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1 Introduction

Squeezing flows have many applications in food industry, principally in chemical engi-
neering [1-4]. Some practical examples of squeezing flow include polymer processing,
compression and injection molding. Grimm [5] studied numerically the thin Newtonian
liquids films being squeezed between two plates. Squeezing flow coupled with magnetic
field is widely applied to bearing with liquid-metal lubrication [2, 6-8].

In this paper, we use RKHSM to study the squeezing MHD fluid flow between two in-
finite planar plates. This problem has been solved by RKHSM and for comparison it has
been compared with the OHAM and numerically with the RK-4 by using Maple 16.

The RKHSM, which accurately computes the series solution, is of great interest to ap-
plied sciences. The method provides the solution in a rapidly convergent series with com-
ponents that can be elegantly computed. The efficiency of the method was used by many
authors to investigate several scientific applications. Geng and Cui [9] and Zhou et al. [10]
applied the RKHSM to handle the second-order boundary value problems. Yao and Cui
[11] and Wang et al. [12] investigated a class of singular boundary value problems by this
method and the obtained results were good. Wang and Chao [13], Li and Cui [14], Zhou
and Cui [15] independently employed the RKSHSM to variable-coefficient partial differ-
ential equations. Du and Cui [16] investigated the approximate solution of the forced Duff-
ing equation with integral boundary conditions by combining the homotopy perturbation
method and the RKM. Lv and Cui [17] presented a new algorithm to solve linear fifth-order
boundary value problems. Cui and Du [18] obtained the representation of the exact solu-
tion for the nonlinear Volterra-Fredholm integral equations by using the RKHSM. Wu and
Li [19] applied iterative RKHSM to obtain the analytical approximate solution of a non-
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linear oscillator with discontinuities. For more details about RKHSM and the modified
forms and its effectiveness, see [9—-37] and the references therein.

The paper is organized as follows. We give the problem formulation in Section 2. Sec-
tion 3 introduces several reproducing kernel spaces. A bounded linear operator is pre-
sented in Section 4. In Section 5, we provide the main results, the exact and approximate
solutions. An iterative method is developed for the kind of problems in the reproduc-
ing kernel space. We prove that the approximate solution converges to the exact solution
uniformly. Some numerical experiments are illustrated in Section 6. There are some con-

clusions in the last section.

2 Problem formulation

Consider a squeezing flow of an incompressible Newtonian fluid in the presence of a mag-
netic field of a constant density p and viscosity u squeezed between two large planar par-
allel plates separated by a small distance 2H and the plates approaching each other with a
low constant velocity V, as illustrated in Figure 1, and the flow can be assumed to quasi-
steady [1-3, 39]. The Navier-Stokes equations [3, 4] governing such flow in the presence
of magnetic field, when inertial terms are retained in the flow, are given as [38]

VV-u=0 (2.1)
and
u
p|:§+(u-V)ui|:V-T+]xB+pf, (2.2)

where u is the velocity vector, V denotes the material time derivative, T is the Cauchy

stress tensor,
T =-pl + A
and

A =Vu+ul,

Figure 1 A steady squeezing axisymmetric fluid flow between two parallel plates [38].
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J is the electric current density, B is the total magnetic field and
B= BO + b,

B, represents the imposed magnetic field and b denotes the induced magnetic field. In
the absence of displacement currents, the modified Ohm law and Maxwell’s equations
(see [40] and the references therein) are given by [38]

J=0[E+u x B] (2.3)
and
. 0B
divB=0, V x B =/, curl E = e (2.4)

in which o is the electrical conductivity, E is the electric field and w,, is the magnetic
permeability.

The following assumptions are needed [38].

(a) The density p, magnetic permeability 11, and electric field conductivity o are
assumed to be constant throughout the flow field region.

(b) The electrical conductivity o of the fluid is considered to be finite.

(c) Total magnetic field B is perpendicular to the velocity field V and the induced
magnetic field b is negligible compared with the applied magnetic field By so that
the magnetic Reynolds number is small (see [40] and the references therein).

(d) We assume a situation where no energy is added or extracted from the fluid by the
electric field, which implies that there is no electric field present in the fluid flow
region.

Under these assumptions, the magnetohydrodynamic force involved in Eq. (2.2) can be

put into the form

J x B=—-cB3u. (2.5)

An axisymmetric flow in cylindrical coordinates r, 6, z with z-axis perpendicular to

plates and z = +H at the plates. Since we have axial symmetry, u is represented by
u = (ur(r,2),0,u(r,2)),

when body forces are negligible, Navier-Stokes Egs. (2.1)-(2.2) in cylindrical coordinates,
where there is no tangential velocity (uy = 0), are given as [38]

u, du, ap %u, 10w, u, %u, B 2.6)
Uy— +u S S [l -—+ +oBiu .
p ar “ 9z or orr roar rr 072 0

du, du, dp (0%u, 10u, d’u,
LN L Y B L ) 2.7
p(uz y > or "oz T ar T ez @7
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where p is the pressure, and the equation of continuity is given by [38]

10
S —(ru,) + —= = 0. 2.8
rBr(m)+ 0z 28)

The boundary conditions require

u,=0, u,=-V atz=H,

ou, (2.9)
=0, u,=0 atz=0.
0z
Let us introduce the axisymmetric Stokes stream function W as
10w 10w
Uy = -—o, Up=———. (2.10)
r 0z r or

The continuity equation is satisfied using Eq. (2.10). Substituting Egs. (2.3)-(2.5) and Eq.
(2.10) into Egs. (2.7)-(2.8), we obtain

o 9 JE2W B2 v
POy 0P HOEE OB OF (2.11)
2 or or r 0z r 0z
and
oW 9 JE2W
POy P M . (212)
2 9z dz r Or

Eliminating the pressure from Egs. (2.11) and (2.12) by the integrability condition, we get
the compatibility equation as [38]

a(w, v B2 52
[P iy 0B (2.13)
a(r,z) r r 072
where
, 9% 19 92
=— -+ —.
or2  ror 0z2
The stream function can be expressed as [1, 3]
U(r,z) = r*F(z). (2.14)

In view of Eq. (2.14), the compatibility equation (2.13) and the boundary conditions (2.9)
take the form

) B2
Fz) - 2202y + 2L F)F"(2) = 0, (2.15)
r %

subject to

F(0)=0, F'(0)=0,
v (2.16)
51

F(H) = F'(H) = 0.

Page 4 of 17
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Non-dimensional parameters are given as [38]

F HV
Fr=2—, z*:i, Re= 27 , m = BoH /2.
14 H u M

For simplicity omitting the *, the boundary value problem (2.15)-(2.16) becomes [38]
F™(z) —m*F"(z) + Re F(z)F" (z) = 0, (2.17)
with the boundary conditions

F(0)=0, F'(0)=0,
(2.18)
F)=1, F@)=0,

where Re is the Reynolds number and m is the Hartmann number.

3 Reproducing kernel spaces
In this section, we define some useful reproducing kernel spaces.

Definition 3.1 (Reproducing kernel) Let E be a nonempty abstract set. A function K :
E x E — Cis areproducing kernel of the Hilbert space H if and only if

{ VteE, K(,t) eH, (3.1)

Vte E,No e H, ({(¢(-), K(-,t)) = ().

The last condition is called ‘the reproducing property’: the value of the function ¢ at the
point t is reproduced by the inner product of ¢ with K(-, ).

Definition 3.2 We define the space W3 [0,1] by

ulu,u,u’, ", u® are absolutely continuous in [0,1],

5 —
W;[0,1] = ! u® € L7[0,1],x € [0,1],u(0) = u(1) =u'(1) = u"(0) = 0 |

The fifth derivative of u exists almost everywhere since u* is absolutely continuous. The
inner product and the norm in W3 [0,1] are defined respectively by

1
(4, V)ys = Zu(i)(o)l’(i)(o) +/ O ) dx,  u,ve W30,1]
: 0
and
lullyyg =[G 0 € w3[0,1].

The space W;[0,1] is a reproducing kernel space, i.e., for each fixed y € [0,1] and any
u € W3[0,1], there exists a function R, such that

U= (u,Ry)Wg.
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Definition 3.3 We define the space W2[0,1] by

ulu,u',u”’,u" are absolutely continuous in [0, 1],

wt0,1] =
2(0.1] {u<4>eL2[0,1],xe[0,1]

The fourth derivative of « exists almost everywhere since u(® is absolutely continuous.
The inner product and the norm in W3[0, 1] are defined respectively by

3 1
(u,v) wi = Zu(i)(O)v(i)(O) +/ PP (x)dx, u,ve W30,1]
0

i=0

and

lollys = Jlwu) 00 ue W30,1].
2

The space W,[0,1] is a reproducing kernel space, i.e., for each fixed y € [0,1] and any
u € W;[0,1], there exists a function ry such that

u= (u,ry)Wé;.

Theorem 3.1 The space W;[0,1] is a reproducing kernel Hilbert space whose reproducing
kernel function is given by

YR G, x<y,

b= { Y0 a5y,

where ¢;(y) and d;(y) can be obtained easily by using Maple 16 and the proof of Theorem 3.1
is given in Appendix.

Remark 3.1 The reproducing kernel function r, of W;[0,1] is given as

1,22, 1,33 1,34 1 25 1,6 _1 .7
r(x)_{l+xy+4yx T3V X gV X gl % )%~ 50a0% 0 X =D
y = 1,22, 1,33 1 34 1 25 1 .6 _1 .7

Ly g7 + 56707 + g%y = 30X ) + 530% ~ 50500 X >
This can be proved easily as the proof of Theorem 3.1.

4 Bounded linear operator in W;[0, 1]
In this section, the solution of Eq. (2.17) is given in the reproducing kernel space W [0,1].
On defining the linear operator L : W3 [0,1] — W[0,1] as

e* e*
Lu = u'(x) + Re — (x* — 4a” + 4o)u® (x) - m*u (x) + Re — (x° + 5x* — 2 — 6) u(x).
e e
Model problem (2.17)-(2.18) changes the following problem:

Lu=M(x,u,u®), xe€[0,1],

(4.1)
u©0)=0, ul)=0, w1)=0, w'(0)=0,
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where
e 3 2
F(x) = u(x) + —(x —4x” + 4x)
e
and
&\ 2
M(x,u,u®) = —Re u® (x)u(x) - Re(—> (#® - 4x% + 4) (x” + 55> — 2 - 6)
e
e* e*
- — (% +8x" + 8x = 2) + m* — (x° + 24” — 6x).
e e
Theorem 4.1 The operator L defined by (4.1) is a bounded linear operator.

Proof We only need to prove
||Lu||fvé; =< PIILMII%)@;,

where P is a positive constant. By Definition 3.3, we have

3 1
2 = (s = Y [40O)] + / [P 0] dx, ue W;0,1],
2 0

i=0

and

||Lu||%v§ = (Lu, Lut) 3 = [(Lu)(())]2 + [(Lu)/(())]2 + [(Lu)n(o)]Q

1
+ [P ©0)] + / [P )]’ da.
0

By the reproducing property, we have
u(x) = (1, Ry) w3
and

(Lu)(x) = (1, (LR,)) (Lu)' (%) = (u, (LR,)')

57 5)
WZ WZ

(Lu)"(x) = (, (LR,)") (Lu)® (%) = (u, (LR,)P)

57
WZ

L) D () = (u, (LRx)<4>)W25.

5»
W2

Therefore, by the Cauchy-Schwarz inequality, we get

|(Lu)(x)| < ||u||W25 ||LRx||W§ = a1||u||W§ (where a; > 0 is a positive constant),
|(Lu)/(x)| < |lul| wg || (LR,) || wg = @2 Izl wg (where a, > 0 is a positive constant),
|(Lu)”(x)| <l w3 || (LR,)" H ws = 43 Izl wg (where a3 > 0 is a positive constant),

’(Lu)(e’)(x)‘ < ||u||W§- H (LR,)® || wg = a4||u||W25 (where a4 > 0 is a positive constant).
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Thus
2 Jnn2 12 2

(@O + [@u) O] + [1" O + [@) O] = (a3 + 3 + 3 + a2) ull .
Since

(L) = (1, (LRe)®) 5,
then

’(Lu)(4)‘ < ||u||W25 H (LR,)™ ” wg = a5||u||w,£; (where a5 > 0 is a positive constant).
Therefore, we have

2
(] < a3l

and
! (4) 2 2 2
[ T ] s < auly

that is,

1
1Zulllyy = [(L)O] + [(La) @] + [(L) ©)] + [L)® (0] + / (L) @] dx

0

2 2 2 2 2 2
<(a} +a3+aj+a;+a2)lul Pllu|

_ 2
5 — 4
w3 W,

where P = (a? + a3 + a3 + aj + a2) > 0 is a positive constant. This completes the proof. [J

5 Analysis of the solution of (2.17)-(2.18)
Let {x;}7°, be any dense set in [0,1] and W,(y) = L*r,(y), where L* is the adjoint operator of
L and r, is given by Remark 3.1. Furthermore

i) € Wy () = L1 ().
Lemma 5.1 {W;(x)}%, is a complete system of W3[0,1].
Proof For u € W3[0,1], let
(, ¥;))=0 (i=12,...),
that is,
(,L*ry,) = (Lu)(x;) = 0.
Note that {x;}2S, is the dense set in [0,1]. Therefore (Lu)(x) = 0. Assume that (4.1) has a

unique solution. Then L is one-to-one on W;[0,1] and thus #(x) = 0. This completes the
proof. d
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Lemma 5.2 The following formula holds:

Wi(x) = (LyRe(m)) (x:),

where the subscript n of the operator L, indicates that the operator L applies to a function

of .
Proof
i) = (W6 R 50
(L*rx, (E > 5 [0’1]
( 7)) ( ))(5))W4[o 1]
= (LyRe(m)) ().
This completes the proof. O

Remark 5.1 The orthonormal system {Wi(x)};?fl of W3[0,1] can be derived from the

Gram-Schmidt orthogonalization process of {W;(x)}7, as
Wy(x) = Zﬂik‘l’k(x) (Bi>0,i=1,2,...), (5.1)
k=1

where B are orthogonal coefficients.
In the following, we give the representation of the exact solution of Eq. (2.17) in the

reproducing kernel space W5 [0,1].

Theorem 5.1 Ifu is the exact solution of (4.1), then

w=y > BaM (e uloee), u® (1)) W),
i=1 k=1

where {x;}%) is a dense set in [0,1].

Proof From (5.1) and the uniqueness of solution of (4.1), we have

o0
u_Z Ws\IJ Zzﬂ‘k M,L ka
i=1 i=1 k=1
ZZ'B”‘ (Luty 1 W4\IJ Zzﬂlk (%, u,u®), rxk>W§W,-
i=1 k=1 i=1 k=1

=0 B (i ulove), u® (o)) Wi ().

i=1 k=1

This completes the proof. d
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Now the approximate solution #, can be obtained by truncating the n-term of the exact
solution u as

Uy = Z Z ﬂikM(xk, M(x](), M(g)(xk))ﬁl(x)

i=1 k=1

Lemma 5.3 ([30]) Assume that u is the solution of (4.1) and r, is the error between the
approximate solution u, and the exact solution u. Then the error sequence r,, is monotone
decreasing in the sense of || - ||W25 and ||r,,(x)||W25 — 0.

6 Numerical results

In this section, comparisons of results are made through different Reynolds numbers Re
and magnetic field effect m. All computations are performed by Maple 16. Figure 5.7 shows
comparisons of F(z) for a fixed Reynolds number with increasing magnetic field effect
m =1,3,8,20. From this figure, the velocity decreases due to an increase in m. Figure 5.8
shows comparisons of F(z) for a fixed magnetic field m = 1 with increasing Reynolds num-
bersRe =1, 4,10. It is observed that much increase in Reynolds numbers affects the results.
The RKHSM does not require discretization of the variables, i.e., time and space, it is not
affected by computation round of errors and one is not faced with necessity of large com-
puter memory and time. The accuracy of the RKHSM for the MHD squeezing fluid flow
is controllable and absolute errors are small with present choice of x (see Tables 1-6 and
Figures 2-7). The numerical results we obtained justify the advantage of this methodology.
Generally it is not possible to find the exact solution of these problems.

Table 1 Numerical resultsatm=1andRe=1

X OHAM Numerical solution  Approximate solution Absolute Relative Time (s)
(RK-4) RKHSM error error
0.1  0.150265 0.150294 0.15029400074386619072 743 x 10710 494 x10° 2948
02 0297424 0297481 0.29748099943286204844 567 x 10710 19x 107° 2.980
03 0438387 0438467 0.43846699936146542481 638 x 1070 145x 10 2870
04 0570093 0570189 0.57018899983086605298 169 x 10710 296 x 10710 2792
05 068952 0689624 0.68962399932753349664 672 x 1070 975 x 10710 2824
06 0793695 0.793796 0.79379600052975674440 529 x 10710 667 x 10710 2.902
0.7 0879695 0879779 0.87977900034152532706 341 x 1070 388 x 10710 2964
08 0944641 0944696 0.94469600021478585921  2.14 x 10710 227 x 10710 2.808
09 0985687 0985707 0.98570699945336089741 546 x 1070 554 x 10710 2761
10 10 10 10 0.0 00 2.902

Table 2 Numerical resultsatm=3 andRe=1

X OHAM Numerical solution  Approximate solution Absolute Relative Time (s)
(RK-4) RKHSM error error
0.1 0.13709  0.137044 0.13704399924397146430 756 x 1070 551 x 10  3.261
0.2 0272583  0.2724% 0.27249400041809657591 418 x 10710 153 x 1079 3542
03 0404759 0404637 0.40463699937791012358 622 x 1070 153 x10° 2949
04 0531649 0531508 0.53150799980699743080 193 x 1070 363 x 10710 3541
05 0650894 0650756 0.65075599905912100256 9.4 x 107'° 144x10° 3089
06 0759591  0.759478 0.75947799979255971384 207 x 10710 273 x 10710 299
0.7 0854106 0.854035 0.85403499924057783299 759 % 10710 889 x 10710  3.026
08 0929845 0929817 0.92981700082221438640 822 x 1070 884 x 1070 7582
09 0980966 0980963 0.98096299961587653980 384 x 10710 391 x 10710 3291

1.0 10 1.0 1.0 0.0 0.0 2.902
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Table 3 Numerical resultsatm=8and Re=1

X OHAM Numerical solution ~ Approximate solution Absolute Relative Time (s)
(RK-4) RKHSM error error
0.1 011507 0.114976 0.11497599095960418967  9.04 x 107° 7.86 x 1078 4.290
0.2 0230068 0.229882 0.22988199268533318687  7.31 x 1072 318 x 1078 4134
03 0344866  0.344604 0.34460400584434350472  5.84 x 107° 169 x 1078 4477
04 0459205 0458904 0.45890399132822355411 867 x 1072 1.88 x 1078 4275
05 0572545 0572276 0.5722759999680104400  3.19x 107" 558 x 107" 3931
06 0683769 0.683628 0.68362799155831029523 844 x 1072 123 x 1078 4556
0.7 0790543  0.790607 0.79060700783664672119  7.83 x 107° 991 x 107° 4461
08 0887936 0.888173 0.88817300466724146312  4.66 x 1072 525x% 107° 3.885
09 0965381 0.965578 0.96557800220185786369 2.2 x 1072 228 x107° 5.007
10 10 1.0 1.0 0.0 0.0 2902
Table 4 Numerical resultsat m=20and Re=1
x OHAM Numerical solution ~ Approximate solution Absolute Relative Time (s)
(RK-4) RKHSM error error
0.1 0.105312 0.105391 0.10539098947593257979  1.05 x 1078 998 x 1078 4134
02 0210625 0210782 0.2107819933190829 6.68 x 1072 3.16 x 1078 5.101
03 0315938 0316173 0.3161729190893567630 8.09 x 1078 255x% 1077 3.010
04 0421249 0421563 0.4215629919618786430 8.03 x 107 19x 1078 3.198
05 0526551 0.526952 0.5269519479728988 52 %1078 987 x 1078 3.042
06 0631824 0632324 0.632323981769674315 182 x 1078 288 x 1078 3.074
0.7 0736971 0.737586 0.7375860570172070642 57 %1078 773 x 1078 3.089
08 0841352 0.842051 0.84205103495023398982 349 x 1078 415 % 1078 3.073
09 094035 0.940861 0.94086101815219431313  1.81 x 1078 1.92 x 1078 3.135
10 10 1.0 1.0 0.0 0.0 2.902
Table 5 Numerical resultsatm=1and Re=4
X OHAM Numerical solution  Approximate solution Absolute Relative Time (s)
(RK-4) RKHSM error error
0.1 0.156218 0.158104 0.15810400012535311729  125x 1070 792 x 1070 5304
0.2 0308363 0311962 0.31196200057873017887 578 x 1070 1.85 x 107 7.332
0.3 0452557 0457539 0.45753900003164153289  3.16 x 107" 691 x 10711 5913
04 0585287 0591193 0.59119300033029000468 33 x 10710 558 x 10710 6272
0.5 0703518 0.709771 0.70977100026331200670 263 x 10719 3.7 x 10710 5.757
06 0804726  0.810642 0.81064200064720692438 647 x 10710 798 x 10710 6256
0.7 0886838 0.891666 0.89166599939606220359 603 x 1079 603 x 1070 639
08 0948051 095112 0.95112000044608660232 446 x 10710 469 x 1071 5101
09 0986529 0.987612 0.98761199979328069240 2.06 x 1070 209 x 1070 5616
10 10 1.0 1.0 0.0 0.0 2.902
Table 6 Numerical resultsatm=1and Re=10
X OHAM Numerical solution  Approximate solution Absolute Relative Time (s)
(RK-4) RKHSM error error
01 0175911  0.167616 0.1676160001397322991 139x 10710 833x 1070 5569
0.2 0344336  0.329031 0.32903100221406728329  2.21 x 107° 672 % 107° 6.365
03 0498671 0478907 0.47890699791462877619  2.08 x 107° 435 x 107 7.378
04 0633941 0613252 0.61325199550552162812 449 x 107° 732 % 107° 7.254
05 0747277 0729428 0.72942799845508679063  1.54 x 107™° 2.11%x107° 6.271
06 0838004 0.825843 0.82584300690485584332 6.9 x 1072 836 x 107° 7425
0.7 0907244 0901576 0.90157600840425340903 84 x 1072 932x107° 6.162
08 0956954 0901576 0.90157518382496567601  8.16 x 107/ 9.05 x 1077 7410
09 0988387 0988978 0.98897799997420425356 257 x 107" 26 x 107" 7910
10 10 1.0 1.0 0.0 0.0 2.902
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Figure 2 Comparison RKHSM, OHAM and RK-4 solutions form=Re = 1.
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Figure 3 Comparison RKHSM, OHAM and RK-4 solutions for m =3 and Re = 1.
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Figure 6 Comparison of squeezing flow for a fixed Reynolds number Re = 1 and increasing magnetic
field effect m=1, 3, 8, 20.

7 Conclusion

In this paper, we introduced an algorithm for solving the MHD squeezing fluid flow. We
applied a new powerful method RKHSM to the reduced nonlinear boundary value prob-
lem. The approximate solution obtained by the present method is uniformly convergent.
Clearly, the series solution methodology can be applied to much more complicated nonlin-
ear differential equations and boundary value problems. However, if the problem becomes
nonlinear, then the RKHSM does not require discretization or perturbation and it does
not make closure approximation. Results of numerical examples show that the present

method is an accurate and reliable analytical method for this problem.
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I'x)

x

Figure 7 Comparison of squeezing flow for a fixed magnetic field effect m = 1 and increasing
Reynolds numbers Re = 1,4, 10.

Appendix

Proof of Theorem 3.1 Let u € W3[0,1]. By Definition 3.2 we have

4 1
(R, g =§u<l>(0)zey>(0)+ fo u® (x)RY) (x) dix. (A1)

Through several integrations by parts for (A.1), we have

4
(wRy) .=y uO[R©0) - (-)“IRE(0)]
> =0
4 1
+ Y (DEUOORY(1)- / (@R (x) dx. (A2)
i=0 0

Note the property of the reproducing kernel

(u,Ry)Wzs = u(y).
Now, if

R (0) + R (0) =0,
RY(0) + R¥(0) = 0,
RP(0)-RY(0) = 0,
RPW) =0,
RP@) =0,
R =0,

(A.3)
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then (A.2) implies that
(10) () — _ S(n
RIO(x) = ~3(x - ),
when x #y
R1) =0,

and therefore

SR, x<y,

R = )
/) S di)a, x>y

Since

RV (x) = 8(x - ),

we have

RY(y) =RP(), k=0,1,2,3,4,5,6,78, (A.4)
and

RY0) =R () = 1. (A.5)

Since R,(x) € W3[0,1], it follows that
R,(0)=0, R,)=0, R(1)=0, R(0)=0. (A.6)

From (A.3)-(A.6), the unknown coefficients c;(y) and d;(y) (i = 1,2, ...,12) can be obtained.
This completes the proof. d
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