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Abstract
In this paper, we consider the fractional multi-point boundary value problem with
impulse effects. As indicated by M Fečkan, Y Zhou and JR Wang in 2012, the concepts
of piecewise continuous solutions used in most of the current literature about the
impulsive differential equations of fractional order are not appropriate. Based on a
new concept of a piecewise continuous solution, we establish sufficient conditions
for the existence of the solutions for the boundary value problem at resonance by the
continuation theorem of coincidence degree theory.
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1 Introduction
In this paper, we are concerned with the existence of the impulsive differential equation
of fractional order

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CDα
+u(t) = f (t,u(t),u′(t)), t ∈ J ′,

�u(tk) = Ik(u(t–k ),u′(t–k )), k = , , . . . ,p,
�u′(tk) = Jk(u(t–k ),u′(t–k )), k = , , . . . ,p,
u() = , u′() =

∑m–
j= σju′(ξj),

(.)

where CDα
+ is the Caputo fractional derivative,  < α ≤ , f : [, ]×R×R→R is contin-

uous, Ik , Jk : R × R → R (k = , , . . . ,p) are continuous,  = t < t < t < · · · < tp < tp+ = ,
J = [, ], J ′ = J \{t, t, . . . , tp}, σj ∈ R, ξj ∈ (, ), j = , , . . . ,m–,m,p ∈N,m > , p > , and
�u(tk) = u(t+k ) – u(t–k ), where u(t

+
k ) and u(t–k ) denote the right and left limit of u(t) at t = tk

(k = , , . . . ,p), respectively. �u′(tk) has a similar meaning for u′(t). Further, we assume
that

ξi �= tk , k = , , . . . ,p, i = , , . . . ,m –  (.)

and

m–∑

j=

σj = , (.)
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which implies that the problem (.) is at resonance. The problem (.) happens to be at
resonance in the sense that the kernel of the linear operator CDα

+ is not less than one-
dimensional under the boundary value conditions.
Fractional calculus is a generalization of the ordinary differentiation and integration.

It has played a significant role in science, engineering, economy, and other fields. Some
books on fractional calculus and fractional differential equations have appeared recently
(see [–]), and there are a large number of papers dealing with the fractional differential
equations (see [–]) due to their various applications.
Impulsive differential equations have found its importance in realistic mathematical

modeling of the phenomena in both the physical and the social sciences. The boundary
value problem of impulsive differential equation has been investigated extensively in the
literature; see [, , , , , ] and references therein.
There are some papers considering the fractional impulsive differential equations today.

However, in [, ], the authors indicated that the concept of piecewise continuous solu-
tions used in most of the current literature about the impulsive differential equations of
fractional order are not appropriate.
Motivated by the papers [, , , , , , ], in this paper we deal with the problem

(.). Based on the new concept of a piecewise continuous solution presented in [, ],
we establish some existence results about the problem (.). As far as we know, there are
few papers to deal with fractional differential equations with impulses under resonant
conditions.
The rest of the paper is organized as follows. In Section , we introduce some notations,

definitions, and preliminary facts that will be used in the remainder of the paper. In Sec-
tion , applying the results listed in Section , we prove the existence of the solution for
the problem (.) by the coincidence degree theory. Then an example is given in Section 
to demonstrate the application of our results.

2 Preliminaries
First of all, we present the necessary definitions and fundamental facts on the fractional
calculus theory. These can be found in [, ].

Definition . ([, ]) The Riemann-Liouville fractional integral of order ν >  of a func-
tion h : [, ]→R is given by

Iν+h(t) =D–ν
+h(t) =


�(ν)

∫ t


(t – s)ν–h(s)ds (.)

provided that the right-hand side is pointwise defined on [, ].

Definition . ([, ]) The Riemann-Liouville fractional derivative of order ν >  of a
continuous function h : [, ]→R is given by

Dν
+h(t) =


�(n – ν)

(
d
dt

)n ∫ t


(t – s)n–ν–h(s)ds, (.)

where n = [ν] + , h ∈ ACn[, ], provided that the right-hand side is pointwise defined on
[, ].

http://www.boundaryvalueproblems.com/content/2014/1/
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Definition . ([, ]) The Caputo fractional derivative of order ν >  of a function h :
[, ] →R is given by

CDν
+h(t) =


�(n – ν)

∫ t


(t – s)n–ν–h(n)(s)ds, (.)

where n = [ν] + , h ∈ ACn[, ], provided that the right-hand side is pointwise defined on
[, ].

Lemma . ([]) Let ν > ; then the differential equation

CDν
+h(t) = 

has solutions h(t) = c + ct + ct + · · · + cn–tn–, ci ∈R, i = , , , . . . ,n – , n = [ν] + .

Lemma . ([]) Let ν > ; then

Iν+
CDν

+h(t) = h(t) + c + ct + ct + · · · + cn–tn–,

for some ci ∈ R, i = , , , . . . ,n – , where n = [ν] + .

Lemma . ([, ]) If ν,ν,ν > , t ∈ [, ], and h(t) ∈ L[, ], then we have

Iν+I
ν
+h(t) = Iν+ν

+ h(t), CDν
+I

ν
+h(t) = h(t). (.)

Now let us recall some notations as regards the coincidence degree continuation theo-
rem.
Let X, Z be real Banach spaces. Consider the operation equation

Lu =Nu,

where L : domL ⊂ X → Z is a linear operator, N : X → Z is a nonlinear operator. If
dim KerL = codim ImL < +∞ and ImL is closed in Z, then L is called a Fredholm map-
ping of index zero. If L is a Fredholm mapping of index zero, there exist linear contin-
uous projectors P : X → X and Q : Z → Z such that KerL = ImP, ImL = KerQ, and X =
KerL⊕KerP,Z = ImL⊕ImQ. Then it follows thatLP = L|domL∩KerP : domL∩KerP → ImL
is invertible. We denote the inverse of this map by KP . If � is an open bounded sub-
set of X, the map N will be called L-compact on � if QN(�) is bounded and KP,QN =
KP(I –Q)N : � → X is compact. For ImQ is isomorphic to KerL, there exists an isomor-
phism JNL : ImQ → KerL. Then we shall give the coincidence degree continuation theo-
rem, which is proved in [].

Theorem . Let L be a Fredholm operator of index zero and N be L-compact on�,where
� is an open bounded subset of X. Suppose that the following conditions are satisfied:

(i) Lx �= λNx for each (x,λ) ∈ [(domL \ KerL)∩ ∂�]× (, );
(ii) Nx /∈ ImL for each x ∈ KerL∩ ∂�;
(iii) deg(JNLQN |KerL,� ∩ KerL, ) �= , where Q : Z → Z is a continuous projection as

above with ImL = KerQ and JNL : ImQ → KerL is any isomorphism.
Then the equation Lx =Nx has at least one solution in domL∩ �.

http://www.boundaryvalueproblems.com/content/2014/1/
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Set J = [, t] and Jk = (tk , tk+], k = , , . . . ,p. Then we shall introduce some function
spaces in the following:

PC(J ,R) =
{
x | x : J →R,x ∈ C(Jk) and x

(
t+k

)
exists,k = , , , . . . ,p

}
,

equipped with the norm

‖x‖ = sup
t∈J

∣
∣x(t)

∣
∣

and

PC(J ,R) =
{
x | x ∈ PC(J ,R),x ∈ C(Jk) and x′(t+k

)
exists,k = , , , . . . ,p

}
,

equipped with the norm

‖x‖ = sup
t∈J

∣
∣x(t)

∣
∣ + sup

t∈J

∣
∣x′(t)

∣
∣.

Obviously, PC(J ,R) and PC(J ,R) are Banach spaces.
Define X = PC(J ,R) and Z = PC(J ,R)×R

p with the norm

‖z‖ = sup
t∈J

∣
∣x(t)

∣
∣ +

p∑

i=

|zi|, ∀z = (x, z, z, . . . , zp) ∈ Z,

where x ∈ PC(J ,R), (z, z, . . . , zp) ∈ R
p. It is easy to verify that (Z,‖·‖) is a Banach space.

Let

domL =

{

x
∣
∣
∣ x ∈ X,CDα

+u(t) ∈ PC(J ,R),u() = ,u′() =
m–∑

j=

σju′(ξj)

}

,

L : domL → Z, u→ (CDα
+u(t),�u(t), . . . ,�u(tp),�u′(t), . . . ,�u′(tp)

)
(.)

and

N : X → Z, u → (
f
(
t,u(t),u′(t)

)
,A, . . . ,Ap,B, . . . ,Bp

)
, (.)

where Ak = Ik(u(t–k ),u′(t–k )), Bk = Jk(u(t–k ),u′(t–k )), k = , , . . . ,p.
Then the multi-point boundary value problem can be written

Lu =Nu, u ∈ domL.

At the end of the section we give a method for determining the compactness of a set
in X.

Lemma . U is a relatively compact set in X if and only if the following conditions are
satisfied:

http://www.boundaryvalueproblems.com/content/2014/1/
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(a) U is uniformly bounded, that is, there exists a constant R > , such that for each
u ∈ U , ‖u‖ ≤ R.

(b) ∀ε > , there exists δ = δ(ε) > , such that

∣
∣u(t) – u(t)

∣
∣ < ε,

∣
∣u′(t) – u′(t)

∣
∣ < ε,

for ∀t, t ∈ Jk , k = , , , . . . ,p, |t – t| < δ, ∀u ∈ U .

Proof Analogous to the proof of the Lemma . in [], we can prove the results. Here, we
omit the details. �

3 Main results
In this section, we will establish the existence theorem for the impulsive fractional differ-
ential equation (.). In order to prove our main results, we need the following lemmas.

Lemma . Suppose that g ∈ PC(J ,R) and
∑m–

j= σj = . A function u ∈ X is a solution of
the impulsive differential equation of fractional order

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CDα
+u(t) = g(t), t ∈ J ′,

�u(tk) = ak , k = , , . . . ,p,
�u′(tk) = bk , k = , , . . . ,p,
u() = , u′() =

∑m–
j= σju′(ξj),

(.)

if and only if

u(t) =
k∑

i=

ai –
k∑

i=

biti +

(

c +
k∑

i=

bi

)

t +


�(α)

∫ t


(t – s)α–g(s)ds, t ∈ Jk , (.)

where k = , , , . . . ,p and c ∈R, and

p∑

i=

bi –
m–∑

j=

σj

(∑

ti<ξj

bi
)

+


�(α – )

[∫ 


( – s)α–g(s)ds –

m–∑

j=

σj

(∫ ξj


(ξj – s)α–g(s)ds

)]

= . (.)

Proof In view of Lemma . in [] or Lemma . in [], we can get the conclusions by
applying Lemma . and Lemma .. �

Lemma . Assume that
∑m–

j= σj =  and

 :=


�(α)

(

 –
m–∑

j=

σjξ
α–
j

)

�= .

Then L is a Fredholm mapping of index zero.Moreover,

KerL = {u | u = ct, c ∈R} ⊂ X (.)

http://www.boundaryvalueproblems.com/content/2014/1/
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and

ImL =
{
z | z = (g,a, . . . ,ap,b, . . . ,bp) ∈ Z and g satisfies the condition (.)

}

⊂ Z. (.)

Proof Taking into account Lemma . and the definition of L, we can get the result (.)
easily. Further, Lemma . implies (.). Now, let us focus on the proof that L is a Fredholm
mapping of index zero.
Define an auxiliary operator Q : Z →R as follows:

Qz =
p∑

i=

bi –
m–∑

j=

σj

(∑

ti<ξj

bi
)

+


�(α – )

[∫ 


( – s)α–g(s)ds –

m–∑

j=

σj

(∫ ξj


(ξj – s)α–g(s)ds

)]

,

where z = (g,a, . . . ,ap,b, . . . ,bp) ∈ Z. It is obvious that Q is a continuous linear mapping.
Take the mapping Q : Z → Z defined by

Qz =
(
Qz


, , . . . , 
)

, (.)

where z = (g,a, . . . ,ap,b, . . . ,bp) ∈ Z and (, . . . , ) ∈R
p. Evidently, KerQ = ImL and

ImQ =
{
(c, , . . . , ) ∈ Z | c ∈R, (, . . . , ) ∈R

p},

and Q : Z → Z is a continuous linear projector. In fact, for an arbitrary z ∈ Z, we have

Q(Qz) =Q

(
Qz


, , . . . , 
)

=
Qz


 =Qz

and

Qz =Q(Qz) =
(
Q(Qz)


, , . . . , 

)

=
(
Qz


, , . . . , 
)

=Qz,

that is to say, Q : Z → Z is idempotent.
Let z = z–Qz+Qz = (I –Q)z+Qz, where z is an arbitrary element in Z. SinceQz ∈ ImQ

and (I – Q)z ∈ KerQ, we obtain Z = ImQ + KerQ. Take z ∈ ImQ ∩ KerQ. Then z can
be written as z = (c, , . . . , ), where c ∈ R, (, . . . , ) ∈ R

p, for z ∈ ImQ. Thus we have
Q(z) = c = , which implies that c =  and z = θ . Hence ImQ ∩ KerQ = {θ}, where
we denote θ the zero element in Z. Then we get Z = ImQ⊕ KerQ = ImQ⊕ ImL.
Now, dim KerL =  = dim ImQ = codim KerQ = codim ImL < +∞, and noting that ImL is

closed in Z, L is a Fredholm mapping of index zero. �

Let P : X → X be defined by

(Pu)(t) = u′()t, t ∈ J ,u ∈ X. (.)

http://www.boundaryvalueproblems.com/content/2014/1/
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Clearly, P : X → X is a linear continuous projector and

ImP = {u | u = ct, c ∈R} = KerL.

Also, proceeding as in the proof of Lemma ., we can show that X = ImP ⊕ KerP =
KerL⊕ KerP.
Consider the mapping KP : ImL → domL∩ KerP:

(KPz)(t) =
k∑

i=

ai –
k∑

i=

biti +


�(α)

∫ t


(t – s)α–g(s)ds, t ∈ Jk ,

where k = , , , . . . ,p and z = (g,a, . . . ,ap,b, . . . ,bp) ∈ ImL.
Note that

(KPL)u = KP(Lu) = u, ∀u ∈ domL∩ KerP (.)

and

(LKP)z = L(KPz) = z, ∀z ∈ ImL.

Thus, KP = (LP)–, where LP = L|domL∩KerP : domL∩ KerP → ImL.

Lemma . For each z = (g,a, . . . ,ap,b, . . . ,bp) ∈ ImL, we have

‖KPz‖ ≤
(

 +


�(α)

)

‖z‖. (.)

Proof For each z = (g,a, . . . ,ap,b, . . . ,bp) ∈ ImL and t ∈ Jk , k = , , , . . . ,p, we have

∣
∣(KPz)(t)

∣
∣ =

∣
∣
∣
∣
∣

k∑

i=

ai –
k∑

i=

biti +


�(α)

∫ t


(t – s)α–g(s)ds

∣
∣
∣
∣
∣

≤ sup
t∈J

∣
∣g(t)

∣
∣ ·

∣
∣
∣
∣


�(α)

∫ t


(t – s)α– ds

∣
∣
∣
∣ +

k∑

i=

|ai| +
k∑

i=

|bi|

= sup
t∈J

∣
∣g(t)

∣
∣ · 

�(α + )
tα +

k∑

i=

|ai| +
k∑

i=

|bi|

≤ sup
t∈J

∣
∣g(t)

∣
∣ +

p∑

i=

|bi| +
p∑

i=

|ai| = ‖z‖

and

∣
∣(KPz)′(t)

∣
∣ =

∣
∣
∣
∣


�(α – )

∫ t


(t – s)α–g(s)ds

∣
∣
∣
∣ ≤ sup

t∈J

∣
∣g(t)

∣
∣ · 

�(α)
tα– ≤ 

�(α)
‖z‖.

Hence,

‖KPz‖ = sup
t∈J

∣
∣(KPz)(t)

∣
∣ + sup

t∈J

∣
∣(KPz)′(t)

∣
∣ ≤

(

 +


�(α)

)

‖z‖. �

http://www.boundaryvalueproblems.com/content/2014/1/
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Lemma . Let f : [, ]×R×R→R and Ik , Jk :R×R →R (k = , , . . . ,p) are continu-
ous. Then KP,QN = KP(I –Q)N : X → X is completely continuous.

Proof By virtue of Lemma ., we can conclude that the claim of the lemma is true. �

Next, let us list the assumptions that will be used in the rest of the section.

(H) f : [, ] × R × R → R is continuous, and there exist three nonnegative functions
β,β,β ∈ PC(J ,R) such that for all t ∈ J and (x, y) ∈R

, we have

∣
∣f (t,x, y)

∣
∣ ≤ β(t)|x| + β(t)|y| + β(t). (.)

(H) There existMi ≥ , Ni ≥ , Di ≥  (i = , , . . . , p) such that

∣
∣Ik(x, y)

∣
∣ ≤ Mk|x| +Nk|y| +Dk ,

∣
∣Jk(x, y)

∣
∣ ≤ Mp+k|x| +Np+k|y| +Dp+k , (.)

where k = , , . . . ,p, ∀(x, y) ∈R
.

(H)

 ≤
(

 +


�(α)

)(

η +
p∑

i=

(Mi +Ni)

)

< , (.)

where η = supt∈J |β(t)| + supt∈J |β(t)|.
(H) There exists a constant T >  such that

Q(Nu) �= , (.)

for each u ∈ domL \ KerL satisfying |u′()| > T.
(H) There exists a positive constant S such that for any c ∈R, if |c| > S, then either

cQ
(
N(ct)

)
< , (.)

or else

cQ
(
N(ct)

)
> . (.)

Theorem . Let
∑m–

j= σj = ,  �= , f : [, ] × R × R → R and Ik , Jk : R × R → R

(k = , , . . . ,p) are continuous. Assume that the hypotheses (H)-(H) all hold. Then the
problem (.) has at least one solution in domL.

Proof The proof consists of four main steps as follows.
() Set � = {u ∈ domL \ KerL | Lu = λNu,λ ∈ [, ]} and proof of � is bounded.
() Set � = {u ∈ KerL |Nu ∈ ImL} and proof of � is bounded.
() If (.) holds, we set � = {u ∈ KerL | –λu + ( – λ)JNLQNu = ,λ ∈ [, ]}; if (.)

holds, we set � = {u ∈ KerL | λu + ( – λ)JNLQNu = ,λ ∈ [, ]}, where
JNL : ImQ → KerL is a linear isomorphism defined as

JNL(c, , . . . , ) = ct, (c, , . . . , ) ∈ ImQ, t ∈ [, ]. (.)

Then proof of � is bounded.

http://www.boundaryvalueproblems.com/content/2014/1/
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() Let � be a bounded open set such that � ⊃ ⋃
i= �i and prove that

deg(JNLQN |KerL,� ∩ KerL, ) �= .

Now, let us prove the steps one by one.
Step : Take u ∈ �, then u ∈ domL \ KerL and Lu = λNu, so λ �=  and Nu ∈ ImL =

KerQ ⊂ Z. Hence, Q(Nu) = θ , that is, Q(Nu) = . From (H), we have |u′()| ≤ T.
Again, for u ∈ �, we get

‖Pu‖ = sup
t∈J

∣
∣Pu(t)

∣
∣ + sup

t∈J

∣
∣(Pu)′(t)

∣
∣

= sup
t∈J

∣
∣u′()t

∣
∣ + sup

t∈J

∣
∣u′()

∣
∣ = 

∣
∣u′()

∣
∣ ≤ T. (.)

In view of (I – P)u ∈ domL∩ KerP, by (.) and Lemma ., we have

∥
∥(I – P)u

∥
∥
 =

∥
∥KpL(I – P)u

∥
∥
 ≤

(

 +


�(α)

)
∥
∥L(I – P)u

∥
∥


=
(

 +


�(α)

)

‖Lu‖ ≤
(

 +


�(α)

)

‖Nu‖. (.)

Combining (.) and (.), we can obtain

‖u‖ = ‖u – Pu + Pu‖ ≤ ‖Pu‖ +
∥
∥(I – P)u

∥
∥


≤ T +
(

 +


�(α)

)

‖Nu‖. (.)

From (H), for each u ∈ �, we have

∣
∣f

(
t,u(t),u′(t)

)∣
∣ ≤ β(t)

∣
∣u(t)

∣
∣ + β(t)

∣
∣u′(t)

∣
∣ + β(t)

≤ sup
t∈J

∣
∣β(t)

∣
∣ · ∣∣u(t)∣∣ + sup

t∈J

∣
∣β(t)

∣
∣ · ∣∣u′(t)

∣
∣ + sup

t∈J

∣
∣β(t)

∣
∣

≤ η‖u‖ + η, (.)

where we denote η = supt∈J |β(t)|.
From (H), for each u ∈ �, we get

∣
∣Ik

(
u
(
t–k

)
,u′(t–k

))∣
∣ ≤ Mk

∣
∣u

(
t–k

)∣
∣ +Nk

∣
∣u′(t–k

)∣
∣ +Dk

≤ (Mk +Nk)‖u‖ +Dk (.)

and

∣
∣Jk

(
u
(
t–k

)
,u′(t–k

))∣
∣ ≤ Mp+k

∣
∣u

(
t–k

)∣
∣ +Np+k

∣
∣u′(t–k

)∣
∣ +Dp+k

≤ (Mp+k +Np+k)‖u‖ +Dp+k , (.)

where k = , , . . . ,p.

http://www.boundaryvalueproblems.com/content/2014/1/
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Combining (.), (.), and (.), we obtain

‖Nu‖ = sup
t∈J

∣
∣f

(
t,u(t),u′(t)

)∣
∣ +

p∑

i=

∣
∣Ik

(
u
(
t–k

)
,u′(t–k

))∣
∣ +

p∑

i=

∣
∣Jk

(
u
(
t–k

)
,u′(t–k

))∣
∣

≤ η‖u‖ + η +

( p∑

i=

(Mi +Ni)

)

‖u‖ +
p∑

i=

Di

=

(

η +
p∑

i=

(Mi +Ni)

)

‖u‖ +
p∑

i=

Di + η. (.)

Thus, by (H), (.), and (.), we can derive

‖u‖ ≤ T + ( + /�(α))
∑p

i=Di + ( + /�(α))η
 – ( + /�(α))(η +

∑p
i=(Mi +Ni))

,

which clearly shows that � is bounded.
Step : Let u ∈ �, then u ∈ KerL and u = ct, c ∈ R, t ∈ J . Since Nu ∈ ImL = KerQ, we

have Q(Nu) = θ , that is, Q(N(ct)) = . Taking into account (H), |c| ≤ S, which implies
that � is bounded.
Step : Without loss of generality, in the following part of the proof, we assume that

(.) holds in (H). Then we set � = {u ∈ KerL | –λu+ ( – λ)JNLQNu = ,λ ∈ [, ]}. For
u ∈ �, then we have u = ct, c ∈R, t ∈ [, ], and λu = ( – λ)JNLQNu. Thus,

λct = ( – λ)
Q(N(ct))


t.

Therefore, via (H) and (.), we have |c| ≤ S, which shows that � is bounded.
Step : Let� be a bounded open set such that� ⊃ ⋃

i= �i. The operatorN is L-compact
on � due to the fact that QN(�) is bounded and KP,QN = KP(I –Q)N :� → X is compact
by Lemma .. Then by Step  and Step , we have

(i) Lu �= λNu for each (u,λ) ∈ [(domL \ KerL)∩ ∂�]× (, );
(ii) Nu /∈ ImL for each u ∈ KerL∩ ∂�.
Define H(u,λ) = –λIu + ( – λ)JNLQNu, where I is the identity operator in X. According

to the arguments in Step , we have

H(u,λ) �= , ∀u ∈ KerL∩ ∂�,

and therefore, via the homotopy property of degree, we obtain

deg(JNLQN |KerL,� ∩ KerL, ) = deg
(
H(·, ),� ∩ KerL, 

)

= deg
(
H(·, ),� ∩ KerL, 

)

= deg(–I,� ∩ KerL, )

= –,

which verifies the condition (iii) of Theorem.. Then, applying Theorem., we conclude
that the problem (.) has at least one solution in domL∩ �. The proof is complete. �
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Corollary . If the conditions (H) and (H) are replaced by:

(H∗
)

 ≤
(

 +


�(α)

)(

η +
p∑

i=

(Mi +Ni)

)

< . (.)

(H∗
) There exists a constant T∗

 >  such that

Q(Nu) �= , (.)

for each u ∈ domL \ KerL satisfying |u′(t)| > T∗
 .

Then the problem (.) has at least one solution in domL.

Theorem . Let
∑m–

j= σj = , σj >  (j = , , . . . ,m – ), f : [, ]×R×R →R and Ik , Jk :
R×R →R (k = , , . . . ,p) are continuous. Suppose that (H) and the following conditions
are satisfied:

(H′
)

 ≤
(

 +


�(α)

)( p∑

i=

(Mi +Ni)

)

< . (.)

(H) There exists a constant T > , such that for any |y| > T, we have

γ(t)T ≤ f (t,x, y)≤ γ(t)T, (.)

where γ(t),γ(t) ∈ C[, ] and γ(t)≥ γ(t) ≥ .
(H) For ∀(x, y) ∈R

, Jk(x, y)≥ , k = , , . . . ,p.
(H)

∫ 


( – s)α–γ(s)ds –

m–∑

j=

σj

(∫ ξj


(ξj – s)α–γ(s)ds

)

> . (.)

Then the problem (.) has at least one solution in domL.

Proof In view of σj >  (j = , , . . . ,m – ) and (H), we have  > .
First, let us set � = {u ∈ domL \ KerL | Lu = λNu,λ ∈ [, ]}. Hence, for each u ∈ �,

we have Q(Nu) = θ , that is, Q(Nu) = . We claim that there exists t ∈ [, ] such that
|u′(t)| ≤ T, t ∈ J .
In fact, if we assume that |u′(t)| > T, in viewof σj > , (H), and (H), we can getQ(Nu) >

, which contradicts Q(Nu) = . Thus, the claim that there exists t ∈ [, ] such that
|u′(t)| ≤ T is true.
If t = , |u′()| ≤ T. If t > , we have

∣
∣u′()

∣
∣ ≤ T +


�(α)

‖Nu‖.
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Since

u′′(t) = CD–α
+

(CDα
+u(t)

)
,

we have
∣
∣
∣
∣

∫ t


u′′(s)ds

∣
∣
∣
∣ =

∣
∣I+

CD–α
+

(CDα
+u(t)

)∣
∣

=
∣
∣Iα–+ (Lu)(t)

∣
∣

=
∣
∣
∣
∣


�(α – )

∫ t


(t – s)α–

(CDα
+u(s)

)
ds

∣
∣
∣
∣

≤ ‖Lu‖ · 
�(α – )

∫ t


(t – s)α– ds

≤ ‖Lu‖ · 
�(α)

≤ 
�(α)

‖Nu‖.

Thus,

∣
∣u′()

∣
∣ =

∣
∣
∣
∣u

′(t) –
∫ t


u′′(s)ds

∣
∣
∣
∣ ≤ ∣

∣u′(t)
∣
∣ +

∣
∣
∣
∣

∫ t


u′′(s)ds

∣
∣
∣
∣ ≤ T +


�(α)

‖Nu‖.

Similar to the discussion in Theorem ., we can get

‖u‖ ≤ T + T( + /�(α))maxt∈[,] γ(t) + ( + /�(α))
∑p

i=Di

 – ( + /�(α))(
∑p

i=(Mi +Ni))
.

Therefore, � is bounded.
Also, > , (H), and (H) imply that (H) is satisfied. Then, proceeding with the proof

of the theorem similar to the proof of Theorem ., we can derive the conclusion. �

4 Examples
To illustrate our main results, we shall present an example.

Example .

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CD.
+u(t) = f (t,u(t),u′(t)), t ∈ J ′,

�u(tk) = l, k = , , ,
�u′(tk) = Jk , k = , , ,
u() = , u′() =

∑
j= σju′(ξj),

(.)

where

f (t,x, y) =
tα–


|y|

 + |y|
(

 + e–|x| –
sin t
 + y

)

, t ∈ [, ], (x, y) ∈ R


and

Jk(x, y) =


k + 
,
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and l ∈ R, l > , t = ., t = ., t = ., ξ = ., ξ = ., ξ = ., σ = ., σ = .,
σ = ., k = , k = , k = .
From the above conditions, we can find that (H), (H′

), and (H) hold. Noting that α =
., p = ,m = ,

∑
i= σi = , for each |y| > , we have

γ(t) ≤ f (t,x, y) ≤ γ(t),

where γ = tα–/, and γ = tα–/, so (H) is satisfied. Alsowe can certify that (H) holds,
too.
To sum up the points which we have just indicated, by Theorem ., we can conclude

that the problem (.) has at least one solution.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, China University of Mining and Technology, Xuzhou, 221116, P.R. China. 2School of
Business, Central South University, Changsha, Hunan 410083, P.R. China. 3School of Mathematics and Statistics, Central
South University, Changsha, Hunan 410083, P.R. China.

Acknowledgements
This research was supported by the Fundamental Research Funds for the Central Universities (2014QNA52) and Natural
Science Foundation of Jiangsu Province of China (BK20140176). The research is also supported by the TianYuan Special
Funds of the National Natural Science Foundation of China (Grant No. 11426211).

Received: 18 September 2014 Accepted: 12 November 2014

References
1. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier,

Amsterdam (2006)
2. Lakshmikantham, V, Leela, S, Vasundhara Devi, J: Theory of Fractional Dynamic Systems. Cambridge Academic

Publishers, Cambridge (2009)
3. Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York

(1993)
4. Bai, C, Fang, J: The existence of a positive solution for a singular coupled system of nonlinear fractional differential

equations. Appl. Math. Comput. 150, 611-621 (2004)
5. Benchohra, M, Henderson, J, Ntouyas, SK, Ouahab, A: Existence results for fractional order functional differential

equations with infinite delay. J. Math. Anal. Appl. 338, 1340-1350 (2008)
6. Bai, Z: Solvability for a class of fractionalm-point boundary value problem at resonance. Comput. Math. Appl. 62,

1292-1302 (2011)
7. Bai, Z, Lü, H: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal.

Appl. 311, 495-505 (2005)
8. Bai, Z, Zhang, Y: The existence of solutions for a fractional multi-point boundary value problem. Comput. Math. Appl.

60(8), 2364-2372 (2010)
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