors studied the existence of mild solutions and the opti-
mal controls of a Lagrange problem for the following impulsive fractional semilinear dif-
ferential equations,

where CDα
t  denotes the Caputo fractional derivative of order α ∈ (0, 1] with lower limit 

zero and A : D(A) → X is the infinitesimal generator of a C0-semigroup. They used the 
techniques of a priori estimation.

In Pan et al. (2014), the authors considered the following semilinear control systems 
with Riemann–Liouville fractional derivatives:

where 0 < α < 1, LDα
t  denotes the Riemann–Liouville fractional derivative of order 

α with the lower limit zero. and A : D(A) → X is the infinitesimal generator of a C0

-semigroup.

xt(θ) = x(t + θ) for θ ∈ [−r, 0].

{

Dqx(t) = −Ax(t) + f (t, x(t))+ C(t)u(t) for t ∈ [0, b]
x(0) = x0 ∈ X ,















CDα
t x(t) = Ax(t) + f

�

t, x(t),
� t
0
g(t, s, x(s))ds

�

+ C(t)u(t) for t ∈ [0, b], t �= tk

�x(tk) = Ik(x(t
−
k )), k = 1, 2, . . . ,m

x(0) = x0 ∈ X ,

{

LDα
t x(t) = Ax(t)+ f (t, x(t))+ Cu(t) for t ∈ (0, b]

I1−α
0+ x(t)|t=0 = x0 ∈ X ,
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In Wang et al. (2012), the authors considered the following fractional integrodifferen-
tial equation with infinite delay in Banach spaces

where CDq
t  denotes the Caputo fractional derivative of order q ∈ (0, 1). Using the using 

the techniques of a priori estimation and extension of step by steps, they studied the 
existence and continuous dependence of mild solutions and the optimal controls of the 
associated Lagrange problem.

Zhou (2014) considered a controlled stochastic delay partial differential equation with 
Neumann boundary conditions and studied the optimal control problem by means of 
the associated backward stochastic differential equations. In Motta and Rampazzo 
(2013), the authors discussed the assymptotic controllability and the optimal control of 
some control system where the state approaches asymptotically a target, while paying 
an integral cost with a nonnegative Lagrangian. Wang and Zhou (2011) discussed the 
optimal controls of a Lagrange problem for fractional evolution equations. In Wei et al. 
(2006), the authors studied the optimal controls for nonlinear impulsive integrodifferen-
tial equations of mixed type on Banach spaces. In Li and Liu (2015), the authors studied 
the existence of mild solutions and the optimal controls of a Lagrange problem for some 
impulsive fractional semilinear differential equations, using the techniques of a priori 
estimation.

Motivated by these works, we investigate the solvability and the existence of optimal 
controls of a Lagrange problem for Eq. (1), which is a more general class than those stud-
ied by the authors mentioned above. Using the techniques of a priori estimation of mild 
solutions and without any compactness assumptions made, the existence and unique-
ness of mild solutions is obtained using the theory of resolvent operator for integral 
equations. Furthermore, to the best of our knowledge, the optimal controls for partial 
functional integrodifferential Eq. (1) with finite delay are untreated in the literature, and 
this fact motivates us to extend the existing ones and make new development of the pre-
sent work on this issue.

A model in heat conduction in materials with memory
As a motivation for the problem studied in this work, we consider a heat flow in a rigid 
body � of a material with memory. Let w(t, ξ), e(t, ξ), q(t, ξ) and s(t, ξ) denote respec-
tively the temperature, the internal energy, the heat flux, and the external heat supply at 
time t and position ξ. The balance law for the heat transfer is given by:

and the physical properties of the body suggest the dependence of e and q on w and ∇w, 
respectively. For instance assuming the Fourier Law i.e.,

where c1, c2 are positive constants, one deduces from (2) the classical heat equation

{

CD
q
t x(t) = Ax(t)+ f

(

t, xt ,
∫ t
0
g(t, s, xs)ds

)

+ C(t)u(t) for t ∈ I = [0, b]
x0 = ϕ ∈ B,

(2)et(t, ξ)+ div q(t, ξ) = s(t, ξ)

(3)e(t, ξ) = c1w(t, ξ)

(4)q(t, ξ) = −c2∇w(t, ξ),
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with c = c−1
1 c2 and g(t, ξ) = c−1

1 s(t, ξ). In many materials the assumptions (3), (4) are 
not justified because they take no account of the memory effects: several models have 
been proposed to overcome this difficulty, see e.g. Dafermos and Nohelj (1979), Gurtin 
and Pipkin (1968), Sinestrari (1987): one of them consists in substituting (4) with

Taking for simplicity c1 = c2 = 1, we get from (2), (3) and (6)

If we assume that the thermal history w of the body � is known up to t = 0, and the temper-
ature of the boundary ∂� of � is constant (=0) for all t, we are led to the following system:

where b > 0 is arbitrarily fixed. If we prescribe h (in addition to f) then (8) is a Cauchy-
Dirichlet problem for an integrodifferential equation in the unknown w, which has been 
studied by several authors in the last decades, see e.g., Grimmer and Pritchard (1983), 
Grimmer and Kappelf (1984), Lunardi and Sinestrari (1986) and references therein.

Now, if we consider that the thermal history of the body � is known from the time 
t − r (for some r > 0) up to the present time t, the temperature of the boundary ∂� of 
� is constant (=0) for all t, and the external heat supply depends on the this thermal 
history of the body, then, system (8) becomes the following integrodifferential equation 
with finite delay:

where ψ is a given initial function and r is a positive number. Let �(t)β(t, ξ) denote the 
heating intensity, added to the system to control and regulate the heat supply. Then sys-
tem (9) becomes

Now define

(5)wt(t, ξ) = c�w(t, ξ)+ g(t, ξ)

(6)q(t, ξ) = −c2∇w(t, ξ)−
∫ t

−∞
h(t − s)∇w(s, ξ)ds.

(7)wt(t, ξ) = �w(t, ξ)+
∫ t

−∞
h(t − s)�w(s, ξ)ds + s(t, ξ).

(8)

{

wt(t, ξ) = �w(t, ξ)+
∫ t
0
h(t − s)�w(s, ξ)ds + g(t, ξ) for (t, ξ) ∈ [0, b] ×�

w(t, ξ) = 0, (t, ξ) ∈ [0, b] × ∂�,

(9)

{

wt(t, ξ) = �w(t, ξ)+
∫ t
0
h(t − s)�w(s, ξ)ds + g(t,w(t − r, ξ)), (t, ξ) ∈ [0, b] ×�

w(t, ξ) = ψ(t, ξ) for t ∈ [−r, 0] and x ∈ �

(10)







wt(t, ξ) = �w(t, ξ)+
� t
0 h(t − s)�w(s, ξ)ds + g(t,w(t − r, ξ))+ �(t)β(t, ξ),

(t, ξ) ∈ [0, b] ×�

w(t, ξ) = ψ(t, ξ) for t ∈ [−r, 0] and x ∈ �

x(t)(ξ) = w(t, ξ)

Ax = �x

C(t)u(t)(ξ) = �(t)β(t, ξ)

ϕ(θ)(ξ) = ψ(θ , ξ), θ ∈ [−r, 0], ξ ∈ �.

f (t,ϕ)(ξ) = g(t,ϕ(−r)(ξ)) for t ∈ [0, b] and ξ ∈ �

(B(t)x)(ξ) = h(t)�x(t)(ξ) for t ∈ [0, b], and ξ ∈ �.
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Then, Eq. (10) can be transformed into the following abstract form:

where X is a Banach space.
An example of a material with memory is Shape-memory polymers (SMPs), which are 

polymeric smart materials that have the ability to return from a deformed state (tempo-
rary shape) to their original (permanent) shape induced by an external stimulus (trigger), 
such as temperature change. That is they act adaptively to their environment, they can 
easily be shaped into different forms at a low temperature, but return to their original 
shape on heating.

In order to evaluate the performance of a system quantatively, the designer selects a 
performance measure or a cost function. In certain cases, the statement of the problem 
may clearly indicate what to select for a cost function, whereas in other cases, the selec-
tion of a cost function is a subjective matter. It will be assume that the cost function of a 
system is evaluated by a function of the form

where L is a scalar function.
Suppose the objective in this example is to make the material take a particular form, 

with minimum heating. The optimal control problem consists in solving the following: 
Find an admissible control u∗ which causes the system

to follow an admissible state x∗ that minimize the cost function

where xu denotes the mild solution of (11) corresponding to the control u ∈ Uad, the 
space of admissible controls. u∗ is called an optimal control and x∗ is called an optimal 
state.

Equation (11) has been studied by many authors [see e.g., Ezzinbi et al. (2009) and the 
references contained in it]. But to the best of our knowledge, this equation has never 
been considered for optimal control.

The rest of the paper is organized as follows: In second section, we present some basic 
definitions and preliminaries results, which will be used in the subsequent sections. 
In third section, we obtain an a priori estimation of mild solutions of Eq. (1). In fourth 
section, sufficient conditions are established for the existence and uniqueness of mild 
solutions of Eq. (1), by applying a well known fixed point theorem, and extension by con-
tinuity techniques. In fifth section, we investigate the existence of optimal controls of 
a Lagrange optimal control problem for Eq.  (1). Finally, the last section, an example is 
given to illustrate the main results of this work.

(11)

{

x′(t) = Ax(t)+
∫ t
0
B(t − s)x(s)ds + f (t, xt)+ C(t)u(t) for t ∈ I ,

x0 = ϕ ∈ C([−r, 0],X),

J =
∫ b

0
L(ψ(t), x(t),u(t), t)dt,

x′(t) = Ax(t)+
∫ t

0
B(t − s)x(s)ds + f (t, xt)+ C(t)u(t) for t ∈ I

J (u) :=
∫ b

0
L
(

t, xut , x
u(t), u(t)

)

dt,
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Resolvent operators and Balder’s theorem
In this section we introduce some definitions and Lemmas that will be used throughout 
the paper.

A measurable function x : I → X is Bochner integrable if and only if ‖x‖ is Lebesgue 
integrable. We denote by L1(I ,X) the Banach space of functions x : I → X which are 
Bochner integrable normed by

Consider the following linear homogeneous equation:

where A and B(t) are closed linear operators on a Banach space X.
In the sequel, we assume A and (B(t))t≥0 satisfy the following conditions:

(H1) A is a densely defined closed linear operator in X. Hence D(A) is a Banach space 
equipped with the graph norm defined by, |y| = �Ay� + �y� which will be denoted by 
(X1, | · |).

(H2) (B(t))t≥0 is a family of linear operators on X such that B(t) is continuous when 
regarded as a linear map from (X1, | · |) into (X , � · �) for almost all t ≥ 0 and the map 
t �→ B(t)y is measurable for all y ∈ X1 and t ≥ 0, and belongs to W 1,1(R+,X). Moreover 
there is a locally integrable function b : R+ → R

+ such that

Remark 1 Note that (H2) is satisfied in the modelling of Heat Conduction in materials 
with memory and viscosity. More details can be found in Liang et al. (2008).

Let L(X) be the Banach space of bounded linear operators on X,

Definition 1 (Ezzinbi et  al. 2009) A resolvent operator (R(t))t≥0 for Eq.  (12) is a 
bounded operator valued function

such that

(i)     R(0) = IdX and �R(t)� ≤ Neβt for some constants N and β.
(ii)     For all x ∈ X, the map t �→ R(t)x is continuous for t ≥ 0.
(iii)   Moreover for x ∈ X1, R(·)x ∈ C1(R+;X) ∩ C(R+;X1) and 

�x� =
∫ b

0
�x(t)�dt.

(12)

{

x′(t) = Ax(t)+
∫ t
0
B(t − s)x(s)ds for t ≥ 0

x(0) = x0 ∈ X ,

�B(t)y� ≤ b(t)|y| and

∥

∥

∥

∥

d

dt
B(t)y

∥

∥

∥

∥

≤ b(t)|y|.

R : [0,+∞) −→ L(X)
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Observe that the map defined on R+ by t �→ R(t)x0 solves Eq. (12) for x0 ∈ D(A).

Theorem 2 (Grimmer 1983) Assume that (H1) and (H2) hold. Then, the linear Eq. (12) 
has a unique resolvent operator (R(t))t≥0.

Remark 2 In general, the resolvent operator (R(t))t≥0 for Eq. (12) does not satisfy the 
semigroup law, namely,

The following Theorem is needed in the proof of the existence of optimal controls.

Theorem 3 (Balder 1987) Let (Σ ,F ,µ) be a finite nonatomic measure space, (Y , � · �) a 
separable Banach space, and (V , | · |) a separable reflexive Banach space, and V ′ its dual. 
Let θ : Σ × Y × V → (−∞,+∞] be a given F × L(Y × V )- measurable function. The 
associated integral functional Iθ : L1Y × L1V → [−∞,+∞] is defined by:

where L1Y  denotes the space of all absolutely summable functions from Σ to Y.
The following three conditions

(i)      θ(t, ·, ·) is sequencially lower semicontinuous on X × V , µ-a.e.,
(ii)     θ(t, x, ·) is convex on V for x ∈ Y , µ-a.e.,
(iii)   There exist σ > 0 and ψ ∈ L1

R
 such that

are sufficient for sequential strong–weak lower semicontinuity Iθ on L1Y × L1V . Moreover, 
they are also necessary, provided that Iθ (x, v) < +∞ for some x ∈ L1Y , v ∈ L1V .

Theorem 4 (Mazur’s theorem) Let Z be a Banach space and G be a convex and closed 
set in Z. Then G is weakly closed in Z.

Existence of mild solutions for Eq. (1)
We make the following assumptions.

(H3)  The function f : I × C → X satisfies the following conditions:

(i)     f (·,ψ) is measurable for ψ ∈ C,
(ii)    For any ρ > 0, there exists Lf (ρ) > 0 such that
 

R′(t)x = AR(t)x +
∫ t

0
B(t − s)R(s)xds

= R(t)Ax +
∫ t

0
R(t − s)B(s)xds.

R(t + s) �= R(t)R(s) for some t, s > 0.

Iθ (x, v) =
∫

Σ

θ(t, x(t), v(t))µ(dt),

θ(t, x, v) ≥ ψ(t)− σ(�x� + |v|) for all x ∈ Y , v ∈ V , µ-a.e.,

�f (t,ψ1)− f (t,ψ2)� ≤ Lf (ρ)�ψ1 − ψ2� for �ψ1� ≤ ρ, �ψ2� ≤ ρ and t ∈ [0, b],
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(iii) There exists af > 0 such that 

(H4)  Let U be the separable reflexive Banach space from which the control u takes val-
ues and assume C ∈ L∞(I;L(U ,X)).

(H5) The multivalued map Γ : I → 2U\{∅} has closed, convex, and bounded values, Γ  
is graph measurable, and Γ (·) ⊆ � where � is a bounded set in U.

We denote by Uad the set of admissible controls defined by:

Then, we have the following:

Theorem 5 Wang et al. (2012) Uad �= ∅ and Uad ⊂ L2(I ,U) is bounded, closed and con-
vex. Also, Cu ∈ L2(I ,U) for all u ∈ Uad .

Definition 6 Let u ∈ Uad and ϕ ∈ C. A function x ∈ C([−r, b],X) is called a mild solu-
tion of Eq. (1) if

We have the following Theorem on existence of mild solutions to Eq. (1) with respect 
to a given control u ∈ Uad.

Theorem 7 Assume that H1–H5 hold. Then for each u ∈ Uad, Eq. (1) has a unique mild 
solution on [−r, b].

Proof Let b1 ≤ b, ρ > 0, and ψ ∈ C such that �ψ� ≤ ρ. For t ∈ [0, b1], we have by the 
local Lipschitz condition on f that

b1 will be chosen sufficiently small enough to get the local existence of mild solutions.
Let ϕ ∈ C, ρ = �ϕ� + 1 and ρ∗ = Lf (ρ)ρ + sups∈[0,b1] �f (s, 0)�.
We define the following space

For x ∈ Eϕ, one can see that �xt� ≤ 1+ �ϕ� = ρ.
Then, Eϕ is a closed subset of C([−r, b1];X) which is endowed with the uniform norm 

topology.

�f (t,ψ)� ≤ af (1+ �ψ�) for all ψ ∈ C and t ∈ [0, b].

Uad =
{

u : I → U such thatu is measurable and u(t) ∈ Γ (t), a.e.
}

.

(13)x(t) =
{

R(t)ϕ(0)+
∫ t
0
R(t − s)[f (s, xs)+ C(s)u(s)] ds for t ∈ I

ϕ(t) for − r ≤ t ≤ 0.

�f (t,ψ)� ≤ Lf (ρ)�ψ� + �f (t, 0)� ≤ Lf (ρ)ρ + sup
s∈[0,b1]

�f (s, 0)�.

Eϕ =
{

x ∈ C([−r, b1];X) such that x(θ) = ϕ(θ) for θ ∈ [−r, 0] and sup
s∈[0,b1]

�x(s)− ϕ(0)� ≤ 1

}

.



Page 9 of 18Ezzinbi and Ndambomve  SpringerPlus  (2016) 5:1264 

Let

Define the operator K : Eϕ → C([−r, b1];X) by

We claim that K
(

Eϕ
)

⊂ Eϕ. In fact let x ∈ Eϕ and t ∈ [0, b1]. Then,

Now, choose b1 sufficiently small such that

Consequently,

Hence, K
(

Eϕ
)

⊂ Eϕ.
Let x, y ∈ Eϕ and t ∈ [0, b1]. Then, �xs�, �ys� ≤ ρ for s ∈ [0, b1] and we have

Now, since

Condition (14) implies that

Thus, K is a strict contraction on Eϕ. It follows from the contraction mapping principle 
that K has a unique fixed point x ∈ Eϕ, which is the unique mild solution of Eq. (1) with 
respect to u on [−r, b1].  �

Using the same arguments, we can show that x can be extended to a maximal interval 
of existence [0, tmax[.

Lemma 8 (Ezzinbi et al. 2009) If tmax < b, then, lim supt→tmax
�x(t)� = ∞.

Mb = sup
t∈[0,b]

�R(t)�.

(Kx)(t) =
{

R(t)ϕ(0)+
∫ t
0 R(t − s)[f (s, xs)+ C(s)u(s)] ds for t ∈ [0, b1]

ϕ(t) for t ∈ [−r, 0]

�(Kx)(t)− ϕ(0)� ≤ �R(t)ϕ(0)− ϕ(0)�

+
∫ t

0

∥

∥R(t − s)[f (s, xs)+ C(s)u(s)]
∥

∥ ds

≤ �R(t)ϕ(0)− ϕ(0)� +Mb ρ
∗t +Mb �C� �u�L2

√
t.

(14)sup
s∈[0,b1]

{

�R(s)ϕ(0)− ϕ(0)� +Mb ρ
∗s +Mb �C� �u�L2

√
s
}

< 1.

�(Kx)(t)− ϕ(0)� ≤ �R(t)ϕ(0)− ϕ(0)� +Mb ρ
∗t +Mb �C� �u�L2

√
t < 1 for t ∈ [0, b1].

�(Kx)(t)− (Ky)(t)� ≤ Mb

∫ t

0
�f (s, xs)− f (s, ys)� ds

≤ Mb Lf (ρ)

∫ t

0
�xs − ys� ds

≤ Mb Lf (ρ)

∫ t

0
sup

τ∈[0,s]
�x(τ )− y(τ )� dτ

≤ Mb Lf (ρ) b1 �x − y�

Mb Lf (ρ) b1 ≤ Mb ρ
∗ b1 < sup

s∈[0,b1]

{

�R(s)ϕ(0)− ϕ(0)� +Mb ρ
∗s +Mb �C� �u�L2

√
s
}

.

Mb Lf (ρ) b1 < 1.
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We show that tmax = b. Assume on the contrary that tmax < b. Then for t ∈ [0, tmax] we 
have that

It follows that

This implies that

It follows by Gronwall’s inequality that

where β∗ = Mb�ϕ� +Mb tmax af +Mb

√
tmax �C��u�L2.

Thus

This contradicts Lemma 8. Therefore, tmax = b and hence, Eq.  (1) has a unique mild 
solution on [−r, b].

Continuous dependence and existence of the optimal control solving Eq. (1)
In this section, we discuss the continuous dependence of the mild solutions of Eq.  (1) 
on the controls and initial states, and the existence of solutions of the Lagrange problem 
associated to Eq. (1).

We have the following a priori estimation.

Lemma 9 Suppose (H1)–(H3) holds and assume that Eq. (1) has a mild solution xu on 
[−r, b] with respect to u ∈ Uad. Then, there exists a constant ρ > 0 independent of u such 
that �xu(t)� ≤ ρ for t ∈ [0, b], (ρ depends only on Uad and ϕ).

Proof Let ϕ ∈ C. We define the following space

For x ∈ Eb, we define its continuous extension ˜x over [−r, b] by

x(t) = R(t)ϕ(0)+
∫ t

0
R(t − s)[f (s, xs)+ C(s)u(s)] ds.

�x(t)� ≤ Mb�ϕ(0)� +Mb

∫ t

0
�f (s, xs)� ds +Mb

∫ t

0
�C(s)u(s)� ds

≤ Mb�ϕ� +Mb tmax af +Mbaf

∫ t

0
�xs� ds +Mb�C�

∫ t

0
�u(s)� ds

≤ Mb�ϕ� +Mb tmax af +Mb

√
tmax �C��u�L2 +Mb af

∫ t

0
�xs� ds

≤ Mb�ϕ� +Mb tmax af +Mb

√
tmax �C��u�L2 +Mb af

∫ t

0
sup

τ∈[−r,s]
�x(τ )� dτ

sup
s∈[−r,t]

�x(s)� ≤ Mb�ϕ� +Mb tmax af +Mb

√
tmax �C��u�L2 +Mb af

∫ t

0

sup
τ∈[−r,s]

�x(τ )� dτ

�x(t)� ≤ β∗eMb af t for t ∈ [0, tmax],

lim
t→tmax

�x(t)� ≤ β∗eMb af tmax < ∞.

Eb =
{

x : [0, b] → X continuous such that x(0) = ϕ(0)
}

.



Page 11 of 18Ezzinbi and Ndambomve  SpringerPlus  (2016) 5:1264 

For ϕ ∈ C, we define the function y ∈ C([0, b],X) by y(t) = R(t)ϕ(0) and its extension ỹ 
in C([−r, b],X) by

For each z ∈ C([0, b],X), set ˜x(t) = ˜z(t)+ ỹ(t), where ˜z  is the extension by zero of the 
function z on [−r, 0]. Observe that x satifies (13) if and only if z(0) = 0 and

Let

Since Uad is bounded, let ˜K > 0 be such that �u�L2 ≤ ˜K  for all u ∈ Uad.

Thus

This implies that (15) can be rewritten as follows

with M = Mb b af +Mb

√
b �C�˜K +M2

b af b �ϕ�.

˜x(t) =
{

x(t) for t ∈ [0, b]
ϕ(t) for t ∈ [−r, 0]

ỹ(t) =
{

y(t) for t ∈ [0, b]
ϕ(t) for t ∈ [−r, 0]

z(t) =
∫ t

0
R(t − s)

[

f (s,˜zs + ỹs)+ C(s)u(s)
]

ds for t ∈ [0, b],

Mb = sup
t∈[0,b]

�R(t)� and �C� = sup
t∈I

�C(t)�L(U ,X).

�z(t)� ≤ Mb

∫ t

0
�f (s,˜zs + ỹs)� ds +Mb

∫ t

0
�C(s)u(s)� ds

≤ Mb b af +Mbaf

∫ t

0
�˜zs + ỹs� ds +Mb�C�

∫ b

0
�u(s)� ds

≤ Mb b af +Mb

√
b �C��u�L2 +Mb af

∫ t

0
�˜zs + ỹs� ds

≤ Mb b af +Mb

√
b �C�˜K +Mb af

∫ t

0
�˜zs + ỹs� ds,

(15)

�z(t)� ≤ Mb b af +Mb

√
b �C�˜K +Mb af

∫ t

0
�˜zs + ỹs� ds.

�˜zs + ỹs� ≤ �˜zs� + �ỹs�
≤ �˜zs� +Mb�ϕ�
≤ sup

τ∈[0,s]
�z(τ )� +Mb�ϕ�

sup
s∈[0,t]

�z(s)� ≤ Mb b af +Mb

√
b �C�˜K +M2

b af b �ϕ� +Mb af

∫ t

0
sup

τ∈[0,s]
�z(τ )� dτ

= M +Mb af

∫ t

0
sup

τ∈[0,s]
�z(τ )� dτ .
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It follows by Gronwall’s inequality that

As a result, for t ∈ I, we have

That is �xu(t)� ≤ ρ for all t ∈ I. This completes the proof of the Lemma. �
We have the following theorem on continuous dependence of the mild solutions of 

Eq. (1) on the controls and initial states.

Theorem 10 For all � > 0, there exists γ ∗(�) > 0 such that for all ϕ1, ϕ2 ∈ B(0, �),

where

and ui ∈ Uad, for i = 1, 2.

Proof Let xi, for i = 1, 2, be two mild solutions of Eq. (1), corresponding to the controls 
ui ∈ Uad and � > 0 such that ϕ1, ϕ2 ∈ B(0, �).

From the proof of Lemma 9, one can see that for ρ� = ˜M +Mb� > 0, we have 
�xis� ≤ ρ�, i = 1, 2.

Now, for t ∈ [0, b], we have

�z(t)� ≤ Mebaf Mb =: ˜M.

�xu(t)� ≤ �z(t)� + �R(t)ϕ(0)�
≤ ˜M +Mb�ϕ� := ρ

�x1t − x2t � ≤ γ ∗
(

�ϕ1 − ϕ2� + �u1 − u2�L2
)

for t ∈ [0, b],

(16)xi(t) =
{

R(t)ϕi(0)+
∫ t
0
R(t − s)

[

f (s, xis)+ C(s)ui(s)
]

ds for t ∈ I

ϕi(t) for − r ≤ t ≤ 0,

xi(t) =
{

R(t)ϕi(0)+
∫ t
0 R(t − s)

[

f (s, xis)+ C(s)ui(s)
]

ds for t ∈ I

ϕi(t) for − r ≤ t ≤ 0,

�x1(t)− x2(t)� ≤ Mb�ϕ1(0)− ϕ2(0)� +Mb

∫ t

0
�f (s, x1s )− f (s, x2s )� ds

+Mb

∫ t

0
�C(s)u1(s)− C(s)u2(s)� ds

≤ Mb�ϕ1 − ϕ2� +MbLf (ρ�)

∫ t

0

(

�x1s − x2s �
)

ds

+Mb

∫ t

0
�C(s)u1(s)− C(s)u2(s)� ds

≤ Mb�ϕ1 − ϕ2� +MbLf (ρ�)

∫ t

0
�x1s − x2s � ds

+MbLf (ρ�)
√
b �C� �u1 − u2�L2
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That is

But we have that

It follows that

By Gronwall’s inequality, we have that

This implies that

Let

Then, we have that

And the proof is complete.  �

Now, we study the existence of solutions to the following Lagrange problem

where

and xu denotes the mild solution of (1) corresponding to the control u ∈ Uad and the 
initial data ϕ.

(17)
�x1(t)− x2(t)� ≤ Mb�ϕ1 − ϕ2� +MbLf (ρ�)

∫ t

0
�x1s − x2s � ds

+MbLf (ρ�)
√
b �C� �u1 − u2�L2

�x1s − x2s � ≤ sup
τ∈[−r,s]

�x1(τ )− x2(τ )�.

sup
s∈[−r,t]

�x1(s)− x2(s)� ≤ Mb�ϕ1 − ϕ2� +MbLf (ρ)
√
b �C� �u1 − u2�L2

+MbLf (ρ�)

∫ t

0
sup

τ∈[−r,s]
�x1(τ )− x2(τ )� dτ .

sup
s∈[−r,t]

�x1(s)− x2(s)� ≤
[

Mb�ϕ1 − ϕ2� +MbLf (ρ�)
√
b �C� �u1 − u2�L2

]

eMbLf (ρ�)b.

�x1t − x2t � ≤
[

Mb�ϕ1 − ϕ2� +MbLf (ρ�)
√
b �C� �u1 − u2�L2

]

eMbLf (ρ�)b,

γ ∗(�) := max
{

Mb e
MbLf (ρ�)b, MbLf (ρ�)

√
b �C� eMbLf (ρ�)b

}

.

�x1t − x2t � ≤ γ ∗(�)
(

�ϕ1 − ϕ2� + �u1 − u2�L2
)

for t ∈ [0, b].

(LP)

{

Find a control u0 ∈ Uad such that

J (u0) ≤ J (u) for all u ∈ Uad ,

J (u) :=
∫ b

0
L
(

t, xut , x
u(t), u(t)

)

dt,
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For the existence of solutions to problem (LP), we make the following 
assumptions.(HL)

(i)  The functional L : I × C × X ×U → R ∪ {∞} is Borel measurable.
(ii)  L(t, ·, ·, ·) is sequencially lower semicontinuous on C × X ×U for almost all t ∈ I.
(iii) L(t, ψ , y, ·) is convex on U for each ψ ∈ C, y ∈ X and almost all t ∈ I.
(iv) There exist constants ν, β ≥ 0, γ > 0, and µ ∈ L1(I) nonnegative such that 

We have the following result on the existence of optimal controls for problem (LP).

Theorem 11 Assume that hypotheses (H1)–(H5) and (HL) hold. Then the Lagrange prob-
lem (LP) admits at least one optimal pair, that is there exists an admissible control pair 
(x0,u0) ∈ C([−r, b],X)× Uad such that

Proof If inf {J (u) : u ∈ Uad} = ∞, we are done.  �

Without loss of generality, assume that inf {J (u) : u ∈ Uad} = δ < ∞.
Suppose that δ = −∞, then for each n ∈ N, there exists (un)n≥1 ⊂ Uad such that

Boundedness of Uad implies that (un)n≥1 is bounded and so there exists a subsequence 
(unk )k≥1 of (un)n≥1 that converges weakly to some u0 in L2(I ,U), since L2(I ,U) is reflex-
ive. But Uad is closed and convex, so by Mazur’s Theorem, it is weakly closed and there-
fore, u0 ∈ Uad. By hypothesis (HL), L(t, ψ , y, ·) is weakly lower semicontinuous, so we 
have that

which implies that J (u0) < −∞ using (∗). And this is a contradiction since 
J (u0) ∈ R ∪ {∞}. Hence δ ∈ R.

Now by the definition of δ, there exists a minimizing sequence, a feasible pair 
((xn,un))n≥1 ⊂ Sad such that

where

L(t, ψ , y, u) ≥ µ(t)+ ν�ψ� + β�y� + γ �u�.

J (u0) =
∫ b

0
L

(

t, x0t , x
0(t), u0(t)

)

dt

≤
∫ b

0
L
(

t, xut , x
u(t), u(t)

)

dt

= J (u) for u ∈ Uad .

J (un) < −n (∗)

L(t, ψ , y, u0) ≤ lim inf
k→∞

L(t, ψ , y, unk ) < −∞,

∫ b

0
L
(

t, xnt , x
n(t), un(t)

)

dt −→ δ as n → ∞,

Sad :=
{

(x,u) : x is a mild solution of equation (1) corresponding to the control u ∈ Uad

}

.
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Boundedness of Uad and the fact that L2(I ,U) is reflexive imply that (un)n≥1 has a subse-
quence denoted for simplicity by (uk)k≥1, that converges weakly to some u0 in L2(I ,U) . 
But Uad is closed and convex, so by Mazur’s Theorem, it is weakly closed and therefore, 
u0 ∈ Uad.

Let

denote the subsequence of (xn)n≥1 corresponding to the control sequence (uk)k≥1 and x0 
be the mild solution corresponding to the control u0 ∈ Uad. We show that xk → x0.

For t ∈ [0, b], we have

That is

But we have that

This implies that

It follows from Gronwall’s inequality that

We have the following Lemma.

xk(t) =
{

R(t)ϕ(0)+
∫ t
0 R(t − s)

[

f (s, xks )+ C(s)uk(s)
]

ds for t ∈ I
ϕ(t) for − r ≤ t ≤ 0.

∥

∥

∥
xk(t)− x0(t)

∥

∥

∥
≤

∫ t

0

∥

∥

∥
R(t − s)

[

f (s, xks )− f (s, x0s )
]
∥

∥

∥
ds

+
∫ t

0

∥

∥

∥
R(t − s)

[

C(s)uk(s)− C(s)u0(s)
]∥

∥

∥
ds

≤ MbLf (ρ)

∫ t

0

∥

∥

∥
xks − x0s

∥

∥

∥
ds +Mb

∫ t

0

∥

∥

∥
C(s)uk(s)− C(s)u0(s)

∥

∥

∥
ds

≤ MbLf (ρ)

∫ t

0

∥

∥

∥
xks − x0s

∥

∥

∥
ds +Mb

√
b

(
∫ t

0

∥

∥

∥
C(s)uk(s)− C(s)u0(s)

∥

∥

∥

2
ds

)

1
2

≤ MbLf (ρ)

∫ t

0

∥

∥

∥
xks − x0s

∥

∥

∥
ds +Mb

√
b
∥

∥

∥
Cuk − Cu0

∥

∥

∥

L2(I ,U)

(18)
∥

∥

∥
xk(t)− x0(t)

∥

∥

∥
≤ MbLf (ρ)

∫ t

0

∥

∥

∥
xks − x0s

∥

∥

∥
ds +Mb

√
b
∥

∥

∥
Cuk − Cu0

∥

∥

∥

L2(I ,U)

�xks − x0s � ≤ sup
τ∈[0,s]

�xk(τ )− x0(τ )�.

sup
s∈[0,t]

∥

∥

∥
xk(s)− x0(s)

∥

∥

∥
≤ Mb

√
b
∥

∥

∥
Cuk − Cu0

∥

∥

∥

L2(I ,U)

+MbLf (ρ)

∫ t

0
sup

τ∈[0,s]

∥

∥

∥
xk(τ )− x0(τ )

∥

∥

∥
dτ .

(19)
∥

∥

∥
xk(t)− x0(t)

∥

∥

∥
≤ M∗∗

∥

∥

∥
Cuk − Cu0

∥

∥

∥

L2(I ,U)
, where M∗∗ = Mb

√
b eMb bLf (ρ).
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Lemma 12 (Wang et al. 2012) Let (un)n≥1 ⊂ Uad and u0 ∈ Uad such that (un)n≥1 con-
verges weakly to u0. Then,

We have by (19) that

and therefore, it follows by Lemma 12 that

We note that (HL) implies the assumptions of Balder’s Theorem. Hence by using Bald-
er’s Theorem, we can conclude that (xt , x, u) �→

∫ b
0 L(t, xt , x(t), u(t)) dt is sequencially 

lower semicontinuous in the strong topology of C([−r, 0],X)× L1(I ,X)× L1(I ,U).
Now, since C([−r, 0],X)× L2(I ,X)× L2(I ,U) ⊂ C([−r, 0],X)× L1(I ,X)× L1(I ,U), 

J  is also sequencially lower semicontinuous on C([−r, 0],X)× L2(I ,X)× L2(I ,U), and 
in the strong topology of L1(I ,Eϕ × X ×U).

Hence, J  is weakly lower semicontinuous on L2(I ,U), and since by (HL)-(iv), 
J > −∞ , J  attains its infimum at u0 ∈ Uad, that is

Thus, δ = J (u0), and hence there exists an admissible control u0 ∈ Uad such that

This completes the proof.
We now illustrate our main result by the following example. We observe that in Wang 

et al. (2012), the Langrangian function L defined by the authors in the example does not 
satisfy condition (HL)–(iv), as they claimed. We correct that here.

Example
Let � be bounded domain in Rn with smooth boundary and consider the following non-
linear integrodifferential equation.

where α, β ∈ C([0, 1];R), ω : I ×� → R continuous in t and ζ ∈ W 1,1(R+,R+) Let 
X = U = L2(�).

For η > 0, we define the set of admissible controls Uad by

∥

∥

∥
Cuk − Cu0

∥

∥

∥

L2(I ,U)
−→ 0 as k → ∞, if C ∈ L∞(I;L(U ,X)).

∥

∥

∥
xk − x0

∥

∥

∥
≤ M∗∗

∥

∥

∥
Cuk − Cu0

∥

∥

∥

L2(I ,U)
,

xk −→ x0 as k → ∞.

δ = lim
k→∞

∫ b

0
L

(

t, xkt , x
k(t), uk(t)

)

dt ≥
∫ b

0
L

(

t, x0t , x
0(t), u0(t)

)

dt = J (u0) ≥ δ.

J (u0) ≤ J (u) for all u ∈ Uad .

(20)



































∂v(t,ξ)
∂t = �v(t, ξ)+

� t
0
ζ(t − s)�v(s, ξ) ds + α(t) sin(v2(t − r, ξ))+ β(t)ω(t, ξ)

for t ∈ I = [0, 1] and ξ ∈ �

v(t, ξ) = 0 for t ∈ [0, 1] and ξ ∈ ∂�

v(θ , ξ) = φ(θ , ξ) for θ ∈ [−r, 0] and ξ ∈ �,

Uad :=
{

u : I → U such that u is measurable and �u�L2(I ,U) ≤ η
}

,
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where

We define A : D(A) ⊂ X → X by:

Theorem  13 [Theorem  4.1.2, p. 79 of Vrabie (2003)] The linear operator A defined 
above, is the infinitesimal generator of a C0-semigroup on L2(�).

A generates a C0-semigroup (T (t))t≥0 on L2(�).
Define

C(t) : X → X be defined by (C(t)u(t))(ξ) = C(t)u(t)(ξ) = β(t)ω(t, ξ).

Equation (20) is then transformed into the following form

One can see that, f satisfies (H3). Now we consider the following cost function:

where L : [0, 1] × C([−r, 0], L2(�))× L2(�)× L2(�) −→ R is defined by:

L satisfies all the conditions of hypothesis (HL). Then,

Hence, all the conditions of Theorem 11 are satisfied, and therefore, Eq. (21) has at least 
one optimal pair.

Conclusions
In this work, we have considered a broader class of partial functional integrodifferen-
tial equations with finite delay in Banach spaces. Under some suitable conditions, we 
have shown the existence and uniqueness of mild solutions using contraction princi-
ple. Moreover, we showed the existence of optimal controls of the associated Lagrange 

�u�2
L2(I ,U)

=
∫ 1

0

(
∫

�

u2(s)(ξ) dξ

)

ds.

{

D(A) = H2(�) ∩H1
0 (�)

Av = �v for v ∈ D(A).

x(t)(ξ) = v(t, ξ), x′(t)(ξ) =
∂v(t, ξ)

∂t
, ω(t, ξ) = u(t)(ξ).

ϕ(θ)(ξ) = φ(θ , ξ) for θ ∈ [−r, 0] and ξ ∈ �.

f (t,ϕ)(ξ) = α(t) sin
(

(ϕ2(−r)(ξ))
)

for t ∈ [0, 1] and ξ ∈ �.

(B(t)x)(ξ) = ζ(t)�v(t, ξ) for t ∈ [0, 1], x ∈ D(A) and ξ ∈ �.

(21)

{

x′(t) = Ax(t)+
∫ t
0 B(t − s)x(s)ds + f (t, xt)+ C(t)u(t) for t ∈ I = [0, 1],

x0 = ϕ.

J (u) :=
∫ 1

0
L
(

t, xut , x
u(t), u(t)

)

dt,

L(t, ψ , x, u) = �ψ� + �x� + �u�.

J (u) =
∫ 1

0

(

�xut � + �xu(t)� + �u(t)�
)

dt.
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problem using convex optimization techniques and Balder’s theorem. We also provided 
an example to illustrate our results which extend and complement many other impor-
tant results in the literature.
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