Park and Bae Journal of Inequalities and Applications 2011, 2011:30 ® Journal of Inequalities and Applications
http://www. journalofinequalitiesandapplications.com/content/2011/1/30 a SpringerOpen Journal

RESEARCH Open Access

Generalized ulam-hyers stability of C*-Ternary
algebra n-Homomorphisms for a functional

eqguation

Won-Gil Park' and Jae-Hyeong Bae®”

* Correspondence: jhbae@khu.ackr
’Humanitas College, Kyung Hee
University, Yongin 446-701,
Republic of Korea

Full list of author information is
available at the end of the article

SpringerOpen®

Abstract

In this article, we investigate the Ulam-Hyers stability of C*-ternary algebra n-
homomorphisms for the functional equation:

f(x10+ X210, -+ X1 +X2) = Z f(xil,ll' : -/xi,,,n)

1<iy,+in<2

in C*-ternary algebras.
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1. Introduction and preliminaries

Ternary algebraic operations were considered in the nineteenth century by several
mathematicians, such as Cayley [1] who introduced the notion of cubic matrix, which,
in turn, was generalized by Kapranov et al. [2]. The simplest example of such nontri-
vial ternary operation is given by the following composition rule:

{a, b, C}ijk = Z anilbljmcmkn (irj/ k=1,2,--, N)

1<l,mn<N

Ternary structures and their generalization, the so-called n-array structures, raise
certain hopes in view of their applications in physics. Some significant physical applica-
tions are as follows (see [3]):

(1) The algebra of nonions generated by two matrices

010 010 i
001 & 0 Ow <w=e3>
100 @?00

was introduced by Sylvester as a ternary analog of Hamilton’s quaternions [4].

(2) The quark model inspired a particular brand of ternary algebraic systems. The so-
called Nambu mechnics is based on such structures [5].

There are also some applications, although still hypothetical, in the fractional quan-
tum Hall effect, the non-standard statistics, supersymmetric theory, and Yang-Baxter
equation [4,6].
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A C*-ternary algebra is a complex Banach space A, equipped with a ternary product
(*, v, 2) a [, 9, 2] of A% into A, which is C-linear in the outer variables, conjugate C-
linear in the middle variable, and associative in the sense that [x, y, [z, w, V]] = [x, [w,
z, y), vl = [[%, ¥, 2], w, v], and satisfies ||[x, y, 2]|| < ||*|| - ||¥]] - ||z]|| and ||[x, %, x]|| =
[|x||? (see [7,8]). Every left Hilbert C*-module is a C*-ternary algebra via the ternary
product [x, y, z] := (x, y) z.

If a C*-ternary algebra (4,[,, -, -]) has an identity, i.e., an element e € A such that x =
[x, e, e] = [e e «] for all x € A, then it is customary to verify that A, endowed with x ©
y =[x, e, y] and x* := [e, x, e], is a unital C*-algebra. Conversely, if (4, °) is a unital

C*-algebra, then [x, y, z] := x ° y* ° z makes A into a C*-ternary algebra.
Let A and B be C*-ternary algebras. A C-linear mapping H : A — B is called a C*-

ternary algebra homomorphism if
H([x, y, 2]) = [H(x), H(y), H(2)]

forall x, y, z€ A.
Definition. Let A and B be C*-ternary algebras. A multilinear mapping H : A" — B
over C is called a C*-ternary algebra n-homomorphism if it satisfies

H([x1,y1, 21, -+ [%n, yne zal) = [H(x1, - - < %n), - -+ H(z1, - - -, 2n)]

for all xy, y1, 21, * * Xy Y Zn € A.

In 1940, Ulam [9] gave a talk before the Mathematics Club of the University of Wis-
consin in which he discussed a number of unsolved problems. Among these was the
following question concerning the stability of homomorphisms:

We are given a group G and a metric group G’ with metric p(-, -). Given & > 0, does
there exist a 6 > 0 such that if f: G — G’ satisffies p(fxy), fix) fy)) <0 for all x, y € G,
then a homomorphism h : G — G’ exists with p(fix), h(x)) <e forall x € G ?

In 1941, Hyers [10] gave the first partial solution to Ulam’s question for the case of
approximate additive mappings under the assumption that G; and G, are Banach
spaces. Then, Aoki [11] and Bourgin [12] considered the stability problem with
unbounded Cauchy differences. In 1978, Rassias [13] generalized the theorem of Hyers
[10] by considering the stability problem with unbounded Cauchy differences. In 1991,
Gajda [14], following the same approach as that by Rassias [13], gave an affirmative
solution to this question for p > 1. It was shown by Gajda [14] as well as by Rassias
and Semrl [15], that one cannot prove a Rassias-type theorem when p = 1. Gavruta
[16] obtained the generalized result of Rassias’s theorem which allows the Cauchy dif-
ference to be controlled by a general unbounded function. During the last two decades,
a number of articles and research monographs have been published on various general-
izations and applications of the generalized Hyers-Ulam stability to a number of func-
tional equations and mappings, for example, Cauchy-Jensen mappings, k-additive
mappings, invariant means, multiplicative mappings, bounded nth differences, convex
functions, generalized orthogonality mappings, Euler-Lagrange functional equations,
differential equations, and Navier-Stokes equations. The instability of characteristic
flows of solutions of partial differential equations is related to the Ulam’s stability of
functional equations [17]-[24]. On the other hand, the authors [25], Park [20] and Kim
[26] have contributed studies in respect of the stability problem of ternary homo-
morphisms and ternary derivations.
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2. Solution and stability
Let X and Y be real or complex vector spaces and # > 2 an integer. For a mapping f:
X" — Y, consider the functional equation:

f(xl,l +X2,1,° 4 X1n + xz,n)

= Z f(xil,ll Tty xi,,,n)~ (21)

1<iy,+in =<2

The above functional equation is rewritten as

fler+y1,- o Xn+yn) = Z flz1, -+ zn), (2.2)

(Zl,---,zn)EV
where

V= V(xll Y1, Xny Yn)
= (er cy Zn)lzl € {x1, Yl}/ o, Zy € {Xp, )/n}}
We solve the general problem in vector spaces for the n-additive mappings satisfying
2.1).
Theorem 2.1. A mapping f: X" — Y satisffies the equation (2.1) if and only if the
mapping f is n-additive.
Proof. Assume that f satisfies (2.1). Letting x; = y; = - - - = x,, = y,, = 0 in (2.2), we get
AO, - -+ 0) =0. Letting y; =%, =y = - - - = x,, = ¥, = 0 in (2.2), we have
f(xlror"'r 0) =0
for all x; € X. Similarly, we get

f(0, x2,0, -, 0)=...=f(0,..., 0, x,)=0

for all x5, -+ -, x, € X. Setting y; =y, =0and x3 =y3 =---=x, =y, = 0in (2.2), we
have

f(xlr x2701"’r 0):0

for all x1, x, € X. Similarly, we get flx;, 0, x3, 0, - -+, 0) =-- - =f0, - - -, 0, x,,.1, %,,) =
Oforall x, -+ x,e X

Continuing this process, we obtain that flxy, - - -, x,,) = 0 for all x, - - -, x, € X with «;
=0 forsomei=1,--. n Letting y, = - - - = y, = 0 in (2.2), we get the additivity in the

first variable. Similarly, the additivities in the remaining variables hold.

The converse is obvious. U

We investigate the generalized Ulam’s stability in C*-ternary algebras for the n-addi-
tive mappings satisfying (2.1).

Lemma 2.2. Let X and Y be complex vector spaces and let f: X" — Y be a n-additive
mapping such that

f()"lxll tty )ann) = )"l e )"nf(xl/ Tty xn)

forall xy,---, A e Tl:i={AeC: |A| =1)and all x1, - - -, x,, € X, then fis n-linear
over C.
Proof. Since f'is n-additive, we get f(éxl, S, ;xn) = 21nf(x1, -, xy) for all xq, - - -,

%, € X. Now let o1, - - -,0, € C and M be an integer greater than 2(|o1| + - - - + |0,]).
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Since |(A’/11 Sy |‘;j“ < ;, there is St sn € (5, 721 such that
o €11 o €in g in
A/11| = COSS = S ,,|M”| = (oSS, = 5 . Now
o1 o1 On On
- AL - A
M M M M

for some Aq,- .-, A, € TL Thus, we have

o1 [of
Fo1x1, - - -1 Ona) =f<MMx,~ . MA;‘Z)
On

o1 o1
S (T 7Y g (| ha
f X, z f 1X1

. eisl + e—isl eis,, + e—is,,
=M f 2 A'lxlr' Ty 2 )"nxn

Gn‘ )
AnX
M nan

1 . . . .
M hxy + e Ax, e, €5 Xy + e AnXy)

]
<

1 i i
Z AL LS S )\nf(xl, cee, xn)

=11

=01 onf (X1, Xn)

for all x4, - - -, x, € X. Hence, the mapping f: X" — Y is n-linear over C. O

Using the above lemma, one can obtain the following result.

Theorem 2.3. Let X and Y be complex vector spaces and let f: X" — Y be a mapping
such that

f(rax11 + 21Xx2,10, - - AaX1,n + AnXon)

=LA, Z Fii1, 0 Xin) (2.3)
1<y, in<2

forall ay,---, dy € Tland all x, 1, %21, -+ + X1 %2,, € X. Then, f is n-linear over C.

Proof. Letting A; = - - - = A, = 1, by Theorem 1.1, fis n-additive. Letting x5; = - - - =
Xa, = 0in (2.3), we get filixy, - - - Auxy) = A1 - - - A flwy, - - x,) forall aq, -+, A, € T
and all xy, - - -, x, € X. Hence, by Lemma 2.2, the mapping f is n-linear over C. O

From now on, assume that A is a C*-ternary algebra with norm || - ||4 and that B is
a C*-ternary algebra with norm || - ||.

For a given mapping f: A” — B, we define

D)\lr"':)lnf(xlllr X2,1, 0+ X1,ns x2,n)
= f(Axn,1 + MX2,1, 0 S AnX1n + AnX2n)

Ay Ap Z i, Xin)

1<y, in<2

forall Aq,---, A, e Ttand all w14, %91, « -+ X1, X2, € A.
We prove the generalized Ulam-Hyers stability of homomorphisms in C*-ternary

algebras for the functional equation

Dy, (X1,1, X2,1, -+ <0 X100 X2,n) = 0.

Page 4 of 13
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Theorem 2.4. Let py, -, p, € (0, ) with Y | pi < nand 0 € (0, ), and let f: A" —
B be a mapping such that

1Dy, f (X1, Y1, 0 Xno Va)llB

n
_ (2.4)
< 0[] max{ll xilla, 1l yilla}?
i=1
and
||f(['xll )’1, Zl]r Yy [xnl ynr Zn])
A CIVRE ) M L (S VRRV 719 I A CPRDR 9 ] 112 (2.5)
. pl pn P1 pn pl Pn
< O(lxilly - - - [1xal [y + Hyally - - Hyally" + Hzally - - Hzally')

Jorall py,---, A, € Tland all x1, y1, 21, *» Xy Y 2u € A. Then, there exists a unique
C*-ternary algebra n-homomorphism H : A" — B such that

” f(xll o 'rxn) - H(xlr t 'txn)”B

0 (2.6)
< Foer IR 1 1Y
2m =23 pi 4 n
for all x, - - -, x,, € A.
Proof. Letting A, = -+ -=A4,=1,y; =1, -+ ¥, = x, in (2.4), we gain
” f(?-xl/ Tty 2xn) - 2nf(xll Tty x‘ﬂ)”B (2 7)
<Ol x Iy -l I '
for all x, - - -, x,, € A. Thus, we have
Uopoim il Lo j
2n(j+1)f(2 X1, 2Vx) — 2n].f(2 X1, 2xp) ]
< 2= oy I I
for all x1, - - -, x, € A and all j € N. For given integer /, m(0 < [ <m), we obtain that
! f(2™xy, -+, 2Mx,) — 1f(2lx s, 2x)
onm 1/ ’ n 21’11 1/ ’ n 5
m—1 ‘ (2-8)
< D 2@ PTG ey R I
=1
for all xy, - - -, x, € A. Since Y L, p; < n, the sequence

{;njf(zfxl,. - 2jxn)}

is a Cauchy sequence for all x;, -+, x,, € A. Since B is complete, the sequence

i (2Dx1, -, 2jx,,)] converges for all xy, - - -, x,, € A. Define H: A” — B by
o1 - .
H(xy, -+ xp) = im _ f(2xy,- -+, 2xy,)
j—>o0 21

for all xq, - - -, x, € A. Letting [ = 0 and taking m — o in (2.8), one can obtain the
inequality (2.6). By (2.4), we see that
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Jof @G om) s 2G4 )

1
- Y @ )

(z1,+120) €V

B

n
< 2(pmmsg [T max(| xilla, 1l yilla)”

i=1

for all x;, y1, - - - %, ¥, € A and all 5. Since Y ., p; < n, letting s — oo in the above
inequality, H satisfies (2.1). By Theorem 2.1, H is n-additive.
Letting y; = X1, - = + ¥, = %, in (2.4), we gain

| f(2x1x1, - 2hnXn) — 27 -« - Apf (%1, - -+ Xu)llB

<Ol I} - Mo Iy
forall Ay,---, A, e T'and all xy, - - -, x,, € A. Thus we have

I F(2™h1x1, -+ 2™ Apxn) — 2"A1 -+ - Anf (2™ Xy, -+, 2™ )
< 2m=DXEpig | x5 x|

forall Aq,---, A, e TL all xy, - -+, x, € A and all m € N. Hence, we get

I f(2"xy, -+ 2Mx0) — 2" (2" "y, - 2" ) Il
< 200 DR g g [ I

for all x;, - -+, x, € A and all m € N, and one can show that
| Ag--- )Lnf(zmxlr' cy 2mxn)

—2"Ay - Anf(2m71x11 o, szlxn)HB
= Dl Q@70 27 = 27F(27 e, 27 ) s

< 20DXEPG oy I}l I
forall A,---, A, e TL all xy, - -+, x, € A and all m € N. Hence,

I f(zmk1x1,~ cy 2m)\nxn) — Ay )Lnf(zmxlf cey 2mxn)||B

< F"™haxr, 2™ nxn) — 20 - A f (27 My, e 2 ) Il
0 2" - A f(2 Ky, -, 2™ )
—A1 - ~Anf(2mx1,~ sy 2mxn)”B

< W mOZE i oy [ I
forall Ay,---, A, e Thallxy, - x,€ Aandall me N. Since Y I, pi < n, we have

onm Il f(zmklxlr' ty 2mknxn) — Ay - ')\nf(zmxlr' ty 2mxn)“B -0

asm —> o forall Ay,--., A, e T'and all xy, - - -, x, € A. Hence

2Ma1x1, - 2™ hx
H(Xx1, -+ Apkxy) = lim I 1 n¥n)

m—00 nm
2Mxy, -+, 2Mx
Clim g eeea, B 2
m— 00 nm

= }\_1 ce )\'HH(xll ce, xn)
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for all A{,---, A, € T'and all x, -+, x, € A. From Lemma 2.2, the mapping H : A”
— B is n-linear over C. It follows from (2.5) that

| H([x1, y1, z1], - -+ [%n ¥ns 2n])
_[H(xll Tty xn)r H()’l: Ty yﬂ)’ H(Zl, Tt z”)]”B

. 1
= WP—I};O 23nm ” f(23m[xll )’1/ zl]/ tty 23m[xnl }’ru Zn])

—U@"x, - 2%, f(27y10 - 2%n), f(2720, 0 22) i

. 0 mELpi p1 ”
S (O e P
pl Pn pl Pn
vy oy B+ Tz By - zn ()
=0

for all XU Y1 Z1 9 Xy Y Zn € A. So

H([xlr Yl: Zl],' t oy [xnr Yn/ Zn])
= [H(xll t 'lxn)/ H(}’lr tc '/}’n)/ H(zll c '/zn)]

fOI' all XL Y1 21 5 Xy Y Zn € A.
Now, let T: A” — B be another n-additive mapping satisfying (2.6). Then, we have

” H(xll Tty xn) - T(xll Tt xn)”B

1
= WH@"x0, - 2M0) = T(2"x1, -+ 2"%0) g

IA

1
g T H @1, 2%0) = (21, o 2% 15
1
+
znm
2(XL pi—n)m+
on Q¥ pi

I f(2%%x1, - -+ 2M%) — T(2"x1, - -+ 2"x4) 1B
1 1
Ol xy 115 -l 15

which tends to zero as m — oo for all x4, -, x,, € A. Hence, we can conclude that H
(%1, = x,) = T(x1, -, x,) for all x, -, x,, € A. This proves the uniqueness of H.

Thus, the mapping H : A—>B is a unique C*-ternary algebra #n-homomorphism satis-
fying (2.6). O

Letting p; = - = p, = 0 and 0 = ¢ in Theorem 2.4, we obtain the Ulam-Hyers stabi-
lity for the n-additive functional equation (2.1).

Corollary 2.5. Let ¢ € (0, ) and let f: A" — B be a mapping satisfying

” D)»],"n)»nf(xl/ Y1 Xy y‘ﬂ)”B <e¢
and

I f([x1, y1, 21l -+ [%n Yno 2nl)
—[fCGer, - %), fras - vn)s f(z1, - za)lllB < 36

forall )y,---, A, € Tland all x1, y1, z1 % Y» 2, € A. Then, there exists a unique
C*-ternary algebra n-homomorphism H : A™ — B such that

&
” f(xll Yy xn) _H(xlr R xn)”B S omn_ 1

for all x,, -, x,, € A.

Page 7 of 13
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Example 2.6. We present the following counterexample modiffied by the well-known
counterexample of Z. Gajda [14]for the functional equation (2.1). Set 0 > 0 and let
0
" 6n2n
Deffine a function f:R" — R by

W

oo
1
flxr, - x) = Z 2n¢u(2"x1, X2, -+ Xn)
n=0

Sor all x1, -, x, € R, where @, : R" — R is the function given by

m ifxg- - x,>1
Gux1, - xp) = uxy Xy if —1<xp---xp <1

for all xy, -, x,, € R. Deffine another function g : R — R by
=1
gx)=f(x1, ---, 1) = Z 2n¢#(2"x, 1L 1)
n=0

forall x e R.

Forall me N and all x,, ---, xom € R, we assert that
m m mo 2m

g (Za@) =2 8| = D il (2.9)
i=1 i=1 i=1

It was proved in [14]that

8+ 1)~ 500~ s0) = (1l + )

for all x, y € R, that is, (2.9) holds for m = 1. For a ffixed k € N, assume that (2.9)
holds for m = k. Then, we have

2k+l 2k+1
3 (ZM) - 8(x)
i=1 i=1
2)(+1 2h h+l
i=1 i=1 i=2k+1

2}! 2k+1 2’(4-1
8 (sz) -8 ( > xi) - 8(x)
i=1 i=2k+1 i=1

=<

+

0 ok Qh+l ok ok
< o (in +| 2w ) +8 (fo) - 2_8(x)
i=1 i=2k41 i=1 i=1

+§

(Z xf) - 8x)

i=2"+1 i=2k+1

271 2)(+1 2h 2k+1
0 kO
= Doxl | Y x|+ Do+ Y Il
n2n - n2n \ 4
i=1 =241 i=1 i=2k+1

pLa

(k+1)6 Z
= B ||
n2 =

Page 8 of 13
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for all xy, - -+, Xy € R, that is, (2.9) holds for m = k + 1. Hence, (2.9) holds for all m

e R.
Note that
" if 2"xp - x> 1
flxr, - - xp) = w21 - xpif —1<2™p---x5<1
—u if 2%y -y < —1 (2.10)

=f(x1 - Xp 1,00 1) = g(xy - - - Xn)

for all x,, -, x,, € R. By the inequality (2.9) and the above equality, we see that

ey )= Y [ @)

(z1,120)EV
=g ((x1+y1) -+ (%n +n)) — Z g(z1 - z)
(z1,120)EV
=18 Z Z1 % | — Z g(zl...zn)
(21,20 )€V (21,2n)EV
o 6
= n Z |Z1.Hzn|5 2n(|x1|+|y1|)"'(|x‘ﬂ|+|)’n|)

(z1,-+20)€V

n
= 0[] max{lxil, lyil}!

i=1

for all x1, y1, +, x,,, ¥, € R. However, we observe from [14] that

n
g(x)—>oo as x— oo.
xn
and so
S x) — 00 as x— o0.
xn
Thus,
|f(x, .. .,x) — h(x’ .. .,x)|

o (x # 0) is unbounded,

where h: R — R is the function given by
. H 1 m m
h(x1, -+ x4) := W]lglgo 2mnf(2 x1, - 2Mx)

for all x1, -, x,, € R. Hence, the function f is a counterexample for the singular case
>, pi = nof Theorem 2.4.

Theorem 2.7. Let p € (0,n) and 0 € (0, ), and let f: A" — B be a mapping such
that

| Diy,pnf (X1, Y1 -+ Xns ¥a)llB

n
(2.11)
<6 (llli+ 1 yi 1)

i=1

Page 9 of 13



Park and Bae Journal of Inequalities and Applications 2011, 2011:30
http://www.journalofinequalitiesandapplications.com/content/2011/1/30

and
” f([xlr ylr Zl]/ tty [xnr Vn, Zn])
L CEPRRE ) P A A VAR 7 M A CAVIRE R A ||

<6y (sllh + 1yl + 1zl 1})

i=1

(2.12)

forall »q,---, Ay € Tland all x1, y1, 21 %y Y» 2, € A. Then, there exists a unique
C*-ternary algebra n-homomorphism H : A" —B such that

20 ¢
I FGn, ) = Hexn o)l < 70> Sl
i=1

for all x1, -+, x, € A.
Proof. The proof is similar to the proof of Theorem 2.4. O
Example 2.8. We present the following counterexample modiffied by the well-known
counterexample of Z. Gajda [14]for the functional equation (2.1). Set 0 > 0 and let
0
K= nan
Let f: R™ > R and g : R — R be the same as in Example 2.6. By the same argument

as in Example 2.6, for all m € N and all x,, - --, xon € R, one can obtain that g satisf-
fies the inequality:

m m m
me
(2n) - T < 1o S
i=1 i=1 i=1

By the equality (2.10) and the above inequality, we see that

[ CIR S TR 7% 7 R S | CHRRRES)

(=1,2n)€V
= g((xl+y1)..-(xn+yn))— Z g(z1 -+ - zn)
(z1,-20) €V

=8 Z 212y | — Z g(zl...zn)

(21,7120)€V (21,12n) €V

%

< on Z |Z1 . zn|

(21,7120)€V

for all x1, y1, =, X, ¥, € R. For each x1, y1, = X, ¥, € R, let M(x1, y1, =+ X Yy ) i=
max{|x|, [y1], = [%a]s |7a]}. We have
0 6 n n - n n
o 2 lmeemls 30 MT=eMT <0 (Il + ")
1

(z1,+12n) €V (z1,+2n) €V i=

for all x1, y1, + %, ¥, € R. Thus we have

f(x1+y1, .., xn+y‘ﬂ)_ Z f(le..~, z‘ﬂ) 592(|xi|n+|yi|n)
i=1

(z1,-+20)€V

Page 10 of 13



Park and Bae Journal of Inequalities and Applications 2011, 2011:30
http://www.journalofinequalitiesandapplications.com/content/2011/1/30

for all x1, y1, =, %, ¥, € R. By the same reason as for Example 2.6, the function fis a
counterexample for the singular case p = n of Theorem 2.7.

Theorem 2.9. Let py, -, p, € (0, ) with Y i, pi <n,se (0, n) and 6, n e (0, =),
and let f: A" — B be a mapping such that

I Dy, f (X105 X2,1, -+ = X100 X2,0) B

<O max{|| x1,1lla, I x2,111a}"" - -+ max{l| x1,nlla, | X2nlla}"
n (2.13)
o Y (i I+ 1 2 1)
i=1
and
I f([x1,0, %21, x3,1] -+ [X100 X200 X3.0])
—f(x11, - oxin) f2,10 - X2m)s f(x31, -+ x3.0)]lB
(2.14)

3 n
Pl p
<O i IR i IR+ D (s I+ 2 [+ 1 X3 113)
i=1 i=1
forall ay,---, A, € Tland all x11, %21, X3.1, = X1, w» X2, p» X3, , € A. Then, there exists
a unique C*ternary algebra n-homomorphism H: A” — B such that

I f(xlf sy xn) _H(xlr sy xn)”B

n
S oyt DA I - Zl I i I
for all x,, -, x,, € A.
Proof. The proof is similar to the proof of Theorem 2.4. O
Theorem 2.10. Let py, -, p, € (0, ) with Y i, pi > 3nand 0 € (0, =), and let f: A"
— B be a mapping satisfying (2.4) (2.5). Then, there exists a unique C*-ternary algebra
n-homomorphism H : A" — B such that

” f(xll Tty xn) - H(xll Tty xn)”B
(2.15)

P Pn
< o X el X
= 221‘:11’1 on ” 1 ”A ” n ”A

for all x,, -, x,, € A.
Proof. 1t follows from (2.7) that

X1 X % .
e m) =2 (5 )| S e W IR
for all xy, -, x,, € A. Hence,
X1 Xn X1 Xn
1o B G 2
’ f 2! 2! / 2m 2m /g

m—1
i X1 Xn i X1 Xn
1 G 5 )
j2=l: ‘ f 2] 2] f 2j+1 2i+1 /g (2.16)

0 m—1 nj

P apriel L A LA
j=1

IA
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for all nonnegative integers m and [ with m >l and all x4, -, x,, € A. It follows from

X X
(2.16) that the sequence {2”"‘f (2;, - 2;)} is a Cauchy sequence for all xy, -, x,

x x
€ A. Since B is complete, the sequence {2""‘f( Lo, )} converges. Hence, one
2m 2m
. X X
can define the mapping H : A” — B by H(x1, - -+, x,) = lim ;_,5c2""f (271",- -, 2:’")
for all xy, -, x,, € A. Moreover, letting / = 0 and passing the limit m — o in (2.16), we

get (2.15).

The remainder of the proof is similar to the proof of Theorem 2.4. O

Theorem 2.11. Let p € (3n, ) and 0 € (0, =), and let f: A" — B be a mapping
satisfying (2.11) (2.7), and fl0, -, 0) = 0. Then, there exists a unique C*-ternary algebra
n-homomorphism H : A" — B such that

20 &
I FGen o ) = H, o)l <7Dl
i=1

for all x1, -+, x, € A.

Proof. The proof is similar to that of Theorem 2.10. O

Theorem 2.12. Let py, -, p, € (0, o) with Y i, pi > 3n, s € (n, ) and 6, n € (0, =),
and let f A" — B be a mapping such that (2.13), (2.14), and fl0, -, 0) = 0. Then, there
exists a unique C*-ternary algebra n-homomorphism H: A” — B such that

I f(xlf sy xn) _H(xlr sy xn)”B

2n "

p1 Pn s

< X el x + X

S e LS L SR DL
1=

for all x,, -, x,, € A.
Proof. The proof is similar to that of Theorem 2.10.
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