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RECONSTRUCTING THE LIFETIME MOVEMENTS OF 
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SOUTHERN ENGLAND 

 

 

 

 

Abstract: A new procedure is described in which combined lead and strontium isotope 

analysis of archaeological human dental tissues can be used to comment on the life 

time movements of individuals. A case study of four Neolithic burials, an adult 

female and three juveniles, from a shared burial pit excavated at Monkton-up-

Wimbourne, Dorset is presented. It is demonstrated that the adult's place of origin was 

at least 80km to the north-west in the area of the Mendips. It is also shown that all 

three juveniles moved over significant distances during their lives.  

 

Keywords: Lead isotopes, strontium isotopes, human teeth, enamel, dentine, 

Neolithic, isotope dilution, TIMS, PIMMS. 
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INTRODUCTION 

The possibility of reconstructing patterns of residency and mobility among prehistoric 

populations from the scientific analysis of their skeletal remains arises from the 

systematic variation within nature, and between localities, of stable and radiogenic 

isotopes (Faure 1986). These become incorporated in bone and teeth from the diet. 

Isotopes of strontium have been used in this way for some time (Ericson 1985), but 

interest is now growing in the possibility of supplementing strontium isotope data 

with additional information from lead in particular (Budd et al. 1997a, Budd et al. 

1999). The useful application of all three measurements relies on the integrity of the 

trace element signal preserved within the tissue of interest and the ability to relate it to 

a particular period of life of the individual. This paper demonstrates the viability of 

the approach in a case study concerning the lifetime movements of four Neolithic 

individuals, an adult female and three juveniles, recently recovered from the 

excavation of a henge-type monument in southern England. 

 The burials examined date to the mid to late fourth millennium BC, towards 

the end of what is generally considered the 'earlier' Neolithic in England. A case study 

from this period is particularly topical given current interest in the nature of 

settlement and residential mobility associated with early agriculture and 

domestication. After a long tradition of archaeological thought in which the arrival of 

Neolithic cultural assemblage was considered synonymous with the establishment of 

permanent settlement and adoption of a sedentary life style, recent years have seen a 

significant revision of opinion. An absence of permanent settlement remains and 

evidence for broad-based subsistence strategies has promoted a consensus in which 

the earlier Neolithic is seen as having strong continuity with the preceding Mesolithic 

in terms of residential mobility. Whittle (1999) recently described the "transition from 

a mobile Mesolithic to a still mobile Neolithic". Thomas (1999, 29) highlights lithic 

and faunal evidence for a high degree of mobility in the Neolithic of lowland southern 

England, but also stresses the difficulty of assessing changes in subsistence and 

residency within the Neolithic (Thomas 1999, 223). The direct scientific approach 

outlined here offers the possibility to do just that and the results are an important 

indication of what could be achieved with more widespread application. 
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STRONTIUM AND LEAD ISOTOPE SYSTEMATICS IN RELATION TO HUMAN SKELETAL 

TISSUE 

There has been considerable interest in strontium in archaeological skeletal tissue as a 

potential indicator of residence patterns. Strontium has four naturally occurring stable 

isotopes. One, 
87

Sr, is produced by the radioactive decay of 
87

Rb, which, like 

strontium, occurs naturally in many rocks and minerals. The abundance of 
87

Sr is 

therefore dependent on both the Rb content and age of the rock or mineral in which it 

is found. Measured in comparison with its non-radiogenic sister 
86

Sr, we find that 

87
Sr/

86
Sr ratios can vary from as little as ~0.703 for basic volcanic rocks of recent age 

to ~0.740 in continental granites for instance (Åberg 1995). Although these variations 

may appear to be small, modern mass spectrometers can routinely measure 
87

Sr/
86

Sr 

ratios to a precision of ±0.00002 (Sealy, Armstrong, and Schrire 1995).  

Strontium is taken up by biological systems, but the relative proportions of its 

isotopes remains unaltered by such processes, so that soil, plant and animal strontium 

isotope ratios are all related to (although not necessarily exactly the same as) those of 

the underlying geology and local hydrology (Hurst 1981, Sillen et al. 1998). Since 

strontium isotope ratios vary in a systematic way between rock units of different ages 

and lithologies (Faure 1986:183-199), these differences are reflected in local soils and 

therefore in plants growing on them and the animals eating the vegetation. It is this 

which links the skeleton to the locality and provides the basis for the reconstruction of 

residency patterns.  

Some strontium from the diet substitutes for calcium in the inorganic 

(hydroxyapatite) mineral lattice of bones and teeth, typically resulting in hard tissue 

strontium contents of a few hundred parts per million (Underwood 1977:445). As the 

isotopic composition of dietary strontium incorporated in this way is unaltered by the 

process of transport and bioaccumulation, the isotope ratios of strontium found in 

hard tissues after death reflect a time averaged signal representative of diet over some 

period of life, depending on the tissue under consideration. The different rates of 

strontium uptake and turnover in various skeletal components offer the possibility to 

compare the isotopic composition of different tissues in order to comment on changes 

in diet, and by implication residence, over time (Ericson 1985). In particular, the 

enamel of permanent teeth, thought to be representative of childhood diet, has been 

compared with bone, considered representative of the last 6-10 years of life. This 

methodology has been employed in life history reconstructions for archaeological 
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burials in South Africa (Sealy, Armstrong, and Schrire 1995, Sealy et al. 1991), the 

south-west United States (Price et al. 1994), and southern Germany (Price, Grupe, and 

Schröter 1994, Grupe et al. 1997). 

The use of lead isotopes to enhance and extend the strontium-based study of 

residency and mobility is an important new development highlighted in recent pilot 

studies (Barreiro et al. 1997, Budd et al. 1997a, Budd et al. 1997b, Budd et al. 1998, 

Budd et al. 1999). Combined lead and strontium isotope measurements have also been 

used to source modern rhinoceros horn to specific National Parks in southern Africa 

(Hall-Martin et al. 1991). In many respects the principles are similar to those 

underlying the strontium technique. In pre-industrial societies it is highly likely that 

lead incorporated into skeletal material was derived mainly, or solely, from the diet. 

The isotopic ratios of such dietary lead primarily reflect those of the soil and therefore 

of the underlying geology. Lead isotope ratios vary in a systematic manner in the 

geosphere as a result of radiogenic isotope evolution and therefore as a function of the 

age, parent isotope abundance, and subsequent remodelling of crustal material.  

Bone is known to accumulate lead from the blood supply, although the 

mechanism is not properly understood. Recent studies of aqueous lead sorption by 

hydroxyapatite (Lower et al. 1998) cast doubt on earlier proposals that lead substitutes 

for calcium in a manner analogous to strontium. Whatever the method of 

incorporation, lead turnover in bone is variable depending on tissue remodelling rates, 

density and function. Rates of bone lead turnover have been estimated at  about 1% 

per year for cortical bone (Rabinowitz et al. 1991) and dentine (Gulson, Jameson, and 

Gillings 1997) and rather faster in trabecular bone. Bone lead is therefore considered 

to represent a time-averaged exposure over a period of years, depending on the 

specific tissue selected.  

 There has been considerable interest in the lead content of human dental tissue 

in the reconstruction of exposure histories for modern individuals. Teeth are 

particularly advantageous in this respect in that different dental tissues preserve lead 

ingested at particular stages of life. Deciduous tooth formation is instigated in the 

developing foetus within 14-19 weeks of fertilisation and enamel mineralisation is 

complete within a year of birth. Once formed, the enamel is not remodelled so that its 

lead content is considered a reliable indicator of in utero or neonatal exposure 

(Gulson 1996). In contrast, secondary dentine, laid down within the pulp cavity after 

tooth formation, is thought to accumulate lead from the blood supply (Shapiro, 
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Needleman, and Tuncay 1972) and has been considered representative of post-natal 

exposure (Gulson and Wilson 1994). 

Although development of the permanent first molar is initiated in utero, most 

of the permanent dentition is formed in childhood from 3-4 months after birth until 

about 12 or more years of age. As with deciduous teeth, permanent enamel is thought 

to preserve lead ingested only during the period of formation whereas dentine is 

known to accumulate blood lead and, in adults, can be considered to represent a time-

averaged signal accumulated prior to tooth loss or death. These differences between 

the lead retention characteristics of different human dental tissues make teeth 

potential archives of both the recent and more remote exposure of single individuals. 

 

POST-MORTEM DIAGENESIS OF ARCHAEOLOGICAL BONE AND TEETH 

The success of the isotope biogeochemistry approach to the reconstruction of 

residency and migration rests on the presumption that the elements of interest 

preserved within archaeological tissue are those incorporated in vivo, and that these 

are, at least substantially, unaffected by subsequent contamination. Strontium 

diagenesis has been addressed by Sillen (Sillen 1986, Sillen and LeGeros 1991) and 

Sealy et al. (1991) who have developed a decontamination procedure based on a 

suggested difference in solubility between biogenetic and diagenetic bone apatite. As 

the chemical composition of biogenetic mineral is closely constrained, it is considered 

to have a more fixed (and usually lower) solubility than diagenetic minerals, which 

may incorporate various ions from the burial environment. A pre-treatment, 'solubility 

profiling', involving repeated washing of the sample in a dilute acid solution is 

considered to remove the diagenetic strontium component. More recently doubt has 

been cast as to the reliability of such pre-treatments for the recovery of biogenic 

strontium from archaeological bone and dentine, although enamel appears to be a 

reliable reservoir of in-vivo strontium (Budd et al. 2000).  

 Caution is also needed in the consideration of lead uptake from the burial 

environment. Previous studies comparing modern and pre-industrial bone lead 

burdens (Grandjean 1988, Hisanaga et al. 1988, Patterson et al. 1991) appeared to 

show that modern bones have considerably elevated lead compared with their 

archaeological correlates, arguing for a lack of serious contamination of the latter. 

Studies of Roman individuals, on the other hand, appeared to indicate very high lead 

burdens (Mackie, Townshend, and Waldron 1975, Waldron, Mackie, and Townshend 
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1976). It is now understood that measured levels in bone were considerably elevated 

as a consequence of diagenetic accumulation  (Waldron 1981). As with strontium, it 

appears that dental enamel is the most resistant tissue with respect to post-mortem 

lead diagenesis and this receives confirmation from recent pilot studies comparing the 

lead content of archaeological and modern human teeth (Barreiro et al. 1997, Budd et 

al. 1997a, Budd et al. 1998,  Montgomery et al. 1999, Budd et al., In Press). 

Preliminary results suggest broad comparability between ancient and modern tooth 

enamel, although the same is not necessarily true of dentine. Lead distribution 

patterns across tooth components appear to be highly reproducible between ancient 

and modern individuals (Budd et al. 1998, Montgomery et al. 1999). 

 

CASE STUDY: FOUR NEOLITHIC INDIVIDUALS FROM CRANBORNE CHASE 

The four burials were excavated by Martin Green in 1997 on farmland near the village 

of Monkton-up-Wimbourne, Dorset, England. The site resembles a Neolithic henge 

monument dug into the chalk of Cranborne Chase (M. Green, pers. comm.). Neolithic 

Peterborough ware pottery was recovered from the excavated area and radiocarbon 

determinations on the skeletons gave a calibrated date range of 5500-5100 BP (M. 

Green, pers. comm.). The four individuals, were recovered from a single, oval grave 

pit cut into the chalk bedrock and backfilled with chalk blocks and rubble. The 

construction of the grave pit and the articulated and undisturbed nature of the bones 

was interpreted as one burial event at the time of initial construction of the site. 

Macroscopic skeletal preservation was excellent, but there was no osteological 

evidence to indicate cause of death (J. McKinley pers.comm.). Permanent and where 

present, deciduous tooth samples were taken from all four individuals: a young-

middle aged adult female (C) and three juveniles aged 5, 8-9 and 9-10 years (A, B and 

D respectively).  

 

METHODS 

Each tooth was cleaned ultrasonically for 5 minutes in high-purity water and then 

acetone. Each was then divided longitudinally using a flexible diamond edged rotary 

dental saw to produce half-tooth samples for mass spectrometry. Enamel and dentine 

samples were separated using a tungsten carbide dental bur. Enamel was cleaned of 

all adhering dentine and abraded from the surface to a depth of >100m using the bur. 
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The surface material was discarded to produce a sample of core enamel tissue. 

Samples of primary, crown dentine were obtained by removing all secondary dentine 

from the pulp cavity. Clean core enamel and primary dentine samples were then 

transferred to a clean (class 100, laminar flow) working area at the NERC Isotope 

Geosciences Laboratory (NIGL) for further preparation.     

Samples of both the underlying chalk and soil excavated from the shaft on site 

were collected for lead and strontium isotope analysis to assess the isotopic 

composition of metals available to aqueous phases in the burial environment. 

Aqueous leaches failed to produce sufficient lead for analysis. Approximately 2g of 

chalk was isolated from the centre of a large block taken from the site in the low-lead 

laboratory, ground in a tungsten carbide ball mill and placed in an acid-leached teflon 

beaker. A finely divided soil sample of similar size was placed in a second beaker. 

Both samples were then leached overnight at room temperature in 5ml of 10% acetic 

acid and the leachates removed for analysis. 

At NIGL, the samples were first cleaned ultrasonically in high purity water to 

remove dust, rinsed twice, dried down in high purity acetone and then weighed into 

pre-cleaned Teflon beakers. Solid samples were dissolved in Teflon distilled 16M 

HNO3 and an aliquot (10% by volume) was transferred to a second pre-cleaned 

Teflon beaker and spiked with 
208

Pb tracer solution for lead concentration 

determination using the isotope dilution method. Lead was collected from all samples 

using conventional anion exchange methods and the washes from the larger aliquot of 

each sample were spiked with 
84

Sr tracer solution.  Strontium was collected from this 

fraction using conventional ion exchange methods. 

The lead isotope compositions were determined by Plasma Ionisation Multi-

collector Mass Spectrometry (PIMMS) using a VG Elemental P54 mass spectrometer. 

Data were corrected for mass discrimination using the Tl spiking technique (Ketterer, 

Peters, and Tisdale 1991, Walder, Platzner, and Freedman 1993). Errors on the lead 

isotope ratios were determined from replicate analysis of the NBS 981 standard as 

0.014% for 
207

Pb/
206

Pb and 0.024% for the 
208

Pb/
206

Pb (n=27, 2). The lead and 

strontium concentrations and the strontium isotope composition were determined by 

Thermal Ionization Mass Spectrometry (TIMS) using a Finnegan Mat 262 multi-

collector mass spectrometer.  The international standard for strontium gave a value of 

87
Sr/

86
Sr = 0.710200 ± 32 (2, n=10) during the period of analysis. All strontium 
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ratios have been corrected to the accepted value for NBS 987 of 0.710235. The mean 

strontium blank was 300pg (range 33-400pg). 

Isotope dilution elemental concentration accuracy can exceed 1% (2) for 

homogenous samples in favourable circumstances (Dickin 1995) and this value is 

widely quoted for strontium concentration determinations on rock powders (Evans 

1996). However, dental tissues have not been well characterised with respect to 

compositional heterogeneity and preliminary LA-ICP-MS studies suggest a degree of 

lead and strontium variation within tooth enamel (Montgomery et al. 1999). Estimates 

of reproducibility for the current study are based on a preliminary study of three 

replicate tooth enamel measurements undertaken for both a permanent and deciduous 

tooth. These suggest errors of 14% for lead and  10% for strontium (2, n=3). 

 

RESULTS 

Strontium and lead concentrations and isotope ratios for all of the Neolithic tooth 

samples  are reported in Table 1. Lead isotope ratios are reported as the non-standard 

207
Pb/

206
Pb and 

208
Pb/

206
Pb ratios which are widely used in archaeological literature. 

Although it is desirable to facilitate the wider comparison of data by use of the 

standard 
204

Pb ratios, the very low lead concentrations of the teeth in this case resulted 

in 
204

Pb ratios of relatively poor precision. Since the main purpose of the study 

involves the inter-comparison of the teeth and local soil, 
206

Pb ratios were adopted. 

Strontium and lead isotope ratios of the soil leachates are reported in Table 2. 

 Strontium isotope ratios for the samples are plotted in Figure 1. In all cases the 

dentine strontium isotope values are considerably closer to those of the soil values 

than those of the enamel. Taken together with the elevated strontium content of the 

dentine in comparison with the enamel, the results suggest diagenetic addition of soil 

strontium in these cases. The evidence for diagenesis of the dentine is discussed in 

detail elsewhere (Budd et al. 2000). 

The enamel strontium concentrations are similar to those of modern people 

(Underwood 1977) suggesting that the enamel is more representative of the biogenic 

signal (Budd et al. 2000). It is immediately apparent that there are very significant 

differences between enamel values for each set of dentition for each of the juveniles 

and that they are very different from soil values. C's enamel, formed in her early 

childhood, has a strontium isotope composition very different to that of the Monkton 
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geology. Her childhood strontium, with an 
87

Sr/
86

Sr ratio over 0.71, is far more 

radiogenic than that associated with the cretaceous chalk of the burial environment 

(typically ~0.707 consistent with the values reported in Table 2). Although diagenesis 

of tissue samples can never be wholly dismissed, it is evident that any soil 

contamination of C's could only cause an under estimate of the radiogenic signal 

within the enamel. In fact, in this case the excellent state of preservation and low 

values of both strontium and lead in the enamel strongly argue for its integrity.  

 C's dentine strontium isotope ratio, 0.70866, is intermediate between that of 

the enamel and that which might be expected in the area of the chalk downlands. 

Although this may partly reflect a change in her place of residence in later life, the 

dentine strontium content is approximately three times that of the enamel indicating a 

significant diagenetic addition to the former. For C, a similar pattern is confirmed by 

the lead isotope data (Figure 2), which show her enamel to have considerably elevated 

207
Pb/

206
Pb and 

208
Pb/

206
Pb ratios with respect to both the dentine and the soil 

leachate. The enamel lead isotope ratios are not sufficiently low to represent the local 

(chalk) geology, whereas the dentine values are intermediate between those of the 

enamel and those typical of the cretaceous chalk. 

 The opportunity to analyse both deciduous and permanent tooth enamel from 

the three juveniles and the accuracy with which it is possible to estimate their ages at 

death, make it possible to extract particularly detailed information with respect to 

changes in their dietary intake of lead and strontium in life. Figure 1 shows that all 

three juveniles experienced very significant changes in the isotopic composition of the 

strontium they ingested between birth and early childhood. In the case of the eldest 

two children, B and D, the change appears to have been from less (both have similar 

deciduous values) to more radiogenic strontium, perhaps reflecting a move away from 

the chalk after birth. For the youngest child, A, the change is in the opposite direction 

from a more radiogenic birth signal to a more 'chalk like' early childhood value. The 

lead data (Figure 2) are relatively ambiguous in this case. No change is indicated 

between the deciduous and permanent enamel for B, although both A and D would 

appear to have deciduous enamel lead-isotope ratios plotting at the edge of the chalk 

field and in the direction of C's childhood (enamel) values.  

Given the very high probability that all four individuals died at the same time, 

and the known periods of formation of the enamel of the teeth concerned, it is 

possible to estimate the relative time at which each tissue was formed. The strontium 
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data may thus be plotted so as to relate each sample on a single time scale (Figure 3). 

This shows the variation between each juvenile's diet at birth, represented by the 

deciduous enamel, and in early childhood, represented by the permanent enamel. 

Error bars associated with the permanent teeth represent the maximum period of 

enamel mineralisation (Hillson 1996), as the exact period during which metal 

entrapment take places in forming enamel is not yet fully understood. The adult 

female, C, is represented by dashed lines indicating the values of her enamel and 

dentine. All of the samples are very significantly different from one another and the 

pattern of variation is systematic over time. 

The isotope dilution TIMS data (Table 1) show that all of the tissue samples 

contain levels of strontium comparable with those of modern people, indicative of 

good survival of the biogenic component (Budd et al. in press). Lead levels are about 

an order of magnitude lower than averages reported for modern UK adults, but 

comparable with modern children.  

 

CONCLUSIONS 

We conclude that the strontium and lead isotope signature of C's dental enamel cannot 

have arisen by diagenesis and is representative of her biogenic signal during early 

childhood. The radical difference between these ratios and those of the local chalk 

geology show that she cannot have spent her early childhood there. Rather, her 

childhood diet between the ages of about 2 and 6 years, after which the crown of the 

permanent maxillary second premolar is fully mineralised, appears to have contained 

strontium with a 
87

Sr/
86

Sr ratio of ~0.71 and 
207

Pb/
206

Pb and 
208

Pb/
206

Pb ratios of 

~0.85 and ~2.08 respectively. The combination of lead and strontium isotopes gives 

us a considerable degree of resolution with which to identify her place of origin. 

Although there are a number of localities within the UK with this combination of lead 

and strontium isotopes, the nearest to Monkton-up-Wimbourne is the area of the 

Mendip orefield about 80km to the north-west (Figure 4). The next nearest matching 

locality is in the north Pennines, some 350km to the north. Although such long-range 

migration cannot be excluded, it seems more reasonable to postulate that individual C 

spent at least a part of her early childhood in the Mendips area.  

The isotopic composition of the dentine from the same tooth from C, with both 

lead and strontium isotope ratios intermediate between those of the chalk and of the 

Mendip orefield is probably largely a result of diagenesis, although it is possible that 



 

 12 

she moved from the region in which she grew up, to the chalk, sufficiently early in 

adult life for her to have accumulated some of her dentine strontium and lead from the 

chalk geology. Whatever the timing, her ultimate move to the chalk land is, of course, 

evident from her place of burial. 

Analysis of the enamel from both deciduous and permanent teeth for the three 

juveniles has been equally revealing. The eldest two, B and D, have deciduous enamel 

lead and strontium isotope ratios which are similar to one another and similar to the 

chalk geology. Their permanent enamel on the other hand has far more radiogenic 

strontium isotope ratios. It seems likely that both children experienced a change of 

diet between birth and early childhood certainly with respect to strontium. This may 

reflect movement away from the typical chalk geology to an area with more 

radiogenic strontium, but perhaps not radically different lead. The youngest child, A, 

shows the opposite trend with a deciduous tooth that contains more radiogenic 

strontium than that found in the permanent tooth. This suggests a move towards the 

chalk from elsewhere between birth and early childhood. 

Taken as a whole the data suggest a considerable level of mobility for all of 

the individuals, even over the short lives of the juveniles. The adult female must have 

moved at least 80km between her early childhood and death. Considering the relative 

times of tissue formation between the various individuals, the strontium data at least 

are consistent with a similar pattern of movement for all three juveniles; from the 

chalk, to a more radiogenic area and back again. It is tempting to invoke the idea of 

all four individuals travelling together, perhaps as part of a larger group. Whilst such 

this last aspect of the interpretation remains purely speculative, the study has 

produced clear evidence for fairly long distance movement among a small group of 

Neolithic people. The results are consistent with the idea of the earlier Neolithic 

lifestyle in southern England as largely mobile involving, at most, only short term 

sedentism (Whittle 1999). It appears that an interest in the chalk downland 

environment, which distinguishes the earlier Neolithic from the preceding era, did not 

exclude the population from exploiting the environment of the Mendips once 

favoured by their Mesolithic forebears. This, perhaps, should not be seen as surprising 

in the context of an earlier Neolithic with considerable continuity of subsistence 

strategy from the Mesolithic and gradual adoption of cereal cultivation and 

domestication within a pattern of residential mobility. 
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TABLES 

 

Table 1 Strontium and lead isotope ratios and compositions for the Neolithic tooth 

samples. En = enamel, De = dentine. Strontium isotope ratios were undertaken by 

TIMS, errors are 0.0045% (2, n=10). Pb isotope ratios were undertaken by 

PIMMS, errors are 0.014% for 
207

Pb/
206

Pb and 0.024% for the 
208

Pb/
206

Pb (2, 

n=27). Isotope dilution errors also account for sample heterogeneity and are therefore 

estimated as 14% for Pb and 10% for Sr.  

 

Sample Tooth Tissue Sr 

(ppm) 

 

87
Sr/

86
Sr Pb 

(ppm) 

207
Pb/

206
Pb 

208
Pb/

206
Pb 

Adecid. c
1
right En 75 0.70955 0.26 0.8378 2.0484 

Adecid. c
1
right De 230 0.70788 0.44 0.8326 2.0523 

Aperm. M
1
right En 71 0.70878 0.33 0.8321 2.0501 

Aperm. M
1
right De 207 0.70782 0.35 0.8288 2.0440 

Bdecid. c
1
left En 103 0.70844 0.29 0.8324 2.0502 

Bdecid. c
1
left De 248 0.70790 0.79 0.8301 2.0492 

Bperm. P
1
left En 57 0.70928 0.15 0.8318 2.0499 

Bperm. P
1
left De 184 0.70789 0.31 0.8287 2.0448 

Cperm. P
2
right En 55 0.71007 0.23 0.8498 2.0786 

Cperm. P
2
right De 162 0.70866 0.37 0.8386 2.0636 

Ddecid. c
1
left En 72 0.70849 0.68 0.8356 2.0532 

Ddecid. c
1
left De 282 0.70809 0.41 0.8269 2.0418 

Dperm. C
1
left En 54 0.70897 0.25 0.8279 2.0391 

Dperm. C
1
left De 250 0.70792 0.20 0.8288 2.0465 
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Table 2 Strontium and lead isotope ratios and compositions for the Monkton chalk 

(MC) and soil (MS) leachates. Strontium isotope ratios were undertaken by TIMS, 

errors are 0.0045% (2, n=10). Pb isotope ratios were undertaken by PIMMS, errors 

are 0.014% for 
207

Pb/
206

Pb and 0.024% for the 
208

Pb/
206

Pb (2, n=27). 

 

Sample 

 

87
Sr/

86
Sr 

207
Pb/

206
Pb 

208
Pb/

206
Pb 

MC 0.70750 0.8275 2.0449 

MS1 0.70754 0.8256 2.0414 

MS2 0.70753 0.8245 2.0391 

 

Mean 

 

0.70752 

 

0.8259 

 

2.0418 
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FIGURE CAPTIONS 

 

 

 

Figure 1 

Strontium isotope ratios for the deciduous and permanent tooth enamel and dentine of 

the three juveniles (A, B and D) and permanent tooth enamel and dentine for the adult 

female (C). Error bars represent 2 errors calculated from 10 replicates of the 

NBS987 standard. 
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Figure 2 

Lead isotope ratios for the deciduous and permanent tooth enamel and dentine (small 

symbols) of the three juveniles (A, B and D) and permanent tooth enamel and dentine 

for the adult female (C). Errors on the Pb isotope ratios were determined from 

replicate analysis of the NBS 981 standard as 0.014% for 
207

Pb/
206

Pb and 0.024% for 

the 
208

Pb/
206

Pb (n=27, 2). These are smaller than the symbols at this scale. 
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Figure 3 

Strontium isotope ratios for the juveniles tooth enamel relative to its time of formation 

in years before death. Error bars associated with the permanent teeth represent the 

maximum period of enamel mineralisation. The adult female, C, is represented by 

dashed lines indicating the values of her enamel and dentine.  
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Figure 4 

Location map showing the burial site at Monkton-up-Wimbourne relative to the 

approximate extent of the cretaceous chalk geology and the Mendips orefield to the 

north-west. Approximate ranges for lead and strontium isotopes for each geology are 

indicated. 


