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Abstract

Background: The study of discrete characters is crucial for the understanding of evolutionary processes. Even though
great advances have been made in the analysis of nucleotide sequences, computer programs for non-DNA discrete
characters are often dedicated to specific analyses and lack flexibility. Discrete characters often have different transition
rate matrices, variable rates among sites and sometimes contain unobservable states. To obtain the ability to accurately
estimate a variety of discrete characters, programs with sophisticated methodologies and flexible settings are desired.

Results: DiscML performs maximum likelihood estimation for evolutionary rates of discrete characters on a provided
phylogeny with the options that correct for unobservable data, rate variations, and unknown prior root probabilities
from the empirical data. It gives users options to customize the instantaneous transition rate matrices, or to choose
pre-determined matrices from models such as birth-and-death (BD), birth-death-and-innovation (BDI), equal rates
(ER), symmetric (SYM), general time-reversible (GTR) and all rates different (ARD). Moreover, we show application
examples of DiscML on gene family data and on intron presence/absence data.

Conclusion: DiscML was developed as a unified R program for estimating evolutionary rates of discrete characters
with no restriction on the number of character states, and with flexibility to use different transition models. DiscML is
ideal for the analyses of binary (1s/0s) patterns, multi-gene families, and multistate discrete morphological
characteristics.
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Background
Many evolutionary processes involve transitions among
different discrete characteristic states, including changes
in morphological characteristics [1], sequence gain and
loss [2,3], gene family expansion and contraction [4], gain
and loss of mobile promoters [5] and epigenetic char-
acteristics such as methylation [6]. Evolutionary rates of
discrete characters have been estimated using programs
primarily developed for constructing ancestral character
states such as the ACE function of the APE package [7] in
R, standalone programs BayesTraits [8] and Mesquite [9].
Recently, great efforts have been made to estimate gene
family turnover rates. The GLOOME program maps gain
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and loss rates using binary characters (or 1s/0s) [10], while
Count [11], BEGFE [12], BadiRate [13], and CAFE3 [14]
employ birth-and-death (BD) models to study gene family
expansion and contraction.
Some of these programs have advanced (or realistic)

features that are not implemented in other programs.
For instance, the BayesTraits program implements a �-
distribution for rate variation [8]. The GLOOME program
allows the estimation of prior root probabilities of the
character states [10,15]. The BadiRate program allows
variable birth rates and death rates, and corrects for unob-
servable data [13]. Furthermore, many multistate char-
acters do not necessarily evolve in a BD manner [16],
and should therefore be modeled using transition rate
matrices other than BD.
In order to perform accurate rate estimation on a vari-

ety of discrete characters, we have developed a unified
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program DiscML by implementing the advanced features
mentioned above as well as flexible options for transition
rate matrices.

Implementation
DiscML estimates the evolutionary rates of discrete char-
acters by fitting the distribution of all character states
(the data) on a given phylogeny. The data need to be in a
matrix format (vector format for a single site) as required
in many other phylogenetic programs in R (see examples
in Additional file 1). The provided phylogeny is required
to have branch lengths, as branch lengths will be used as a
relative time scale in the analysis. The evolutionary rates,
transition rate matrices, and additional parameters dis-
cussed belowwill be optimized tomaximize the likelihood
of the data. The optimization is achieved using the PORT
routines [17] implemented in the nlminb function in R.

Implementation of rate variation in the analysis
Rate variation among the character sites has long been
recognized and implemented in DNA analyses [18], but
has beenmissing frommost analyses of non-DNAdiscrete
characters (but see [8]). DiscML considers rate variation
among the character sites by implementing a discrete �

distribution (with the option of alpha=TRUE).

Estimation of prior root probabilities
Most programs for the analysis of discrete characters
assume only uniformly distributed prior root probabili-
ties, e.g., π1 = π2 = .. = πa = 1

a , (a is the total number
of character states). DiscML allows the estimation of prior
root probabilities (πa) for different character states (with
the option of rootprobability=TRUE).

Flexibility on both the transition model and the number of
character states
DiscML is flexible on both the size and type of the
transition rate matrix (Q), which can be customized by
users. This option could open the door for novel evolu-
tionary analyses on different discrete characters. Several
transition rate matrices are pre-determined in DiscML:
model="ER" (equal rates, i.e., all entries in equation 1
are equal), model="SYM" (symmetric, i.e., α1 = α2,
β1 = β2, γ1 = γ2, ..), and model="ARD" (all rates dif-
ferent, i.e., all entries are free to vary). ER and SYM are
reversible matrices, while ARDmatrices are irreversible.

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 ..
0 − α1 β1 δ1 ..
1 α2 − γ1 ε1 ..
2 β2 γ2 − ζ1 ..
3 δ2 ε2 ζ2 − ..
.. .. .. .. .. −

⎞
⎟⎟⎟⎟⎟⎟⎠

(1)

Evolutionary processes can follow a birth-and-death
(BD) process. The birth processes correspond to transi-
tions from state n to state n+ 1, while the death processes
correspond to transitions from state n to state n − 1. The
BD transitions can be represented as matrices contain-
ing non-zero entries only between the neighboring states
(equation 2). Several pre-determined BD transition rate
matrices are available: BDER (equal rates), BDSYM (sym-
metric, i.e., α1 = α2, β1 = β2, γ1 = γ2, ..), BDISYM
(symmetric, all entries except α are equal, i.e., α1 = α2,
β1 = β2 = γ1 = γ2 = ..), and BDARD (all rates different).

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 ..
0 − α1 0 0 0
1 α2 − β1 0 0
2 0 β2 − γ1 0
3 0 0 γ2 − ..
.. 0 0 0 .. −

⎞
⎟⎟⎟⎟⎟⎟⎠

(2)

Finally, all transition rate matrices (Qs) are calibrated
[19], i.e., each Q satisfies

−
∑
a

πaQ(a, a) = 1, (3)

so that the evolutionary rate parameter (μ) is the average
number of transition events per site per evolutionary time
unit [20].

Forced reversibility and flexible irreversible options
When the prior root probabilities (π ) for different char-
acter states are estimated, reversible transition matrices
will no longer necessarily result in reversible evolutionary
processes (because of potentially different probabilities
of character states). Since it is sometimes of biological
interest to assume reversibility (i.e., the expected x → y
changes equal to the y → x changes), DiscML can allow
forced reversibility by setting reversible=TRUE. In
practice, reversibility is obtained by multiplying the cor-
responding root probabilities (equation 4) to the entries
in reversible transition matrices, e.g., ER and SYM. Such a
practice is conceptually the same with the general time-
reversible (GTR) DNA substitution model [21]. In Dis-
cML, model="GTR" is equivalent to the combination of
model="SYM" and reversible=TRUE.

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 ..
0 − απ1 βπ2 δπ3 ..
1 απ0 − γπ2 επ3 ..
2 βπ0 γπ1 − ζπ3 ..
3 δπ0 επ1 ζπ2 − ..
.. .. .. .. .. −

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)
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Similarly, when the prior root probabilities for different
character states are estimated, forced reversibility can be
applied to the BD related matrices (equation 5).

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 ..
0 − απ1 0 0 0
1 απ0 − βπ2 0 0
2 0 βπ1 − γπ3 0
3 0 0 γπ2 − ..
.. 0 0 0 .. −

⎞
⎟⎟⎟⎟⎟⎟⎠

(5)

In DiscML, the default setting is reversible=FALSE
and users have the flexibility to conduct analysis by
assuming irreversible evolutionary processes. Unlike in
reversible processes, the root position can greatly affect
the maximum likelihood calculation in irreversible cases
[22,23]. Therefore, it is only meaningful to perform irre-
versible analysis on a rooted tree. If the provided phyloge-
netic tree is unrooted, DiscML will first reroot the tree by
midpoint rooting, and perform analysis on the midpoint
rooted tree.

Correction for unobservable data
Some characters may contain unobservable character
states, which can only be inferred indirectly from the
presence of observable states of the same characters in
related taxa. Ancient characters can be lost from all exam-
ined extant taxa, and result in unobservable data. Dis-
cML provides the option of zerocorrection=TRUE
to calculate the likelihood conditional on a pattern being
observable following [24], i.e.,

L+ = L
1 − L−

, (6)

where L− is the likelihood of unobservable patterns. The
correction for unobservable data (shown as ‘+0’ in Table 1)
is essential for systems such as gene family data due to the
complete loss of some ancient genes, but not suitable for
single-site analyses and for systems in which all character
states are observable (e.g., nucleotide bases).

Site and branch specific estimations
Even though the default setting of DiscML is to per-
form rate estimation by fitting the distribution pattern
of all character sites on a phylogeny, there is an
option to perform rate estimation on individual sites
(ind=TRUE). Individual rates can be graphically dis-
played using plotmu=TRUE. Furthermore, DiscML
allows branch specific rate estimation, which can be
specified using ‘$’ on branches in the provided tree file.
For instance, (((taxon1$1: 0.01, taxon2$1:
0.01)$3: 0.01, taxon3$2: 0.02)$3: 0.01,
taxon4$2: 0.03); specifies three rates, one for the
branches leading to taxon1 and taxon2 ($1), one for the
branches leading to taxon3 and taxon4 ($2), and one for

Table 1 DiscML estimates from the gene family data in the
Bacillaceae (B1, B2, B3) clades

Models Parameters B1 B2 B3

ER μ 3.073 0.677 0.540

(1s/0s only) LnL -15150 -16467 -22229

ER+0 μ 1.887 0.463 0.388

(1s/0s only) LnL -13682 -15268 -21207

BDER μ 2.490 0.590 0.485

LnL -20901 -22196 -29127

BDISYM μ 2.669 0.556 0.438

LnL -19684 -20973 -27811

BDARD μ 5.746 1.369 1.450

LnL -18254 -20073 -26578

ER μ 2.940 0.638 0.459

LnL -21411 -23273 -31405

SYM μ 2.635 0.546 0.427

LnL -19615 -20947 -27801

ARD μ 5.601 1.345 1.314

LnL -18143 -19678 -26239

GTR μ 3.731 0.739 0.632

(SYM+πREV) LnL -17753 -19337 -25381

ER+0 μ 2.339 0.531 0.395

LnL -20595 -22586 -30753

ER+π μ 2.935 0.624 0.454

LnL -20070 -21783 -28771

ER+� μ 3.205 0.638 0.459

LnL -21398 -23273 -31405

ER+0+π+� μ 1.358 0.236 0.240

LnL -18719 -19960 -26712

ER+0+πREV+� μ 3.630 0.379 0.387

LnL -16839 -17960 -23398

The parameter μ is the estimated evolutionary rate of the characters. “1s/0s
only” indicates binary analysis by converting all non-zero characters to 1s using
simplify=TRUE, ‘+0’ indicates the correction for unobservable data using
zerocorrection=TRUE, ‘+�’ indicates the implementation of a discrete �

distribution using alpha=TRUE, ‘+π ’ indicates the estimation of prior root
probabilities using rootprobability=TRUE, ‘+πREV ’ indicates the
estimation of prior root probabilities with forced reversibility using
rootprobability=TRUE and reversible=TRUE.

the remaining branches ($3). The modified tree files are
no longer in the conventional Newick format, we have
developed a function read.tree2 in DiscML to read
such modified tree files.

Additional features
DiscML allows binary (1s/0s) analysis on data with more
than two character states by converting all non-zero char-
acters to 1s with simplify=TRUE.
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Figure 1 Phylogenetic relationship of three Bacillaceae (B1, B2, B3) clades, on which the evolutionary rates of gene families are estimated
using DiscML. A, a constant rate is estimated on each phylogeny; B, separate rates are estimated for external branches (μ1) versus internal branches
(μ2) on each phylogeny. These three clades were studied in our previous study on gene presence, absence, and fragments [20]. Gene families are
recategorized, with gene absence and fragments as character state 0, single-copy genes as 1, and gene families with two or more members as 2.

Table 2 Computational time on an Intel Core i7 (3.4 Ghz)
16 GB RAMDell desktop to generate the results in Table 1

Models B1(5453) B2(5614) B3(6813)

ER (1s/0s only) 0 m 49 s 1 m 00 s 1 m 26 s

ER+0 (1s/0s only) 1 m 39 s 2 m 01 s 3 m 03 s

BDER 0 m 48 s 1 m 06 s 1 m 36 s

BDISYM 1 m 58 s 2 m 20 s 3 m 01 s

BDARD 7 m 54 s 6 m 58 s 8 m 28 s

ER 1 m 04 s 1 m 15 s 1 m 17 s

SYM 3 m 14 s 4 m 47 s 5 m 31 s

ARD 9 m 53 s 9 m 12 s 16 m 59 s

GTR(SYM+πREV) 9 m 04 s 9 m 54 s 11 m 44 s

ER+0 1 m 36 s 2 m 34 s 2 m 21 s

ER+π 2 m 41 s 3 m 13 s 4 m 40 s

ER+� 12 m 00 s 39 m 01 s 45 m 23 s

ER+0+π+� 82 m 22 s 81 m 20 s 178 m 27 s

ER+0+πREV+� 80 m 13 s 67 m 33 s 91 m 42 s

The number of gene families is shown in parentheses for each clade. The time is
shown in minutes (m) and seconds (s).

Results and discussion
DiscML was first tested using the gene family data on
three Bacillaceae clades (Figure 1A, Additional file 1 and
[20]). In the previous study [20], we distinguished gene
fragments from gene absence and gene presence. In this
study, we eliminated the character state specific for gene
fragments and re-categorized gene fragments as gene
absence or character state 0, single-copy genes as charac-
ter state 1, and gene families with two or more members

Table 3 Separate rates on branches estimated from the
gene family data in the Bacillaceae (B1, B2, B3) clades

Models Parameters B1 B2 B3

(μ1 = μ2)ER μ 2.940 0.638 0.459

LnL -21411 -23273 -31405

(μ1 �= μ2)ER μ1 4.430 0.674 0.477

μ2 0.306 0.526 0.344

LnL -21045 -23267 -31395

2
LnL 732∗∗∗ 14∗∗∗ 20∗∗∗

μ1 is for external branches, while μ2 is for internal branches on each tree as
illustrated in Figure 1B.
∗∗∗P < 0.001 (df=1), as 2
LnL approximately follows a χ2-distribution.
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Figure 2 Phylogenetic relationship of the yeast strains in the
Saccharomyces complex, on which the rates of mitochondrial
intron gain and loss are estimated using DiscML. The phylogeny
was reconstructed using the concatenated sequences of all
mitochondrial protein genes after excluding the var1 gene.

as 2 (Additional file 1), so that the application of BD mod-
els on these data is meaningful. It is worth to note that,
though the number of character states is restricted to
three here, DiscML is flexible and capable of analyzing a
large number of character states.
The performance of DiscML is found to be reli-

able. For instance, the ER+0 model with the option of
simplify=TRUE in Table 1 is mathematically identi-
cal to the M00 model in [20]. The optimization in [20]
was achieved using the Nelder-Mead simplex method
[25], while the optimization in Table 1 was achieved
using the PORT routines [17]. Importantly, the DiscML
estimates are identical to the previous estimates for all
three clades. As expected, the parameter-rich models
consistently outperformed the nested simplistic models
(e.g., LnL BDARD > LnL BDISYM > LnL BDER; LnL ARD
> LnL SYM > LnL ER). Consistent with previous stud-
ies [3,20,26], rate estimates in closely related clades tend

to be higher than those in distantly related clades due to
the transient nature of many acquired genes (Table 1).
Tested on an Intel Core i7 (3.4 Ghz) 16 GB RAM Dell
desktop, the computation using DiscML is fast (Table 2).
For instance, the ER (1s/0s only) analysis took 49 sec-
onds (0 m 49 s) for B1 (5453 gene families), 60 seconds
(1 m 00 s) for B2 (5614 gene families), and 86 seconds
(1 m 26 s) for B3 (6813 gene families). Computational time
increases with the complexity of transition rate matrices
and the addition of estimated parameters. For instance,
the ER+0+π+� analysis took 82 m 22 s for B1, 81 m 20 s
for B2, and 178 m27 s for B3 (Table 2).
DiscML was developed to allow separate rates among

branches since evolutionary rates can vary among lin-
eages [27-29]. In the three Bacillaceae clades, we assigned
separate rates between external branches (μ1) and inter-
nal branches (μ2) as illustrated in Figure 1B. Our results
in Table 3 support the previous findings of higher gene
turnover rates on external branches than those on internal
branches [26,30].
It is often of interest for users to know the individual

rate of each character site. Previously, we have shown that
the mitochondrial intron in the 21S rRNA gene under-
goes very rapid turnover in yeast [31]. In this study, we
estimated the individual rates of all 17 mitochondrial
introns on the yeast phylogeny (Figure 2 and Additional
file 1) based on the intron distribution pattern (Additional
file 1). On the plot generated by DiscML using ind=TRUE
(Figure 3), users can visually compare the individual rates
of different introns. For instance, the introns at sites 7 and
8 have faster turnover rates than the 21S rRNA intron at
site 17 (Figure 3). The R commands used in the study are
provided in Additional file 1.

Conclusion
We illustrated the versatility of DiscML on different
types of data and analyses. With a great flexibility and
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Figure 3 Plot of individual turnover rates of the 17 mitochondrial introns in yeast. Ten introns in the cox1 gene are shown as sites 1-10, six
introns in the cob gene are shown as sites 11-16, and one intron in the 21S rRNA gene is shown as site 17.
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fast computational speed, we are confident that DiscML
can be used in a variety of studies on different discrete
characters.

Availability and requirements
Project name: DiscML
Project home page: http://cran.r-project.org/web/
packages/DiscML/index.html
Operating system(s): Platform independent.
Programming language: R.
Other requirements: R (2.14 or newer); R-package: ape
from CRAN.
License: GNU GPL

Additional file

Additional file 1: Files and commands used in the analyses of the B1
clade and the yeast clade. B1.tre is the B1 tree in the conventional Newick
format. B1_pattern contains the distribution pattern of gene families in the
B1 clade with gene absence and fragments as 0s, single-copy genes as 1s,
and gene families with two or more members as 2s. Each column is for one
genome, and each row is for one gene family. B1_2rates.tre is the B1 tree
with assigned separate rates for external branches and internal branches.
The rate for external branches is $1, and the rate for internal branches is $2.
The yeast.tre file is the phylogenetic tree of 13 yeast strains in the
conventional Newick format. The intron_pattern file contains the
distribution pattern of the 17 mitochondrial introns in the 13 yeast strains.
Each column is for one intron, and each row is for one strain. Data matrix in
this format will need to be transformed before the analysis (see R.inputs for
details). Some R commands are in R.inputs.
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