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integral inequalities. The analysis relies on the notions of q-derivative and q-integral
on finite intervals introduced by the authors in (Tariboon and Ntouyas in Adv. Differ.
Equ. 2013:282, 2013).
MSC: 34A08; 26D10; 26D15

Keywords: q-integral inequalities; Hölder’s inequality; Hermite-Hadamard’s
inequality; Ostrowski’s inequality; Grüss-Čebyšev integral inequality

1 Introduction
The integral inequalities play a fundamental role in the theory of differential equations.
The study of the fractional q-integral inequalities is also of great importance. Integral in-
equalities have been studied extensively by several researchers either in classical analysis
or in the quantum one; see [–] and references cited therein.
The purpose of this paper is to find q-calculus analogs of some classical integral in-

equalities. In particular, we will find q-generalizations of the Hölder, Hermite-Hadamard,
trapezoid, Ostrowski, Cauchy-Bunyakovsky-Schwarz, Grüss, and Grüss-Čebyšev integral
inequalities.
The paper is organized as follows: In Section , we shall introduce some definitions and

auxiliary results which will help us to prove our main results. In Section , we establish
our main results.
To the best of our knowledge, this paper is the first one that focuses on quantum integral

inequalities on finite intervals.

2 Preliminaries and auxiliary results
Let J := [a,b] ⊂ R be an interval and  < q <  be a constant. We define q-derivative of a
function f : J →R at a point x ∈ J on [a,b] as follows.

Definition . Assume f : J → R is a continuous function and let x ∈ J . Then the expres-
sion

aDqf (x) =
f (x) – f (qx + ( – q)a)

( – q)(x – a)
, x �= a, aDqf (a) = lim

x→a a
Dqf (x), (.)

is called the q-derivative on J of function f at x.
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We say that f is q-differentiable on J provided aDqf (x) exists for all x ∈ J . Note that if
a =  in (.), then Dqf = Dqf , where Dq is the well-known q-derivative of the function
f (x) defined by

Dqf (x) =
f (x) – f (qx)
( – q)x

. (.)

For more details, see [].
In addition, we should define the higher q-derivative of functions on J .

Definition . Let f : J → R is a continuous function. We define the second-order
q-derivative on interval J , which denoted as aD

qf , provided aDqf is q-differentiable on
J with aD

qf = aDq(aDqf ) : J → R. Similarly, we define higher order q-derivative on J ,
aDn

q : Jk →R.

Example . Let x ∈ [a,b] and  < q < . Then, for x �= a, we have

aDqx =
x – (qx + ( – q)a)

( – q)(x – a)

=
( + q)x – qax – ( – q)a

x – a
= ( + q)x + ( – q)a.

For x = a, we have limx→a(aDqx) = a.

Lemma . [] Let α ∈ R, then we have

aDq(x – a)α =
(
 – qα

 – q

)
(x – a)α–. (.)

The q-integral on interval J is defined as follows.

Definition . Assume f : J → R is a continuous function. Then the q-integral on J is
defined by

∫ x

a
f (t) adqt = ( – q)(x – a)

∞∑
n=

qnf
(
qnx +

(
 – qn

)
a
)

(.)

for x ∈ J . Moreover, if c ∈ (a,x) then the definite q-integral on J is defined by

∫ x

c
f (t) adqt =

∫ x

a
f (t) adqt –

∫ c

a
f (t) adqt

= ( – q)(x – a)
∞∑
n=

qnf
(
qnx +

(
 – qn

)
a
)

– ( – q)(c – a)
∞∑
n=

qnf
(
qnc +

(
 – qn

)
a
)
.

Note that if a = , then (.) reduces to the classical q-integral of a function f (x), defined
by

∫ x
 f (t) dqt = ( – q)x

∑∞
n= qnf (qnx) for x ∈ [,∞). For more details, see [].
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Example . Let f (x) = x for x ∈ J , then we have

∫ x

a
f (t) adqt =

∫ x

a
t adqt

= ( – q)(x – a)
∞∑
n=

qn
(
qnx +

(
 – qn

)
a
)

=
(x – a)(x + qa)

 + q
.

Example . Let a constant c ∈ J , then we have

∫ b

c
(t – c) adqt =

∫ b

a
(t – c) adqt –

∫ c

a
(t – c) adqt

=
[
(t – a)(t + qa)

 + q
– ct

]b

a
–

[
(t – a)(t + qa)

 + q
– ct

]c

a

=
b – ( + q)bc + qc

 + q
–
a( – q)(b – c)

 + q
. (.)

Note that if q → , then (.) reduces to the classical integration

∫ b

c
(t – c)dt =

(b – c)


.

Theorem . [] Let f : J →R be a continuous function. Then we have:
(i) aDq

∫ x
a f (t) adqt = f (x);

(ii)
∫ x
c aDqf (t) adqt = f (x) – f (c) for c ∈ (a,x).

Theorem . [] Assume f , g : J →R are continuous functions, α ∈R. Then, for x ∈ J ,
(i)

∫ x
a [f (t) + g(t)] adqt =

∫ x
a f (t) adqt +

∫ x
a g(t) adqt;

(ii)
∫ x
a (αf )(t) adqt = α

∫ x
a f (t) adqt;

(iii)
∫ x
c f (t)aDqg(t) adqt = (fg)|xc –

∫ x
c g(qt + ( – q)a)aDqf (t) adqt for c ∈ (a,x).

For the basic properties of q-derivative and q-integral on finite intervals, we refer to [].

Lemma . For α ∈ R \ {–}, the following formula holds:

∫ x

a
(t – a)α adqt =

(
 – q

 – qα+

)
(x – a)α+. (.)

Proof Let f (x) = (x – a)α+, x ∈ J and α ∈R \ {–}, then, by Definition ., we have

aDqf (x) =
(x – a)α+ – (qx + ( – q)a – a)α+

( – q)(x – a)

=
(x – a)α+ – qα+(x – a)α+

( – q)(x – a)

=
(
 – qα+

 – q

)
(x – a)α . (.)

Applying q-integral on J for (.), we obtain (.) as required. �
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Example . Let x ∈ [a,b] and  < q < . Then, from q-integrating by parts and Lem-
mas . and ., we have

∫ x

a
t(t – a) adqt =


 + q

∫ x

a
taDq(t – a) adqt

=


 + q

[
t(t – a)|xa –

∫ x

a

(
qt + ( – q)a – a

)
adqt

]

=


 + q

[
x(x – a) – q

∫ x

a
(t – a) adqt

]

=


 + q

[
x(x – a) –

q(x – a)

 + q + q

]

=
(x – a)

 + q

[
x( + q) + qa
 + q + q

]
.

3 Quantum integral inequalities on finite intervals
In this section, some of the most important integral inequalities of analysis are extended
to quantum calculus. We start with the q-Hölder inequality on the interval J = [a,b].

Theorem . Let x ∈ J ,  < q < , p,p >  such that 
p
+ 

p
= . Then we have

∫ x

a

∣∣f (t)∣∣∣∣g(t)∣∣ adqt ≤
(∫ x

a

∣∣f (t)∣∣p adqt
) 

p
(∫ x

a

∣∣g(t)∣∣p adqt
) 

p
. (.)

Proof From Definition . and the discrete Hölder inequality, we have

∫ x

a

∣∣f (t)∣∣∣∣g(t)∣∣ adqt
= ( – q)(x – a)

∞∑
n=

qn
∣∣(qnx + (

 – qn
)
a
)∣∣∣∣g(qnx + (

 – qn
)
a
)∣∣

= ( – q)(x – a)
∞∑
n=

(∣∣f (qnx + (
 – qn

)
a
)∣∣(qn) 

p
)

× (∣∣g(qnx + (
 – qn

)
a
)∣∣(qn) 

p
)

≤
(
( – q)(x – a)

∞∑
n=

∣∣f (qnx + (
 – qn

)
a
)∣∣pqn

) 
p

×
(
( – q)(x – a)

∞∑
n=

∣∣g(qnx + (
 – qn

)
a
)∣∣pqn

) 
p

=
(∫ x

a

∣∣f (t)∣∣p adqt
) 

p
(∫ x

a

∣∣g(t)∣∣p adqt
) 

p
.

Therefore, inequality (.) is valid. �

Remark . If a = , then inequality (.) reduces to the classical q-Hölder inequality in
[, p.].
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Next, we present the q-Hermite-Hadamard integral inequality on [a,b].

Theorem . Let f : J → R be a convex continuous function on J and  < q < . Then we
have

f
(
a + b


)
≤ 

b – a

∫ b

a
f (t) adqt ≤ qf (a) + f (b)

 + q
. (.)

Proof The convexity of f on [a,b] means that

f
(
( – t)a + tb

) ≤ ( – t)f (a) + tf (b) (.)

for all t ∈ [, ].
Taking q-integration for (.) over t on [, ], we have

∫ 


f
(
( – t)a + tb

)
dqt ≤ f (a)

∫ 


( – t) dqt + f (b)

∫ 


t dqt. (.)

From Example ., we have

∫ 


t dqt =


 + q

and
∫ 


( – t) dqt =

q
 + q

.

Definition of q-integration on J leads to

∫ 


f
(
( – t)a + tb

)
dqt = ( – q)

∞∑
n=

qnf
((
 – qn

)
a + qnb

)

=
( – q)(b – a)

(b – a)

∞∑
n=

qnf
((
 – qn

)
a + qnb

)

=


b – a

∫ b

a
f (t) adqt,

which gives the second part of (.) by using (.).
To prove the first part of (.), we use the convex property of f as follows:



[
f
(
( – t)a + tb

)
+ f

(
ta + ( – t)b

)] ≥ f
(
( – t)a + tb + ta + ( – t)b



)

= f
(
a + b


)
.

Again q-integrating to the above inequality over t on [, ] and changing variables, we
get

f
(
a + b


)
≤ 



[∫ 


f
(
( – t)a + tb

)
dqt +

∫ 


f
(
ta + ( – t)b

)
dqt

]

=


b – a

∫ b

a
f (t) adqt.

The proof is completed. �
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Remark . If q → , then inequality (.) reduces to the Hermite-Hadamard integral
inequality

f
(
a + b


)
≤ 

b – a

∫ b

a
f (t)dt ≤ f (a) + f (b)


.

See also [, ].

Next comes the q-trapezoid inequality on the interval J = [a,b].We use the notation ‖ ·‖
for the usual supremum norm on [a,b].

Theorem . Let f : J → R be a q-differentiable function with aDqf continuous on [a,b]
and  < q < . Then we have

∣∣∣∣
∫ b

a
f
(
qt + ( – q)a

)
adqt – (b – a)

(
f (b) + f (a)



)∣∣∣∣ ≤ (b – a)

( + q)
‖aDqf ‖. (.)

Proof The q-integration by parts on interval J gives

∫ b

a

(
t –

a + b


)
aDqf (t) adqt = (b – a)

(
f (b) + f (a)



)

–
∫ b

a
f
(
qt + ( – q)a

)
adqt. (.)

Using the properties of modulus for (.), we obtain

∣∣∣∣
∫ b

a
f
(
qt + ( – q)a

)
adqt – (b – a)

(
f (b) + f (a)



)∣∣∣∣
≤

∫ b

a

∣∣∣∣t – a + b


∣∣∣∣∣∣aDqf (t)
∣∣ adqt

≤ ‖aDqf ‖
∫ b

a

∣∣∣∣t – a + b


∣∣∣∣ adqt. (.)

Applying Examples . and ., we have

∫ b

a

∣∣∣∣t – a + b


∣∣∣∣ adqt =
∫ a+b



a

(
a + b


– t
)

adqt +
∫ b

a+b


(
t –

a + b


)
adqt

=
(
a + b


)(
b – a


)
–

(
b – a


)(
( + q)a + b

 + q

)

+
b – b( + q)((a + b)/) + q((a + b)/)

 + q

– a
(
 – q


)(
b – a
 + q

)

=
(b – a)

( + q)
. (.)

Combining (.) and (.), we obtain inequality (.) as required. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/121
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Remark . If q → , then inequality (.) reduces to thewell-known trapezoid inequality
as

∣∣∣∣
∫ b

a
f (t)dt – (b – a)

(
f (b) + f (a)



)∣∣∣∣ ≤ (b – a)


∥∥f ′∥∥.

See also [, ].

The next theorem deals with the q-trapezoid inequality with second-order q-derivative
on [a,b].

Theorem . Let f : J → R be a twice q-differentiable function with aD
qf continuous on

[a,b] and  < q < . Then we have

∣∣∣∣
∫ b

a
f
(
qt +

(
 – q

)
a
)
adqt –

(b – a)
 + q

(
qf

(
qb + ( – q)a

)
+ f (a)

)∣∣∣∣
≤ q(b – a)

( + q)( + q + q)
∥∥aD

qf
∥∥. (.)

Proof The q-integration by parts on interval J two-times and taking into account Exam-
ple ., we have

∫ b

a
(t – a)(b – t)aD

qf (t) adqt

= –
∫ b

a

(
qa + b – ( + q)t

)
aDqf

(
qt + ( – q)a

)
adqt

=
[
–
(
qa + b – ( + q)t

)
f
(
qt + ( – q)a

)]b
a

+
∫ b

a
f
(
qt +

(
 – q

)
a
)
aDq

(
qa + b – ( + q)t

)
adqt

= q(b – a)f
(
qb + ( – q)a

)
+ (b – a)f (a)

– ( + q)
∫ b

a
f
(
qt +

(
 – q

)
a
)
adqt.

Therefore,

∣∣∣∣
∫ b

a
f
(
qt +

(
 – q

)
a
)
adqt –

(b – a)
 + q

(
qf

(
qb + ( – q)a

)
+ f (a)

)∣∣∣∣
≤ 

 + q

∫ b

a
(t – a)(b – t)

∣∣aD
qf (t)

∣∣ adqt
≤ ‖aD

qf ‖
 + q

∫ b

a
(t – a)(b – t) adqt. (.)

Since

∫ b

a
(t – a)(b – t) adqt = b

∫ b

a
(t – a) adqt –

∫ b

a
t(t – a) adqt,

http://www.journalofinequalitiesandapplications.com/content/2014/1/121
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from Lemma . and Example ., we have
∫ b

a
(t – a)(b – t) adqt =

b
 + q

(b – a) –
(b – a)

 + q

[
b( + q) + qa
 + q + q

]

=
q(b – a)

( + q)( + q + q)
. (.)

Combining (.) and (.), we deduce that inequality (.) is valid. �

Remark . If q → , then inequality (.) reduces to the trapezoid inequality in terms of
the second derivative as∣∣∣∣

∫ b

a
f (t)dt –

(b – a)


(
f (b) + f (a)

)∣∣∣∣ ≤ (b – a)


∥∥f ′′∥∥.

See also [, ].

In the following theorem we establish the q-Ostrowski integral inequality on interval J .

Theorem . Let f : J → R be a q-differentiable function with aDqf continuous on [a,b]
and  < q < . Then we have∣∣∣∣f (x) – 

b – a

∫ b

a
f (t) adqt

∣∣∣∣
≤ ‖aDqf ‖(b – a)

[
q
 + q

(x – (q–)a+(+q)b
q

b – a

)

+
(–q + q – )

q( + q)

]
. (.)

Proof Applying the Lagrangian mean value theorem [], for x, t ∈ J , it follows that
∣∣∣∣f (x) – 

b – a

∫ b

a
f (t) adqt

∣∣∣∣ =
∣∣∣∣ 
b – a

∫ b

a

(
f (x) – f (t)

)
adqt

∣∣∣∣
≤ 

b – a

∫ b

a

∣∣f (x) – f (t)
∣∣ adqt

≤ ‖aDqf ‖
b – a

∫ b

a
|x – t| adqt

=
‖aDqf ‖
b – a

[∫ x

a
(x – t) adqt +

∫ b

x
(t – x) adqt

]
. (.)

Taking into account Examples . and ., for x, t ∈ J , we obtain
∫ x

a
(x – t) adqt +

∫ b

x
(t – x) adqt

=
[
qx – qax + qa

 + q

]
+

[
b – ( + q)bx + qx

 + q
–
a( – q)(b – x)

 + q

]

=
q
 + q

[
x –

(
(q – )a + ( + q)b

q

)
x
]
+
qa + b – ( – q)ab

 + q

=
q
 + q

(
x –

(q – )a + ( + q)b
q

)

+
(–q + q – )

( + q)q
(b – a). (.)

The inequality (.) are obtained by combining (.) and (.). �
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Remark . If q → , then inequality (.) reduces to the classical Ostrowski integral
inequality as

∣∣∣∣f (x) – 
b – a

∫ b

a
f (t)dt

∣∣∣∣ ≤
[


+

(x – a+b


b – a

)]
(b – a)

∥∥f ′∥∥.
See also [, ].

Let us prove the q-Korkine identity on interval J .

Lemma . Let f , g : J →R be continuous functions on J and  < q < . Then we have




∫ b

a

∫ b

a

(
f (x) – f (y)

)(
g(x) – g(y)

)
adqx adqy

= (b – a)
∫ b

a
f (x)g(x) adqx –

(∫ b

a
f (x) adqx

)(∫ b

a
g(x) adqx

)
. (.)

Proof From Definition ., we have

∫ b

a

∫ b

a

(
f (x) – f (y)

)(
g(x) – g(y)

)
adqx adqy

=
∫ b

a

∫ b

a

[
f (x)g(x) – f (x)g(y) – f (y)g(x) + f (y)g(y)

]
adqx adqy

= ( – q)(b – a)
∞∑
n=

qnf
(
qnb +

(
 – qn

)
a
)
g
(
qnb +

(
 – qn

)
a
)
(b – a)

– ( – q)(b – a)
( ∞∑

n=

qnf
(
qnb +

(
 – qn

)
a
))( ∞∑

n=

qng
(
qnb +

(
 – qn

)
a
))

– ( – q)(b – a)
( ∞∑

n=

qng
(
qnb +

(
 – qn

)
a
))( ∞∑

n=

qnf
(
qnb +

(
 – qn

)
a
))

+ ( – q)(b – a)
∞∑
n=

qnf
(
qnb +

(
 – qn

)
a
)
g
(
qnb +

(
 – qn

)
a
)
(b – a)

= (b – a)
∫ b

a
f (x)g(x) adqx – 

(∫ b

a
f (x) adqx

)(∫ b

a
g(x) adqx

)
,

from which one deduces (.). �

Now, we will prove the q-Cauchy-Bunyakovsky-Schwarz integral inequality for double
integrals on [a,b].

Lemma . Let f , g : J → R be continuous functions on J and  < q < . Then we have

∣∣∣∣
∫ b

a

∫ b

a
f (x, y)g(x, y) adqx adqy

∣∣∣∣
≤

[∫ b

a

∫ b

a
f (x, y) adqx adqy

] 

[∫ b

a

∫ b

a
g(x, y) adqx adqy

] 

. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/121
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Proof According to Definition ., we have the double q-integral on J as

∫ b

a

∫ b

a
f (x, y) adqx adqy

=
∫ b

a

(
( – q)(b – a)

∞∑
n=

qnf
(
qnb +

(
 – qn

)
a, y

))
adqy

= ( – q)(b – a)
∞∑
n=

∞∑
i=

qn+if
(
qnb +

(
 – qn

)
a,qib +

(
 – qi

)
a
)
.

Applying the discrete Cauchy-Schwarz inequality, we have

(∫ b

a

∫ b

a
f (x, y)g(x, y) adqx adqy

)

=

(
( – q)(b – a)

∞∑
n=

∞∑
i=

qn+if
(
qnb +

(
 – qn

)
a,qib +

(
 – qi

)
a
)

× g
(
qnb +

(
 – qn

)
a,qib +

(
 – qi

)
a
))

≤
(
( – q)(b – a)

∞∑
n=

∞∑
i=

qn+if 
(
qnb +

(
 – qn

)
a,qib +

(
 – qi

)
a
))

×
(
( – q)(b – a)

∞∑
n=

∞∑
i=

qn+ig
(
qnb +

(
 – qn

)
a,qib +

(
 – qi

)
a
))

=
(∫ b

a

∫ b

a
f (x, y) adqx adqy

)(∫ b

a

∫ b

a
g(x, y) adqx adqy

)
.

Therefore, inequality (.) is valid. �

Remark . If q → , then Lemmas . and . are reduced to the usual Korkine identity
and Cauchy-Bunyakovsky-Schwarz integral inequality for double integrals, respectively.
For more details, see [] and [].

We define the q-Čebyšev functional T(f , g) on interval J by

T(f , g) =


b – a

∫ b

a
f (x)g(x) adqx

–
(


b – a

∫ b

a
f (x) adqx

)(


b – a

∫ b

a
g(x) adqx

)
. (.)

By using Lemmas . and . coupled with (.), we obtain the q-Grüss integral inequal-
ity on interval [a,b]. The proof of the following theorem is similar to the classical Grüss
integral inequality; see [, ]. Therefore, we omit it.

Theorem . Let f , g : J →R be continuous functions on [a,b] and satisfy

φ ≤ f (x)≤ �, γ ≤ g(x)≤ � for all x ∈ [a,b],φ,�,γ ,� ∈R. (.)
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Then we have the inequality

∣∣∣∣ 
b – a

∫ b

a
f (x)g(x) adqx –

(


b – a

∫ b

a
f (x) adqx

)(


b – a

∫ b

a
g(x) adqx

)∣∣∣∣
≤ 


(� – φ)(� – γ ). (.)

Remark . The inequality (.) is similar to q-Grüss integral inequality in []. How-
ever, the results from [] obtained by using the restricted definite q-integral which is a
finite sum as a special type of the definite q-integral.

Now, we are going to prove the q-Grüss-Čebyšev integral inequality on interval [a,b].

Theorem . Let f , g : J → R be L,L-Lipschitzian continuous functions on [a,b], so that

∣∣f (x) – f (y)
∣∣ ≤ L|x – y|, ∣∣g(x) – g(y)

∣∣ ≤ L|x – y| (.)

for all x, y ∈ [a,b]. Then we have the inequality

∣∣∣∣ 
b – a

∫ b

a
f (x)g(x) adqx –

(


b – a

∫ b

a
f (x) adqx

)(


b – a

∫ b

a
g(x) adqx

)∣∣∣∣
≤ qLL

( + q + q)( + q)
(b – a). (.)

Proof We recall the q-Korkine identity on interval J as

(b – a)
∫ b

a
f (x)g(x) adqx –

(∫ b

a
f (x) adqx

)(∫ b

a
g(x) adqx

)

=



∫ b

a

∫ b

a

(
f (x) – f (y)

)(
g(x) – g(y)

)
adqx adqy. (.)

From (.), we get

∣∣(f (x) – f (y)
)(
g(x) – g(y)

)∣∣ ≤ LL(x – y) (.)

for all x, y ∈ [a,b].
The double q-integration for (.) on J × J leads to

∫ b

a

∫ b

a

∣∣(f (x) – f (y)
)(
g(x) – g(y)

)∣∣ adqx adqy

≤ LL
∫ b

a

∫ b

a
(x – y) adqx adqy

= LL
∫ b

a

∫ b

a

(
x – xy + y

)
adqx adqy

= LL
[
(b – a)

∫ b

a
x adqx – 

(∫ b

a
x adqx

)]
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/121
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Indeed,

∫ b

a
x adqx =

∫ b

a
(x – a + a) adqx

=
∫ b

a
(x – a) adqx + a

∫ b

a
(x – a) adqx + a

∫ b

a
adqx

=
(b – a)

 + q + q
+ a

(b – a)

 + q
+ a(b – a)

=
(b – a)(( + q)b + qab + q( + q)a)

( + q)( + q + q)
. (.)

Note that if q → , then (.) reduces to the integral

∫ b

a
x dx =

b – a


.

By direct computation, we have

(b – a)
∫ b

a
x adqx –

(∫ b

a
x adqx

)

=
q(b – a)

( + q + q)( + q)
. (.)

Thus, from (.) and (.), we obtain

∫ b

a

∫ b

a

∣∣(f (x) – f (y)
)(
g(x) – g(y)

)∣∣ adqx adqy≤ q(b – a)

( + q + q)( + q)
LL.

Using (.), we obtain (.). �

Remark . If q → , then inequality (.) reduces to the classical Grüss-Čebyšev inte-
gral inequality as

∣∣∣∣ 
b – a

∫ b

a
f (x)g(x)dx –

(


b – a

∫ b

a
f (x)dx

)(


b – a

∫ b

a
g(x)dx

)∣∣∣∣
≤ LL


(b – a).

See also [, ].
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