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The components of the elastic stiffness tensor of hot rolled low-carbon steel were determined using an
ultrasonic pulse-echo-method. They were also calculated on the basis of X-ray texture measurements
using the Hill approximation. The maximum deviation between experimental and calculated values is
3.5%. An influence of the slightly anisotropic grain structure on the elastic anisotropy could not be
seen.
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INTRODUCTION

The elastic properties of polycrystalline materials depend on the properties of the
constitutive crystallites as well as on their arrangement in the polycrystalline
structure. Stress equilibrium and strain continuity across the grain boundaries
lead to complicated stress and strain distributions, the macroscopic averages of
which define the polycrystal elastic constants. If the actual shape, size, orientation
and position of each crystallite is known, then the boundary conditions in the
grain boundaries can be strictly taken into account and the polycrystal properties
can be calculated straight foreward. However, this is usually not the case. Certain
statistical assumptions must then be made which lead to various approximative
models for the polycrystal constants. In the Reuss model (Reuss, 1929), constant
stress is assumed whereas the Voigt model (Voigt, 1928) assumes constant strain
throughout the polycrystal. The polycrystal constants are then the simple volume
averages of the components of the stiffness and compliance tensor of the
individual crystallites, respectively. These assumptions are limiting cases, the
actual values must lie between them. In a first approximation, knowing nothing
about the microstructure, the average of both these assumptions can be taken,
corresponding to the Hill approximation (Hill, 1952). It has been found that this
approximation, although theoretically unsatisfactory, agrees with the experimen-
tal results within a few percent, which is sufficient for most practical purposes. A
theoretically much more satisfactory model was developed by Kr6ner (Kr6ner,
1958). In this model a spherical grain is embedded in a polycrystalline matrix
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which is considered as a continuum having the average properties of all
crystallites. The Voigt-Reuss-Hill approximation as well as the Kr6ner model
were developed for materials with random orientation distribution as well as for
textured materials (Bunge, 1968; Kneer, 1965). In the latter case, comparison
between experiment and model calculation was mainly done in the rolling plane
of rolled metal sheet. However, in a few cases measurements in sample directions
covering the whole orientation sphere were also made (see e.g. Durand, 1977;
Kern and Wenk, 1985). Youngs modulus measurements in various sample
directions may also be expressed in form of the components of the polycrystal
elastic tensor. It is the objective of the present paper to compare the macroscopic
elastic tensor calculated from texture data with the one obtained from measure-
ments in several sample directions of a polycrystalline textured material.

TEXTURE AVERAGES OF ELASTIC PROPERTIES

The elastic properties of a single crystal can be expressed by Hook’s law in two
forms (see e.g. Nye, 1975)

(ij Cijkl ekl, ei] Sijkl Okl (1)
where tr0 and e0 are the components of the stress and strain tensor respectively,
Cok and Sokt are those of the elastic stiffness and compliance tensor. These tensors
are inversely related to each other

[siM
If we consider single crystals then the tensor components are usually referred to
the crystal coordinate system. In a polycrystal each crystal has its own crystal
coordinate system related to the macroscopic sample coordinate system by the
orientation g which may be represented by the transformation matrix [gij]. The
tensor components referred to the sample coordinate system can then be
expressed by those referred to the crystal axes and the transformation matrix

Co,,(g) C,n,,op g,m g,, gko g,p
So,,(g) o (3)Sm,,op "gim "g,, "g,o "glp

The Voigt and Reuss averages are defined by

Co,,t Ciik,(g) f(g) dg
(4)

Sijkl-- Sq.,(g) f(g) dg

Where the integral is taken over the whole orientation space. Finally, the Hill
average can be written

-H -V -RCi,l [Ci,l + C,l]
-H -V -R (5)
S0 [S0l + S]

Strictly speaking, the two approximations in Eq. (5) are not identical. They are
not exactly related to each other by Eq. (2). Nevertheless, the difference between
them may be neglected compared with the experimental errors.
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The single crystal tensors CnopSno. must reflect crystal symmetry whereas the
polycrystal values l and t correspond to sample symmetry. Usually, the
symmetries are expressed in the matrix representation of the elastic constants

_Hence, Cmnop and Smop are replaced byrather than in the tensor re.presentation. 0 o

C0. and S and Cijkl-H and Sijkl-rt by Cij-n and S respectively (see e.g. Nye, 1975). In
the present case, crystal symmetry was cubic and the sample has the orthorhom-
bic symmetry of rolled sheet. Hence, only three respectively nine matrix

o 0components are s mmetricall independent. These are Cll C12 C44 for the single
crystal and ’1, n ,n rv

,n rn ,,n ,n 7H66 for the polycrystal.-’22 ’33 -’12 ’13 -’23 ’44 ’55

The texture f(g) can be represented in the form of a series expansion
L M(O

f(g) X , X C". ’"(g) (6)
1=0 /=1 v=l

which also must reflect crystal and sample symmetry (see e.g. Bunge, 1982). The
first one determines the number M(1) of possible values of the index/z, while the
latter determines the number N(l) of values of the index v. Furthermore, the
integrals in Eq. (4) are integrals over fourth-order functions. Hence, they can be
completely expressed in terms of texture coefficients C with/-values up to four.
In the case of cubic crystal symmetry and orthorhombic sample symmetry, these
are only three coefficients, namely C1, C412, C13 (see e.g. Bunge, 1968). The nine
polycrystal constants specified above are thus expressed in terms of three single
crystal constants and three texture coefficients which amounts to six independent
quantities. It is thus seen, that in the case of an orthorhombic polycrystal only six
of the nine components can really be independent (in contrast to orthohombic
single crystals which may really have nine independent components).

ELASTIC WAVES IN ANISOTROPIC MEDIA

The most precise evaluation of elastic constants is based on the velocities of
ultrasonic waves propagating the material of interest along different sample
directions. In each sample direction three different sound velocities must be
distinguished depending on the polarization of the sound wave. Waves travelling
along symmetry axes may either be longitudinally polarized or they may have one
of two different transversal polarizations. In other directions polarization is
neither exactly longitudinal nor exactly transversal. Nevertheless, quasi-
longitudinal and quasi-transversal waves can be distinguished.

In the case of orthohombic symmetry we consider two types of sample
directions i.e. directions parallel to one of the orthohombic axes, which may then
be chosen to be the Xl-axis, and directions perpendicular to one of these axes,
e.g. directions in the XEoX3 plane. In the latter case, the direction is further
specified by its angle 0 towards X2. For these cases, the following expressions are
obtained for the various wave velocities (see e.g. Green, 1973)

Cll longitudinal

Oz. vz C66 (7)

=1/2(B + )
pz 0

2 a2(C66_ Css) + Css (8)
1/2(B )

transversal pol. II X2
pol. II X3

quasilongitudinal
quasitransversal pol. II X1

pol. +/- X1
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where

a sin 0 (9)
[a4- C2 + (1 a2)2- C3 + (1 2a2)2- C4
2a2- (1 a2) C22" C33 + 2a2" (1 2a2) C22" C4
2- (1 a2) (1 2a2) C33" C44 + 4a2" (1 a2) (C23 C44)2]1/2 (10)

B a2- (C22- C33) + C33 + C,. (11)

Expressions for waves travelling in X2 and X3 or in the X3-X or X-X2 plane
are similarly obtained by cyclic exchange of the indices 123 and 456,
respectively.

In the case of orthorhombic symmetry, all nine elastic constants can thus be
obtained from time of flight measurements in directions of these two types. The
constants Ci can be obtained directly from the very simple expressions Eq. (7),
whereas those of the type Co are obtained by solving the system of equations Eq.
(8). It will be seen later on that this leads to a somewhat higher uncertainty of
these latter constants.

MATERIAL AND EXPERIMENTAL PROCEDURE

The material used was a low-carbon steel with a composition given in Table 1.
After continuous casting the material was hot rolled at 820C (coiling temperature
550C) to a final thickness of 18.3mm. The material had a fine-grained
microstructure shown in Figure la-c. The average grain size in the three main
directions was determined by the linear intercept method. The results are given in
Table 2.
Samples for the ultrasonic investigations were prepared as shown in Fig. 2.

They were bars of 35 mm lengths with square cross-section and the longitudinal
axis at different angles towards the rolling direction. In one set the side faces were
parallel and perpendicular to the rolling plane. In the other set they were under
30 degrees. In the first set, the short axes were 16.5 mm, in the second one
12 mm. Hence, in both sets the near-surface region of the hot rolled material was
not included in the samples.
The ultrasonic velocities have been evaluated from the results of ultrasonic

times-of-flight measurements and of measurements of the samples dimensions.
The times-of-flight have been measured using the pulse-echo-overlap technique.
The measuring system consists of an ultrasonic transmitter-receiver and a
time-of-flight measuring unit with a 500MHz temperature stabilized time
reference (Herzer, Schneider, 1989).

Piecoelectric ultrasonic transducers for longitudinal and linearely polarized
shear waves with 10 MHz and 5 MHz center frequencies, respectively have been

Table 1 Chemical composition (weight-%)

C Si Mn P S N A1 Nb Cu Mo As Zr

0.04 0.19 1.50 0.014 0.007 0.0068 0.051 00.07 0.03 0.35 0.02 0.08
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(a)

(b)

(c)

Figure 1 Metallographic sections of the used steel. The section plane is perpendicular to: (a) Rolling
direction RD, (b) Transverse direction TD, (c) Normal direction ND.
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Table 2 Average grain size
Iml

RD TD ND

14 11 7

used. The different center frequencies have been chosen to get the same
wavelengthes of about 0.6 mm for both, the longitudinal and the transversal
waves. The lengthes of the ultrasonic pulses were four wavelengthes in both
cases.
The accuracy of the time-of-flight measurements was better than +lns,

corresponding to a relative accuracy of better than +0.01%. The measurements
have been repeated several times in order to minimize inaccuracies caused by the
coupling conditions of the ultrasonic probes to the samples. The reproducebility
was found to be within +0.03%.
The linear dimensions of the samples have been measured using a micrometer;

the inaccuracy of the readings was less than +/-0.003 mm or +0.03%. Thus, the
relative accuracy of the velocities is within +0.06%.
With the samples shown in Figure 2 a total of 8 3 3 72 velocities were

measured of which 60 belong to the two categories given in Eqs. (7) and (8). The
elastic constants were then evaluated using a specially written computer pro-
gramm (Wunnicke 1986). Since the number of measured velocity values was
higher than the number of unknown elastic constants, the relative errors of the
latter ones could be estimated.

Texture measurements were carried out using the oblique-section technique
(see e.g. Welch, 1980). Hence, the obtained texture corresponds to the volume
average. This corresponds to the ultrasonic measurements which are also volume
averages. The measurements were done with an automatic texture diffractometer
ATEMA-C using Co-Ka radiation. Scanning was done in steps of A= 5,
Aft= 3.6 up to ma=70. The original measurements were taken on an
oblique-section, the normal direction of which forms equal angles with respect to
RD, TD, ND. The obtained pole figures (200), (220) and (211) were then
transformed into the coordinate system of the three main sample directions. From
these pole figures, the orientation distribution function, ODF, was calculated
using the series expansion method based upon complete pole figures, including
the zero-range method for the coefficients of odd order.

RESULTS

The pole figures are given in Figure 3a-c. The ODF is shown in Figure 4. Its
maximum densities of 8.95 and 8.4, respectively, are reached in the orientations
---{212} (221) and ---{332} (113), respectively. For comparisqn with physical
properties in the three main directions RD, TD and ND, the three inverse pole
figures are useful. They are given in Figure 5. The calculation of the texture
averages is based on the series expansion coefficients C of fourth order. These
are given in Table 3. The measured ultrasonic velocities are given in Table 4. The
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Figure 3 Pole distribution functions of the investigated low-
carbon steel after transformation into the rolling plane.

used single crystal elastic constants are C11 C22 C33 2290( N/mm2, C
Cs5 C66 115000 N/mm2 and C12 C13 C23 134000 N/mm2. The polycrystal
elastic constants are given in Table 5. The ones obtained from ultrasonic
measurements are least squares approximations to the sound velocities of
different sample directions. This allows the estimation of the standard deviation.
It is seen that the uncertainty in the values Ci/is much higher than that of the Cii.
For the values obtained from texture measurements, the error estimation is much
more difficult. Hence, error values are not given in this case. The differences
between ultrasonic and texture values are plotted graphically in Figure 6. In
Figure 6a the Voigt, Reuss and Hill values are shown whereas Figure 6b shows
the Hill averages in a smaller scale. It is seen that the maximum deviation is
below 4%. Comparison can also be made in terms of Young’s modulus calculated
in the three main sample planes X1-X2, XI-X3, XE-X3 (Figure 7) using the
coefficients of Table 5. The results are thus linear sections of the Young’s
modulus surface.
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Fibre 4 The complete orientation distribution function calculated from the pole figures shown in
Figure 3.

DISCUSSION

The elastic properties of textured polycrystals were considered here in the
approximation of the Hill average, Eq. (5). This approximation is assumed to be
applicable in the case of an equiaxed grain structure. However, non-equiaxed
grain shapes may cause deviations from it. For example, in the case of long
parallel cylindrical grains, Young’s modulus in the axis direction should be near
to the Voigt approximation whereas for plate-like grains in the stacking direction
the Reuss approximation is to be expected. Hence, an anisotropic grain structure
as observed in the present material should influence the actual polycrystal
properties. If these are expressed in terms of the polycrystal elastic tensor, then
the different tensor components should be modified differently. In the present
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Normal direction

l0

,,
.,!

Rolling direction

1.5
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Transverse direction
Figure $ The three main inverse pole figures calcu-
lated from the pole figures shown in Figure 3.

case the average grain size was found to be only slightly different in rolling and
transverse direction. However, in normal direction it deviated by a factor of two.
The influence of grain structure on the elastic anisotropy is thus mainly expected
in the normal anisotropy and not in the planar anisotropy. This situation is often
observed in grain structures which have been formed by a rolling process (in the
present case by hot rolling). It is much easier to measure Young’s modulus in the
rolling plane than in directions out of this plane. Hence, Young’s moduli
measured in the rolling plane were often compared with those calculated
according to the Hill approximation. With the particular type of microstructure
mentioned above the strongest deviations are to be expected in normal direction.

Table 3 Fourth order texture coefficients

c’, c’ c7
-0.3020 -1.1141 -0.2867



DETERMINATION OF THE ELASTIC TENSOR 13

Table 4 Ultrasonic velocities [103m/s]

Sample

RD

30 RD

60 RD

0 RD

0 ND

Wave pol Y1 Y2 Y3

Y1 100 5-927 3.147 3.265
Y2=010 3.157 6.032 3.128
Y3 001 3.288 3.147 5.922

Y1 vu0 5.870 3.236 3.228
Y2 fiv0 3.166 5.901 3.187
Y3 001 3.289 3.148 5.929

Y1 uv0
Y2 u0
Y3 001

Y1 =010
Y2= i00
Y3 =001

5.948 3.255 3.161
3.253 5.895 3.275
3.146 3.284 5.928

5.942 3.151 3.132
3.141 5.934 3.271
3.147 3.291 5.929

30 ND

Wave pol Y1 Y2 Y3

Y1 100
Y2 Ovu
Y3 Ofiv

Y1 vu0
*Y2 yu
*Y3 zv

Y1 uv0
*Y2 x0
*Y3 x.v

Y1 =010
Y2 e0u
Y3 u0v

5.933 3.118 3.260
3.180 5.918 3.289
3.260 3.286 5.874

5.870 3.230 3.218
3.354 5.894 3.172
3.268 3.233 5.909

5.959 3.257 3.159
3.250 5.931 3.176
3.168 3.242 5.958

6.027 3.118 3.131
3.148 5.965 3.211
3.136 3.234 5.970

u cos 60; v sin 60; x X/(3/4); y 3/4; z 1/4.
Value not used.

In the present measurements an effect of this type could not be observed, at least
not exceeding the experimental accuracy of a few percent which is mainly
determined by the accuracy of the texture measurement.

In an earlier investigation in cold rolled copper (Bunge, Ohme and Giinther,
1970) a stronger deviation in the normal anisotropy was found than in the planar
anisotropy. This effect did not occur in recrystallized copper. It was assumed that
this effect was due to the influence of grain shape. Considering the present
results, these conclusions were not confirmed here.

In addition to an anisotropic microstructure, the anisotropy of elastic properties
may also be influenced by internal residual stresses. Because of the stress-

Table 5 Elastic constants [N/mm2]

Cq Reuss Voigt Hill ultrasonic

Cll
C12

c
C23
C33
C44
C55
C66

261270 280660 270070 274400+181
115230 105630 110850 110546 + 5588
120500 110710 116080 115029 4- 1848
271440 290450 280160 2808004-670
110330 100920 105990 105225 4- 2104
266160 285370 274930 2739174-175
67790 81920 74190 76817 4- 78
77160 91710 83810 83845 4- 109
72000 86630 78640 77343 4- 109
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Figure 6 The differences in [%] between the elastic constants obtained from ultrasonic and texture
measurements, respectively. (a) Voigt, Reuss, Hill approximation, (b) Hill approximation.

dependence of the elastic constants in the framework of non-linear elasticity
theory, compressive stresses in some crystallites may increase Young’s modulus
more than tensile stresses decrease it in other parts of the polycrystalline
material. This effect was at first formulated for two-phase materials (Bunge 1989,
Ratke 1989). However, it is also to be expected in single phase materials. This
contribution to the elastic properties vanishes after stress relaxation by annealing
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Figare 7 Young’s modulus as a function of the angle 0 in the three main sample planes. (a)
RD-TD-plane, (b) RD-ND-plane, (c) TD-ND-plane.

as was experimentally proven (Beusse et al.). In the present material residual
stresses did not occur to a considerable degree. The above mentioned cold rolled
copper was not stress relieved. Hence, the additional part of elastic normal
anisotropy observed by Bunge, Ohms and Giinther may have been caused by
residual stresses.
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Fibre "/ oung’s modulus as a function of the angle 0 in the three main sample planes. (a)
RD-TD-planc, (b) RD-ND-planc, (c) TD-ND-planc.
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