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1 Introduction
Impulsive differential equations are a class of importantmodels which describemany evo-
lution processes that abruptly change their state at a certainmoment. The theory of impul-
sive differential equations has become an active area of investigation in recent years due
to their numerous applications for problems arising in mechanics, electrical engineering,
medicine biology, ecology, and other areas of science (see, for example, [–] and the ref-
erences therein). With regard to ordinary impulsive differential equations, we have refer
to some work [, –]. Partial neutral differential equations with infinite delay have been
used for modeling the evolution of physical systems in which the response of the system
depends on the current state as well as the past history of the system (see, for instance, [,
] on the description of heat conduction inmaterials with fadingmemory). First-order ab-
stract neutral functional differential equationswith finite delay have been studied in [–]
among others. The work on first-order abstract neutral functional differential equations
with unbounded delay was initiated in [, ]. Relative to second-order abstract neutral
differential equations, we must mention []. Recently, weighted pseudo almost periodic
solutions to some partial neutral functional differential equations have been considered
in []; Baghli et al. [] have investigated sufficient conditions for the existence of mild
solutions, on the positive half-line, for two classes of first-order functional and neutral
functional perturbed differential equations with infinite delay. Hernández et al. [, ]
have studied the existence of mild solutions for a class of autonomous impulsive partial
neutral functional differential equations with infinite delay of first and second order. The
authors in [–] have further investigated the existence results for many kinds of im-
pulsive neutral differential equations.
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In [–], the neutral terms of those equations are

d
dt

[
x(t) – g(t,xt)

]
,

d
dt

[
x(t) – F

(
t,x(t),x

(
b(t)

)
, . . . ,x

(
bm(t)

))]
,

d
dt

[
x(t) – g

(
t,xt ,

∫ t


a(t, s,xs)ds

)]
and

d

dt
[
x(t) – g(t,xt)

]
,

respectively.
The histories xt : (–∞, ] → X, xt(s) = x(t + s), s ≤ , belong to an abstract phase

space Bh.
Motivated by [–], we will consider the case that the neutral term of the equation

is u′′′(θ (t)). Obviously, the neutral term is different from the previous literature. Besides,
the authors in [, –] have studied the impulsive neutral differential equations of the
first or the second order, but, in this paper, we focus on the third-order impulsive neutral
differential equations. Here, we introduce a real Banach space, which has been adopted by
us the first time.
Our results are based on the fixed-point theorem of Leray-Schauder or Banach.
Consider the following impulsive neutral differential equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u′′′(θ (t)) = f (t,u(t),u′(t),u′′(t),u(ϕ(t)),u(ϕ(t))),

t ∈ J = [,a], t �= θ–(tk),
Δu(i)(tk) = Iik(u(i)(tk)), i = , , ,k = , . . . ,p,
u(i)() = u(i) , i = , , ,

(.)

where  = t < t < · · · < tp < tp+ = a, Iik ∈ C(R,R), Δu(i)(tk) = u(i)(t+k ) – u(i)(tk) (i = , , ).
Throughout this paper, we assume θ ∈ C(J ,R), θ is monotone increasing with respect
to t,  ≤ θ (t) ≤ t (t ∈ J), θ () = , and θ (a) = a. Let θ ′(t) >  with θ– ∈ C(J ,R), J =
J\{θ–(t), . . . , θ–(tp)}. Also let f : J × R → R be continuous everywhere except for some
{θ–(tk)} × R at which f (θ–(tk)+,x,x,x, y, y) and f (θ–(tk)–,x,x,x, y, y) exist and
f (θ–(tk)–,x,x,x, y, y) = f (θ–(tk),x,x,x, y, y). ϕi ∈ C(J ,R) with ϕi(J) ⊆ J (i = , ).
Denote by PC(X,Y ), where X ⊂ R, Y ⊂ R, the set of all functions u : X → Y which are
piecewise continuous inX with points of discontinuity of the first kind at the points tk ∈ X,
where the limits u(t+k ) < ∞ and u(t–k ) = u(tk) < ∞.

2 Preliminaries
Note that m = mint∈J θ ′(t), m = maxt∈J θ ′(t), m = mint∈J |θ ′′(t)|, and m =
maxt∈J |θ ′′(t)|. It is clear thatm >  andm ≥ .
Let E = {u|u,u′,u′′ ∈ PC(J ,R)}. Evidently, E is a real Banach space with norm

∥∥u(t)∥∥E =max
{∥∥u(t)∥∥PC ,∥∥u′(t)

∥∥
PC ,

∥∥u′′(t)
∥∥
PC

}
,

where

∥∥u(t)∥∥PC = sup
t∈J

∣∣u(t)∣∣, ∥∥u′(t)
∥∥
PC = sup

t∈J

∣∣u′(t)
∣∣, ∥∥u′′(t)

∥∥
PC = sup

t∈J

∣∣u′′(t)
∣∣.
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Further, let E = {u(θ (t))|u(t) ∈ E}. We can check that E is also a real Banach space with
norm

∥∥u(θ (t))∥∥ =max
{∥∥u(θ (t))∥∥PC ,∥∥u′(θ (t))∥∥PC∗ ,

∥∥u′′(θ (t))∥∥PC∗∗
}
,

where

∥∥u(θ (t))∥∥PC = sup
t∈J

∣∣u(θ (t))∣∣ = sup
t∈J

∣∣u(t)∣∣ = ∥∥u(t)∥∥PC ,
∥∥u′(θ (t))∥∥PC∗ = sup

θ (t)∈J

∣∣∣∣du(θ (t))dθ (t)

∣∣∣∣ · sup
t∈J

dθ

dt
= sup

t∈J

∣∣u′(t)
∣∣ ·m =m

∥∥u′(t)
∥∥
PC ,

∥∥u′′(θ (t))∥∥PC∗∗ = sup
θ (t)∈J

∣∣∣∣du(θ (t))
θ(t)

∣∣∣∣ · sup
t∈J

(
dθ

dt

)

= sup
t∈J

∣∣u′′(t)
∣∣ ·m

 =m

∥∥u′′(t)

∥∥
PC .

Define the operator B : u(t) �−→ u(θ (t)), where u(t) ∈ E and u(θ (t)) ∈ E. It is evident that
B is topological linear isomorphic, which implies that E is a real Banach space.
Since θ (a)–θ ()

a– = θ ′(t̄) ( < t̄ < a), i.e., θ ′(t̄) = , we get m ≥ , next we have

∥∥u′(θ (t))∥∥PC∗ =m
∥∥u′(t)

∥∥
PC ≥ ∥∥u′(t)

∥∥
PC .

Similarly, we have

∥∥u′′(θ (t))∥∥PC∗∗ ≥ ∥∥u′′(t)
∥∥
PC .

So

∥∥u(t)∥∥E ≤ ∥∥u(θ (t))∥∥. (.)

Lemma  Let u ∈ E.
Then u is a solution of (.) if and only if u(t) ∈ E is a solution of the following integral

equation:

u
(
θ (t)

)
=

∑
i=

u(i)
i!

ti +



∫ t


(t – s)f

(
s,u(s),u′(s),u′′(s),u

(
ϕ(s)

)
,u
(
ϕ(s)

))
ds

+
∑

<θ–(tk )<t

∑
i=

(t – θ–(tk))i

i!
Iik

(
u(i)(tk)

)
, t ∈ J . (.)

Proof (i) Necessity.
For θ–(tk) < t ≤ θ–(tk+) (k = , , . . . ,p), by (.), we get

u(t) – u() = u
(
θ
(
θ–(t)

))
– u

(
θ ()

)
=
∫ θ–(t)


u′(θ (s))ds,

u(t) – u
(
t+
)
= u

(
θ
(
θ–(t)

))
– u

(
θ
(
θ–(t)+

))
=
∫ θ–(t)

θ–(t)
u′(θ (s))ds,

. . . ,
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u(tk) – u
(
t+k–

)
= u

(
θ
(
θ–(tk)

))
– u

(
θ
(
θ–(tk–)+

))
=
∫ θ–(tk )

θ–(tk–)
u′(θ (s))ds,

u
(
θ (t)

)
– u

(
t+k
)
= u

(
θ (t)

)
– u

(
θ
(
θ–(tk)+

))
=
∫ t

θ–(tk )
u′(θ (s))ds.

Adding these together, we obtain

u
(
θ (t)

)
= u() +

∫ t


u′(θ (s))ds + k∑

i=

[
u
(
t+i
)
– u(ti)

]
,

u
(
θ (t)

)
= u +

∫ t


u′(θ (s))ds + ∑

<θ–(tk )<t

Ik
(
u(tk)

)
, t ∈ J . (.)

Similarly, we obtain, respectively,

u′(θ (t)) = u′
 +

∫ t


u′′(θ (s))ds + ∑

<θ–(tk )<t

Ik
(
u′(tk)

)
, t ∈ J , (.)

u′′(θ (t)) = u′′
 +

∫ t


u′′′(θ (s))ds + ∑

<θ–(tk )<t

Ik
(
u′′(tk)

)
, t ∈ J . (.)

Substituting (.) into (.), it is easy to get

u′(θ (t)) = u′
 + u′′

t +
∫ t


(t – s)u′′′(θ (s))ds

+
∑

<θ–(tk )<t

[
Ik

(
u′(tk)

)
+
(
t – θ–(tk)

)
Ik

(
u′′(tk)

)]
, t ∈ J . (.)

Substituting (.) into (.), it is easy to get (.).
(ii) Sufficiency.
According to (.), it is clear that

u() = u, Δu(tk) = Ik
(
u(tk)

)
. (.)

Differentiating both sides of (.), we get

u′(θ (t)) = u′
 + u′′

t +
∫ t


(t – s)f

(
s,u(s),u′(s),u′′(s),u

(
ϕ(s)

)
,u
(
ϕ(s)

))
ds

+
∑

<θ–(tk )<t

[
Ik

(
u′(tk)

)
+
(
t – θ–(tk)

)
Ik

(
u′′(tk)

)]
, t ∈ J . (.)

It follows that

u′() = u′
, Δu′(tk) = Ik

(
u′(tk)

)
. (.)

Differentiating both sides of (.), we get

u′′(θ (t)) = u′′
 +

∫ t


f
(
s,u(s),u′(s),u′′(s),u

(
ϕ(s)

)
,u
(
ϕ(s)

))
ds

+
∑

<θ–(tk )<t

Ik
(
u′′(tk)

)
, t ∈ J . (.)
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It follows that

u′′() = u′′
, Δu′′(tk) = Ik

(
u′′(tk)

)
. (.)

Differentiating both sides of (.), we get

u′′′(θ (t)) = f
(
t,u(t),u′(t),u′′(t),u

(
ϕ(t)

)
,u
(
ϕ(t)

))
, t ∈ J . (.)

From (.), (.), (.), and (.), we see that u(t) is a solution of (.). �

Lemma  (Leray-Schauder []) Let the operator A : X → X be completely continuous,
where X is a real Banach space. If the set

G =
{‖x‖|x ∈ X,x = λAx,  < λ < 

}

is bounded, then the operator A has at least one fixed point in the closed ball

T =
{
x|x ∈ X,‖x‖ ≤ R

}
,

where R = supG.

Lemma  (Compactness criterion []) H ⊂ PC(J ,R) is a relatively compact set if and
only if H ⊂ PC(J ,R) is uniformly bounded and equicontinuous on every Jk (k = , . . . ,p),
where J = [t, t], Jk = (tk , tk+] (k = , . . . ,p).

3 Main result
Let us introduce the following conditions for later use:
(H) There exist nonnegative constants bi, cik (in the condition, the first three formulas

have i = , , , the last formulas i = , , and also k = , . . . ,p), d, d, and
g ∈ L(J ,R+) such that

∣∣f (t,x,x,x, y, y) – f (t,x,x,x, y, y)
∣∣

≤ g(t)

( ∑
i=

bi‖xi – xi‖PC +
∑
i=

di‖yi – yi‖PC
)
, t ∈ J ,

∣∣Iik(xi(tk)) – Iik
(
xi(tk)

)∣∣ ≤ cik
∣∣xi(tk) – xi(tk)

∣∣,
Iik() = ,

where x,x ∈ E, xi(t) = x̄′
i(t), xi(t) = x̄′′

i(t), x̄i(t), x̄i(t) ∈ E, yi, yi ∈ PC(J ,R).
(H) There exist positive constantM such that

∣∣f (t,u(t),u′(t),u′′(t),u
(
ϕ(t)

)
,u
(
ϕ(t)

))∣∣ ≤M
(
 +

∥∥u(t)∥∥E).
Theorem  If conditions (H), (H) are satisfied, and

http://www.advancesindifferenceequations.com/content/2014/1/38
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(H) l, l, l < , where

l = aM +
p∑

k=

∑
i=

ai

i!
cik ,

l =
m

m

[
aM +

p∑
k=

(ck + ack)

]
,

l =
m



m


[
m

(
aM +

p∑
k=

ck

)
+m

(
aM +

p∑
k=

(ck + ack)

)]
,

then (.) has at least one solution in the closed ball

B =
{
u
(
θ (t)

)|u(θ (t)) ∈ E,
∥∥u(θ (t))∥∥ ≤ R

}
,

where R = supG, in which

G =
{∥∥u(θ (t))∥∥|u(θ (t)) ∈ E,u

(
θ (t)

)
= λAu

(
θ (t)

)
,  < λ < 

}
.

Proof (i) For any u(θ (t)) ∈ E, define the operator A by

Au
(
θ (t)

)
=

∑
i=

u(i)
i!

ti +



∫ t


(t – s)f

(
s,u(s),u′(s),u′′(s),u

(
ϕ(s)

)
,u
(
ϕ(s)

))
ds

+
∑

<θ–(tk )<t

∑
i=

(t – θ–(tk))i

i!
Iik

(
u(i)(tk)

)
, t ∈ J . (.)

It is easy to see that Au(θ (t)) ∈ E. According to the properties of θ , for any v(t) ∈ E, we
have

v(t) = v
(
θ–(θ (t))) = vθ–(θ (t)).

Let u = vθ–. Next, it is clear that v(t) = u(θ (t)) ∈ E. It follows that A maps E into E. Thus
Au(θ (t)) ∈ E with

(
Au

(
θ (t)

))′ = u′
 + u′′

t +
∫ t


(t – s)f

(
s,u(s),u′(s),u′′(s),u

(
ϕ(s)

)
,u
(
ϕ(s)

))
ds

+
∑

<θ–(tk )<t

[
Ik

(
u′(tk)

)
+
(
t – θ–(tk)

)
Ik

(
u′′(tk)

)]
, t ∈ J , (.)

(
Au

(
θ (t)

))′′ = u′′
 +

∫ t


f
(
s,u(s),u′(s),u′′(s),u

(
ϕ(s)

)
,u
(
ϕ(s)

))
ds

+
∑

<θ–(tk )<t

Ik
(
u′′(tk)

)
, t ∈ J . (.)

A is a completely continuous operator, as will be verified by the following three steps.
Step . A is continuous.
Let any un(θ (t)) (n = , , . . .), u(θ (t)) ∈ E with ‖un(θ (t)) – u(θ (t))‖ →  as n→ ∞.
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By (.) and (H), we have

∣∣Aun(θ (t)) –Au
(
θ (t)

)∣∣
≤ 



∫ t


(t – s)g(s)

[ ∑
i=

bi
∥∥u(i)n (s) – u(i)(s)

∥∥
PC +

∑
i=

di
∥∥un(ϕi(s)

)
– u

(
ϕi(s)

)∥∥
PC

]
ds

+
∑

<θ–(tk )<t

∑
i=

(t – θ–(tk))i

i!
cik

∣∣u(i)n (tk) – u(i)(tk)
∣∣

≤
( ∑

i=

bi +
∑
i=

di

)∥∥un(t) – u(t)
∥∥
E

∫ t


(t – s)g(s)ds

+
∥∥un(t) – u(t)

∥∥
E

∑
<θ–(tk )<t

∑
i=

(t – θ–(tk))i

i!
cik

≤
[
aa

( ∑
i=

bi +
∑
i=

di

)
+

p∑
k=

∑
i=

ai

i!
cik

]∥∥un(t) – u(t)
∥∥
E
, t ∈ J . (.)

Then, from (.) and (.), we have

∥∥Aun(θ (t)) –Au
(
θ (t)

)∥∥
PC

≤
[
aa

( ∑
i=

bi +
∑
i=

di

)
+

p∑
k=

∑
i=

ai

i!
cik

]∥∥un(t) – u(t)
∥∥
E

≤
[
aa

( ∑
i=

bi +
∑
i=

di

)
+

p∑
k=

∑
i=

ai

i!
cik

]∥∥un(θ (t)) – u
(
θ (t)

)∥∥. (.)

Thus

∥∥Aun
(
θ (t)

)
–Au

(
θ (t)

)∥∥
PC →  as n→ ∞. (.)

Similarly, from (.) and (.), we get∣∣∣∣d[Aun(θ (t)) –Au(θ (t))]
dθ (t)

∣∣∣∣dθ

dt

=
∣∣(Aun(θ (t)) –Au

(
θ (t)

))′∣∣ = ∣∣(Aun(θ (t)))′ – (
Au

(
θ (t)

))′∣∣
≤

[
aa

( ∑
i=

bi +
∑
i=

di

)
+

p∑
k=

(ck + ack)

]∥∥un(θ (t)) – u
(
θ (t)

)∥∥,
∣∣∣∣d[Aun(θ (t)) –Au(θ (t))]

dθ (t)

∣∣∣∣
≤ 

m

[
aa

( ∑
i=

bi +
∑
i=

di

)
+

p∑
k=

(ck + ack)

]∥∥un(θ (t)) – u
(
θ (t)

)∥∥, t ∈ J , (.)

∥∥(Aun
(
θ (t)

)
–Au

(
θ (t)

))′∥∥
PC∗

≤ m

m

[
aa

( ∑
i=

bi +
∑
i=

di

)
+

p∑
k=

(ck + ack)

]∥∥un(θ (t)) – u
(
θ (t)

)∥∥. (.)
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Thus

∥∥(Aun(θ (t)) –Au
(
θ (t)

))′∥∥
PC∗ →  as n→ ∞. (.)

Similarly, from (.) and (.), we get

∣∣∣∣d[Aun(θ (t)) –Au(θ (t))]
dθ(t)

·
(
dθ

dt

)

+
d[Aun(θ (t)) –Au(θ (t))]

dθ (t)
· d

θ

dt

∣∣∣∣
=
∣∣(Aun(θ (t)) –Au

(
θ (t)

))′′∣∣ = ∣∣(Aun(θ (t)))′′ – (
Au

(
θ (t)

))′′∣∣
≤

[
a

( ∑
i=

bi +
∑
i=

di

)
+

p∑
k=

ck

]∥∥un(θ (t)) – u
(
θ (t)

)∥∥,
by (.) and the properties of θ , it follows that

∣∣∣∣d[Aun(θ (t)) –Au(θ (t))]
dθ(t)

∣∣∣∣ ·
(
dθ

dt

)

=
∣∣∣∣d[Aun(θ (t)) –Au(θ (t))]

dθ(t)
·
(
dθ

dt

)∣∣∣∣
≤

∣∣∣∣d[Aun(θ (t)) –Au(θ (t))]
dθ(t)

·
(
dθ

dt

)

+
d[Aun(θ (t)) –Au(θ (t))]

dθ (t)
· d

θ

dt

∣∣∣∣
+
∣∣∣∣d[Aun(θ (t)) –Au(θ (t))]

dθ (t)

∣∣∣∣ ·
∣∣∣∣dθ

dt

∣∣∣∣
≤

[
a

( ∑
i=

bi +
∑
i=

di

)
+

p∑
k=

ck

]∥∥un(θ (t)) – u
(
θ (t)

)∥∥

+
m

m

[
aa

( ∑
i=

bi +
∑
i=

di

)
+

p∑
k=

(ck + ack)

]∥∥un(θ (t)) – u
(
θ (t)

)∥∥,
∣∣∣∣d[Aun(θ (t)) –Au(θ (t))]

dθ(t)

∣∣∣∣
≤ 

m


{
a

( ∑
i=

bi +
∑
i=

di

)
(m + am) +

p∑
k=

[
mck + (m + am)ck

]}

× ∥∥un(θ (t)) – u
(
θ (t)

)∥∥, t ∈ J ,

so

∥∥(Aun(θ (t)) –Au
(
θ (t)

))′′∥∥
PC∗∗

≤ m


m


{
a

( ∑
i=

bi +
∑
i=

di

)
(m + am) +

p∑
k=

[
mck + (m + am)ck

]}

× ∥∥un(θ (t)) – u
(
θ (t)

)∥∥. (.)

Thus

∥∥(Aun
(
θ (t)

)
–Au

(
θ (t)

))′′∥∥
PC∗∗ →  as n→ ∞. (.)
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By (.), (.), and (.), it is easy to see that ‖Aun(θ (t)) –Au(θ (t))‖ →  as n → ∞, that
is to say, A is continuous.
Step . Amaps any bounded subset of E into one bounded subset of E.
Let T be any bounded subset of E. Then there exists h >  such that ‖u(θ (t))‖ ≤ h for all

u(θ (t)) ∈ T .
By (.), (H), (H), and (.), we have

∣∣Au(θ (t))∣∣ ≤
∑
i=

|u(i) |
i!

ti +



∫ t


(t – s)M

(
 +

∥∥u(s)∥∥E)ds

+
∑

<θ–(tk )<t

∑
i=

(t – θ–(tk))i

i!
cik

∣∣u(i)(tk)∣∣

≤
∑
i=

ai

i!
∣∣u(i) ∣∣ +M

(
 +

∥∥u(t)∥∥E)
∫ a


a ds +

∥∥u(t)∥∥E ∑
<θ–(tk )<t

∑
i=

ai

i!
cik

≤
∑
i=

ai

i!
∣∣u(i) ∣∣ + aM

(
 +

∥∥u(θ (t))∥∥) + p∑
k=

∑
i=

ai

i!
cik

∥∥u(θ (t))∥∥

≤
∑
i=

ai

i!
∣∣u(i) ∣∣ + aM( + h) + h

p∑
k=

∑
i=

ai

i!
cik , t ∈ J ,

so

∥∥Au(θ (t))∥∥PC ≤
∑
i=

ai

i!
∣∣u(i) ∣∣ + aM( + h) + h

p∑
k=

∑
i=

ai

i!
cik . (.)

Similarly, from (.), (H), (H), and (.), we get

∣∣∣∣dAu(θ (t))dθ (t)

∣∣∣∣ · dθ

dt
=
∣∣(Au(θ (t)))′∣∣

≤ ∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM( + h) + h

p∑
k=

(ck + ack), t ∈ J ,

∣∣∣∣dAu(θ (t))dθ (t)

∣∣∣∣ ≤ 
m

[∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM( + h) + h

p∑
k=

(ck + ack)

]
, t ∈ J , (.)

so

∥∥(Au(θ (t)))′∥∥PC∗ ≤ m

m

[∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM( + h) + h

p∑
k=

(ck + ack)

]
. (.)

Similarly, from (.), (H), (H), (.), (.), and the properties of θ , we get

∣∣∣∣dAu(θ (t))
dθ(t)

∣∣∣∣ ·
(
dθ

dt

)

=
∣∣∣∣dAu(θ (t))

dθ(t)
·
(
dθ

dt

)∣∣∣∣
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≤
∣∣∣∣dAu(θ (t))

dθ(t)
·
(
dθ

dt

)

+
dAu(θ (t))
dθ (t)

· d
θ

dt

∣∣∣∣ +
∣∣∣∣dAu(θ (t))dθ (t)

∣∣∣∣ ·
∣∣∣∣dθ

dt

∣∣∣∣
=
∣∣(Au(θ (t)))′′∣∣ + ∣∣∣∣dAu(θ (t))dθ (t)

∣∣∣∣ ·
∣∣∣∣dθ

dt

∣∣∣∣
≤

[∣∣u′′

∣∣ + aM( + h) + h

p∑
k=

ck

]

+
m

m

[∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM( + h) + h

p∑
k=

(ck + ack)

]
,

∣∣∣∣dAu(θ (t))
dθ(t)

∣∣∣∣ ≤ 
m



[∣∣u′′

∣∣ + aM( + h) + h

p∑
k=

ck

]

+
m

m


[∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM( + h) + h

p∑
k=

(ck + ack)

]
,

so

∥∥(Au(θ (t)))′′∥∥PC∗∗ ≤ m


m


{
m

[∣∣u′′

∣∣ + aM( + h) + h

p∑
k=

ck

]

+m

[∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM( + h) + h

p∑
k=

(ck + ack)

]}
. (.)

According to (.), (.), and (.), we obtain

∥∥Au(θ (t))∥∥ ≤ max

{
ai

i!
∣∣u(i) ∣∣ + aM( + h) + h

p∑
k=

∑
i=

ai

i!
cik ,

m

m

[∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM( + h) + h

p∑
k=

(ck + ack)

]
,

m


m


{
m

[∣∣u′′

∣∣ + aM( + h) + h

p∑
k=

ck

]

+m

[∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM( + h) + h

p∑
k=

(ck + ack)

]}}
.

Therefore, A(T) is uniformly bounded.
Step . A(T) is equicontinuous on every Jk (k = , . . . ,p), where J = [, θ–(t)], Jk =

(θ–(tk), θ–(tk+)] (k = , . . . ,p).
For any Au(θ (t)) ∈ A(T) and any ε > , take

δ =

[∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM( + h) + h

k∑
i=

(ci + aci)

]–

ε.

Then if t, t ∈ Jk and |t – t| < δ with t < t, from (.), (H), (H), and (.), we have
∣∣Au(θ (t)) –Au

(
θ (t)

)∣∣
≤ ∣∣u′


∣∣(t – t) +



∣∣u′′


∣∣(t + t)(t – t) +




∫ t

t
(t – s)M

(
 +

∥∥u(s)∥∥E)ds
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+
k∑
i=

[
(t – t)ci

∣∣u′(ti)
∣∣ + 


∣∣(t – θ–(ti)

)
+
(
t – θ–(ti)

)∣∣(t – t)ci
∣∣u′′(ti)

∣∣]

≤
[∣∣u′


∣∣ + a

∣∣u′′

∣∣ + aM

(
 +

∥∥u(t)∥∥E) + ∥∥u(t)∥∥E
k∑
i=

(ci + aci)

]
(t – t)

≤
[∣∣u′


∣∣ + a

∣∣u′′

∣∣ + aM

(
 +

∥∥u(θ (t))∥∥) + ∥∥u(θ (t))∥∥ k∑
i=

(ci + aci)

]
|t – t|

≤
[∣∣u′


∣∣ + a

∣∣u′′

∣∣ + aM( + h) + h

k∑
i=

(ci + aci)

]
|t – t| < ε.

Thus, A(T) is equicontinuous on every Jk (k = , . . . ,p).
As a consequence of Steps -, A is completely continuous.
(ii) For any ‖u(θ (t))‖ ∈ G, similar to getting (.), (.), and (.), we have, respec-

tively,

∥∥Au(θ (t))∥∥PC ≤
∑
i=

ai

i!
∣∣u(i) ∣∣ + aM +

[
aM +

p∑
k=

∑
i=

ai

i!
cik

]∥∥u(θ (t))∥∥

=
∑
i=

ai

i!
∣∣u(i) ∣∣ + aM + l

∥∥u(θ (t))∥∥,
∥∥(Au(θ (t)))′∥∥PC∗ ≤ m

m

(∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM

)
+
m

m

[
aM +

p∑
k=

(ck + ack)

]∥∥u(θ (t))∥∥
=
m

m

(∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM

)
+ l

∥∥u(θ (t))∥∥,
∥∥(Au(θ (t)))′′∥∥PC∗∗ ≤ m



m


{[
m

(∣∣u′′

∣∣ + aM

)
+m

(∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM

)]

+

[
m

(
aM +

p∑
k=

ck

)
+m

(
aM +

p∑
k=

(ck + ack)

)]}

× ∥∥u(θ (t))∥∥
=
m



m


[
m

(∣∣u′′

∣∣ + aM

)
+m

(∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM

)]
+ l

∥∥u(θ (t))∥∥.
Then

∥∥u(θ (t))∥∥ = λ
∥∥Au(θ (t))∥∥ ≤ ∥∥Au(θ (t))∥∥ ≤ L + l

∥∥u(θ (t))∥∥,
where

L = max

{ ∑
i=

ai

i!
∣∣u(i) ∣∣ + aM,

m

m

(∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM

)
,

m


m


[
m

(∣∣u′′

∣∣ + aM

)
+m

(∣∣u′

∣∣ + a

∣∣u′′

∣∣ + aM

)]}

and l =max{l, l, l}.
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It follows that ‖u(θ (t))‖ ≤ L
–l , i.e., G is bounded.

From (i) and (ii), all conditions of Lemma  are satisfied. Therefore, the proof is com-
plete. �

Theorem  If condition (H) (Iik() =  are not needed) is satisfied, and
(H) r, r, r < , where

r = aa

( ∑
i=

bi +
∑
i=

di

)
+

p∑
k=

∑
i=

ai

i!
cik ,

r =
m

m

[
aa

( ∑
i=

bi +
∑
i=

di

)
+

p∑
k=

(ck + ack)

]
,

r =
m



m


{
a

( ∑
i=

bi +
∑
i=

di

)
(m + am)

+
p∑
k=

[
mck + (m + am)ck

]}
, in which a =

∫ a


g(t)dt,

then (.) has a unique solution.

Proof Similar with getting (.), (.) and (.), for any u(θ (t)),u(θ (t)) ∈ E, we obtain,
respectively,

∥∥Au(θ (t)) –Au
(
θ (t)

)∥∥
PC

≤
[
aa

( ∑
i=

bi +
∑
i=

di

)
+

p∑
k=

∑
i=

ai

i!
cik

]∥∥u(θ (t)) – u
(
θ (t)

)∥∥
= r

∥∥u(θ (t)) – u
(
θ (t)

)∥∥,∥∥(Au(θ (t)) –Au
(
θ (t)

))′∥∥
PC∗

≤ m

m

[
aa

( ∑
i=

bi +
∑
i=

di

)
+

p∑
k=

(ck + ack)

]∥∥u(θ (t)) – u
(
θ (t)

)∥∥
= r

∥∥u(θ (t)) – u
(
θ (t)

)∥∥,∥∥(Au(θ (t)) –Au
(
θ (t)

))′′∥∥
PC∗∗

≤ m


m


{
a

( ∑
i=

bi +
∑
i=

di

)
(m + am)

+
p∑
k=

[
mck + (m + amck)

]}∥∥u(θ (t)) – u
(
θ (t)

)∥∥
= r

∥∥u(θ (t)) – u
(
θ (t)

)∥∥.
Then

∥∥Au(θ (t)) –Au
(
θ (t)

)∥∥ ≤max{r, r, r}
∥∥u(θ (t)) – u

(
θ (t)

)∥∥.
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Thus all conditions of the fixed-point theorem of Banach are satisfied. The proof is com-
plete. �

Remark  By comparing Theorem  with Theorem , it is easy to see that each of them
has its own strong and weak points. The condition (H) of Theorem  is satisfied more
easily than the condition (H) of Theorem . The condition (H) of Theorem  is also
satisfied easily, but it does not need in Theorem .

4 Examples
Example  Consider the equation

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′′′(t – 
 t( – t)) = t

 { sin(u(t) + et) + u′(t) + u′′(t)
– [u( t ) + u(t + t( – t))]}, t ∈ J = [, ], t �= θ–(t) = 

 ,
Δu(t) = 

u(t), Δu′(t) = 
u

′(t),
Δu′′(t) = 

u
′′(t), t = 

 ,
u(i)() = u(i) , i = , , .

(.)

Firstly, it is easy to verify that

θ (t) = t –


t( – t), ϕ(t) =

t

, ϕ(t) = t + t( – t)

all satisfy the requisitions of (.). From θ ′(t) = 
 + t and θ ′′(t) = , we get that

m = /, m = /, m =m = .

Next, since

f (t,x,x,x, y, y) =
t


[
 sin

(
x + et

)
+ x + x – (y + y)

]

and

∣∣sin(x(t) + et
)
– sin

(
x(t) + et

)∣∣
=
∣∣(x(t) + et

)
–
(
x(t) + et

)∣∣ · ∣∣cos(x̄(t) + et
)∣∣ ≤ ∣∣x(t) – x(t)

∣∣,
where x̄(t) is located between x(t) and x(t), we have

∣∣f (t,x,x,x, y, y) – f (t,x,x,x, y, y)
∣∣

≤ t


[

∣∣sin(x + et

)
– sin

(
x + et

)∣∣ + |x – x|

+ |x – x| +
∑
i=

|yi – yi|
]

≤ t

[



|x – x| + 


|x – x| + 


|x – x| + 


∑
i=

|yi – yi|
]
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≤ t

[



‖x – x‖PC +



‖x – x‖PC +




‖x – x‖PC

+




∑
i=

‖yi – yi‖PC
]
, t ∈ J ,

where b = 
 , b =


 , b =


 , d = d = 

 , a = , a =
∫ 
 t dt =


 . From I(x) = 

x,
I(x) = 

x, I(x) =


x, we have

∣∣I(x(t)) – I
(
x(t)

)∣∣ ≤ 


∣∣x(t) – x(t)
∣∣, I() = ,

∣∣I(x(t)) – I
(
x(t)

)∣∣ ≤ 


∣∣x(t) – x(t)
∣∣, I() = ,

∣∣I(x(t)) – I
(
x(t)

)∣∣ ≤ 


∣∣x(t) – x(t)
∣∣, I() = ,

where c = 
 , c =


 , c =


 . Further, we have∣∣∣∣f

(
t,u(t),u′(t),u′′(t),u

(
t


)
,u
(
t + t( – t)

))∣∣∣∣
≤ 



{

∣∣sin(u(t) + et

)∣∣ + 
∣∣u′(t)

∣∣ + 
∣∣u′′(t)

∣∣ + [∣∣∣∣u
(
t


)∣∣∣∣ + ∣∣u(t + t( – t)
)∣∣]}

≤ 


[
 + 

∥∥u(t)∥∥E + 
∥∥u(t)∥∥E + (∥∥u(t)∥∥E + ∥∥u(t)∥∥E)]

=



(
 +

∥∥u(t)∥∥E),
whereM = 

 .
Finally, we get

l =M + c + c +


c =




< ,

l = (M + c + c) =



< ,

l = (M + c + c) =


< .

Thus, (.) satisfies all conditions of Theorem . It follows that (.) has at least one solu-
tion in the closed ball B.

Example  Consider the equation
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′′′(t – 
 t( – t)) = t

 {
√
 + u(t) –  arctan(u′(t) + et)

+ u′′(t) – [u( t ) + u(t)]}, t ∈ J = [, ], t �= θ–(t) = 
 ,

Δu(t) = 
u(t) + , Δu′(t) = 

u
′(t) + ,

Δu′′(t) = 
u

′′(t) + , t = 
 ,

u(i)() = u(i) , i = , , .

(.)

Firstly, it is easy to verify that

θ (t) = t –


t( – t), ϕ(t) =

t

, ϕ(t) = t
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all satisfy the requisitions of (.). From θ ′(t) = 
 + t and θ ′′(t) = , we get

m = /, m = /, m =m = .

Next, since

f (t,x,x,x, y, y) =
t



[

√
 + x –  arctan

(
x + et

)
+ x – (y + y)

]

and

∣∣∣√ + x(t) –
√
 + x(t)

∣∣∣
=
∣∣x(t) – x(t)

∣∣ · |x̄(t)|
 + |x̄(t)| ≤ ∣∣x(t) – x(t)

∣∣,
∣∣arctan(x(t) + et

)
– arctan

(
x(t) + et

)∣∣
=
∣∣(x(t) + et

)
–
(
x(t) + et

)∣∣ · 
 + (x̄(t) + et)

≤ ∣∣x(t) – x(t)
∣∣,

where x̄(t) is located between x(t) and x(t), x̄(t) is located between x(t) and x(t),
we have

∣∣f (t,x,x,x, y, y) – f (t,x,x,x, y, y)
∣∣

≤ t


[

∣∣∣√ + x –

√
 + x

∣∣∣ + 
∣∣arctan(x + et

)
– arctan

(
x + et

)∣∣

+ |x – x| +
∑
i=

|yi – yi|
]

≤ t

[



|x – x| + 


|x – x| + 


|x – x| + 



∑
i=

|yi – yi|
]

≤ t

[



‖x – x‖PC +




‖x – x‖PC +



‖x – x‖PC

+




∑
i=

‖yi – yi‖PC
]
, t ∈ J ,

where b = b = 
 , b =


 , d = d = 

 , a = , a =
∫ 
 t dt =


 . From I(x) = 

x + ,
I(x) = 

x + , I(x) = 
x + , we have

∣∣I(x(t)) – I
(
x(t)

)∣∣ ≤ 


∣∣x(t) – x(t)
∣∣,

∣∣I(x(t)) – I
(
x(t)

)∣∣ ≤ 


∣∣x(t) – x(t)
∣∣,

∣∣I(x(t)) – I
(
x(t)

)∣∣ ≤ 


∣∣x(t) – x(t)
∣∣,

where c = 
 , c =


 , c =


 .
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Finally, we get

r =



( ∑
i=

bi +
∑
i=

di

)
+ c + c +



c =




< ,

r = 

[



( ∑
i=

bi +
∑
i=

di

)
+ c + c

]
=




< ,

r = 

[



( ∑
i=

bi +
∑
i=

di

)
+ c +



c

]
=


< .

Thus, (.) satisfies all conditions of Theorem . It follows that (.) has a unique solution.
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