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Abstract

The solid-state method was applied for synthesizing polyaniline (PANI)/noble metal hybrid materials with the
presence of HAuUCI;4H,0 or H,PtClg:6H,0 in the reaction medium. The structure, morphology, and electrochemical
activity of the composites were characterized by Fourier transform infrared (FTIR) spectra, UV-visible (vis) absorption
spectra, energy dispersive spectrum (EDS), X-ray powder diffraction (XRD), transmission electron microscopy (TEM),
scanning electron microscopy (SEM), and cyclic voltammetry. The results from FTIR and UV-vis spectra showed that
the oxidation degree and doping level of the PANI in composites can be influenced by HAuCl;-4H,0 and
H,PtCls6H,0. The EDS data demonstrated that the composites contain a certain amount of Au (or Pt) element. XRD
analysis indicated the presence of crystalline-state Au particles in PANI matrix prepared from the presence of
HAuCl44H,0 and revealed that the H,PtClg-6H,O cannot be converted into metal Pt. The TEM and SEM images
implied that the Au particles did exist in the polymer matrix with the size of about 20 nm. The enzymeless H,O,
sensor constructed with PANI/Au composite from the presence of HAuCl,-4H,0 showed a short response time
(within 5 s) and displayed an excellent performance in wide linear range.
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Background

Noble metal nanoparticles such as Au and Pt nano-
particles have high catalytic activity, nontoxicity, and
biocompatibility [1]. Conducting polymers are usually
used as matrix to noble metal nanoparticles and then
applied in biosensors [2,3], electrocatalysts [4], and
supercapacitors [5], due to the synergy effect between
polymer matrix and inorganic nanoparticles. Among
various conducting polymers, polyaniline (PANI) has a
potential use in a broad field because of its high envir-
onmental stability, low cost, relatively facile preparation,
and reversible control of conductivity by charge-
transfer doping and protonation [6]. The composite of
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PANI and Au (or Pt) nanoparticles, which have been in-
tensively investigated, are also attractive materials as
they combine the properties of large surface area, high
conductivity, and excellent biocompatibility [7,8]. Up to
now, PANI/Au (or Pt) hybrid material can be synthe-
sized chemically or electrochemically. These methods
have the advantages of easily controlling operating con-
ditions. However, they have significant disadvantages
such as the formation of toxic waste products and are
not suitable for mass production. Solid-state synthesis is
a mechanochemical reaction that occurs between pow-
ders in the solid state [9]. It is a new synthetic method
to develop green chemistry with obvious advantages: re-
duced pollution, low costs, and simplicity in process
and handling. Also, these factors are especially import-
ant in the industry.

H,0, as a metabolic intermediate involved in many bio-
logical reactions plays an important role in the fields of
chemistry, biology, clinical control, and environmental
protection; therefore, its detection is of great importance
[10]. To date, various techniques including spectrometry,
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titrimetry, chemiluminescence, and electrochemistry have
been employed for determination [1,11,12]. Among the
developed techniques, electrochemical methods have be-
come one of the predominant analytical techniques due to
their high sensitivity, low cost, and low power requirement
[13]. Moreover, among the electrochemical methods,
amperometric sensors have shown great potential for de-
veloping versatile analytical techniques for H,O, deter-
mination [14]. The conducting polymer/metal composite
amperometric enzyme electrodes as sensors have been
paid particular attention due to their advantages of high
sensitivity and specificity [14,15]. However, an efficient
electron transfer between the active site of the enzyme
and the electrode surface is not quite stable and depends
on the enzyme type, temperature, and pH as a function
of time [15]. Therefore, an alternative sensor called
‘enzymeless sensor, which try to mimic natural enzymes
with the same effectiveness and selectivity, has been widely
studied [16,17].

Herein, we report the exploration of synthesizing the
polyaniline/noble metal hybrid materials by solid-state
synthesis method at room temperature. The structure,
morphology, and components of composites were char-
acterized by Fourier transform infrared (FTIR), UV-
visible (vis), X-ray powder diffraction (XRD), energy
dispersed spectrum (EDS), scanning electron microscopy
(SEM), and transmission electron microscopy (TEM)
methods. Furthermore, the composite from the existence
of HAuCl4H,O in the reaction medium was selected
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for designing an enzymeless sensor on a glassy carbon
electrode (GCE) for H,O, detection.

Methods

Aniline and ammonium peroxydisulfate were obtained
from Xian Chemical Reagent Company (Xian, China).
Chloroauric acid hydrated (HAuCly-4H,0O), chloroplatinic
acid hydrated (H,PtCls-6H,0), and p-toluenesulfonic acid
(p-TSA) were purchased from Shanghai Aladdin Reagent
Company (Shanghai, China). H,O, (30 wt.%) was obtained
from Tianjin Chemical Reagent Company (Tianjin,
China). Nafion, a 5-wt.% solution in a mixture of lower ali-
phatic alcohols and 20% water, was obtained from Sigma-
Aldrich (St. Louis, MO, USA). Before use, it was diluted
with 0.5 wt.% isopropanol. All the reagents were of analyt-
ical grade, aniline was purified by distillation under re-
duced pressure and stored in a refrigerator, and all other
chemicals and solvents were used as received without fur-
ther purification. Phosphate buffer saline (PBS; 0.1 M) was
prepared by mixing stock solutions of NaH,PO, and
Na,HPO,.

A typical solid-state synthesis process for the compos-
ites was as follows (as shown in Figure 1): 1 mL aniline
was added quickly to the mortars containing p-TSA (1.9 g).
After grinding for about 10 min, 0.1 g yellowish-red crys-
talloid HAuCl,-4H,O (10.0 wt.% of the aniline monomer)
and 1 mL H,O were added and ground homogeneously
for 5 min, then 2.28 g was added, and the mixture was fur-
ther ground for 30 min. The obtained powder was washed

Aniline
p-TSA

HAuCl,-4H,0"

Figure 1 Schematic of solid-state method synthesis of PANI(HAuCl,;-4H,0) hybrid material.
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with ethanol and distilled water until the filtrate was col-
orless, and then the powder was dried under vacuum at
60°C for 48 h. The obtained hybrid materials were de-
noted as PANI(HAuCl,-4H,0), which indicated that the
composite was prepared from the reaction system with
the existence of HAuCl,-4H,O. In a similar manner, we
also prepared the composite with the presence of the same
amount of H,PtCls-6H5O (10.0 wt.% of the aniline mono-
mer) in the reaction medium, and the composite was de-
noted as PANI(H,PtCls-6H,0), which indicated that the
composite was prepared from the reaction system with
the existence of HyPtClg:6H,O. Pure PANI had also been
prepared using the above-mentioned procedure. The
yield of samples were 0.56 and 047 g for the PANI
(HAuCly4H,0) and PANI(H,PtClg-6H,0), respectively.

The FTIR spectra of the composites were obtained
using a Bruker Equinox-55 Fourier transform infrared
spectrometer (Bruker, Billerica, MA, USA) (frequency
range 4,000 to 500 cm™'). The UV-vis spectra of the
samples were recorded on a UV-vis spectrophotometer
(UV4802, Unico, Dayton, NJ, USA). XRD patterns have
been obtained using a Bruker AXS D8 diffracto-
meter with monochromatic Cu Ka radiation source
(A = 0.15418 nm), the scan range (260) was 5° to 70°.
SEM measurements were performed on a Leo 1430VP
microscope (Zeiss, Oberkochen, Germany) with Oxford
Instruments (Abingdon, Oxfordshire, UK). EDS expe-
riments were carried out with a pellet which was pressed
at 200 MPa and then adhered to copper platens.

A three-electrode system was employed to study the
electrochemical performances of composites. Pt elec-
trode was used as a counter electrode and satu-
rated calomel electrode as a reference electrode. PANI
(HAuCl44H,0)-modified GCE (diameter = 3 mm) was
used as a working electrode. The working electrode was
fabricated by placing a 5-pL dispersion (30 mg/L) on a
bare GCE surface and air-dried for 10 min. All the ex-
periments were carried out at ambient temperature and
air atmosphere.

Results and discussion

Figure 2 shows the FTIR spectra of the pure PANI, PANI
(HAuCl4-4H,0), and PANI(H,PtCls-6H,0). As shown in
Figure 2, the FTIR spectra of PANI(HAuCl,-4H,0O) and
PANI(H,PtCls-6H,0) are almost identical to that of PANI.
The band at approximately 3,235 cm™" is attributable to
the N-H stretching vibration [18], while the two bands
appearing at approximately 1,580 and 1,493 cm ™ are asso-
ciated to the stretching vibration of nitrogen quinoid (Q)
and benzenoid (B) rings, respectively [19]. The band at ap-
proximately 1,315 cm™ can be assigned to the C-N mode
[20], while the band at approximately 1,146 cm™" is the
characteristic band of the stretching vibration of quinoid,

and the band appearing at approximately 820 cm™ is
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Figure 2 FTIR spectra. Curves (a) PANI, (b) PANI(HAuCl4-4H-0), and
(c) PANI(H,PtCls:6H50).
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attributed to an aromatic C-H out-of-plane bending vibra-
tion [19].

Generally, the Q/B (I:},sgo e [ 3493 o) value indicates
the oxidation degree of PANI [21]. A comparison indi-
cates that the composites exhibit a higher intensity ratio
of Q to B ring modes than pure PANI, suggesting that
there are more quinoid units in the composites than
pure PANIL This result can be attributed to the adding
of HAuCl, and H,PtClg, which can serve not only as the
resource of metal particles, but also as strong oxidants,
which can enhance the oxidation degree of the PANI in
composites [22,23].

Figure 3 represents the UV-vis absorption spectra of
PANI, PANI(HAuCl,-4H,0), and PANI(H,PtCl-6H,0)
in m-cresol solution. The characteristic peaks of PANI
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Figure 3 UV-vis spectra. Curves (a) PANI, (b) PANI(HAuCl,;-4H,0),
and (c) PANI(H,PtClgs-6H,0).

1000




Jamal et al. Nanoscale Research Letters 2013, 8:117
http://www.nanoscalereslett.com/content/8/1/117

and composites at approximately 320 to 330 nm, ap-
proximately 430 to 445 nm, and 820 to 870 nm are at-
tributed to s-7*, polaron-*, and 7-polaron transitions,
respectively [18]. Feng et al. reported that pure Au
nanoparticles usually show an absorption peak at ap-
proximately 510 nm as a result of the surface plasmon
resonance [24], whereas Pt nanoparticles usually have no
absorption peak at 300 to 1,000 nm [25,26]. However, in
this case, the surface plasmon resonance bands of Au
nanoparticles are not observed, which may be caused by
the changing of their surrounding environment [7].
However, the absorption peaks of 7-polaron change sig-
nificantly, and the intensity ratio (Ago_g70/A320-330) of
the composites is higher than PANI, indicating that the
doping level of the PANI in composites is higher than
that of pure PANI [27]. Therefore, the results from the
UV-vis absorption spectra imply that the HAuCl, or
H,PtClg have certain effects on the polymer chains.
Figure 4 is the EDS of the composites. It can be con-
cluded from Figure 4 that the Au and Pt elements do exist
in the polymer matrix, and the weight percentages are
7.65 and 6.07 for Au and Pt elements, respectively. Figure 5
shows the XRD patterns of PANI, PANI(HAuCl,-4H,0),
and PANI(H,PtCls-6H,0). As indicated in Figure 5, the
PANI exhibits two peaks at 26 approximately 20° and
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Figure 5 XRD patterns. Curves (a) PANI, (b) PANI(H,PtCls6H,0),
and (c) PANI(HAuCl,4H,0).
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approximately 26°, which are ascribed to the periodicity
parallel and perpendicular to the polymer chains, respect-
ively [28]. In the case of PANI(HAuCl,-4H,0), the strong
peaks appeared at 260 values of 38°, 44°, and 64.5° which
can be assigned to Bragg's reflections from the (111),
(200), and (220) planes of metal Au [3]. These Bragg's
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Figure 4 EDS spectra of composites. (a) PANI(HAuUCl,-4H,0) and (b) PANI(H,PtClg-6H,0).
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reflections are in good agreement with the data (JCPDS-
ICCD, 870720), which can further prove the existence of
Au nanoparticles in the PANI(HAuCl,-4H,O). However,
there is no characteristic Bragg's reflection for metal Pt
in the case of PANI(H,PtCls-6H,O), which is a similar
phenomenon to that of Pt nanoparticles deposited on
carbon nano- tubes using PANI as dispersant and
stabilizer [29]. Combined with the results from EDS
analysis, it can be concluded that the Pt element may
exist in the form of [PtCls]?, [PtCls(H,0)]™, and [PtCl,
(H,0),] in the polymer matrix because the deproton-
ation reaction of the aqua ligands of H,PtClg are fully
suppressed by the high concentration of protons in the
reaction system by solid-state method [30]. However,
these interesting results indicate the potential applica-
tion of the solid-state method for polymer complex
such as PANI-type conducting polymers Pt(IV) com-
plexes. The general reactions for the reduction of
HAuCl, and H,PtClg by PANI in this reaction are illus-
trated in Figure 6 [7,31].

Figure 7 indicates the SEM and TEM images of
the PANI(HAuCl;-4H,0) and PANI(H,PtCls-6H,0). As
shown in the SEM and TEM images, the size and shape
of PANI particles are irregular. Some Au nanoparticles
(the bright spots in Figure 7a) disperse better in the sur-
face of the PANI matrix. However, based on the results
of EDS analysis, it can be concluded that the total
amount of Au nanoparticles (7.65 wt.%) is not very well
consistent with the estimated value of 10 wt.% (assuming
all the Au salt is converted to Au(0)). If one considers
the conversion rate of Au salt to Au nanoparticles in this
solid-state reaction, the value of conversion rate is about
89.6% (Conversion rate = (Yield of sample) x (Elemental
percentage of Au)/(Au in 100 mg HAuCly;-4H,0)). In
addition, it is evident from Figure 7c that the size of the
Au nanoparticles (the sand-like dark spots in Figure 7c)
is about 20 nm. However, in the case of PANI
(H,PtClg-6H,0), there are not any Pt metal particles
found in either SEM or TEM images. This phenomenon
is consistent with the results of XRD patterns.

Figure 8 shows the cyclic voltammetry (CV) curves of
PANI, PANI(HAuCl;-4H,0), and PANI(H,PtCls-6H,0)
electrodes measured from -0.2 to 0.8 V in 1 M H,SO,
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electrolyte. Overall, the redox peaks of composites are
similar to the pure PANI, indicating that the HAuCl,
and H,PtClg cannot affect the formation of PANI in
composites. However, a comparison demonstrates that
the oxidation peak currents of composites are higher
than those of pure PANI and shift negatively to a lo-
wer potential range than those of pure PANI This
phenomenon can be associated to the higher oxidation
degree and doping level of the PANI in composites than
that of pure PANI, which can improve the electrochem-
ical activity of composites. Moreover, the oxidation po-
tential of PANI(HAuCl,-4H,O) shifts to lower potential
than those of others, which may be a result of the Au
nanoparticles possibly enhancing the flow ability of elec-
tron in the polymer chain [2].

As the XRD patterns of PANI(H,PtCls-6H,0) did not
show any characteristic Bragg's reflection for metal Pt,
the PANI(HAuCl,-4H,0) was selected as a type of cata-
lyzing electrode material, and an enzymeless H,O, sen-
sor was assembled by the dripping of the dispersion of
PANI(HAuCly4H,0) on a GCE surface. Figure 9 shows
the electrocatalytic responses of bare GCE and PANI
(HAuCl,-4H,0)/GCE in 0.1 M PBS at pH 6.8 with and
without 10 mM H,O,. It is clear that that there is no
evident redox peak observed on a bare GCE which is
due to the lack of substance with electrochemical activ-
ity. On the contrary, the PANI(HAuCly4H,0)/GCE
shows a pair of reduction (5 pA at —-0.15 V) and oxida-
tion (3 pA at 0.15 V) peak currents. It is common that
PANI showed one pair of peaks in neutral pH environ-
ment [32]. It is also important to note that both the re-
duction and oxidation current for PANI(HAuCl,-4H,O)/
GCE increased after addition of H,O,. These observa-
tions indicate that PANI(HAuCl,-4H,O)/GCE can act as
catalysts for both the reduction and oxidation of H,O,.

The amperometric response of the enzymeless H,O,
amperometric sensor was investigated by successively
adding H,O, to a continuous stirring of 20 mL 0.1 M
PBS at pH 6.8. Figure 10 demonstrates the typical
current-time curve of the enzymeless sensor. As can be
seen in Figure 10, a sharp increase in the current is ob-
served in negative within a response time of less than 5
s after each addition of H,O, direction, which is lower

NH,

+

N N
APS 3 ~ +Au(0
HAUCl— g7 HOI + @N@ \@,‘,} wo
/\ N
APS N\ ~ +Pt 0
HaPtCls ors A R HC QN»@ \QW} ©

Figure 6 Schematic of a possible mechanism for the formation of hybrid materials of PANI(HAuCl,-4H,0) and PANI(H,PtCls-6H,0).
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Figure 7 TEM and SEM images of PANI(HAuCl,-4H,0) and PANI(H,PtClg-6H,0). (@) SEM and (c) TEM images of PANI(HAuCl44H,0); (b) SEM

than the amperometric response(<2 s) of enzyme biosen-
sor based on in situ electrosynthesized PANI/Au core-
shell nanocomposite [14]. However, the linear regression
equation was i = —0.9256 — 0.0057[H,0O,] (mM), with a
correlation coefficient of 0.997 (inset b in Figure 10).
This reveals that this non-enzymatic sensor shows simi-
lar performance in terms of wide linear range compared
with enzyme-based biosensor [14].
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Figure 8 CV curves of PANI (a), PANI(HAuCl,4H,0) (b), and
PANI(H,PtCls:6H,0) (c) in T M H,SO, electrolyte. Scan rate is 3
mV s~'. Mass of the active material is 3 mg, and graphite current
collector was used (area 1 cm?) as the working electrode.

Conclusions

In this paper, the synthesis of the polyaniline/noble
metal hybrid materials by solid-state method in the pres-
ence of HAuCl,4H,O or H,PtCls:6H,O in the reaction
system was investigated. These composites were charac-
terized by FTIR, UV-vis, X-ray, TEM, SEM, and EDS as
well as by the electrochemical measurements. The re-
sults showed that the strong oxidation ability of

e A\
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Figure 9 CV curves of bare GCE and PANI(HAuCl,4H,0)/GCE.
GCE (curve a) and PANI(HAuCl4-4H,0)/GCE in 0.1 M PBS at pH 6.8
without (curve b) and with (curve )10 mM H,O,. Scan rate is 50
mv s
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Figure 10 Amperometric response of the enzymeless sensor to
H,0,. The applied potential is —0.2 V in 0.1 M PBS at pH 6.8. Inset
(@) shows a magnification of the 120 to 400 s additions of H,0,, and
inset (b) shows the steady-state current vs. H,O, concentration.

HAuCl,4H,0 and H,PtCls:6H,O was a main factor in
increasing the oxidation degree and doping level of the
PANI in composites. Furthermore, the results also indi-
cated that the HAuCl,4H,O can be converted into Au
nanoparticles, while that of the H,PtCls:-6H,O cannot be
converted into metal Pt, suggesting the formation of
[PtCle]*", [PtCl5(H,0)]", and [PtCl,(H,0),] in the poly-
mer matrix. Compared with the existing methods, the
method demonstrated here was facile but effective and
could be readily used for a large-scale preparation of the
PANI/Au. However, the PANI/Pt was not successfully
synthesized by this solid-sate method which may be a re-
sult of the fully suppressed deprotonation reaction of
aqua ligands of H,PtClg by the high concentration of
protons in the reaction system. These interesting results
indicated the potential application of the solid-state
method for polymer complex such as PANI-type
conducting polymer Pt(IV) complexes. Furthermore, the
electrochemical measurements indicated that the ob-
tained PANI/Au displayed a fast response to H,O, and
excellent performance in wide linear range. The sensor
could catalyze the oxidation and reduction of H,O, at
the same time, and it exhibited a fast amperometric re-
sponse (about 5 s) to the reduction of H,O, in a wide
linear range.
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