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Abstract
Let G be a commutative semigroup,K =R or C and F : G→ K

n. Generalizing the
stability of the functional equation F(x ◦ g(y)) – F(x)F(y) = 0 with bounded difference
(Najdecki in J. Inequal. Appl. 2007:79816, 2007), we prove the stability of the above
functional equation with unbounded differences. We also give a more precise
description for bounded components of F = (f1, f2, . . . , fn).
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1 Main results
Throughout this paper, 〈G,◦〉 is a commutative semigroup with an identity e, R the set
of real numbers, C the set of complex numbers, K = R or C, ε ≥ , and g : G → G
and φ : G → [,∞) are given functions. For (a,a, . . . ,an), (b,b, . . . ,bn) ∈ K

n, we define
(a,a, . . . ,an)(b,b, . . . ,bn) = (ab,ab, . . . ,anbn). A function σ : G → G is said to be an
involution if σ (x ◦ y) = σ (x) ◦ σ (y) and σ (σ (x)) = x for all x, y ∈ G. A function m :G → K

n

is called an exponential function provided thatm(x ◦ y) =m(x)m(y) for all x, y ∈G.
Generalizing the result of Ger and Šemrl [], Najdecki [] proved the stability of the

functional equation

F
(
x ◦ g(y)) – F(x)F(y) =  (.)

in the class of functions F :G →K
n. The particular cases of (.) are the exponential equa-

tion f (xy) = f (x)f (y) (see Aczél and Dhombres [] and Baker []) and the equation

f
(
xf (y)

)
= f (x)f (y) (.)

for all x, y ∈ K \ {}, where f : K \ {} → K \ {} (see Brzdȩk [], Brzdȩk, Najdecki and
Xu [] and Chudziak and Tabor [] for related equations). As mentioned in [, ], (.)
arises in averaging theory applied to the turbulent fluid motion and is connected with
the Reynolds operator (see Marias []), the averaging operator and the multiplicatively
symmetric operator (see []). Moreover, the equation (.) is connected with a description
of some associative operations, i.e., the binary operation ◦ : (K\ {})× (K\ {})→K\ {}
defined by x ◦ f (y) = xf (y) is associative if and only if f satisfies (.) (see [] for more
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details). We also refer the reader to Belluot, Brzdȩk and Ciepliński [] and Brzdȩk and
Ciepliński [] for some recent developments on the issues of stability and superstability
for functional equations.
The main result of Najdecki [] is the following.

Theorem . Let F :G →Kn, F = (f, f, . . . , fn) satisfy

∥∥F(
x ◦ g(y)) – F(x)F(y)

∥∥ ≤ ε (.)

for all x, y ∈ G with any norm ‖ · ‖ in K
n. Then there exist ideals I, J ⊂ K

n such that Kn =
I ⊕ J , PF is bounded and QF satisfies (.), where P : Kn → I , Q : Kn → J are the natural
projections.

In this paper, generalizing the above result we consider the functional inequalities

∥∥F(
x ◦ g(y)) – F(x)F(y)

∥∥ ≤ φ(y), (.)∥∥F(
x ◦ g(y)) – F(x)F(y)

∥∥ ≤ φ(x) (.)

for all x, y ∈ G with any norm ‖ · ‖ in K
n (see [] for related results).

Throughout this paper we denote

L = {j : fj is bounded, j = , , . . . ,n},
K = {j : fj is unbounded, j = , , . . . ,n},

where F = (f, f, . . . , fn).

Theorem . Let F : G → K
n, F = (f, f, . . . , fn) satisfy (.) for all x, y ∈ G with any norm

‖ · ‖ in K
n. Assume that one of the following two conditions is fulfilled.

(i) g is an involution,
(ii) for each j ∈ K , there exists a sequence xn, n = , , , . . . (possibly depending on j) such

that

|fj(xn)|
 + φ(xn)

→ ∞ as n→ ∞. (.)

Then there exist ideals I, J ⊂ K
n such that Kn = I ⊕ J , PF is bounded and QF satisfies

(.), where P : Kn → I , Q : Kn → J are the natural projections. Moreover, Q(F ◦ g–) is
exponential provided g is bijective.

Remark The case (ii) of Theorem . includes Theorem ..

Theorem . Let F : G → K
n, F = (f, f, . . . , fn) satisfy (.) for all x, y ∈ G with any norm

‖ · ‖ in K
n. Assume that g is an involution. Then there exist ideals I, J ⊂ K

n such that
Kn = I ⊕ J , PF is bounded, QF satisfies (.), where P :Kn → I , Q :Kn → J are the natural
projections.
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If we replace ‖ · ‖ by the usual norm ‖ · ‖u on K
n defined by

∥∥(a,a, . . . ,an)∥∥u =
√

|a| + |a| + · · · + |an|,

we can estimate PF (in Theorem . and Theorem .) as follows.

Theorem . The following two statements are valid.
(a) If F :G →K

n, F = (f, f, . . . , fn) satisfies (.), then PF satisfies

∥∥PF(y)∥∥u ≤
√|L|


(
 +

√
 + φ(y)

)
(.)

for all y ∈G, where |L| denotes the number of the elements of L. In particular, if |L| =  and
G is a group, then PF satisfies either



(
 +

√
 – φ(y)

) ≤ ∥∥PF(y)∥∥u ≤ 

(
 +

√
 + φ(y)

)
(.)

for all y ∈ B := {y ∈ G : φ(y) < 
 }, or

∥∥PF(y)∥∥u ≤ 

(
 –

√
 – φ(y)

)
(.)

for all y ∈ B.
(b) If F :G →K

n, F = (f, f, . . . , fn) satisfies (.), then PF satisfies (.). In particular if G
is a group, g is surjective and |L| = , then PF satisfies (.) or (.).

2 Proofs
Let g :G →G and φ :G → [,∞) be given.We first consider the stability of the functional
equation

f
(
x ◦ g(y)) – f (x)f (y) =  (.)

in the class of functions f : G → K, i.e., we investigate both bounded and unbounded
functions f :G →K satisfying the functional inequalities

∣∣f (x ◦ g(y)) – f (x)f (y)
∣∣≤ φ(y), (.)∣∣f (x ◦ g(y)) – f (x)f (y)
∣∣ ≤ φ(x) (.)

for all x, y ∈ G.

Lemma . Assume that g = σ is an involution and f : G → K is an unbounded function
satisfying the inequality (.). Then f is exponential and satisfies (.). In particular, if G
is -divisible, then f has the form

f (x) =m
(
x ◦ σ (x)



)
(.)

for all x ∈ G, where m :G →K is an exponential function.
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Proof Choose a sequence xn ∈G, n = , , , . . . , such that |f (xn)| → ∞ as n→ ∞. Putting
x = xn, n = , , , . . . , in (.), dividing the result by |f (xn)| and letting n → ∞ we have

f (y) = lim
n→∞

f (xn ◦ σ (y))
f (xn)

(.)

for all y ∈G. Multiplying both sides of (.) by f (x) and using (.) and (.) we have

f (y)f (x) = lim
n→∞

f (xn ◦ σ (y))f (x)
f (xn)

= lim
n→∞

f (xn ◦ σ (y) ◦ σ (x))
f (xn)

= lim
n→∞

f (xn ◦ σ (y ◦ x))
f (xn)

= f (y ◦ x) (.)

for all x, y ∈G. Thus, f is an exponential function, say f =m. From (.) and (.) we have

∣∣f (x)∣∣∣∣f (σ (y)) – f (y)
∣∣ ≤ φ(y) (.)

for all x, y ∈ G. Since f is unbounded, from (.) we have

f
(
σ (y)

)
= f (y) (.)

for all y ∈ G. Replacing y by σ (y) in (.) and using (.) we get the equation (.). In
particular, if G is -divisible, then we can write

f (x) = f
(
x


◦ x


)
= f

(
x


◦ σ

(
x


))

= f
(
x


◦ σ (x)


)
=m

(
x ◦ σ (x)



)
(.)

for all x ∈G. This completes the proof. �

Lemma . Let f : G → K be an unbounded function satisfying (.). Assume that there
exists a sequence xn, n = , , , . . . , satisfying

lim
n→∞

|f (xn)|
 + φ(xn)

=∞. (.)

Then f satisfies (.).

Proof Note that (.) implies

lim
n→∞


|f (xn)| =  and lim

n→∞
φ(xn)
|f (xn)| = .

Putting y = xn, n = , , , . . . , in (.) and dividing the result by |f (xn)| we have
∣∣∣∣f (x) – f (x ◦ g(xn))

f (xn)

∣∣∣∣ ≤ φ(xn)
|f (xn)| (.)
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for all x ∈G, n = , , , . . . . Letting n→ ∞ in (.) we have

f (x) = lim
n→∞

f (x ◦ g(xn))
f (xn)

(.)

for all x ∈G. Multiplying both sides of (.) by f (y) and using (.) and (.) we have

f (x)f (y) = lim
n→∞

f (x ◦ g(xn))f (y)
f (xn)

= lim
n→∞

f (x ◦ g(xn) ◦ g(y))
f (xn)

= lim
n→∞

f (x ◦ g(y) ◦ g(xn))
f (xn)

= f
(
x ◦ g(y)) (.)

for all x, y ∈ G. This completes the proof. �

Lemma . Assume that g is bijective and f :G →K is an unbounded function satisfying
the inequality (.). Then f ◦ g– is an exponential function.

Proof Choose a sequence xn ∈G, n = , , , . . . , such that |f (xn)| → ∞ as n→ ∞. Putting
x = xn, n = , , , . . . , in (.), dividing the result by |f (xn)|, replacing y by g–(y) and letting
n→ ∞ we have

f
(
g–(y)

)
= lim

n→∞
f (xn ◦ y)
f (xn)

(.)

for all y ∈ G. Multiplying both sides of (.) by f (g–(x)) and using (.) and (.) we have

f
(
g–(y)

)
f
(
g–(x)

)
= lim

n→∞
f (xn ◦ y)f (g–(x))

f (xn)

= lim
n→∞

f (xn ◦ y ◦ x)
f (xn)

= f
(
g–(y ◦ x)) (.)

for all x, y ∈ G. Thus, f ◦ g– is an exponential function. This completes the proof. �

Proof of Theorem . Since every two norms in Kn are equivalent, from (.) there exists
α >  such that

∣∣fj(x ◦ g(y)) – fj(x)fj(y)
∣∣ ≤ ∥∥F(

x ◦ g(y)) – F(x)F(y)
∥∥
u

≤ α
∥∥F(

x ◦ g(y)) – F(x)F(y)
∥∥ ≤ αφ(y) (.)

for all x, y ∈ G and all j ∈ {, , . . . ,n}. For the case (i), by Lemma ., fj satisfies (.) for all
j ∈ K . For the case (ii), by Lemma ., fj satisfies (.) for all j ∈ K . Let I = {(a,a, . . . ,an) :
ai =  for i ∈ K}, J = {(a,a, . . . ,an) : ai =  for i ∈ L}. Then it follows that Kn = I ⊕ J , PF is
bounded and QF satisfies (.). If g is bijective, then by Lemma ., fj ◦ g– are exponential
function for all j ∈ K , which implies Q(F ◦ g–) is an exponential function. This completes
the proof. �

Lemma . Assume that g = σ is an involution and f :G → K is an unbounded function
satisfying the inequality (.). Then f satisfies (.). In particular, if G is -divisible, then f
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has the form

f (x) =m
(
x ◦ σ (x)



)
(.)

for all x ∈ G, where m :G →K is an exponential function.

Proof Choose a sequence yn ∈G, n = , , , . . . , such that |f (yn)| → ∞ as n→ ∞. Putting
y = yn, n = , , , . . . , in (.), dividing the result by |f (yn)| and letting n → ∞ we have

f (x) = lim
n→∞

f (x ◦ σ (yn))
f (yn)

. (.)

Putting x = e in (.) and replacing y by σ (y) in the result we have

∣∣f (y) – f (e)f
(
σ (y)

)∣∣ ≤ φ(e) (.)

for all x, y ∈G. Multiplying both sides of (.) by f (y) and using (.), (.), and (.) we
have

f (y)f (x) = lim
n→∞

f (y)f (x ◦ σ (yn))
f (yn)

= lim
n→∞

f (y ◦ σ (x ◦ σ (yn)))
f (yn)

= lim
n→∞

f (e)f (σ (y) ◦ x ◦ σ (yn))
f (yn)

= f (e)f
(
σ (y) ◦ x) (.)

for all x, y ∈ G. Putting x = e in (.) we have

f (y) = f
(
σ (y)

)
(.)

for all y ∈G. From (.) and (.) we have

∣∣f (y)∣∣∣∣ – f (e)
∣∣ ≤ φ(e) (.)

for all y ∈ G. Since f is unbounded, from (.) we have f (e) = . Thus, f satisfies (.). This
completes the proof. �

Proof of Theorem . From (.), as in (.) there exists α >  such that

∣∣fj(x ◦ g(y)) – fj(x)fj(y)
∣∣ ≤ αφ(x) (.)

for all x, y ∈ G, j ∈ {, , . . . ,n}. Applying Lemma . to (.) for each j ∈ K we find that fj
satisfies (.) for all j ∈ K , which implies that QF satisfies (.). This completes the proof.

�

Now, we investigate bounded functions satisfying each of (.) and (.) (see [, –]
for bounded solutions of an exponential functional equation).

http://www.advancesindifferenceequations.com/content/2014/1/158
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Lemma . Let f :G →K be a bounded function satisfying (.). Then f satisfies

∣∣f (y)∣∣ ≤ 

(
 +

√
 + φ(y)

)
(.)

for all y ∈G. In particular, G is a group and let B = {y ∈G : φ(y) < 
 }, then f satisfies either



(
 +

√
 – φ(y)

) ≤ ∣∣f (y)∣∣ ≤ 

(
 +

√
 + φ(y)

)
(.)

for all y ∈ B, or

∣∣f (y)∣∣ ≤ 

(
 –

√
 – φ(y)

)
(.)

for all y ∈ B.

Proof LetMf = supx∈G |f (x)|. Using the triangle inequality with (.) we have

∣∣f (x)f (y)∣∣ ≤ ∣∣f (x ◦ g(y))∣∣ + φ(y) ≤Mf + φ(y) (.)

for all x, y ∈ G. Taking the supremum of the left hand side of (.) with respect to x ∈ G
we getMf |f (y)| ≤Mf + φ(y) for all y ∈G. Thus, we have

Mf
(∣∣f (y)∣∣ – 

) ≤ φ(y) (.)

for all y ∈G. From (.) we have

∣∣f (y)∣∣(∣∣f (y)∣∣ – 
) ≤ φ(y) (.)

for all y ∈G. Solving the inequality (.) we get (.). Now, we assume thatG is a group.
Replacing x by x ◦ g(y)– in (.) and using the triangle inequality we have

∣∣f (x)∣∣ ≤ ∣∣f (x ◦ g(y)–)f (y)∣∣ + φ(y) ≤Mf
∣∣f (y)∣∣ + φ(y) (.)

for all x, y ∈ G. Taking the supremum of the left hand side of (.) with respect to x ∈ G
we getMf ≤Mf |f (y)| + φ(y) for all y ∈G. Thus, we have

Mf
(
 –

∣∣f (y)∣∣) ≤ φ(y) (.)

for all y ∈G. From (.) and (.) we have

∣∣f (y)∣∣∣∣ – ∣∣f (y)∣∣∣∣ ≤Mf
∣∣ – ∣∣f (y)∣∣∣∣ ≤ φ(y) (.)

for all y ∈G. For each fixed y ∈ B, solving the inequality (.) we get



(
 +

√
 – φ(y)

) ≤ ∣∣f (y)∣∣ ≤ 

(
 +

√
 + φ(y)

)
, (.)

http://www.advancesindifferenceequations.com/content/2014/1/158
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or

∣∣f (y)∣∣ ≤ 

(
 –

√
 – φ(y)

)
. (.)

Now, assume that there exist a bounded function f and y, y ∈ B such that

∣∣f (y)∣∣ ≤ 

(
 –

√
 – φ(y)

)
,

∣∣f (y)∣∣ ≥ 

(
 +

√
 – φ(y)

)
. (.)

Then from (.) we have

∣∣f (y)∣∣( – ∣∣f (y)∣∣) ≤Mf
(
 –

∣∣f (y)∣∣) ≤ φ(y). (.)

On the other hand, from (.) we have

∣∣f (y)∣∣( – ∣∣f (y)∣∣) ≥ 

(
 +

√
 – φ(y)

)(
 –



(
 –

√
 – φ(y)

))

>


(
 –

√
 – φ(y)

)(
 –



(
 –

√
 – φ(y)

))
= φ(y),

which contradicts (.). Thus, f satisfies (.) for all y ∈ B, or it satisfies (.) for all
y ∈ B. This completes the proof. �

Lemma . Let f : G → K be a bounded function satisfying (.). Then f satisfies (.)
for all y ∈ G. In particular, if G is a group and g is surjective, then f satisfies (.) for all
y ∈ B := {y ∈G : φ(y) < 

 }, or satisfies (.) for all y ∈ B.

Proof Using the triangle inequality with (.) we have

∣∣f (x)f (y)∣∣ ≤ ∣∣f (x ◦ g(y))∣∣ + φ(x)≤Mf + φ(x) (.)

for all x, y ∈ G. Taking the supremum of the left hand side of (.) with respect to y ∈ G
we getMf |f (x)| ≤Mf + φ(x) for all x ∈ G. Thus, we have

Mf
(∣∣f (x)∣∣ – 

) ≤ φ(x) (.)

for all x ∈G. From (.) we get (.) as in the proof of Lemma .. We assume that G is
a group. For given x, z ∈ G, choosing w ∈ G such that g(w) = x– ◦ z, putting y = w in (.)
and using the triangle inequality we have

∣∣f (z)∣∣ ≤ ∣∣f (x)f (w)∣∣ + φ(x)≤ ∣∣f (x)∣∣Mf + φ(x) (.)

for all x, z ∈ G. Taking the supremum of the left hand side of (.) we getMf ≤Mf |f (x)|+
φ(x) for all x ∈G. Thus, we have

Mf
(
 –

∣∣f (x)∣∣) ≤ φ(x) (.)

for all x ∈ G. Now, the remaining parts of the proof are the same as those of Lemma ..
�
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Proof of Theorem . From Lemma . and Lemma ., for each j ∈ L we have

∣∣fj(y)∣∣ ≤ 

(
 +

√
 + φ(y)

)
(.)

for all y ∈G. Thus, from (.) we have

∥∥PF(y)∥∥u =
√∑

j∈L

∣∣fj(y)∣∣ ≤
√|L|


(
 +

√
 + φ(y)

)

for all y ∈G, which gives (.). Now, if |L| = , say L = {j} we have
∥∥PF(y)∥∥u =

∣∣fj (y)∣∣
for all y ∈ G. Thus, the inequalities (.) and (.) follow immediately from (.) and
(.). This completes the proof. �
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