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Maximum weight independent set (MWIS) is a combinatorial optimization problem that naturally arises in many applications
especially wireless networking. This paper studies distributed approximation algorithms for finding MWIS in a general graph. In
the proposed algorithm, each node keeps exchanging messages with neighbors in which each message contains partial solutions of
the MWIS optimization program. A parameter𝐻 is introduced to achieve different tradeoff between approximation accuracy and
space complexity.Theoretical analysis shows that the proposed algorithm is guaranteed to converge to an approximate solution after
finite iterations; specifically, the proposed algorithm is guaranteed to converge to the optimal solution with𝐻 = +∞. Simulation
results confirm the effectiveness of the proposed distributed algorithm in terms of weight sum, message size, and convergence
performance.

1. Introduction

Consider a graph 𝐺 = (𝑉, 𝐸) with a set 𝑉 of nodes and a set
𝐸 of edges. For each node 𝑖 ∈ 𝑉, there is a positive weight
𝑤
𝑖
. A subset of 𝑉 can be represented by binary variable 𝑥

𝑖
,

1 ≤ 𝑖 ≤ |𝑉|, where 𝑥
𝑖
is 1 if 𝑖 is in the subset and 0 otherwise.

A subset is called an independent set if no two nodes in the
subset are connected by an edge. We are interested in finding
themaximumweight independent set (MWIS) [1], which can
be expressed as an integer program:

max ∑

𝑖

𝑤
𝑖
𝑥
𝑖

s.t. 𝑥
𝑘
+ 𝑥
𝑖
≤ 1, (𝑘, 𝑖) ∈ 𝐸

𝑥
𝑖
∈ {0, 1} , 𝑖 ∈ 𝑉.

(1)

The MWIS problem has been extensively studied in the
literature. For example, it is known to be solvable in poly-
nomial time for many cases including perfect graphs [2],
interval graphs [2], disk graphs [3], claw-free graphs [4], fork-
free graphs [5], trees [6], sparse random graphs [7, 8], circle

graphs [9], and growth-bounded graphs [10].Moreover, there
has been extensive work on approximating the MWIS [11],
and specialized algorithms have been developed for exactly
computing the MWIS [12–15].

Further, the MWIS problem naturally arises in many
applications, especially wireless networking, which require
distributed solutions. For example [16–18], in scenarios
involving resource scheduling in wireless networks that lack a
centralized infrastructure andwhere nodes can only commu-
nicate with local neighbors, the MWIS problem needs to be
solved in a distributedmanner. Fundamentally, any two wire-
less nodes that transmit at the same resource will interfere
with each other if they are located close-by. The scheduling
problem is to decidewhich nodes should transmit at the given
resource so that there is no interference and nodes with long
queue length are given priority. If each node is given a weight
equal to the queue length, it is optimal to schedule the set
of nodes with the highest total weight. If a conflict graph is
made, with an edge between each pair of interfering nodes,
the scheduling problem is exactly the MWIS problem for the
conflict graph. The lack of an infrastructure and the local
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nature of communication require a distributed algorithm for
solving the MWIS problem.

There are three types of distributed algorithms for MWIS
problem: greedy algorithms, carrier sense random multiple
access (CSMA) algorithms, and message-passing algorithms.

For greedy algorithms, several simple distributed algo-
rithms for MWIS have been proposed in the literature [19–
22]. These algorithms are based on the greedy principle and
require only knowledge of the local topology at each node.
However, due to the inherent difficulty of theMWIS problem,
greedy algorithms are not guaranteed to obtain the optimal
solution for general graph.

For random multiple access algorithms, several CSMA-
based algorithms have been proposed [23–26]. These algo-
rithms are distributed, are of low complexity, and are easy
to implement. They use a random access scheme according
to which a link seizes the channel with a probability that
increases exponentially with a certain link-dependent weight.
As explained in [27], these schemes perform sampling over
independent sets of the graph and converge to the optimal
MWIS in graphs with large weights. However, according to
[28], message-passing algorithms can achieve significantly
smaller aggregate long-run average queue length than CSMA
algorithms.

Several message-passing algorithms for producing a fea-
sible solution to the MWIS were proposed in [28–34]. For
example, in [30], Sanghavi et al. show that a simple modifica-
tion of max product becomes gradient descent on the dual of
the linear programming associated with the MWIS problem
and converges to the dual optimum. They also develop a
message-passing algorithm that recovers the primal MWIS
solution from the output of the descent algorithm and show
that the MWIS estimate obtained using these two algorithms
in conjunction is correct when the graph is bipartite and the
MWIS is unique. In [31], it has been shown that polynomial
timemethods exist for perfect graphs which include bipartite
graphs and many others. Further, in [29], message-passing
methods were developed for perfect graphs. Additionally,
it is worth mentioning that message-passing methods have
also been successfully applied to solve the maximum weight
matching (MWM) problem [35–38].

This paper studies this problem and proposes a new
distributed algorithm for the general graph. The proposed
algorithm runs iteratively in which each node receives mes-
sages from its neighbors, updates the message of its own,
and then broadcasts the message to the neighbors. During
the message update procedure, each node shall first combine
all received messages into a single one and then delete some
elements from the message to control the size of the message.
Theoretical analysis and computer simulation show that the
proposed algorithm will converge after finite iterations and
can achieve tradeoff between approximation accuracy and
space complexity.

The rest of the paper is outlined as follows. In Section 2,
some useful notations are introduced. In Section 3, a new
distributed algorithm for MWIS is proposed. In Section 4,
the theoretical analysis of the proposed distributed algorithm
including convergence and optimality is presented. Section 5
reports simulation results of the proposed algorithm and its

comparison to the existing distributed MWIS algorithms.
Finally, concluding remarks are given in Section 6.

2. Notation

This section introduces some notations which will be used
throughout this paper. The symbols used in this paper are
summarized in the List of Symbols.

2.1. Partial Solution. Let 𝑋 = {𝑥
𝑛
, 1 ≤ 𝑛 ≤ |𝑉|} denote the

full variable set of theMWIS problem. Assuming𝑌 is a subset
of𝑋, a partial solution of the MWIS problem is expressed as

𝑝 = {𝑥
𝑘
= V
𝑘
, 𝑥
𝑘
∈ 𝑌} , (2)

where V
𝑘
is 0 or 1. We call 𝑌 the partial variable set of the

MWIS problem. The objective associated with 𝑝 is expressed
as

𝑉
𝑝
= ∑

𝑥𝑘∈𝑌

𝑤
𝑘
⋅ V
𝑘
. (3)

Further, given a partial variable set 𝑌, the partial solution set
can be expressed as

Ω = {𝑝
𝑗
, 1 ≤ 𝑗 ≤ |Ω|} , (4)

where

𝑝
𝑗
= {𝑥
𝑘
= V
𝑗,𝑘
, 𝑥
𝑘
∈ 𝑌} . (5)

To help understand this, we use the graph shown in
Figure 1 as an example. For this graph, there are four nodes
and the weights are 𝑤

1
= 3, 𝑤

2
= 4, 𝑤

3
= 5, and 𝑤

4
= 5.

The full variable set𝑋 = {𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
}. Assuming the partial

variable set 𝑌 = {𝑥
1
, 𝑥
2
} ⊆ 𝑋, then 𝑝 = {𝑥

1
= 1, 𝑥

2
= 0}

is a partial solution of the MWIS problem. The objective
associatedwith this partial solution is𝑉

𝑝
= 𝑤
1
⋅𝑥
1
+𝑤
2
⋅𝑥
2
= 3.

2.2. Combination. For any two partial solutions 𝑝
1
= {𝑥
𝑘
=

V
𝑘
, 𝑥
𝑘
∈ 𝑌
1
} and 𝑝

2
= {𝑥
𝑙
= 𝑢
𝑙
, 𝑥
𝑙
∈ 𝑌
2
}, if there exists a

common variable𝑥
𝑖
∈ 𝑌
1
∩𝑌
2
so that V

𝑖
̸= 𝑢
𝑖
, thenwe say these

two partial solutions are contradictory; otherwise, if there
does not exist such common variable, we say these two partial
solutions are compatible. Formore than two partial solutions,
if there exist two partial solutions which are contradictory, we
say these partial solutions are contradictory; otherwise, we
say these partial solutions are compatible.

Then, for a number of partial solutions 𝑝
𝑗
, 1 ≤ 𝑗 ≤ 𝐽, the

combination operation over them is defined as follows:

⨂

1≤𝑗≤𝐽

𝑝
𝑗
≜

{{

{{

{

0, they are contradictory

⋃

1≤𝑗≤𝐽

𝑝
𝑗
, they are compatible. (6)

Finally, for a number of partial solution sets Ω
𝑖
= {𝑝
𝑖,𝑗
, 1 ≤

𝑗 ≤ |Ω
𝑖
|}, 1 ≤ 𝑖 ≤ 𝐼, the combination operation over them is

defined as

⨂

1≤𝑖≤𝐼

Ω
𝑖
≜ {⨂

1≤𝑖≤𝐼

𝑝
𝑖,𝑗
, 𝑝
𝑖,𝑗
∈ Ω
𝑖
} . (7)
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Figure 1: An example of the graph.

We continue to use the graph shown in Figure 1 as the
example. For convenience, let 𝑝

1
= {𝑥
1
= 0, 𝑥

2
= 0}, 𝑝

2
=

{𝑥
1
= 1, 𝑥

2
= 0}, 𝑝

3
= {𝑥
1
= 0, 𝑥

4
= 0}, and 𝑝

4
= {𝑥
1
=

1, 𝑥
4
= 0}. Firstly, for 𝑝

2
and 𝑝

3
, since 𝑥

1
has different values

in 𝑝
2
and 𝑝

3
(i.e., 𝑥

1
= 1 in 𝑝

2
and 𝑥

1
= 0 in 𝑝

3
), we say 𝑝

2

and 𝑝
3
are contradictory and we have 𝑝

2
⊗ 𝑝
3
= 0. Secondly,

for 𝑝
2
and 𝑝

4
, since there is no common variable which has

different values in 𝑝
2
and 𝑝

4
, we say 𝑝

2
and 𝑝

4
are compatible

and we have 𝑝
2
⊗ 𝑝
4
= {𝑥
1
= 1, 𝑥

2
= 0, 𝑥

4
= 0}. Thirdly,

assuming Ω
1
= {𝑝
1
, 𝑝
2
} and Ω

2
= {𝑝
3
, 𝑝
4
}, it can be verified

that Ω
1
⊗ Ω
2
= {{𝑥

1
= 0, 𝑥

2
= 0, 𝑥

4
= 0}, {𝑥

1
= 1, 𝑥

2
=

0, 𝑥
4
= 0}}.

2.3. Truncation. For a partial solution set Ω = {𝑝
𝑗
, 1 ≤ 𝑗 ≤

|Ω|}, sort the elements in Ω by the values of the objective so
that 𝑉

𝑝1
≥ 𝑉
𝑝2
≥ ⋅ ⋅ ⋅ ≥ 𝑉

𝑝|Ω|
. Define the truncation operation

overΩ as

Trunc (Ω,𝐻) ≜ {𝑝𝑗, 1 ≤ 𝑗 ≤ min (|Ω| ,𝐻)} , (8)

where𝐻 is a parameter.
We continue to use the graph shown in Figure 1 as the

example. Assume Ω = {𝑝
1
, 𝑝
2
, 𝑝
3
}, where 𝑝

1
= {𝑥
1
= 0, 𝑥

2
=

1}, 𝑝
2
= {𝑥
1
= 1, 𝑥

2
= 0}, and 𝑝

3
= {𝑥
1
= 0, 𝑥

2
= 0}. It

can be verified that 𝑉
𝑝1
= 4, 𝑉

𝑝2
= 3, and 𝑉

𝑝3
= 0. Therefore,

we have 𝑉
𝑝1
≥ 𝑉
𝑝2
≥ 𝑉
𝑝3
. If we set 𝐻 = 2, then we have

Trunc(Ω,𝐻) = {𝑝
1
, 𝑝
2
}. That is, 𝑝

3
is deleted from Ω.

2.4. Feasible Partial Solution. Assuming 𝑌 is a subset of 𝑋,
define the associated constraint set as

𝑇 (𝑌) = {𝑥𝑖 + 𝑥𝑘 ≤ 1, 𝑥𝑖 ∈ 𝑌, 𝑘 ∈ 𝑁𝑖} , (9)

which contains all constraints involving variables in 𝑌. Then,
define the associated feasible partial solution set

𝐹 (𝑌, 𝑇 (𝑌)) = {k1: k1 ≻ 𝑇 (𝑌)} , (10)

where k
1
= (V
𝑘
: 𝑥
𝑘
∈ 𝑌) and k

1
≻ 𝑇(𝑌) represents the notion

that k
1
satisfies the constraints in𝑇(𝑌).We have the following

two lemmas.

Lemma 1. For two subsets 𝑌
1
and 𝑌

2
, one has

𝐹 (𝑌
1
, 𝑇 (𝑌
1
)) ⊗ 𝐹 (𝑌

2
, 𝑇 (𝑌
2
))

= 𝐹 (𝑌
1
∪ 𝑌
2
, 𝑇 (𝑌
1
∪ 𝑌
2
)) .

(11)

Proof. See Appendix A.

Lemma 2. For 𝐾 subsets 𝑌
𝑖
, 1 ≤ 𝑖 ≤ 𝐾, one has

⨂

1≤𝑖≤𝐾

𝐹 (𝑌
𝑖
, 𝑇 (𝑌
𝑖
)) = 𝐹( ⋃

1≤𝑖≤𝐾

𝑌
𝑖
, 𝑇( ⋃

1≤𝑖≤𝐾

𝑌
𝑖
)) . (12)

Proof. See Appendix B.

We continue to use the graph shown in Figure 1 as the
example. For two subsets 𝑌

1
= {𝑥
1
} and 𝑌

2
= {𝑥
4
}, we have

𝑇(𝑌
1
) = {𝑥

1
+ 𝑥
2
≤ 1, 𝑥

1
+ 𝑥
4
≤ 1} and 𝑇(𝑌

2
) = {𝑥

1
+ 𝑥
4
≤

1, 𝑥
3
+ 𝑥
4
≤ 1}. On the one hand, there are five elements in

𝐹(𝑌
1
, 𝑇(𝑌
1
)), (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), and (1, 0, 0),

and five elements in 𝐹(𝑌
2
, 𝑇(𝑌
2
)), (0, 0, 0), (0, 0, 1), (0, 1, 0),

(1, 0, 0), and (1, 1, 0). It can be verified that 𝐹(𝑌
1
, 𝑇(𝑌
1
)) ⊗

𝐹(𝑌
2
, 𝑇(𝑌
2
)) contains eight elements: (0, 0, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1), (0, 1, 0, 0), (0, 1, 1, 0), (0, 1, 0, 1), (1, 0, 0, 0), and
(1, 0, 1, 0). On the other hand, we have 𝑌

1
∪ 𝑌
2
= {𝑥
1
, 𝑥
4
} and

𝑇(𝑌
1
∪ 𝑌
2
) = {𝑥

1
+ 𝑥
2
≤ 1, 𝑥

1
+ 𝑥
4
≤ 1, 𝑥

3
+ 𝑥
4
≤ 1}. It

can be verified that 𝐹(𝑌
1
∪ 𝑌
2
, 𝑇(𝑌
1
∪ 𝑌
2
)) also contains the

same eight elements. Therefore, Lemma 1 is correct for this
example.

3. The Proposed Algorithm

The proposed algorithm is performed in an iterative manner.
Let𝑁

𝑖
denote the set of neighbors of node 𝑖. At each iteration

𝑡, node 𝑖 sends a message𝑀𝑡
𝑖
to each neighbor in 𝑁

𝑖
, where

message𝑀𝑡
𝑖
is actually a partial solution set.The details of the

proposed distributed algorithm are presented as follows.

3.1. Algorithm. The operation of node 𝑖 consists of two steps,
which are presented in sequence as follows.

Step 1 (the combination operation). Node 𝑖 receives the mes-
sage𝑀𝑡−1

𝑗
from each neighbor 𝑗 ∈ 𝑁

𝑖
and then generates a

partial solution set as

𝑄
𝑡

𝑖
= ⨂

𝑗∈𝑁𝑖∪{𝑖}

𝑀
𝑡−1

𝑗
. (13)

Specifically, for 𝑡 = 1, we set

𝑄
1

𝑖
= 𝐹 (𝑋

1

𝑖
, 𝑇 (𝑋

1

𝑖
)) , (14)

where

𝑋
1

𝑖
= {𝑥
𝑖
} ∪ {𝑥

𝑘
, 𝑘 ∈ 𝑁

𝑖
} . (15)

For convenience, we express 𝑄𝑡
𝑖
as

𝑄
𝑡

𝑖
= {𝑝
𝑗
, 1 ≤ 𝑗 ≤

󵄨󵄨󵄨󵄨󵄨
𝑄
𝑡

𝑖

󵄨󵄨󵄨󵄨󵄨
} , (16)

where 𝑋𝑡
𝑖
is the partial variable set associated with node 𝑖 in

the 𝑡th iteration.

Step 2 (the truncation operation). The number of elements of
𝑄
𝑡

𝑖
can be very large. A parameter𝐻 is introduced to control
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Figure 2: The average message size performance.

the space complexity. Node 𝑖 only keeps𝐻 out of the total |𝑄𝑡
𝑖
|

elements and generates the message

𝑀
𝑡

𝑖
= Trunc (𝑄𝑡

𝑖
, 𝐻) , (17)

where 𝐻 is a parameter known by each node. Node 𝑖
broadcasts the message𝑀𝑡

𝑖
to its neighbors.

Each node shall repeat the above steps until convergence.
As proved in Section 4 (Theorem5), this processwill converge
after finite iterations. Upon convergence, assume themessage
node 𝑖 sending to each neighbor is 𝑀

𝑖
. Let 𝑋

𝑖
denote the

partial variable set associated with 𝑀
𝑖
. We can write 𝑀

𝑖
=

{𝑝
𝑗
, 1 ≤ 𝑗 ≤ |𝑀

𝑖
|} and 𝑝

𝑗
= {𝑥
𝑘
= V
𝑗,𝑘
, 𝑥
𝑘
∈ 𝑋
𝑖
}. Node 𝑖

shall determine
𝑗
∗
= argmax

𝑗

𝑉
𝑝𝑗 (18)

and estimate

𝑥
∗

𝑖
= V
𝑗
∗
,𝑖
. (19)

If we set 𝐻 = +∞, node 𝑖 will not delete any partial
solution in the truncation operation, and the algorithm will
converge to the optimal solution as proved in Section 4 (Theo-
rem 6). However, themessage size will increase exponentially
with the node number |𝑉| as shown in Section 5 (Figure 2).
On the other hand, for general 𝐻, node 𝑖 will delete a part
of the partial solutions in the truncation operation to keep
the message size small, and the algorithm will converge to
an approximate solution with acceptable loss of optimality as
shown in Section 5 (Figures 3 and 4).Therefore, the proposed
algorithm can achieve different tradeoff between optimality
and complexity.

3.2. Example 1: The Synchronous Case. To illustrate the above
procedure, we use the graph shown in Figure 1 as an example.
It can be verified that the maximum weight independent set
is {node 2, node 4} (i.e., 𝑥

1
= 0, 𝑥

2
= 1, 𝑥

3
= 0, and 𝑥

4
= 1)

and the associated objective is 9. For this example, we assume
all nodes operate synchronously.
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For each node 𝑖, it will send message𝑀𝑡
𝑖
to its neighbors

at the 𝑡th iteration. We will assume 𝐻 = +∞ and 𝐻 = 3,
respectively.

Case 1 (𝐻 = +∞). We take node 1 as the example. Initially,
𝑡 = 1, message 𝑄1

1
contains five elements: (0, 0, 0), (0, 0, 1),

(0, 1, 0), (0, 1, 1), and (1, 0, 0). Then, node 1 performs the
truncation operation to generate𝑀1

1
. Since𝐻 = +∞, we have

𝑀
1

1
= 𝑄
1

1
, as shown in Table 1(a). For 𝑡 = 2, since 𝐻 = +∞,

node 1 has𝑀2
1
= 𝑄
2

1
= 𝑀
1

1
⊗ 𝑀
1

2
⊗ 𝑀
1

4
in which there are

seven elements, (0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0),
(0, 1, 0, 1), (1, 0, 0, 0), and (1, 0, 1, 0), as shown in Table 1(b).
For 𝑡 ≥ 3, the set 𝑀𝑡

1
does not change any more. We pick

the solution with the highest objective, that is, the solution
𝑥
1
= 0, 𝑥

2
= 1, 𝑥

3
= 0, and 𝑥

4
= 1, which is exactly the

optimal solution.
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Table 1: An example with𝐻 = +∞.

(a)

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑡 = 1

𝑀
𝑡

1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0

𝑀
𝑡

2

0 0 0
0 0 1
0 1 0
1 0 0
1 0 1

𝑀
𝑡

3

0 0 0
0 0 1
0 1 0
1 0 0
1 0 1

𝑀
𝑡

4

0 0 0
0 0 1
0 1 0
1 0 0
1 1 0

(b)

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑡 = 2

𝑀
𝑡

1

0 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 1 0 1
1 0 0 0
1 0 1 0

𝑀
𝑡

2

0 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 1 0 1
1 0 0 0
1 0 1 0

𝑀
𝑡

3

0 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 1 0 1
1 0 0 0
1 0 1 0

𝑀
𝑡

4

0 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 1 0 1
1 0 0 0
1 0 1 0

Case 2 (𝐻 = 3). We still take node 1 as the example. Initially,
𝑡 = 1, message 𝑄1

1
contains five elements: (0, 0, 0), (0, 0, 1),

Table 2: An example with𝐻 = 3.

(a)

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑡 = 1

𝑀
𝑡

1

0 0 1
0 1 0
0 1 1

𝑀
𝑡

2

0 0 1
0 1 0
1 0 1

𝑀
𝑡

3

0 0 1
0 1 0
1 0 1

𝑀
𝑡

4

0 0 1
0 1 0
1 1 0

(b)

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑡 = 2

𝑀
𝑡

1
0 1 0 1

𝑀
𝑡

2
0 1 0 1

𝑀
𝑡

3

1 0 1 0
0 0 1 0
0 1 0 1

𝑀
𝑡

4

0 0 0 1
0 1 0 1

(0, 1, 0), (0, 1, 1), and (1, 0, 0). Then, node 1 performs the
truncation operation to generate𝑀1

1
. Since𝐻 = 3, there are

three elements in𝑀1
1
, (0, 0, 1), (0, 1, 0), and (0, 1, 1), as shown

in Table 2(a). For 𝑡 = 2, after similar operations, there is
only one element in 𝑀2

1
, (0, 1, 0, 1), as shown in Table 2(b).

For 𝑡 ≥ 3, the set 𝑀𝑡
1
does not change any more. We pick

the solution with the highest objective, that is, the solution
𝑥
1
= 0, 𝑥

2
= 1, 𝑥

3
= 0, and 𝑥

4
= 1, which is exactly the

optimal solution.

Comparing these two cases, we can observe that, for𝐻 =
3, the nodewill delete some partial solutions in the truncation
operation to keep the message size small.

3.3. Example 2: The Asynchronous Case. The proposed algo-
rithm can be run fully asynchronously. This is due to the
fact that the combination operation, which is the core of the
algorithm, does not require all nodes to act synchronously.
We use the graph shown in Figure 1 again as the example.
For this example, we assume node 1 is the one which is not
synchronized with other nodes. Specifically, we assume that
node 1 will not generate messages until 𝑡 = 2. We use the
proposed algorithm to solve this problem. To focus on the
problem raised in this comment, we assume 𝐻 = +∞ so
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that the proposed algorithm can be expressed as the following
iterative equation:

𝑀
𝑡

𝑖
= ⨂

𝑗∈𝑁𝑖∪{𝑖}

𝑀
𝑡−1

𝑗
, (20)

where𝑀𝑡
𝑖
is themessage broadcasted by node 𝑖 in the 𝑡th iter-

ation. The running process of the algorithm is described as
follows.

Initially, for 𝑡 = 1, according to (14) and (15), the message
generated by each node can be expressed as𝑀1

1
= 0,𝑀1

2
=

𝐹(𝑋
1

2
, 𝑇(𝑋
1

2
)),𝑀1
3
= 𝐹(𝑋

1

3
, 𝑇(𝑋
1

3
)), and𝑀1

4
= 𝐹(𝑋

1

4
, 𝑇(𝑋
1

4
)).

Therefore, node 1 generates message 𝑀1
1
which contains no

elements, node 2 generates message𝑀1
2
which contains five

elements, (𝑥
1
, 𝑥
2
, 𝑥
3
) = (0, 0, 0), (𝑥

1
, 𝑥
2
, 𝑥
3
) = (0, 0, 1), (𝑥

1
,

𝑥
2
, 𝑥
3
) = (0, 1, 0), (𝑥

1
, 𝑥
2
, 𝑥
3
) = (1, 0, 0), and (𝑥

1
, 𝑥
2
, 𝑥
3
) =

(1, 0, 1), and so on, as shown in Table 3(a).
Then, for 𝑡 = 2, according to (20), the message generated

by each node can be expressed as 𝑀2
1
= 𝐹(𝑋

1

1
, 𝑇(𝑋
1

1
)),

𝑀
2

2
= 𝑀

1

2
⊗ 𝑀
1

3
, 𝑀2
3
= 𝑀

1

3
⊗ 𝑀
1

2
⊗ 𝑀
1

4
, and 𝑀2

4
=

𝑀
1

4
⊗ 𝑀
1

3
. It can be verified that𝑀1

1
contains five elements:

(𝑥
1
, 𝑥
2
, 𝑥
4
) = (0, 0, 0), (𝑥

1
, 𝑥
2
, 𝑥
4
) = (0, 0, 1), (𝑥

1
, 𝑥
2
, 𝑥
4
) =

(0, 1, 0), (𝑥
1
, 𝑥
2
, 𝑥
4
) = (0, 1, 1), and (𝑥

1
, 𝑥
2
, 𝑥
4
) = (1, 0, 0);𝑀2

2

contains eight elements;𝑀2
3
contains seven elements; and𝑀2

4

contains eight elements, as shown in Table 3(b).
For 𝑡 ≥ 3, according to (20), the message generated by

each node can be expressed as𝑀𝑡
1
= 𝑀
𝑡−1

1
⊗ 𝑀
𝑡−1

2
⊗ 𝑀
𝑡−1

4
,

𝑀
𝑡

2
= 𝑀
𝑡−1

2
⊗ 𝑀
𝑡−1

3
⊗ 𝑀
𝑡−1

1
, 𝑀𝑡
3
= 𝑀
𝑡−1

3
⊗ 𝑀
𝑡−1

2
⊗ 𝑀
𝑡−1

4
,

and 𝑀𝑡
4
= 𝑀
𝑡−1

4
⊗ 𝑀
𝑡−1

3
⊗ 𝑀
𝑡−1

1
. It can be verified that the

message𝑀𝑡
1
contains seven elements, and so on, as shown in

Table 3(c). We pick the solution with the highest objective,
that is, the solution (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (0, 1, 0, 1), which is

exactly the optimal solution.

4. Theoretical Analysis

This section presents the theoretical analysis results of the
proposed distributed algorithm.

Recall that 𝑋𝑡
𝑖
is the partial variable set associated with

node 𝑖 in the 𝑡th iteration. Firstly, we have the following two
lemmas.

Lemma 3. For general𝐻, one has

𝑋
𝑡

𝑖
= ⋃

𝑘∈𝑁𝑖∪{𝑖}

𝑋
𝑡−1

𝑘
, (21)

𝑀
𝑡

𝑖
⊆ 𝐹 (𝑋

𝑡

𝑖
, 𝑇 (𝑋

𝑡

𝑖
)) . (22)

Proof. We prove these two equations by induction on 𝑡.
Initially, 𝑡 = 1, according to the algorithm, we have 𝑀1

𝑖
=

Trunc(𝑄1
𝑖
, 𝐻) ⊆ 𝑄

1

𝑖
= 𝐹(𝑋

1

𝑖
, 𝑇(𝑋
1

𝑖
)), where 𝑋1

𝑖
= {𝑥
𝑖
} ∪

{𝑥
𝑘
, 𝑘 ∈ 𝑁

𝑖
}. Therefore, this lemma holds for 𝑡 = 1. Suppose

this lemma is correct for 𝑡 ≥ 2. For 𝑡 + 1, we have 𝑀𝑡+1
𝑖
⊆

𝑄
𝑡+1

𝑖
= ⊗
𝑘∈𝑁𝑖∪{𝑖}

𝑀
𝑡

𝑘
. Assuming this lemma is correct for 𝑡 ≥ 2,

we have 𝑄𝑡+1
𝑖
⊆ ⊗
𝑘∈𝑁𝑖∪{𝑖}

𝐹(𝑋
𝑡

𝑘
, 𝑇(𝑋
𝑡

𝑘
)). Applying Lemma 2,

we then have 𝑄𝑡+1
𝑖

⊆ 𝐹(∪
𝑘∈𝑁𝑖∪{𝑖}

𝑋
𝑡

𝑘
, 𝑇(∪
𝑘∈𝑁𝑖∪{𝑖}

𝑋
𝑡

𝑘
)). Since

𝑋
𝑡+1

𝑖
is the partial variable set associated with node 𝑖 in the

Table 3: An asynchronous example.

(a)

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑡 = 1

𝑀
𝑡

1

𝑀
𝑡

2

0 0 0
0 0 1
0 1 0
1 0 0
1 0 1

𝑀
𝑡

3

0 0 0
0 0 1
0 1 0
1 0 0
1 0 1

𝑀
𝑡

4

0 0 0
0 0 1
0 1 0
1 0 0
1 1 0

(b)

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑡 = 2

𝑀
𝑡

1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0

𝑀
𝑡

2

0 0 0 0
1 0 0 0
0 0 0 1
1 0 0 1
0 0 1 0
1 0 1 0
0 1 0 0
0 1 0 1

𝑀
𝑡

3

0 0 0 0
0 1 0 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 0
1 0 1 0

𝑀
𝑡

4

0 0 0 0
1 0 0 0
0 0 0 1
0 0 1 0
1 0 1 0
0 1 0 0
1 1 0 0
0 1 0 1
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(c)

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑡 = 3

𝑀
𝑡

1

0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 1 0 1
1 0 0 0
1 0 1 0

𝑀
𝑡

2

0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 1 0 1
1 0 0 0
1 0 1 0

𝑀
𝑡

3

0 0 0 0
0 1 0 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 0
1 0 1 0

𝑀
𝑡

4

0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 1 0 1
1 0 0 0
1 0 1 0

(𝑡 + 1)th iteration, we know that 𝑋𝑡+1
𝑖
= ∪
𝑘∈𝑁𝑖∪{𝑖}

𝑋
𝑡

𝑘
, which

means that (21) is correct for 𝑡 + 1. Further, we have𝑀𝑡+1
𝑖
⊆

𝑄
𝑡+1

𝑖
⊆ 𝐹(𝑋

𝑡+1

𝑖
, 𝑇(𝑋
𝑡+1

𝑖
)), which means that (22) is correct for

𝑡 + 1. This completes the proof of this lemma.

Lemma 4. For𝐻 = +∞, one has

𝑀
𝑡

𝑖
= 𝐹 (𝑋

𝑡

𝑖
, 𝑇 (𝑋

𝑡

𝑖
)) . (23)

Proof. We prove this equation by induction on 𝑡. Initially,
𝑡 = 1, according to the algorithm, since 𝐻 = +∞, we have
𝑀
1

𝑖
= 𝑄
1

𝑖
= 𝐹(𝑋

1

𝑖
, 𝑇(𝑋
1

𝑖
)), where 𝑋1

𝑖
= {𝑥
𝑖
} ∪ {𝑥

𝑘
, 𝑘 ∈

𝑁
𝑖
}. Therefore, this lemma holds for 𝑡 = 1. Suppose this

lemma is correct for 𝑡 ≥ 2. For 𝑡 + 1, we firstly have 𝑄𝑡+1
𝑖
=

⊗
𝑘∈𝑁𝑖∪{𝑖}

𝑀
𝑡

𝑘
. Assuming this lemma is correct for 𝑡 ≥ 2, we

have 𝑄𝑡+1
𝑖
= ⊗
𝑘∈𝑁𝑖∪{𝑖}

𝐹(𝑋
𝑡

𝑘
, 𝑇(𝑋
𝑡

𝑘
)). Applying Lemma 2, we

then have𝑄𝑡+1
𝑖
= 𝐹(∪

𝑘∈𝑁𝑖∪{𝑖}
𝑋
𝑡

𝑘
, 𝑇(∪
𝑘∈𝑁𝑖∪{𝑖}

𝑋
𝑡

𝑘
)). Since𝑋𝑡+1

𝑖
is

the partial variable set associated with node 𝑖 in the (𝑡 + 1)th
iteration, we have 𝑋𝑡+1

𝑖
= ∪
𝑘∈𝑁𝑖∪{𝑖}

𝑋
𝑡

𝑘
. Since 𝐻 = +∞, we

finally have𝑀𝑡+1
𝑖
= 𝑄
𝑡+1

𝑖
= 𝐹(𝑋

𝑡+1

𝑖
, 𝑇(𝑋
𝑡+1

𝑖
)), which means

that (23) is correct for 𝑡 + 1. This completes the proof of this
lemma.

Based on these two lemmas, we have the following two
theorems. Let diam(𝐺) denote the diameter of the graph 𝐺.

Theorem 5. For general 𝐻, the proposed algorithm will
converge to a feasible solution after 2 × diam(𝐺) + 1 iterations.

Proof. According to (21), 𝑋𝑡
𝑖
contains nodes to which the

shortest distance from 𝑖 is 𝑡. Since diam(𝐺) is the longest
distance between any two nodes, we have 𝑋𝑡

𝑖
= 𝑋 for 𝑡 ≥

diam(𝐺) + 1. Therefore, since 𝑡 = diam(𝐺) + 2, we have𝑀𝑡
𝑖
=

⊗
𝑘∈𝑁𝑖∪{𝑖}

𝑀
𝑡−1

𝑘
. For convenience, define 𝑀̃

𝑖
≜ 𝑀

diam(𝐺)+1
𝑖

.
Therefore, since 𝑡 = 2 × diam(𝐺) + 1, we have𝑀𝑡

𝑖
= ⊗
𝑘∈𝑉
𝑀̃
𝑘

which will not change any more. Therefore, the proposed
algorithm will converge after 2 × diam(𝐺) + 1 iterations.

According to (22), due to 𝑋𝑡
𝑖
= 𝑋 for 𝑡 ≥ diam(𝐺) + 1,

we have𝑀diam(𝐺)+1
𝑖

⊆ 𝐹(𝑋, 𝑇(𝑋)) for 𝑡 ≥ diam(𝐺) + 1. That
is, each element in 𝑀̃

𝑖
is a feasible full solution.Therefore, for

𝑡 ≥ 2 × diam(𝐺) + 1, each element in 𝑀𝑡
𝑖
= ⊗
𝑘∈𝑉
𝑀̃
𝑘
is a

feasible full solution. According to the algorithm, node 𝑖 will
estimate x∗ = argmaxx∈𝑀𝑡

𝑖

w𝐻x, where x = (𝑥
1
, . . . , 𝑥

𝑁
) and

w = (𝑤
1
, . . . , 𝑤

𝑁
). Since each element contained in 𝑀𝑡

𝑖
is

a feasible full solution of the MWIS problem, x∗ must be
feasible. Therefore, the proposed algorithm will converge to
a feasible full solution after 2 × diam(𝐺) + 1 iterations.

Theorem 6. For 𝐻 = +∞, the proposed algorithm will
converge to the optimal solution after diam(𝐺) + 1 iterations.

Proof. For 𝑡 ≥ diam(𝐺) + 1, since diam(𝐺) is the longest
distance between any two nodes, we have 𝑋𝑡

𝑖
= 𝑋.

Thus, according to (23), for 𝑡 ≥ diam(𝐺) + 1, we have
𝑀
𝑡

𝑖
= 𝐹(𝑋, 𝑇(𝑋)).Therefore, the algorithm is converged after

diam(𝐺) + 1 iterations. Since node 𝑖 will estimate x∗ =
argmaxx∈𝐹(𝑋,𝑇(𝑋))w𝐻x, where 𝐹(𝑋, 𝑇(𝑋)) covers all feasible
solutions of the MWIS problem, x∗ must be the optimal
one. Therefore, the proposed algorithm will converge to the
optimal solution after diam(𝐺) + 1 iterations.

Theoretical analysis results show that the proposed algo-
rithm is guaranteed to converge to an independent set and
the tradeoff between approximation accuracy and algorithm
complexity is controlled by parameter 𝐻, which are con-
firmed by the simulation results reported in Section 5.

5. Performance Evaluation

In this section, we evaluate the proposed algorithm via com-
puter simulations. We first describe the simulation method-
ology and then present and analyze the simulation results.

We develop a simulator based on MATLAB. In the
simulator, a total of |𝑉| nodes are randomly distributed over
a 10-meter × 10-meter flat field. For each node, the weight is a
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randomnumber ranging from 0 to 1. For any two nodes, if the
distance is less than 6meters, therewill be an edge connecting
them. Thus, we have generated a general graph. For this
graph, we use fivemethods to find itsMWIS.Thefirst is to use
the full version of the proposed algorithm, the second is to use
the general version of the proposed algorithmwith parameter
𝐻 ranging from 5 to 30, the third is to use the greedy
algorithm proposed in [19], the fourth is to use the message-
passing algorithm proposed in [30], and the fifth is to use
MATLAB function bintprog to solve the integer program in
(1). For the first two methods, we collect four metrics that
characterize the performance of the proposed algorithm: (1)
the weight sum of the output set, (2) the iteration number
needed to converge, (3) the diameter of the graph, and (4)
the message size, that is, the number of ME contained in each
message, upon convergence. For the other two methods, we
only collect the weight sum of the output set. The procedure
is repeated 1000 times for each value of |𝑉|, each time with
a new generated graph and weights, and results are averaged
out.

We first report that the proposed algorithm is convergent
for all simulation runs, and the output set is always indepen-
dent. Then, we present the simulation results obtained from
computer experiments, which are organized in four figures.
Figure 2 shows the average message size upon convergence as
the node number |𝑉| varied. Specifically, it is worthmention-
ing that since the message-passing algorithm does not always
converge and the output set is not always independent, we
only collect the results when the message-passing algorithm
converges and the output set is independent. In this figure,
for 𝐻 = +∞, the message size grows exponentially with
node number, while for general 𝐻 the message size is well
controlled. Figures 3 and 4 show the average weight sum
performance as the node number |𝑉| and parameter 𝐻
varied. In these two figures, the proposed algorithm with
general 𝐻 will converge to an approximate solution with
acceptable loss of optimality as parameter𝐻 is appropriately
selected. Additionally, in Figure 3, the curve corresponding
to 𝐻 = +∞ coincides with the curve of the optimal
solution. Thus, the optimality part of Theorem 6 is verified.
Finally, Figure 5 shows the average iteration number needed
to converge as the node number |𝑉| varied. In this figure,
the curve corresponding to 𝐻 = +∞ is always under the
upper bound predicted by Theorem 6 (i.e., the diameter
plus 1), while the curves corresponding to the general 𝐻
are always under the upper bound predicted by Theorem 5
(i.e., two times the diameter plus 1). Thus, Theorem 5 and
the convergence part of Theorem 6 are verified. Simulation
results show that the proposed algorithm with 𝐻 = +∞ is a
distributed optimal algorithm, while the proposed algorithm
with general𝐻 is a distributed approximate algorithm which
by changing parameter 𝐻 can achieve different tradeoff
between approximation accuracy and space complexity.

Finally, we empirically study how to set value for the
parameter 𝐻. Actually, we need a way to estimate a good 𝐻
for a givenweighted graph.We propose to set𝐻 as the integer
times of the number of nodes. The simulation results are
summarized in Table 4. According to the simulation results,
we suggest to set𝐻 as 2–4 times the number of nodes.
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Figure 5: The average iteration number performance.

Table 4: Simulation results with different𝐻.

|𝑉| 𝐻 The final solution The optimal solution

|𝑉| = 15

𝐻 = 1 ⋅ |𝑉| 1.79
2.21𝐻 = 2 ⋅ |𝑉| 2.21

𝐻 = 4 ⋅ |𝑉| 2.21

|𝑉| = 25

𝐻 = 1 ⋅ |𝑉| 1.62
2.61𝐻 = 2 ⋅ |𝑉| 2.55

𝐻 = 4 ⋅ |𝑉| 2.60

|𝑉| = 35

𝐻 = 1 ⋅ |𝑉| 1.87
3.02𝐻 = 2 ⋅ |𝑉| 2.56

𝐻 = 4 ⋅ |𝑉| 2.99

6. Conclusions

Anewdistributed algorithm for finding themaximumweight
independent set in a general graph is presented.The proposed
algorithm runs iteratively in which each node receives a
message form each neighbor, updates the message of its
own, and sends it to each neighbor. It is shown that the
proposed algorithm will converge to an independent set after
finite iterations and can achieve different tradeoff between
approximation accuracy and space complexity. Specifically,
the proposed algorithm with 𝐻 = +∞ is guaranteed to
converge to the optimal solution.

Appendix

A. Proof of Lemma 1

Proof. Assume 𝑇(𝑌
1
) = 𝑇

11
∪ 𝑇
12

and 𝑇(𝑌
2
) = 𝑇

22
∪ 𝑇
12
,

where 𝑇
12
= 𝑇(𝑌

1
) ∩ 𝑇(𝑌

2
) and 𝑇

11
∩ 𝑇
22
= 0. We have

𝐹(𝑌
1
, 𝑇(𝑌
1
)) = {k

1
: k
1
≻ 𝑇(𝑌

1
)} = {k

1
: k
1
≻ 𝑇
11
, k
1
≻ 𝑇
12
}

and 𝐹(𝑌
2
, 𝑇(𝑌
2
)) = {k

2
: k
2
≻ 𝑇(𝑌

2
)} = {k

2
: k
2
≻ 𝑇
22
, k
2
≻

𝑇
12
}. According to the definition, we have 𝐹(𝑌

1
, 𝑇(𝑌
1
)) ⊗

𝐹(𝑌
2
, 𝑇(𝑌
2
)) = {k = (k

1
, k
2
): k
1
and k

2
are compatible} =

{k: k
1
≻ 𝑇
11
, k
1
≻ 𝑇
12
, k
1
≻ 𝑇
22
, k
2
≻ 𝑇
22
, k
2
≻ 𝑇
12
, k
2
≻

𝑇
11
} = {k: k ≻ 𝑇

11
∪ 𝑇
22
∪ 𝑇
12
} = 𝐹(𝑌

1
∪ 𝑌
2
, 𝑇(𝑌
1
) ∪

𝑇(𝑌
2
)) = 𝐹(𝑌

1
∪ 𝑌
2
, 𝑇(𝑌
1
∪ 𝑌
2
)). This completes the proof of

this lemma.
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B. Proof of Lemma 2

Proof. We prove this lemma by induction on 𝐾. According
to Lemma 1, for 𝐾 = 2, this lemma is correct. Suppose this
lemma is correct for𝐾 ≥ 2. By using Lemma 1 andhypothesis,
we have⊗

1≤𝑘≤𝐾
𝐹(𝑌
𝑘
, 𝑇(𝑌
𝑘
))⊗𝐹(𝑌

𝐾+1
,𝑇(𝑌
𝐾+1
)) = 𝐹(∪

1≤𝑘≤𝐾
𝑌
𝑘
,

∪
1≤𝑘≤𝐾

𝑇(𝑌
𝑘
)) ⊗ 𝐹(𝑌

𝐾+1
, 𝑇(𝑌
𝐾+1
)) = 𝐹(∪

1≤𝑘≤𝐾+1
𝑌
𝑘
,

∪
1≤𝑘≤𝐾

𝑇(𝑌
𝑘
) ∪ T(𝑌

𝐾+1
)) = 𝐹(∪

1≤𝑘≤𝐾+1
𝑌
𝑘
, ∪
1≤𝑘≤𝐾+1

𝑇(𝑌
𝑘
)).

Thus, this lemma is also correct for𝐾+ 1. This completes the
proof of this lemma.

List of Symbols

𝐺 = (𝑉, 𝐸): The graph
𝑤
𝑘
: The weight associated with each node

𝑥
𝑘
: The binary variable associated with each

node
𝑋: The full variable set
𝑝: The partial solution
𝑉
𝑝
: The objective associated with 𝑝

Ω: The partial solution set
⊗𝑝
𝑗
: The combination operation over partial

solutions {𝑝
𝑗
}

⊗Ω
𝑖
: The combination operation over partial

solution set {Ω
𝑖
}

Trunc(Ω,𝐻): The truncation operation overΩ with
parameter𝐻

𝑁
𝑖
: The set of neighbors of node 𝑖

𝑌: A subset of𝑋
𝑇(𝑌): The full constraint set associated with 𝑌
𝐹(𝑌, 𝑇(𝑌)): The feasible solution set associated with 𝑌
𝑀
𝑡

𝑖
: The message broadcasted by node 𝑖 in the 𝑡th

iteration
𝑄
𝑡

𝑖
: The partial solution set generated by node 𝑖

after the combination operation in the 𝑡th
iteration

𝑋
𝑡

𝑖
: The partial variable set associated with node

𝑖 in the 𝑡th iteration
diam(𝐺): The diameter of graph 𝐺.
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