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%[X(f) +px(t - T(0)] +ax(t) - btanhx(t - o (1)) =0,

are expressed in terms of linear matrix inequalities (LMIs). Compared with some
existing ones, our results are derived without the use of the mode transformation
method and the bounding technique. Three numerical examples are provided to
show the effectiveness of the proposed method and less conservatism of the
obtained results.
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1 Introduction

In this paper, we reconsider the following neutral delayed differential equation:

%[x(t) + px(t — T(t))] + ax(t) - btanhx (¢ — o (£)) = 0, 1)

for ¢t > 0, where a, b are two positive real constants and |p| < 1. The delays () :
[0,+00) — [0,7] (r > 0) and o () : [0,+00) — [0,0] (6 > 0) are bounded functions and
r=max({t,o} > 0. There exist two positive constants p, t € (0,1) such that t/(¢) < p,

o'(t) < uy. For each solution of equation (1), we assume the initial condition
xO(G) = ¢(9)1 0 e [—V, O],

where ¢ € C([-r,0];R).
When 7(¢) =t and o (t) = 0, the system (1) is turned into the following form:

d
T [x(t) + px(t — r)] +ax(t) —btanhx(t —0) =0, ¢>0. (2)
Recently, for equation (2), many authors have investigated its properties due to its appli-

cations in the research of the dynamic characteristics of neural networks of Hopfield type,
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see [1-17] and references therein. Although some qualitative stability analysis for equa-
tion (2) have been presented in [1, 3, 5-14, 17], their results are mainly concerned with the
asymptotic stability, without providing any conditions for exponential stability and any in-
formation about the decay rates of equation (2). Besides, it should be pointed out that the
advantage of equation (2) with exponential stability in comparison with that with asymp-
totic stability lies in that the former can provide fast convergence and desirable accuracy.
In [8], Li has obtained the global exponential stability for equation (2), but the sufficient
condition is delay-independent. It is well known that current efforts on the problem of
stability for delay systems can be divided into two categories, namely delay-independent
stability criteria and delay-dependent stability criteria. And generally speaking, the for-
mer are more conservative than the latter when the delay is small. Thus, the sufficient
condition about the global exponential stability for equation (2) given in [8] is more con-
servative. More recently, in [16], Rojsiraphisal and Niamsup have proposed some delay-
dependent LMI-based sufficient conditions ensuring the exponential stability for equation
(2), but these conditions are also more conservative since the mode transformation and
the bounding technique are both used. On the other hand, to the best of our knowledge,
compared with constant-delay systems, the time-varying delay systems are more closed to
reflect the reality. So, it is necessary to discuss the global exponential stability for equation
(1). In [18], Chen and Meng have established the LMI-based exponential stability criterion
for equation (1) by only constructing a modified Lyapunov functional, but the result in [18]
is sightly more conservative. Thus, there still exists room for further improvement.

In this paper, we reconsider the exponential stability of equation (1). New delay-
dependent sufficient criteria ensuring the global exponential stability for equation (1) are
given in terms of linear matrix inequalities (LMIs). The criteria here are also discussed
from the point of view of its comparison with the earlier results. To show the applicabil-
ity and effectiveness of the proposed method developed in this paper, three illustrative

examples are provided.

Notation Throughout this paper, the notation X > Y (respectively, X > Y) means that the
matrix X — Y is positive semi-definite (respectively, positive definite), where X and Y are
symmetric matrices of the same dimensions. The symbol * denotes the elements below

the main diagonal of a symmetric matrix.

2 Main results

In this section, we give our main results.

Theorem 1 For a given positive constant k > 0, the zero solution of equation (1) is globally

exponentially stable if there exist some positive scalars: oy, a1, e, g and oy, such that the
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following linear matrix inequalities (LMIs) hold:

_Qh 9%2 )»IOlob 0
*  QF Maopb 0
Q = 2 1600P <0,
* *  —has(l-w2) O
| * * —0T
~ 3)
Q%l Q%Z )Lzot()b 0
x Q2 A b 0
Q, = 22 200 P! <0,
* ¥ —azha(l— ) 0
| * * * e
where
oA oA
Q= 2kors — 2aaors + g1 €™ T + a3k €7 + %(62'” -1)+ %(ezm -1),
K K

Qi = 20k atop — Macop, Q) = 2hikagp” —an(l- ),

oA ogh
Q2 = 2kcaphy — 2acphy + 01 ko™ T + azha e + 272 (62“ _ 1) + ﬁ(ebw _ 1)’
2K 2K
Qf, = 2hakop — Maaaop, Q2, = 2hakapp® — Aoy (1 — juy),
T o
)Ll = » )»2 = .
T+0 T+0

Proof Consider the Lyapunov functional defined by
V(t,x(t)) = e ao[x(t) + pax(t - 1:(t))]2

t 0 t
+ o f 2 (5) ds + oy / / e 6x2(5) ds do
t ) -t Jt+0

—7(t

t 0 t
o / e*6+9) tanh? x(s) ds + oy / / ¥ 60 tanh® x(s)dsdo,  (4)
—o Jt+0

t—o ()

where o; (i =0,1,2,3,4) are positive scalars to be chosen later.
The derivative of V(¢,x(t)) along the solution of equation (1) is determined by

av(t,x(t))
dt

= ez’”{2xo¢0 [%(2) + px(£ - r(t))]2

+ 2a0[x(2) + px(t — 7(2))][-ax(t) + btanhx(t — 5 (1)) ]

+ o€ () — oy (1 - t/(t))ey‘("’(t))x2 (t-1@®)

t
o
+ i (ez’” - l)xz(t) —ay /;_T x%(s) ds

+ 3% tanh? x(¢) — o3 (1 - a’(t))ey‘("_”(t)) tanh? x(t - cr(t))
Qg
2K

t
N (eZKa _ 1) tanh® x(¢) — g f tanh? x(s) dS}
-1

o
< 62”{ [2/(050 —2apa + 017 + 2—2 (7 - 1)]x2(t)
K
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+ [dragp — 2a0ap]x(t)x(t - r(t))

+ 200 bx(t) tanhx(t - cr(t)) + [2/(050192 —a(1- M1)]x2 (t - ‘L'(t))

+ 2a0pbx(t - r(t)) tanhx(t - a(t)) + |:a362’“7 + g—i (e2"" - 1):| tanh? x(¢)

t t
— a3(1 — o) tanh? x(t - a(t)) —ay / x2(s) ds — oy / tanh? x(s) ds}. (5)
-1 t—o
The fact that tanh? x(¢) < x%(¢) implies
036”7 + %(ez’“’ - 1) tanh? x(¢) < | a3e*° + %(ez’“I - 1) 22(8). (6)
2K - 2K
Substituting (6) into (5), we have
M / Sl (t,8)21&:(L,s) ds + —/ 52 (2,8)2,65(2, ) ds, 7)

where &(t,s) = [xT(£),x7 (¢ - ©(¢)),tanh? x(t — o (£)),x7(s)]T and &(¢,s) = [x7 (), 2T (¢ —
7(¢)), tanh” x(t — o (¢)), tanh” x(s)] 7.

From (3), we have 2 f#x < 0, which implies V(¢,x(¢)) < V(0,x(0)). And from the defi-

nition of the Lypunov function V'(¢,x(t)), we have

V(O,x(O)) = ao[x(O) +pac(—r(0))]2

0 0 [0
+ o / X2 () ds + ay / / > 6x2(s) ds do
-7(0) -t JoO

0 0 (0
+ a3 / €9 tanh?® x(s) ds + as / / >~ tanh® x(0) d6 ds
- (0) -0 JO

2K1

< |:4ozo + (o + ag)re®” + (ap + a4)e 2:| sup ‘(ﬁ(9)|2
4K | oel-r0)

= M.
So, we obtain
(@) + px(t - T(8))|” < Mye™, ®)

where M; = M > 0. For Ve € (0, min{2«, —% log|p|}) and v > 0, the fundamental inequality
xy <vx? + y2 for any x,y € R implies

e’”|x(t)|2 <1+ v)e‘”|x(t) +px(t—1(2)) |2 + “Tve” |px(t -1(2)) |2
<1 +v)M; + 1—|p|26” e(t=(®) |x(2 - ‘L'(t))|

And from ¢ € (O,min{ZK,—% log |p|}), we have |p|?e®” < 1. Thus, as v > 0 is chosen suffi-
ciently large,

lpI*(1 + v)e”
ST g
v
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Therefore, we have

e”’x()f)‘2 <1+ V)M +eefETO) ’x(t -1(t)) ’2. 9)

About (9), for VT > 0,

sup {e”|x(t)|2} <@ +v)M;+€ sup |¢5(6’)|2 +€ sup {e‘”|x(t)|2}.
0=<t<T 0¢e[-r,0] 0=<t<T

Consequently,

1+ v)M; +esu 0)|>
sup {est’x(t)‘z}s( ) 1 pQE[—r,O] |¢( )| )
0<t<T l1-¢€

(10)
As T — +00, it follows from (10) that

1+v)M; +€su 0)|%
sup [e”|x(t)|2]§( )My Pocl_roy [#(O)] ’

0<t<+00 1-¢

that is,

|x(0)| < Mpe™,

< 2
where M, = \/ ()M ve wlp_‘):[”‘o] 9OF S0 and o = 5 > 0. The proof of this theorem is com-
pleted. d

When 7(¢) = t,0(t) = 0, we can easily derive the following corollary.

Corollary 2 For a given positive constant k > 0, the zero solution of equation (2) is globally
exponentially stable if there exist some positive scalars: ag, a1, ay, o3, ag, such that the
following linear matrix inequalities (LMIs) hold:

_Qh 912 A.lOlob 0
x QA b 0
Ql = 22 1%0p < O,
* * —A103 0
L * * * -0y T
Q4 Qf, Magh O
* Q2 Aaoph 0
92 _ 22 200 P! <0,
* * —053)\2 0
| * * * —0l40
where

Qiz =2MK 0P — Macop, Qéz = 2A1Ka0p2 — Ao,

Q%Z = 2)\2/(0[019 — Azaaop, Q%Z = 2)\2K0l0p2 - )\20[1,

and Qhr Q%l, M, Ay are given in Theorem 1.
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Remark 1 The proofs of Theorem 1 and Corollary 2 are completed by utilizing the tech-
nique involved in [19], so that the mode-transformation technique and the bounding tech-
nique are not employed. Although one LMI-based sufficient condition ensuring the expo-
nential stability for equation (2) has been obtained in [16], this condition is more con-
servative since the mode-transformation technique and the bounding technique are both

used, and the obtained result has narrow applications since the condition
lpl + (o —7)Ibl <1, (11)

must be imposed. Besides, note that Theorem 4 in [16] involves seven decision variables,
while Corollary 2 involves five decision variables. Thus, Corollary 2 needs fewer decision
variables than Theorem 4 in [16]. What is more, this restrictive condition (11) is removed
in this paper. Thus, our LMIs-based sufficient conditions are less conservative than those
provided in [16], which is shown by Example 1 and Example 2 in Section 3. And the tech-
nique employed in this paper is different from the previous ones introduced in [1, 3, 7-11,
16, 17].

Remark 2 Although the delay-independent sufficient condition for the global exponential
stability of equation (2) has been obtained, the technique used in [8] is only suitable for
constant delay, not for time-varying delays. So, our result can complement the result in
[8]. Besides, in [8], the delay-independent sufficient condition for the global exponential
stability of equation (2) has been given in the form

a(l-|pl) > b(1+pl). 12)

Remark 3 If k = 0, the criteria about the global asymptotical stability for equation (1) are
presented as follows:

Corollary 3 The zero solution of equation (1) is globally asymptotically stable if there exist
some positive scalars: g, oy, 0y, a3 and g, such that the following linear matrix inequali-
ties (LMIs) hold:

_Q%l 9%2 )uldob 0
Ql Aaopb 0

Q=| T o P <0,
* *  —has(l-p2) O

| * * * -0 T
(13)

—Q%I Q%Z )»Q(Jlob 0
Q2 A b 0

Q=] 2 200P <0,

* *  —haz(l—-p) 0

| * * * —040
where

Q%l = —2)»16!0[0 + )\,10(1 + )»10[21’ + )»10[3 + )»10[40’,

Q1 = —haaop, Q3 = —Mor(1 - 1),
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Table 1 Comparisons of maximum allowed o for Example 1 when 7 =0.1

o [3] [71 [9] [9] [10] [11] [16] [18] This paper
A.S. 222 107 207 232 1.90 0444 232 102! 138 x 107
E.S. (k = 0.0038) - - - - 1947 - 175.289

Notations: A. S. stands for asymptotically stable, E. S. stands for exponentially stable.

Q%l = —2)\,2610(0 + )\20[1 + )\20[21’ + )\20[3 + )\,20(40',

QF, = —haacop, Q3 =—hoar(l- 1),
A (i =1,2) are given in Theorem 1.

3 Three illustrative examples
In this section, three illustrative examples are given to show the effectiveness of our result.

Example 1 Consider the following equation in [3, 7, 9-11, 16, 18]:

%[x(t) +0.2x(¢ - 0.1)] =—0.6x(t) + 0.3 tanhx(¢t — o). (14)

By Corollary 2, if ¥ = 0.0038 is given, the upper bound of the time-delay o which guaran-
tees the exponential stability of equation (14) is 175.289. Obviously, when ¢ = 175.289, the
two inequalities (11) and (12) do not hold and both criteria given in [8, 16] have a narrow
application. And, by Corollary 3, the upper bound of time-varying delay o (¢) for the global
asymptotic stability of equation (14) is 1.38 x 10%!. The comparison results of the maxi-
mum allowable delay bounds o in [3, 7, 9-11, 16, 18] and our result are listed in Table 1.
Obviously, our result is less conservative than those in [3, 7, 9-11, 16, 18]. By solving the
LMIs (13) in Corollary 3, with respect to g, a1, o2, @3, &4, we obtain a solution

o = 4.7784 x €°, oy =1.0407 x €8, g =2.7196 x €8,

o3 =1.6709 x €2, o4 =5.9603 x e,

when the maximum value of o is 1.38 x 102.

Example 2 Consider the following equation in [1, 3, 5, 7-10, 16, 18]:

dit[x(t) +0.35x(¢ — 0.5)] = ~1.5x(¢) + btanhx(¢ — 0.5). (15)

By Corollary 2, if ¥ = 0.177 is given, we obtain that the upper bound of 4 about the global
exponential stability of equation (15) is 1.0929. And by Corollary 3, the upper bound of
b ensuring the global asymptotic stability of equation (15) is up to 1.405. Obviously, it is
seen from Table 2 that our result is better than those given in [1, 3, 5, 7-10, 16, 18]. By
solving the LMIs (13) with respect to «g, o1, a2, 03, g, if € = 0.177, we obtain a solution

o =5.3090 x €, o =1.0908 x €3, oy = 0.3857,

a3 = 4.7933 x é°, oy = 0.3857,

Page 7 of 9
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Table 2 The upper bound of b for Example 2 wheno =t =0.5

b (1] (18]  [3] [5] 71 (8] [9] (101 [16]  This paper
A.S. 0318 1346 0889 0424 149 0699 1405 0422 1405 1405
ES.(k=0177) - - - - - 0722 - - 0478 1.092
1
09 q

0 10 20 30 40 50 60 70 80

t

Figure 1 The trajectory of the solution to such a system in Example 2.

when the maximum value of b is 1.0929. When b =1.0929, the criterion about the global
exponential stability of equation (15) is not obtained in [8] since the inequality (12) is not
satisfied. It is easily seen that our result is less conservative than one in [8]. The simulation
for the trajectory of the solution to such a system when o = 7 = 0.5 and b = 1.405 is given

in Figure 1.

Example 3 Consider the following equation with time-varying delays [18]:

%[x(t) +0.2x(¢ — 7(£))] = —0.6x(¢) + 0.5 tanh x( — 5 (¢)), (16)

sin?(¢)
10
delay o (¢) for asymptotic stability of equation (16) is 1.285 x 10>, But, by virtue of The-

where t(t) =

and u, = 0.2. By using Corollary 3, the upper bound of time-varying

orem 1 in [18], the maximin allowable bound of time-varying delay o (£) for asymptotic
stability of this equation is 5.000 x 10*%. So, Corollary 3 is better than one in [18]. When
o =1.285 x 10%, by the Matlab LMIs Control Toolbox, a solution to the LMIs (13) in

Corollary 3 can be obtained as

o = 4.6259 x €8, a =2.5166 x €, oy =4.0187 x €,

as = 2.4431 x €°, oy =3.8420 x 7.

Page 8 of 9
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Obviously, the result provided in [16] is infeasible. And even if the delays t(¢) and o (¢) are
the constant delays, the zero solution of equation (16) is not globally exponentially stable
according to the criterion given in [8] since the inequality (12) is not satisfied. Thus, our
result can also complement that in [8, 16].
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