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We propose a new spectral elementmodel for finite rectangular plate elements with arbitrary boundary conditions.Thenew spectral
elementmodel is developed bymodifying the boundary splittingmethod used in our previous study so that the four corner nodes of
a finite rectangular plate element become active.Thus, the new spectral element model can be applied to any finite rectangular plate
element with arbitrary boundary conditions, while the spectral element model introduced in the our previous study is valid only
for finite rectangular plate elements with four fixed corner nodes. The new spectral element model can be used as a generic finite
element model because it can be assembled in any plate direction. The accuracy and computational efficiency of the new spectral
element model are validated by a comparison with exact solutions, solutions obtained by the standard finite element method, and
solutions from the commercial finite element analysis package ANSYS.

1. Introduction

The plate is a representative structural element that is widely
used in many engineering fields such as mechanical, civil,
aerospace, shipbuilding, and structural engineering. Severe
or unwanted vibration of a plate is a very important engi-
neering problem. Thus, it is required to accurately predict
the vibration characteristics of a plate during the design
phase. Exact solutions are available only for Levy-type plates
[1, 2]. Thus, numerous computational methods have been
developed for the vibrations of plates during the last two
centuries.

The finite element method (FEM) is one of the most
widely used computational methods that can be applied to
various complex structures including the plates. The FEM
in general provides reliable solutions in the low frequency
range, but poor solutions in the high frequency range. Thus,
to improve the solution accuracy in the high frequency range,
a finite element must be divided into many smaller finite
elements so that their sizes are smaller than the wavelengths
of the highest vibration mode of interest. However, this will
result in a significant increase in computation cost. Thus, as
an alternative to FEM, we can consider the spectral element
method (SEM) for the vibration analysis of plates.

The SEM considered in this study is the fast Fourier
transform- (FFT-) based frequency domain analysis method
[3, 4].The spectral elementmatrix (or exact dynamic stiffness
matrix) used in the SEM is formulated from free wave solu-
tions that satisfy governing differential equations of motion
in the frequency domain. Thus, compared with FEM, the
SEM can provide exact solutions by representing a uniform
structure as a single finite element, regardless of the size of
the uniform structure. Accordingly the SEM is known as an
exact solution method that has the flexibility of FEM and the
exactness of continuum elements [3].

Despite the outstanding features of the SEM, it is mostly
used in one-dimensional (1D) structures [3, 4]. The SEM
application to two-dimensional (2D) structures such as plates
has been limited to very specific geometries and boundary
conditions, for example, Levy-type plates [6–10] and infinite
or semi-infinite plates [11–15]. Some researchers [16, 17] have
introduced the spectral super element method (SSEM) for
rectangular plates with prespecified boundary conditions on
two parallel edges in one direction (say, the 𝑦-direction).
However, as their spectral element models can be assembled
only in another direction (the 𝑥-direction), their applica-
tions must be limited to very specific boundary condi-
tions. Recently, Park et al. [5, 18, 19] developed spectral

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 9475397, 20 pages
http://dx.doi.org/10.1155/2016/9475397



2 Mathematical Problems in Engineering

element models for rectangular membrane, isotropic plate,
and orthotropic laminated composite plate elements by
using two methods in combination: the boundary splitting
method [20] and the spectral super element method (SSEM)
[16]. They derived frequency-dependent shape functions by
applying a Kantorovich method-based finite strip element
method in one direction and the SEM in another direction
in combination, and vice versa. Accordingly, their spectral
element models can be assembled in both the 𝑥- and 𝑦-
directions. However, the spectral element models by Park
et al. [5, 18, 19] still have some limitations because they are
valid only for finite rectangular membranes or plate elements
whose four corner nodes are fixed. To the authors’ best
knowledge, there have been no reports on a generic type of
spectral elementmodel that can be assembled in any direction
of a plate subjected to arbitrary boundary conditions.

Thus, the purpose of this study is to develop a new spectral
element model for finite rectangular plate elements that can
be applied to any plate subjected to arbitrary boundary
conditions. The new spectral element model is developed
by modifying the boundary splitting technique used in our
previous study [5] so that the four corner nodes of a finite
rectangular plate element become active.The performance of
the new spectral element model is evaluated by comparison
with exact solutions, FEM solutions, and solutions using the
commercial finite element analysis package ANSYS [21].

2. Spectral Element Model for
a Finite Plate Element

2.1. Governing Equations in the Frequency Domain. The time
domain equation of motion and the boundary conditions of
plate structures with transverse vibrations are described in
[2]. The time domain equation of motion of a plate can be
transformed into a frequency domain equation of motion of
the plate by using the FFT as follows [5]:

𝐷(𝜕4𝑤𝜕𝑥4 + 2 𝜕4𝑤𝜕𝑥2𝜕𝑦2 + 𝜕4𝑤𝜕𝑦4 ) − 𝜌𝜔2𝑤 = 𝑓 (𝑥, 𝑦) , (1)

where𝑤(𝑥, 𝑦) is the transverse displacement in spectral form,𝑓(𝑥, 𝑦) is the external force in spectral form, 𝜌 is the mass
per unit area of the plate, and 𝐷 = 𝐸ℎ3/[12(1 − ]2)] is the
flexural bending rigidity of the plate where 𝐸 is the modulus
of elasticity, ] is Poisson’s ratio, and h is the plate thickness.
Similarly, the time domain boundary conditions can be
transformed into frequency domain boundary conditions as
follows:

𝑀𝑦 (𝑥, −12𝐿𝑦) = −𝑀𝑦1 (𝑥)
or 𝜃𝑦 (𝑥, −12𝐿𝑦) = 𝜃𝑦1 (𝑥) ,

𝑉𝑦 (𝑥, −12𝐿𝑦) = −𝑉𝑦1 (𝑥)
or 𝑤(𝑥, −12𝐿𝑦) = 𝑤1 (𝑥) ,

𝑀𝑦 (𝑥, 12𝐿𝑦) = 𝑀𝑦2 (𝑥)
or 𝜃𝑦 (𝑥, 12𝐿𝑦) = 𝜃𝑦2 (𝑥) ,

𝑉𝑦 (𝑥, 12𝐿𝑦) = 𝑉𝑦2 (𝑥)
or 𝑤(𝑥, 12𝐿𝑦) = 𝑤2 (𝑥) ,
𝑀𝑥 (−12𝐿𝑥, 𝑦) = −𝑀𝑥1 (𝑦)

or 𝜃𝑥 (−12𝐿𝑥, 𝑦) = 𝜃𝑥1 (𝑦) ,
𝑉𝑥 (−12𝐿𝑥, 𝑦) = −𝑉𝑥1 (𝑦)

or 𝑤(−12𝐿𝑥, 𝑦) = 𝑤3 (𝑦) ,
𝑀𝑥 (12𝐿𝑥, 𝑦) = 𝑀𝑥2 (𝑦)

or 𝜃𝑥 (12𝐿𝑥, 𝑦) = 𝜃𝑥2 (𝑦) ,
𝑉𝑥 (12𝐿𝑥, 𝑦) = 𝑉𝑥2 (𝑦)

or 𝑤(12𝐿𝑥, 𝑦) = 𝑤4 (𝑦) ,
(2)

where 𝐿𝑥 and 𝐿𝑦 are the dimensions of a finite plate in the 𝑥-
and 𝑦-directions, respectively; 𝑀𝑥 and 𝑀𝑦 are the resultant
moments; and 𝑉𝑥 and 𝑉𝑦 are the resultant transverse shear
forces defined by

𝑀𝑥 = −𝐷(𝜕2𝑤𝜕𝑥2 + ]
𝜕2𝑤𝜕𝑦2 ) ,

𝑉𝑥 = −𝐷 𝜕𝜕𝑥 (𝜕2𝑤𝜕𝑥2 + ]
𝜕2𝑤𝜕𝑦2 ) − 2𝐷 (1 − ]) 𝜕3𝑤𝜕𝑥𝜕𝑦2

𝑀𝑦 = −𝐷(𝜕2𝑤𝜕𝑦2 + ]
𝜕2𝑤𝜕𝑥2 ) ,

𝑉𝑦 = −𝐷 𝜕𝜕𝑦 (𝜕2𝑤𝜕𝑦2 + ]
𝜕2𝑤𝜕𝑥2 ) − 2𝐷 (1 − ]) 𝜕3𝑤𝜕𝑥2𝜕𝑦 .

(3)

And 𝜃𝑥 and 𝜃𝑦 are the slopes defined by

𝜃𝑥 = 𝜕𝑤𝜕𝑥 ,
𝜃𝑦 = 𝜕𝑤𝜕𝑦 . (4)

We need to obtain frequency domain free wave solutions
for a homogeneous equation of motion in order to formulate
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Figure 1: Boundary splitting method used in the previous study [5] to derive 𝑤(𝑥, 𝑦) for a rectangular plate element subjected to arbitrary
boundary conditions (e: active nodes; O: fixed nodes).
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Figure 2: Boundary splitting method used in this study to derive 𝑤(𝑥, 𝑦) for a rectangular plate element subjected to arbitrary boundary
conditions (e: active nodes).

the spectral element model for a finite plate element. To real-
ize this, the homogeneous equation of motion is considered
by removing external force 𝑓(𝑥, 𝑦) in (1) as follows:

𝐷(𝜕4𝑤𝜕𝑥4 + 2 𝜕4𝑤𝜕𝑥2𝜕𝑦2 + 𝜕4𝑤𝜕𝑦4 ) − 𝜌𝜔2𝑤 = 0. (5)

The weak form of (5) can be obtained in the following
form:

∫
𝑥
∫
𝑦
{𝐷(𝜕2𝑤𝜕𝑥2 + ]

𝜕2𝑤𝜕𝑦2 )𝛿(𝜕2𝑤𝜕𝑥2 )
+ 2 (1 − ]) 𝐷 𝜕2𝑤𝜕𝑥𝜕𝑦𝛿( 𝜕2𝑤𝜕𝑥𝜕𝑦)
+ 𝐷(𝜕2𝑤𝜕𝑦2 + ]

𝜕2𝑤𝜕𝑥2 )𝛿(𝜕2𝑤𝜕𝑦2 )
− 𝜌𝜔2𝑤𝛿𝑤}𝑑𝑥𝑑𝑦 = 0.

(6)

A free vibration solution satisfying the weak form given
in (6) can be obtained approximately by using two combined
methods: the boundary splitting method [20] and the spec-
tral super element method (SSEM) [16]. The SSEM uses a
combination of the Kantorovich method (based on the finite
strip element method) and the frequency domain 1D spectral
element method.

The concept of the boundary splitting method is illus-
trated in Figures 1 and 2. Figure 1 indicates the concept used
in our previous study [5]. Figure 2 indicates the concept used
in the present study.The original problems, shown in Figures
1(a) and 2(a), are represented by the sum of two partial
problems, Problem 𝐴 and Problem 𝐵. In Figures 1 and 2, the
geometric boundary conditions of the original problems are
presented in simple forms by using the following definitions:

w𝑥 (𝑥, 𝑦) = {𝑤 (𝑥, 𝑦) , 𝜃𝑥 (𝑥, 𝑦) = 𝜕𝑤𝜕𝑥 }𝑇

w𝑦 (𝑥, 𝑦) = {𝑤 (𝑥, 𝑦) , 𝜃𝑦 (𝑥, 𝑦) = 𝜕𝑤𝜕𝑦 }𝑇

w𝑥𝐴 (𝑥, 𝑦) = {𝑤𝐴 (𝑥, 𝑦) , 𝜃𝑥𝐴 (𝑥, 𝑦) = 𝜕𝑤𝐴𝜕𝑥 }𝑇

w𝑦𝐴 (𝑥, 𝑦) = {𝑤𝐴 (𝑥, 𝑦) , 𝜃𝑦𝐴 (𝑥, 𝑦) = 𝜕𝑤𝐴𝜕𝑦 }𝑇

w𝑥𝐵 (𝑥, 𝑦) = {𝑤𝐵 (𝑥, 𝑦) , 𝜃𝑥𝐵 (𝑥, 𝑦) = 𝜕𝑤𝐵𝜕𝑥 }𝑇

w𝑦𝐵 (𝑥, 𝑦) = {𝑤𝐵 (𝑥, 𝑦) , 𝜃𝑦𝐵 (𝑥, 𝑦) = 𝜕𝑤𝐵𝜕𝑦 }𝑇 .

(7)

In our previous study [5], Problem 𝐴, shown in Fig-
ure 1(b), has fixed (null) boundary conditions on the parallel
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edges at 𝑦 = −𝐿𝑦/2 and 𝐿𝑦/2. Problem 𝐵, shown in
Figure 1(c), has fixed (null) boundary conditions on the
parallel edges at 𝑥 = −𝐿𝑥/2 and 𝐿𝑥/2. As a result, the
spectral element model developed in [5] is valid only for
finite rectangular plate elements whose four corner nodes are
fixed, as shown in Figure 1(d). Accordingly, an application of
this approach should be limited to very specific problems as
considered in [5].

We propose a new boundary splitting method by mod-
ifying the boundary splitting method used in [5] such that
the four corner nodes of a finite plate element become active.
Problem 𝐴, shown in Figure 2(b), has arbitrary boundary
conditions rather than fixed boundary conditions on the
parallel edges at 𝑦 = −𝐿𝑦/2 and 𝐿𝑦/2, and its solution is
represented by 𝑤𝐴(𝑥, 𝑦). Problem 𝐵, shown in Figure 2(c),
has fixed (null) boundary conditions on the parallel edges
at 𝑥 = −𝐿𝑥/2 and 𝐿𝑥/2. However, the boundary conditions
at 𝑦 = −𝐿𝑦/2 and 𝐿𝑦/2 in Problem 𝐵 must be specified
such that the sum of the boundary conditions at 𝑦 = −𝐿𝑦/2
and 𝐿𝑦/2 in Problem 𝐴 and those in Problem 𝐵 is identical
to the boundary conditions at 𝑦 = −𝐿𝑦/2 and 𝐿𝑦/2 in the
original problem.The solution of Problem𝐵 is represented by𝑤𝐵(𝑥, 𝑦). Then, the solution 𝑤(𝑥, 𝑦) of the original problem
can be obtained by summing the solutions to Problem 𝐴 and
Problem 𝐵 as follows:

𝑤 (𝑥, 𝑦) = 𝑤𝐴 (𝑥, 𝑦) + 𝑤𝐵 (𝑥, 𝑦) . (8)

Accordingly, compared to the spectral element model devel-
oped in our previous study [5] based on the boundary
splitting shown in Figure 1, the present spectral element
model that was developed based on the boundary splitting
shown in Figure 2 has four active corner nodes.Thus, it can be
used as a generic finite element model that can be assembled
in both the 𝑥- and 𝑦-directions of a plate with arbitrary
boundary conditions.

2.2. Derivation of 𝑤𝐴(𝑥, 𝑦). To obtain the solution 𝑤𝐴(𝑥, 𝑦)
for Problem 𝐴 by using the SSEM, a rectangular finite plate
element is divided into 𝑁𝑦 finite strip elements in the 𝑦-
direction, as shown in Figure 3(a).The 𝑗th finite strip element,
which has a width of 𝑙(𝑗)𝑦 = 𝑦𝑗 − 𝑦𝑗−1 in the 𝑦-direction, is
shown in Figure 3(b).

The displacement field in the 𝑗th finite strip element can
be represented by

𝑤(𝑗)𝐴 (𝑥, 𝑦) = Y(𝑗)𝐴 (𝑦)w(𝑗)𝐴 (𝑥) (𝑦𝑗−1 ≤ 𝑦 ≤ 𝑦𝑗) , (9)

where Y(𝑗)𝐴 (𝑦) is a one-by-four interpolation function matrix
and w(𝑗)𝐴 (𝑥) are the nodal line degree of freedom (DOF)
functions defined by

Y(𝑗)𝐴 (𝑦) = [Y(𝑗)𝐴1 (𝑦) ,Y(𝑗)𝐴2 (𝑦)]
w(𝑗)𝐴 (𝑥) = {{{

w(𝑗−1)𝑦𝐴 (𝑥)
w(𝑗)𝑦𝐴 (𝑥)

}}}
, (10)
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Figure 3: Finite strip element representation of a rectangular finite
plate element subjected to arbitrary boundary conditions at 𝑦 =−𝐿𝑦/2 and 𝐿𝑦/2 (e: nodes; grey circles: nodal values).

where

Y(𝑗)𝐴1 (𝑦) = [𝑙(𝑗)−3𝑦 (𝑦 − 𝑦𝑗)2
⋅ (2𝑦 + 𝑦𝑗 − 3𝑦𝑗−1) , 𝑙(𝑗)−2𝑦 (𝑦 − 𝑦𝑗)2 (𝑦 − 𝑦𝑗−1)]

Y(𝑗)𝐴2 (𝑦) = [−𝑙(𝑗)−3𝑦 (𝑦 − 𝑦𝑗−1)2
⋅ (2𝑦 + 𝑦𝑗−1 − 3𝑦𝑗) , 𝑙(𝑗)−2𝑦 (𝑦 − 𝑦𝑗−1)2 (𝑦 − 𝑦𝑗)] ,

(11)

w(𝑗−1)𝑦𝐴 (𝑥) = w𝑦𝐴 (𝑥, 𝑦𝑗−1)
= {𝑤𝐴 (𝑥, 𝑦𝑗−1) , 𝜃𝑦𝐴 (𝑥, 𝑦𝑗−1)}𝑇

w(𝑗)𝑦𝐴 (𝑥) = w𝑦𝐴 (𝑥, 𝑦𝑗) = {𝑤𝐴 (𝑥, 𝑦𝑗) , 𝜃𝑦𝐴 (𝑥, 𝑦𝑗)}𝑇 .
(12)

By using (9), the displacement field 𝑤𝐴(𝑥, 𝑦) over the
entire domain of the finite plate element can be represented
as

𝑤𝐴 (𝑥, 𝑦) = Y𝐴 (𝑦)w𝐴 (𝑥) (−12𝐿𝑦 ≤ 𝑦 ≤ 12𝐿𝑦) , (13)
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where

w𝐴 (𝑥) = {w(0)𝑇𝑦𝐴 (𝑥) ,w(1)𝑇𝑦𝐴 (𝑥) , . . . ,w(𝑗)𝑇𝑦𝐴 (𝑥) , . . . ,
w(𝑁𝑦−1)𝑇𝑦𝐴 (𝑥) ,w(𝑁𝑦)𝑇𝑦𝐴 (𝑥)}𝑇 , (14)

Y𝐴 (𝑦) = [L(0)𝐴 (𝑦) , L(1)𝐴 (𝑦) , . . . , L(𝑗)𝐴 (𝑦) , . . . , L(𝑁𝑦−1)𝐴 (𝑦) ,
L(𝑁𝑦)𝐴 (𝑦)] (15)

with

L(0)𝐴 (𝑦) = ℎ(1)𝐴 Y(1)𝐴1 (𝑦)
L(𝑗)𝐴 (𝑦) = ℎ(𝑗)𝐴 (𝑦)Y(𝑗)𝐴2 (𝑦) + ℎ(𝑗+1)𝐴 (𝑦)Y(𝑗+1)𝐴1 (𝑦)

(𝑗 = 1, 2, . . . , 𝑁𝑦 − 1)
L(𝑁𝑦)𝐴 (𝑦) = ℎ(𝑁𝑦)𝐴 Y(𝑁𝑦)𝐴2 (𝑦) .

(16)

In (16), ℎ(𝑗)𝐴 (𝑦) are functions defined by

ℎ(𝑗)𝐴 (𝑦) = 𝐻(𝑦 − 𝑦𝑗−1) − 𝐻(𝑦 − 𝑦𝑗) , (17)

where𝐻(𝑦) is the Heaviside unit step function.
Substituting (13) into (5) yields

A4
𝜕4w𝐴𝜕𝑥4 + A2

𝜕2w𝐴𝜕𝑥2 + (A0 − 𝜔2M𝐴)w𝐴 = 0, (18)

where

𝜔 = 𝜔√ 𝜌𝐷,
A0 = Λ𝐴4,
A2 = ] (Λ𝐴3 + Λ𝑇𝐴3) − 2 (1 − ])Λ𝐴2
A4 = Λ𝐴1,
M𝐴 = Λ𝐴1

(19)

with the following definitions:

Λ𝐴1 = ∫+(1/2)𝐿𝑦
−(1/2)𝐿𝑦

Y𝑇𝐴Y𝐴 𝑑𝑦,

Λ𝐴2 = ∫+(1/2)𝐿𝑦
−(1/2)𝐿𝑦

𝜕Y𝑇𝐴𝜕𝑦 𝜕Y𝐴𝜕𝑦 𝑑𝑦
Λ𝐴3 = ∫+(1/2)𝐿𝑦

−(1/2)𝐿𝑦

Y𝑇𝐴
𝜕2Y𝐴𝜕𝑦2 𝑑𝑦,

Λ𝐴4 = ∫+(1/2)𝐿𝑦
−(1/2)𝐿𝑦

𝜕2Y𝑇𝐴𝜕𝑦2 𝜕2Y𝐴𝜕𝑦2 𝑑𝑦.

(20)

The constant matrices Λ𝐴1, Λ𝐴2, Λ𝐴3, and Λ𝐴4 are provided
in Appendix A.

Next, we assume solutions of (18) to be in the following
form:

w𝐴 (𝑥) =
{{{{{{{{{{{{{{{

1
𝑟(2)𝐴...

𝑟(2(𝑁𝑦+1))𝐴

}}}}}}}}}}}}}}}
𝑎𝐴𝑒+𝑘𝑥𝑥−(1/2)𝑘𝑥𝐿𝑥

= r𝐴𝑎𝐴𝑒+𝑘𝑥𝑥−(1/2)𝑘𝑥𝐿𝑥 ,

(21)

where 𝑎𝐴 is a constant, 𝑘𝑥 is the wavenumber in the 𝑥-
direction, and

𝑘𝑥 =
{{{{{{{{{

+𝑘𝑥 if Re (𝑘𝑥) > 0
−𝑘𝑥 if Re (𝑘𝑥) < 0
0 if Re (𝑘𝑥) = 0.

(22)

Substituting (21) into (18) gives the following eigenvalue
problem:

[A4𝑘4𝑥 + A2𝑘2𝑥 + (A0 − 𝜔2M𝐴)] r𝐴 = 0 (23)

or

[A𝐴𝜆2𝑥 + A2𝜆𝑥 + (A0 − 𝜔2M𝐴)] r𝐴 = 0

(𝜆𝑥 = 𝑘2𝑥) . (24)

The dispersion relation (i.e., the frequency-wavenumber
relationship) can be obtained from (24) as follows:

det [A4𝜆2𝑥 + A2𝜆𝑥 + (A0 − 𝜔2M𝐴)] = 0. (25)

From (25), the wavenumbers can be computed as

𝑘𝑥(𝑗) = +√𝜆𝑥(𝑗)
𝑘𝑥(4(𝑁𝑦+1)+𝑗) = −√𝜆𝑥(𝑗) = −𝑘𝑥(𝑗)

(𝑗 = 1, 2, . . . , 4 (𝑁𝑦 + 1)) .
(26)

By using the wavenumbers 𝑘𝑥(𝑗) given by (26), we can
write the general solution of (18) in the following form:

w𝐴 (𝑥) = R𝐴E𝐴 (𝑥; 𝜔) a𝐴, (27)
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where

a𝐴 = {𝑎𝐴(1) 𝑎𝐴(2) 𝑎𝐴(3) ⋅ ⋅ ⋅ 𝑎𝐴(𝑖) ⋅ ⋅ ⋅ 𝑎𝐴(8(𝑁𝑦+1))}𝑇 ,
R𝐴 = [R𝐴 R𝐴]
E𝐴 (𝑥; 𝜔) = [E𝐴1 (𝑥; 𝜔) 0

0 E𝐴2 (𝑥; 𝜔)]
(28)

with

R𝐴 = [r𝐴(1), r𝐴(2), r𝐴(3), . . . , r𝐴(𝑗), . . . , r𝐴(4×(𝑁𝑦−1))]
E𝐴1 (𝑥; 𝜔) = diagonal [𝑒+𝑘𝑥(𝑗)𝑥−(1/2)𝑘𝑥(𝑗)𝐿𝑥]

(𝑗 = 1, 2, . . . , 4 (𝑁𝑦 + 1))
E𝐴2 (𝑥; 𝜔) = diagonal [𝑒−𝑘𝑥(𝑗)𝑥−(1/2)𝑘𝑥(𝑗)𝐿𝑥]

(𝑗 = 1, 2, . . . , 4 (𝑁𝑦 + 1)) .

(29)

In (29), r𝐴(𝑗) is the 𝑗th eigenvector, which can be readily
computed from (23) using 𝑘𝑥 = 𝑘𝑥(𝑗).

The nodal DOFs at the nodes defined on the edges at 𝑥 =−𝐿𝑥/2 and 𝐿𝑥/2 can be written in vector form as

d𝐴 = {{{
d
𝐿

d
𝑅

}}}
, (30)

where

d
𝐿 = {{{{{

w𝐴 (−12𝐿𝑥)𝜕w𝐴 (− (1/2) 𝐿𝑥)𝜕𝑥
}}}}}

,

d
𝑅 = {{{{{

w𝐴 (12𝐿𝑥)𝜕w𝐴 ((1/2) 𝐿𝑥)𝜕𝑥 𝜕𝑥
}}}}}

.
(31)

Here, the superscripts L and R denote the nodal values on
the left edge (i.e., at 𝑥 = −𝐿𝑥/2) and the right edge (i.e., at𝑥 = 𝐿𝑥/2) of the plate, respectively. Superscript A denotes
the quantities related to or contributed by 𝑤𝐴(𝑥, 𝑦).

By substituting (27) into (31), the nodal DOF vector d𝐴
can be written in terms of the constant vector a𝐴 as follows:

d𝐴 =
[[[[[[[[[
[

R𝐴E𝐴 (−12𝐿𝑥)
R𝐴K𝐴E𝐴 (−12𝐿𝑥)
R𝐴E𝐴 (+12𝐿𝑥)

R𝐴K𝐴E𝐴 (+12𝐿𝑥)

]]]]]]]]]
]

a𝐴 ≡ H𝐴 (𝜔) a𝐴, (32)

where

K𝐴 = [𝜅𝐴 0
0 −𝜅𝐴]

𝜅𝐴 = diagonal [𝑘𝑥(𝑗)] (𝑗 = 1, 2, . . . , 4 (𝑁𝑦 + 1)) .
(33)

The constant vector a𝐴 can be removed from (27) by using
(32) to obtain the following expression:

w𝐴 (𝑥) = X𝐴 (𝑥; 𝜔) d𝐴, (34)

where

X𝐴 (𝑥; 𝜔) = R𝐴E𝐴 (𝑥; 𝜔)H−1𝐴 . (35)

From (12), by using the nodal DOFs defined in Figure 4,
we obtain the following expressions:

w(𝑗)𝑦𝐴 (−12𝐿𝑥) = {{{{{
𝑤𝐴 (−12𝐿𝑥, 𝑦𝑗)𝜃𝑦𝐴 (−12𝐿𝑥, 𝑦𝑗)

}}}}}
= {𝑤𝐿(𝑗+1)

𝜃𝐿𝑦(𝑗+1)}
𝜕w(𝑗)𝑦𝐴 (− (1/2) 𝐿𝑥)𝜕𝑥 = {{{{{

𝜃𝑥𝐴 (−12𝐿𝑥, 𝑦𝑗)𝜃𝑥𝑦𝐴 (−12𝐿𝑥, 𝑦𝑗)
}}}}}

= {𝜃𝐿𝑥(𝑗+1)
𝜃𝐿𝑥𝑦(𝑗+1)} ,

w(𝑗)𝑦𝐴 (12𝐿𝑥) = {{{{{
𝑤𝐴 (12𝐿𝑥, 𝑦𝑗)𝜃𝑦𝐴 (12𝐿𝑥, 𝑦𝑗)

}}}}}
= {𝑤𝑅(𝑗+1)

𝜃𝑅𝑦(𝑗+1)}
𝜕w(𝑗)𝑦𝐴 ((1/2) 𝐿𝑥)𝜕𝑥 = {{{{{

𝜃𝑥𝐴 (12𝐿𝑥, 𝑦𝑗)𝜃𝑥𝑦𝐴 (12𝐿𝑥, 𝑦𝑗)
}}}}}

= {𝜃𝑅𝑥(𝑗+1)
𝜃𝑅𝑥𝑦(𝑗+1)} .

(36)
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Figure 4: Spectral nodal degrees of freedom (DOFs) of a rectangular finite plate element (e: nodes).

By applying (36) to (14), we obtain the following expressions:

w𝐴 (−12𝐿𝑥) = {𝑤𝐿(1), 𝜃𝐿𝑦(1), 𝑤𝐿(2), 𝜃𝐿𝑦(2), . . . , 𝑤𝐿(𝑗+1), 𝜃𝐿𝑦(𝑗+1),
. . . , 𝑤𝐿(𝑁𝑦), 𝜃𝐿𝑦(𝑁𝑦), 𝑤𝐿(𝑁𝑦+1), 𝜃𝐿𝑦(𝑁𝑦+1)}𝑇

𝜕w𝐴 (− (1/2) 𝐿𝑥)𝜕𝑥 = {𝜃𝐿𝑥(1), 𝜃𝐿𝑥𝑦(1), 𝜃𝐿𝑥(2), 𝜃𝐿𝑥𝑦(2), . . . ,
𝜃𝐿𝑥(𝑗+1), 𝜃𝐿𝑥𝑦(𝑗+1), . . . , 𝜃𝐿𝑥(𝑁𝑦), 𝜃𝐿𝑥𝑦(𝑁𝑦), 𝜃𝐿𝑥(𝑁𝑦+1),
𝜃𝐿𝑥𝑦(𝑁𝑦+1)}𝑇

w𝐴 (12𝐿𝑥) = {𝑤𝑅(1), 𝜃𝑅𝑦(1), 𝑤𝑅(2), 𝜃𝑅𝑦(2), . . . , 𝑤𝑅(𝑗+1), 𝜃𝑅𝑦(𝑗+1),

. . . , 𝑤𝑅(𝑁𝑦), 𝜃𝑅𝑦(𝑁𝑦), 𝑤𝑅(𝑁𝑦+1), 𝜃𝑅𝑦(𝑁𝑦+1)}𝑇

𝜕w𝐴 ((1/2) 𝐿𝑥)𝜕𝑥 = {𝜃𝑅𝑥(1), 𝜃𝑅𝑥𝑦(1), 𝜃𝑅𝑥(2), 𝜃𝑅𝑥𝑦(2), . . . , 𝜃𝑅𝑥(𝑗+1),
𝜃𝑅𝑥𝑦(𝑗+1), . . . , 𝜃𝑅𝑥(𝑁𝑦), 𝜃𝑅𝑥𝑦(𝑁𝑦), 𝜃𝑅𝑥(𝑁𝑦+1), 𝜃𝑅𝑥𝑦(𝑁𝑦+1)}𝑇 .

(37)

Applying (37) to (31) gives

d
𝐿 = {{{

𝑤𝐿(1), 𝜃𝐿𝑦(1), 𝑤𝐿(2), 𝜃𝐿𝑦(2), . . . , 𝑤𝐿(𝑗+1), 𝜃𝐿𝑦(𝑗+1), . . . , 𝑤𝐿(𝑁𝑦), 𝜃𝐿𝑦(𝑁𝑦), 𝑤𝐿(𝑁𝑦+1), 𝜃𝐿𝑦(𝑁𝑦+1)𝜃𝐿𝑥(1), 𝜃𝐿𝑥𝑦(1), 𝜃𝐿𝑥(2), 𝜃𝐿𝑥𝑦(2), . . . , 𝜃𝐿𝑥(𝑗+1), 𝜃𝐿𝑥𝑦(𝑗+1), . . . , 𝜃𝐿𝑥(𝑁𝑦), 𝜃𝐿𝑥𝑦(𝑁𝑦), 𝜃𝐿𝑥(𝑁𝑦+1), 𝜃𝐿𝑥𝑦(𝑁𝑦+1)
}}}
𝑇

d
𝑅 = {{{

𝑤𝑅(1), 𝜃𝑅𝑦(1), 𝑤𝑅(2), 𝜃𝑅𝑦(2), . . . , 𝑤𝑅(𝑗+1), 𝜃𝑅𝑦(𝑗+1), . . . , 𝑤𝑅(𝑁𝑦), 𝜃𝑅𝑦(𝑁𝑦), 𝑤𝑅(𝑁𝑦+1), 𝜃𝑅𝑦(𝑁𝑦+1)𝜃𝑅𝑥(1), 𝜃𝑅𝑥𝑦(1), 𝜃𝑅𝑥(2), 𝜃𝑅𝑥𝑦(2), . . . , 𝜃𝑅𝑥(𝑗+1), 𝜃𝑅𝑥𝑦(𝑗+1), . . . , 𝜃𝑅𝑥(𝑁𝑦), 𝜃𝑅𝑥𝑦(𝑁𝑦), 𝜃𝑅𝑥(𝑁𝑦+1), 𝜃𝑅𝑥𝑦(𝑁𝑦+1)
}}}
𝑇

.
(38)

We rearrange the order of nodal DOFs in (38) to define a
new nodal DOF vector as follows:

d𝐴 = {d𝐿

d𝑅
}

d𝐿 = {𝑤𝐿(1), 𝜃𝐿𝑦(1), 𝜃𝐿𝑥(1), 𝜃𝐿𝑥𝑦(1), 𝑤𝐿(2), 𝜃𝐿𝑦(2), 𝜃𝐿𝑥(2), 𝜃𝐿𝑥𝑦(2), . . . ,
𝑤𝐿(𝑗+1), 𝜃𝐿𝑦(𝑗+1), 𝜃𝐿𝑥(𝑗+1), 𝜃𝐿𝑥𝑦(𝑗+1), . . . , 𝑤𝐿(𝑁𝑦), 𝜃𝐿𝑦(𝑁𝑦), 𝜃𝐿𝑥(𝑁𝑦),

𝜃𝐿𝑥𝑦(𝑁𝑦), 𝑤𝐿(𝑁𝑦+1), 𝜃𝐿𝑦(𝑁𝑦+1), 𝜃𝐿𝑥(𝑁𝑦+1), 𝜃𝐿𝑥𝑦(𝑁𝑦+1)}𝑇
d𝑅 = {𝑤𝑅(1), 𝜃𝑅𝑦(1), 𝜃𝑅𝑥(1), 𝜃𝑅𝑥𝑦(1), 𝑤𝑅(2), 𝜃𝑅𝑦(2), 𝜃𝑅𝑥(2), 𝜃𝑅𝑥𝑦(2), . . . ,

𝑤𝑅(𝑗+1), 𝜃𝑅𝑦(𝑗+1), 𝜃𝑅𝑥(𝑗+1), 𝜃𝑅𝑥𝑦(𝑗+1), . . . , 𝑤𝑅(𝑁𝑦), 𝜃𝑅𝑦(𝑁𝑦), 𝜃𝑅𝑥(𝑁𝑦),
𝜃𝑅𝑥𝑦(𝑁𝑦), 𝑤𝑅(𝑁𝑦+1), 𝜃𝑅𝑦(𝑁𝑦+1), 𝜃𝑅𝑥(𝑁𝑦+1), 𝜃𝑅𝑥𝑦(𝑁𝑦+1)}𝑇 .

(39)
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The nodal DOF vector d𝐴 can be related to the new nodal
DOF vector d𝐴 as follows:

d𝐴 = {{{
d
𝐿

d
𝑅

}}}
= [T𝐴 0

0 T𝐴
]{d𝐿

d𝑅
} ≡ T1d𝐴, (40)

where T1 is the transformation matrix defined by

T1 = [T𝐴 0
0 T𝐴

] , (41)

where

T𝐴 = [T𝐴1
T𝐴2

] . (42)

ThematricesT𝐴1 andT𝐴2 in (42) are (𝑁𝑦+1)-by-(𝑁𝑦+1)
block diagonal matrices defined by

T𝐴1 = diagonal [t𝐴1] ,
T𝐴2 = diagonal [t𝐴2] , (43)

where

t𝐴1 = [1 0 0 0
0 1 0 0] ,

t𝐴2 = [0 0 1 0
0 0 0 1] .

(44)

Applying (40) to (34) gives

w𝐴 (𝑥) = X𝐴 (𝑥; 𝜔) d𝐴, (45)

where

X𝐴 (𝑥; 𝜔) = R𝐴E𝐴 (𝑥; 𝜔)H−1𝐴 T1. (46)

Finally, substituting (45) into (13) gives

𝑤𝐴 (𝑥, 𝑦) = N𝐴 (𝑥, 𝑦; 𝜔) d𝐴, (47)

where

N𝐴 (𝑥, 𝑦; 𝜔) = Y𝐴 (𝑦)X𝐴 (𝑥; 𝜔) . (48)

2.3. Derivation of𝑤𝐵(𝑥, 𝑦). We can find the solution𝑤𝐵(𝑥, 𝑦)
to Problem 𝐵 by using a procedure similar to that used to
obtain the solution for 𝑤𝐴(𝑥, 𝑦) in Problem 𝐴. Problem 𝐵
can be obtained from Problem 𝐴 by rotating the coordinate
system (𝑥, 𝑦) 90∘ clockwise. However, the differences for
Problem 𝐵 are as follows: (1) the fixed (null) boundary
conditions are placed at 𝑥 = −𝐿𝑥/2 and 𝐿𝑥/2; (2) the finite
plate element is divided into 𝑁𝑥 finite strip elements in the𝑥-direction, as shown in Figure 5; and (3) 𝑤𝐵(𝑥, 𝑦) should
be determined to satisfy the boundary conditions at 𝑦 =−𝐿𝑦/2 and 𝐿𝑦/2 in combination with the boundary values
contributed by 𝑤𝐴(𝑥, 𝑦).

By following the solution procedure used for Problem 𝐵,
the displacement field in the ith finite strip element, which
has a width of 𝑙(𝑖)𝑥 = 𝑥𝑖 − 𝑥𝑖−1, can be written in the following
form:

𝑤(𝑖)𝐵 (𝑥, 𝑦) = X(𝑖)𝐵 (𝑥)w(𝑖)𝐵 (𝑦) (𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖) , (49)

where X(𝑖)𝐵 (𝑥) is a one-by-four interpolation function matrix
and w(𝑖)𝐵 (𝑦) are the nodal line DOF functions defined by

X(𝑖)𝐵 (𝑥) = [X(𝑖)𝐵1 (𝑥) ,X(𝑖)𝐵2 (𝑥)]
w(𝑖)𝐵 (𝑦) = {w(𝑖−1)𝑥𝐵 (𝑦)

w(𝑖)𝑥𝐵 (𝑦) } , (50)

where

X(𝑖)𝐵1 (𝑥) = [𝑙(𝑖)−3𝑥 (𝑥 − 𝑥𝑖)2
⋅ (2𝑥 − 3𝑥𝑖−1 + 𝑥𝑖) , 𝑙(𝑖)−2𝑥 (𝑥 − 𝑥𝑖)2 (𝑥 − 𝑥𝑖−1)]

X(𝑖)𝐵2 (𝑥) = [−𝑙(𝑖)−3𝑥 (𝑥 − 𝑥𝑖−1)2
⋅ (2𝑥 − 3𝑥𝑖 + 𝑥𝑖−1) , 𝑙(𝑖)−2𝑥 (𝑥 − 𝑥𝑖−1)2 (𝑥 − 𝑥𝑖)] ,

w(𝑖−1)𝑥𝐵 (𝑦) = w𝑥𝐵 (𝑥𝑖−1, 𝑦)
= {𝑤𝐵 (𝑥𝑖−1, 𝑦) , 𝜃𝑥𝐵 (𝑥𝑖−1, 𝑦)}𝑇

w(𝑖)𝑥𝐵 (𝑦) = w𝑥𝐵 (𝑥𝑖, 𝑦) = {𝑤𝐵 (𝑥𝑖, 𝑦) , 𝜃𝑥𝐵 (𝑥𝑖, 𝑦)}𝑇 .

(51)

By using (49), the displacement field 𝑤𝐵(𝑥, 𝑦) in the
whole domain of the finite plate element can be represented
by

𝑤𝐵 (𝑥, 𝑦) = X𝐵 (𝑥)w𝐵 (𝑦) (−12𝐿𝑥 ≤ 𝑥 ≤ 12𝐿𝑥) , (52)

where

w𝐵 (𝑦) = {w(1)𝑇𝑥𝐵 (𝑦) ,w(2)𝑇𝑥𝐵 (𝑦) , . . . ,w(𝑖)𝑇𝑥𝐵 (𝑦) , . . . ,
w(𝑁𝑥−2)𝑇𝑥𝐵 (𝑦) ,w(𝑁𝑥−1)𝑇𝑥𝐵 (𝑦)}𝑇 , (53)

X𝐵 (𝑥) = [L(1)𝐵 (𝑥) , L(2)𝐵 (𝑥) , . . . , L(𝑖)𝐵 (𝑥) , . . . , L(𝑁𝑥−2)𝐵 (𝑥) ,
L(𝑁𝑥−1)𝐵 (𝑥)] . (54)

In (54), the following definition is used:

L(𝑖)𝐵 (𝑥) = ℎ(𝑖)𝐵 X(𝑖)𝐵2 (𝑥) + ℎ(𝑖+1)𝐵 X(𝑖+1)𝐵1 (𝑥)
(𝑖 = 1, 2, . . . , 𝑁𝑥 − 1) , (55)

where

ℎ(𝑖)𝐵 (𝑥) = 𝐻 (𝑥 − 𝑥𝑖−1) − 𝐻 (𝑥 − 𝑥𝑖) (56)

and 𝐻(𝑥) is the Heaviside unit step function. Note that the
null boundary conditions at 𝑥 = −𝐿𝑥/2 and 𝑥 = 𝐿𝑥/2 have
been applied to obtain (52).
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Figure 5: Finite strip element representation of a rectangular finite plate element subjected to null boundary conditions at 𝑦 = −𝐿𝑥/2 and𝐿𝑥/2 (e: nodes).

Substituting (52) into (5) gives

B4
𝜕4w𝐵𝜕𝑦4 + B2

𝜕2w𝐵𝜕𝑦2 + (B0 − 𝜔2M𝐵)w𝐵 = 0, (57)

where

B4 = Λ𝐵1,
B2 = ] (Λ𝐵3 + Λ𝑇𝐵3) − 2 (1 − ])Λ𝐵2
B0 = Λ𝐵4,
M𝐵 = Λ𝐵1

(58)

with the following definitions:

Λ𝐵1 = ∫+(1/2)𝐿𝑥
−(1/2)𝐿𝑥

X𝑇𝐵X𝐵 𝑑𝑥,
Λ𝐵2 = ∫+(1/2)𝐿𝑥

−(1/2)𝐿𝑥

𝜕X𝑇𝐵𝜕𝑥 𝜕X𝐵𝜕𝑥 𝑑𝑥
Λ𝐵3 = ∫+(1/2)𝐿𝑥

−(1/2)𝐿𝑥

X𝑇𝐵
𝜕2X𝐵𝜕𝑥2 𝑑𝑥,

Λ𝐵4 = ∫+(1/2)𝐿𝑥
−(1/2)𝐿𝑥

𝜕2X𝑇𝐵𝜕𝑥2 𝜕2X𝐵𝜕𝑥2 𝑑𝑥

(59)

The constant matricesΛ𝐵1,Λ𝐵2,Λ𝐵3, andΛ𝐵4 are provided in
Appendix B.

Now we assume solutions to (57) in the following form:

w𝐵 (𝑦) =
{{{{{{{{{{{{{{{

1
𝑟(2)𝐵...

𝑟(2(𝑁𝑥−1))𝐵

}}}}}}}}}}}}}}}
𝑎𝐵𝑒+𝑘𝑦𝑦−(1/2)𝑘𝑦𝐿𝑦

= r𝐵𝑎𝐵𝑒+𝑘𝑦𝑦−(1/2)𝑘𝑦𝐿𝑦 ,

(60)

where 𝑎𝐵 is a constant, 𝑘𝑦 is the wavenumber in the 𝑦-
direction, and

𝑘𝑦 =
{{{{{{{{{

+𝑘𝑦 if Re (𝑘𝑦) > 0
−𝑘𝑦 if Re (𝑘𝑦) < 0
0 if Re (𝑘𝑦) = 0.

(61)

Substituting (60) into (57) gives the following eigenvalue
problem:

[B4𝑘4𝑦 + B2𝑘2𝑦 + (B0 − 𝜔2M𝐵)] r𝐵 = 0 (62)

or

[B4𝜆2𝑦 + B2𝜆𝑦 + (B0 − 𝜔2M𝐵)] r𝐵 = 0 (𝜆𝑦 = 𝑘2𝑦) . (63)
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The dispersion relation can be obtained from (63) as
follows:

det [B4𝜆2𝑦 + B2𝜆𝑦 + B0 − 𝜔2M𝐵] = 0. (64)

From (64), the wavenumbers can be readily computed in the
following forms:

𝑘𝑦(𝑗) = +√𝜆𝑦(𝑗)
𝑘𝑦(4(𝑁𝑥−1)+𝑗) = −√𝜆𝑦(𝑗) = −𝑘𝑦(𝑗)

(𝑗 = 1, 2, . . . , 4 (𝑁𝑥 − 1)) .
(65)

By using the 8 × (𝑁𝑥 − 1) wavenumbers computed from
(64), we canwrite the general solution of (57) in the following
form:

w𝐵 (𝑦) = R𝐵E𝐵 (𝑦; 𝜔) a𝐵, (66)

where

a𝐵 = {𝑎𝐵(1) 𝑎𝐵(2) 𝑎𝐵(3) ⋅ ⋅ ⋅ 𝑎𝐵(𝑗) ⋅ ⋅ ⋅ 𝑎𝐵(8(𝑁𝑥−1))}𝑇 ,
R𝐵 = [R𝐵 R𝐵]
E𝐵 (𝑥; 𝜔) = [E𝐵1 (𝑥; 𝜔) 0

0 E𝐵2 (𝑥; 𝜔)]
(67)

with

R𝐵 = [r𝐵(1), r𝐵(2), r𝐵(3), . . . , r𝐵(𝑗), . . . , r𝐵(4×(𝑁𝑥−1))]
E𝐵1 (𝑦; 𝜔) = diagonal [𝑒+𝑘𝑦(𝑗)𝑦−(1/2)𝑘𝑦(𝑗)𝐿𝑦]

(𝑗 = 1, 2, . . . , 4 (𝑁𝑥 − 1))
E𝐵2 (𝑦; 𝜔) = diagonal [𝑒−𝑘𝑦(𝑗)𝑦−(1/2)𝑘𝑦(𝑗)𝐿𝑦]

(𝑗 = 1, 2, . . . , 4 (𝑁𝑥 − 1)) .

(68)

In (61), r𝐵(𝑗) is the 𝑗th eigenvector that can be readily
computed from (63) using 𝑘𝑦 = 𝑘𝑦(𝑗).

By using (47), the nodal values contributed by𝑤𝐴(𝑥, 𝑦) at
the 𝑖th nodes on the bottom edge at 𝑦 = −𝐿𝑦/2 and the upper

edge at 𝑦 = 𝐿𝑦/2 can be related to the nodal DOF vector d𝐴
as follows:

d𝐵𝐴𝑖 =
{{{{{{{{{{{{{

𝑤𝐵𝐴(𝑖)
𝜃𝐵𝑦𝐴(𝑖)
𝜃𝐵𝑥𝐴(𝑖)
𝜃𝐵𝑥𝑦𝐴(𝑖)

}}}}}}}}}}}}}
=

[[[[[[[[[
[

N𝐴 (𝑥𝑖, −12𝐿𝑦)
N𝐴,𝑦 (𝑥𝑖, −12𝐿𝑦)
N𝐴,𝑥 (𝑥𝑖, −12𝐿𝑦)
N𝐴,𝑥𝑦 (𝑥𝑖, −12𝐿𝑦)

]]]]]]]]]
]

d𝐴

=
[[[[[[[[[
[

Y𝐴 (−12𝐿𝑦)X𝐴 (𝑥𝑖)
Y󸀠𝐴 (−12𝐿𝑦)X𝐴 (𝑥𝑖)
Y𝐴 (−12𝐿𝑦)X󸀠𝐴 (𝑥𝑖)
Y󸀠𝐴 (−12𝐿𝑦)X󸀠𝐴 (𝑥𝑖)

]]]]]]]]]
]

d𝐴

d𝑈𝐴𝑖 =
{{{{{{{{{{{{{

𝑤𝑈𝐴(𝑖)
𝜃𝑈𝑦𝐴(𝑖)
𝜃𝑈𝑥𝐴(𝑖)
𝜃𝑈𝑥𝑦𝐴(𝑖)

}}}}}}}}}}}}}
=

[[[[[[[[[
[

N𝐴 (𝑥𝑖, +12𝐿𝑦)
N𝐴,𝑦 (𝑥𝑖, +12𝐿𝑦)
N𝐴,𝑥 (𝑥𝑖, +12𝐿𝑦)
N𝐴,𝑥𝑦 (𝑥𝑖, +12𝐿𝑦)

]]]]]]]]]
]

d𝐴

=
[[[[[[[[[
[

Y𝐴 (+12𝐿𝑦)X𝐴 (𝑥𝑖)
Y󸀠𝐴 (+12𝐿𝑦)X𝐴 (𝑥𝑖)
Y𝐴 (+12𝐿𝑦)X󸀠𝐴 (𝑥𝑖)
Y󸀠𝐴 (+12𝐿𝑦)X󸀠𝐴 (𝑥𝑖)

]]]]]]]]]
]

d𝐴

(69)

or

d𝐵𝐴𝑖 = Q𝐵𝑖 d𝐴,
d𝑈𝐴𝑖 = Q𝑈𝑖 d𝐴, (70)

where the primes (󸀠) denote the derivatives with respect to 𝑥
or 𝑦, and

Q𝐵𝑖 =
[[[[[[[[[
[

Y𝐴 (−12𝐿𝑦)X𝐴 (𝑥𝑖)
Y󸀠𝐴 (−12𝐿𝑦)X𝐴 (𝑥𝑖)
Y𝐴 (−12𝐿𝑦)X󸀠𝐴 (𝑥𝑖)
Y󸀠𝐴 (−12𝐿𝑦)X󸀠𝐴 (𝑥𝑖)

]]]]]]]]]
]

,

Q𝑈𝑖 =
[[[[[[[[[
[

Y𝐴 (+12𝐿𝑦)X𝐴 (𝑥𝑖)
Y󸀠𝐴 (+12𝐿𝑦)X𝐴 (𝑥𝑖)
Y𝐴 (+12𝐿𝑦)X󸀠𝐴 (𝑥𝑖)
Y󸀠𝐴 (+12𝐿𝑦)X󸀠𝐴 (𝑥𝑖)

]]]]]]]]]
]

.

(71)
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The superscripts B and U denote the quantities at the
bottom edge (i.e., at 𝑦 = −𝐿𝑦/2) and the upper edge (i.e.,
at 𝑦 = 𝐿𝑦/2) of the plate, respectively.The superscripts A and
B denote the quantities related to or contributed by 𝑤𝐴(𝑥, 𝑦)
and 𝑤𝐵(𝑥, 𝑦), respectively.

By using (70), the nodal values contributed by 𝑤𝐴(𝑥, 𝑦)
at all nodes on the bottom and upper edges, except for four
corner nodes, can be written in vector form as

d̂𝐴 = {d𝐵𝐴
d𝑈𝐴

} , (72)

where

d𝐵𝐴 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

d𝐵𝐴1
d𝐵𝐴2...
d𝐵𝐴𝑖...

d𝐵𝐴(𝑁𝑥−1)

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

,

d𝑈𝐴 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

d𝑈𝐴1
d𝑈𝐴2...
d𝑈𝐴𝑖...

d𝑈𝐴(𝑁𝑥−1)

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

.

(73)

By using (70), (72) can bewritten in terms ofd𝐴 as follows:

d̂𝐴 = Qd𝐴, (74)

where

Q = [Q𝐵
Q𝑈

] (75)

with

Q𝐵 =
[[[[[[[
[

Q𝐵1
Q𝐵2...

Q𝐵𝑁𝑥−1

]]]]]]]
]

,

Q𝑈 =
[[[[[[[
[

Q𝑈1
Q𝑈2...

Q𝑈𝑁𝑥−1

]]]]]]]
]

.

(76)

Similarly, the nodal values contributed by 𝑤𝐵(𝑥, 𝑦) at all
nodes on the bottom and upper edges can be computed from
(66), and they can be written in the vector form as

d̂𝐵 = {{{
d
𝐵

𝐵

d
𝑈

𝐵

}}}
, (77)

where

d
𝐵

𝐵 =
{{{{{{{

w𝐵 (−12𝐿𝑦)𝜕w𝐵 (− (1/2) 𝐿𝑦)𝜕𝑦
}}}}}}}

,

d
𝑈

𝐵 = {{{{{{{
w𝐵 (+12𝐿𝑦)𝜕w𝐵 (+ (1/2) 𝐿𝑦)𝜕𝑦

}}}}}}}
,

(78)

w𝐵 (−12𝐿𝑦) = {𝑤𝐵𝐵(1), 𝜃𝐵𝑥𝐵(1), 𝑤𝐵𝐵(2), 𝜃𝐵𝑥𝐵(2), . . . , 𝑤𝐵𝐵(𝑖),
𝜃𝐵𝑥𝐵(𝑖), . . . , 𝑤𝐵𝐵(𝑁𝑥−1), 𝜃𝐵𝑥𝐵(𝑁𝑥−1)}𝑇

𝜕w𝐵 (− (1/2) 𝐿𝑦)𝜕𝑦 = {𝜃𝐵𝑦𝐵(1), 𝜃𝐵𝑥𝑦𝐵(1), 𝜃𝐵𝑦𝐵(2), 𝜃𝐵𝑥𝑦𝐵(2), . . . ,
𝜃𝐵𝑦𝐵(𝑖), 𝜃𝐵𝑥𝑦𝐵(𝑖), . . . , 𝜃𝐵𝑦𝐵(𝑁𝑥−1), 𝜃𝐵𝑥𝑦𝐵(𝑁𝑥−1)}𝑇

w𝐵 (12𝐿𝑦) = {𝑤𝑈𝐵(1), 𝜃𝑈𝑥𝐵(1), 𝑤𝑈𝐵(2), 𝜃𝑈𝑥𝐵(2), . . . , 𝑤𝑈𝐵(𝑖), 𝜃𝑈𝑥𝐵(𝑖),
. . . , 𝑤𝑈𝐵(𝑁𝑥−1), 𝜃𝑈𝑥𝐵(𝑁𝑥−1)}𝑇

𝜕w𝐵 ((1/2) 𝐿𝑦)𝜕𝑦 = {𝜃𝑈𝑦𝐵(1), 𝜃𝑈𝑥𝑦𝐵(1), 𝜃𝑈𝑦𝐵(2), 𝜃𝑈𝑥𝑦𝐵(2), . . . ,
𝜃𝑈𝑦𝐵(𝑖), 𝜃𝑈𝑥𝑦𝐵(𝑖), . . . , 𝜃𝑈𝑦(𝑁𝑥−1), 𝜃𝑈𝑥𝑦(𝑁𝑥−1)}𝑇 .

(79)

By substituting (66) into (78), the nodal values d̂𝐵 can be
written in terms of the constant vector a𝐵 as follows:

d̂𝐵 =
[[[[[[[[[
[

R𝐵E𝐵 (−12𝐿𝑦)
R𝐵K𝐵E𝐵 (−12𝐿𝑦)
R𝐵E𝐵 (+12𝐿𝑦)

R𝐵K𝐵E𝐵 (+12𝐿𝑦)

]]]]]]]]]
]

a𝐵 ≡ H𝐵 (𝜔) a𝐵, (80)

where

K𝐵 = [𝜅𝐵 0
0 −𝜅𝐵]

𝜅𝐵 = diagonal [𝑘𝑦(𝑗)] (𝑗 = 1, 2, . . . , 4 (𝑁𝑥 − 1)) .
(81)



12 Mathematical Problems in Engineering

We rearrange the order of nodal values in (77) to define a
new vector as

d̂𝐵 = {d𝐵𝐵
d𝑈𝐵

} , (82)

where

d𝐵𝐵 = {𝑤𝐵𝐵(1), 𝜃𝐵𝑦𝐵(1), 𝜃𝐵𝑥𝐵(1), 𝜃𝐵𝑥𝑦𝐵(1), 𝑤𝐵𝐵(2), 𝜃𝐵𝑦𝐵(2), 𝜃𝐵𝑥𝐵(2),
𝜃𝐵𝑥𝑦𝐵(2), . . . , 𝑤𝐵𝐵(𝑖), 𝜃𝐵𝑦𝐵(𝑖), 𝜃𝐵𝑥𝐵(𝑖), 𝜃𝐵𝑥𝑦𝐵(𝑖), . . . , 𝑤𝐵𝐵(𝑁𝑥−2),
𝜃𝐵𝑦𝐵(𝑁𝑥−2), 𝜃𝐵𝑥𝐵(𝑁𝑥−2), 𝜃𝐵𝑥𝑦𝐵(𝑁𝑥−2), 𝑤𝐵𝐵(𝑁𝑥−1), 𝜃𝐵𝑦𝐵(𝑁𝑥−1),
𝜃𝐵𝑥𝐵(𝑁𝑥−1), 𝜃𝐵𝑥𝑦𝐵(𝑁𝑥−1)}𝑇

d𝑈𝐵 = {𝑤𝑈𝐵(1), 𝜃𝑈𝑦𝐵(1), 𝜃𝑈𝑥𝐵(1), 𝜃𝑈𝑥𝑦𝐵(1), 𝑤𝑈𝐵(2), 𝜃𝑈𝑦𝐵(2), 𝜃𝑈𝑥𝐵(2),
𝜃𝑈𝑥𝑦𝐵(2), . . . , 𝑤𝑈𝐵(𝑖), 𝜃𝑈𝑦𝐵(𝑖), 𝜃𝑈𝑥𝐵(𝑖), 𝜃𝑈𝑥𝑦𝐵(𝑖), . . . , 𝑤𝑈𝐵(𝑁𝑥−2),
𝜃𝑈𝑦𝐵(𝑁𝑥−2), 𝜃𝑈𝑥𝐵(𝑁𝑥−2), 𝜃𝑈𝑥𝑦𝐵(𝑁𝑥−2), 𝑤𝑈𝐵(𝑁𝑥−1), 𝜃𝑈𝑦𝐵(𝑁𝑥−1),
𝜃𝑈𝑥𝐵(𝑁𝑥−1), 𝜃𝑈𝑥𝑦𝐵(𝑁𝑥−1)}𝑇 .

(83)

By introducing a proper transformation matrix, the nodal
DOF vector d̂𝐵 can be related to the new vector d̂𝐵 in the
following form:

d̂𝐵 = {{{
d
𝐵

𝐵

d
𝑈

𝐵

}}}
= [T𝐵 0

0 T𝐵
]{d𝐵𝐵

d𝑈𝐵
} ≡ T2d̂𝐵, (84)

where T2 is the transformation matrix defined by

T2 = [T𝐵 0
0 T𝐵

] , (85)

where

T𝐵 = [T𝐵1
T𝐵2

] (86)

and T𝐵1 and T𝐵2 are (𝑁𝑥 − 1)-by-(𝑁𝑥 − 1) block diagonal
matrices defined by

T𝐵1 = diagonal [t𝐵1] ,
T𝐵2 = diagonal [t𝐵2] , (87)

where

t𝐵1 = [1 0 0 0
0 0 1 0] ,

t𝐵2 = [0 1 0 0
0 0 0 1] .

(88)

By substituting (80) into (84), we obtain

d̂𝐵 = T−12 H𝐵 (𝜔) a𝐵. (89)

The nodal DOFs defined at the nodes on the bottom and
upper edges of the finite plate element (see Figure 4) can be
written in vector form as

d𝐵 = {d𝐵

d𝑈
} , (90)

where

d𝐵 = {𝑤𝐵(1), 𝜃𝐵𝑦(1), 𝜃𝐵𝑥(1), 𝜃𝐵𝑥𝑦(1), 𝑤𝐵(2), 𝜃𝐵𝑦(2), 𝜃𝐵𝑥(2), 𝜃𝐵𝑥𝑦(2), . . . ,
𝑤𝐵(𝑖), 𝜃𝐵𝑦(𝑖), 𝜃𝐵𝑥(𝑖), 𝜃𝐵𝑥𝑦(𝑖), . . . , 𝑤𝐵(𝑁𝑥−2), 𝜃𝐵𝑦(𝑁𝑥−2), 𝜃𝐵𝑥(𝑁𝑥−2),
𝜃𝐵𝑥𝑦(𝑁𝑥−2), 𝑤𝐵(𝑁𝑥−1), 𝜃𝐵𝑦(𝑁𝑥−1), 𝜃𝐵𝑥(𝑁𝑥−1), 𝜃𝐵𝑥𝑦(𝑁𝑥−1)}𝑇

d𝑈 = {𝑤𝑈(1), 𝜃𝑈𝑦(1), 𝜃𝑈𝑥(1), 𝜃𝑈𝑥𝑦(1), 𝑤𝑈(2), 𝜃𝑈𝑦(2), 𝜃𝑈𝑥(2), 𝜃𝑈𝑥𝑦(2), . . . ,
𝑤𝑈(𝑖), 𝜃𝑈𝑦(𝑖), 𝜃𝑈𝑥(𝑖), 𝜃𝑈𝑥𝑦(𝑖), . . . , 𝑤𝑈(𝑁𝑥−2), 𝜃𝑈𝑦(𝑁𝑥−2), 𝜃𝑈𝑥(𝑁𝑥−2),
𝜃𝑈𝑥𝑦(𝑁𝑥−2), 𝑤𝑈𝑁𝑥−1, 𝜃𝑈𝑦(𝑁𝑥−1), 𝜃𝑈𝑥(𝑁𝑥−1), 𝜃𝑈𝑥𝑦(𝑁𝑥−1)}𝑇 .

(91)

The nodal DOF vector d𝐵 must be identical to the sum of
the nodal values contributed by𝑤𝐴(𝑥, 𝑦) and𝑤𝐵(𝑥, 𝑦). Thus,

d𝐵 = d̂𝐴 + d̂𝐵. (92)

Substituting (74) and (89) into (92) gives

d𝐵 = Qd𝐴 + T−12 H𝐵 (𝜔) a𝐵. (93)

From (93), we obtain the constant vector a𝐵 as

a𝐵 = H−1𝐵 (𝜔)T2 (d𝐵 −Qd𝐴) . (94)

The constant vector a𝐵 can be removed from (66) by using
(94) to obtain

w𝐵 (𝑦) = Y𝐵 (𝑦) d𝐵 − Y𝐴𝐵 (𝑦) d𝐴, (95)

where

Y𝐴𝐵 (𝑦; 𝜔) = R𝐵E𝐵 (𝑦; 𝜔)H−1𝐵 (𝜔)T2Q
Y𝐵 (𝑦; 𝜔) = R𝐵E𝐵 (𝑦; 𝜔)H−1𝐵 (𝜔)T2. (96)

Finally, substituting (95) into (52) yields

𝑤𝐵 (𝑥, 𝑦) = −N𝐴𝐵 (𝑥, 𝑦; 𝜔) d𝐴 + N𝐵 (𝑥, 𝑦; 𝜔) d𝐵, (97)

where

N𝐴𝐵 (𝑥, 𝑦; 𝜔) = X𝐵 (𝑥)Y𝐴𝐵 (𝑦; 𝜔)
N𝐵 (𝑥, 𝑦; 𝜔) = X𝐵 (𝑥)Y𝐵 (𝑦; 𝜔) . (98)

2.4. Derivation of 𝑤(𝑥, 𝑦). The solution 𝑤(𝑥, 𝑦) of the orig-
inal problem shown in Figure 2(a) can be obtained by
substituting (47) and (97) into (8) as follows:

𝑤 (𝑥, 𝑦; 𝜔) = N (𝑥, 𝑦; 𝜔) d (𝜔) , (99)
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where d(𝜔) is the 8(𝑁𝑥 + 𝑁𝑦)-by-one spectral nodal DOF
vector defined by

d = {d𝐴
d𝐵

} =
{{{{{{{{{{{{{

d𝐿

d𝑅

d𝐵

d𝑈

}}}}}}}}}}}}}
(100)

and N(𝑥, 𝑦; 𝜔) is the one-by-8(𝑁𝑥 + 𝑁𝑦) dynamic shape
function matrix defined by

N (𝑥, 𝑦; 𝜔)
= [N𝐴 (𝑥, 𝑦; 𝜔) −N𝐴𝐵 (𝑥, 𝑦; 𝜔) N𝐵 (𝑥, 𝑦; 𝜔)] . (101)

2.5. Formulation of Spectral Element Equation. To formulate
the spectral element model for the finite plate element, we
first derive the weak form of governing equation (5) in the
following form:

∫
𝑥
∫
𝑦
[𝐷(𝜕2𝑤𝜕𝑥2 + ]

𝜕2𝑤𝜕𝑦2 )𝛿(𝜕2𝑤𝜕𝑥2 )
+ 2 (1 − ])𝐷 𝜕2𝑤𝜕𝑥𝜕𝑦𝛿( 𝜕2𝑤𝜕𝑥𝜕𝑦)
+ 𝐷(𝜕2𝑤𝜕𝑦2 + ]

𝜕2𝑤𝜕𝑥2 )𝛿(𝜕2𝑤𝜕𝑦2 )
− 𝜌𝜔2𝑤𝛿𝑤]𝑑𝑥𝑑𝑦 = ∫

𝑥
∫
𝑦
𝑓 (𝑥, 𝑦)

⋅ 𝛿𝑤𝑑𝑥 𝑑𝑦 + ∫
𝑦
𝑉𝑥1𝛿𝑤(−12𝐿𝑥, 𝑦) 𝑑𝑦

+ ∫
𝑦
𝑉𝑥2𝛿𝑤(12𝐿𝑥, 𝑦) 𝑑𝑦 + ∫

𝑥
𝑉𝑦1𝛿𝑤(𝑥, −12

⋅ 𝐿𝑦)𝑑𝑥 + ∫
𝑥
𝑉𝑦2𝛿𝑤(𝑥, 12𝐿𝑦)𝑑𝑥

+ ∫
𝑦
𝑀𝑥1𝛿(𝜕𝑤 (− (1/2) 𝐿𝑥, 𝑦)𝜕𝑥 )𝑑𝑦

+ ∫
𝑦
𝑀𝑥2𝛿(𝜕𝑤 ((1/2) 𝐿𝑥, 𝑦)𝜕𝑥 )𝑑𝑦

+ ∫
𝑥
𝑀𝑦1𝛿(𝜕𝑤 (𝑥, − (1/2) 𝐿𝑦)𝜕𝑦 )𝑑𝑥

+ ∫
𝑥
𝑀𝑦2𝛿(𝜕𝑤 (𝑥, (1/2) 𝐿𝑦)𝜕𝑦 )𝑑𝑥,

(102)

where 𝑉𝑥1(𝑦), 𝑉𝑥2(𝑦), 𝑉𝑦1(𝑥), and 𝑉𝑦2(𝑥) are the resultant
transverse shear forces acting on the four boundary edges.
Similarly 𝑀𝑥1(𝑦), 𝑀𝑥2(𝑦), 𝑀𝑦1(𝑥), and 𝑀𝑦2(𝑥) are the
resultant bending moments acting on the four boundary
edges.

By substituting (101) into (102), we obtain the spectral
element equation in the following form:

S (𝜔) d (𝜔) = f1 (𝜔) + f2 (𝜔) , (103)
where

S (𝜔) = Φ𝑇 (𝜔)H𝑇 (𝜔)D (𝜔)H (𝜔)Φ (𝜔) ,
f1 (𝜔) = Φ𝑇∫

𝑥
∫
𝑦
𝑓 (𝑥, 𝑦)N𝑇 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

f2 (𝜔) = Φ𝑇 (∫
𝑦
𝑉𝑥1N𝑇 (−12𝐿𝑥, 𝑦) 𝑑𝑦

+ ∫
𝑦
𝑉𝑥2N𝑇 (12𝐿𝑥, 𝑦) 𝑑𝑦

+ ∫
𝑥
𝑉𝑦1N𝑇 (𝑥, −12𝐿𝑦)𝑑𝑥

+ ∫
𝑥
𝑉𝑦2N𝑇 (𝑥, 12𝐿𝑦)𝑑𝑥

+ ∫
𝑦
𝑀𝑥1N𝑇,𝑥 (−12𝐿𝑥, 𝑦) 𝑑𝑦

+ ∫
𝑦
𝑀𝑥2N𝑇,𝑥 (12𝐿𝑥, 𝑦) 𝑑𝑦

+ ∫
𝑥
𝑀𝑦1N𝑇,𝑦 (𝑥, −12𝐿𝑦)𝑑𝑥

+ ∫
𝑥
𝑀𝑦2N𝑇,𝑦 (𝑥, 12𝐿𝑦)𝑑𝑥) .

(104)

In the preceding equations, the following definitions are used:

Φ (𝜔) = [ I𝐴 0
−Q I𝐵

] ,

H (𝜔) = [H−1𝐴 (𝜔)T1 0

0 H−1𝐵 (𝜔)T2] ,
(105)

where I𝐴 is the 8(𝑁𝑦 +1)-by-8(𝑁𝑦 +1) identity matrix and I𝐵
is the 8(𝑁𝑥 − 1)-by-8(𝑁𝑥 − 1) identity matrix.

The matrix S(𝜔) in (103) is the 8(𝑁𝑥 + 𝑁𝑦)-by-8(𝑁𝑥 +𝑁𝑦) symmetric dynamic stiffness matrix (often called the
“spectral element matrix” in the literature), and matrix D(𝜔)
is defined by

D (𝜔) = D [D1 (𝜔) +D2 (𝜔) + 2 (1 − ])D3 (𝜔)
+ ] (D4 (𝜔) +D𝑇4 (𝜔))] − 𝜌𝜔2D𝜌 (𝜔) , (106)

where
D1 (𝜔) = K1Z1K1,
D2 (𝜔) = K2Z2K2
D3 (𝜔) = K3Z3K3,
D4 (𝜔) = K1Z4K2,
D𝜌 (𝜔) = Z0,

(107)
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where

K1 = [K2𝐴 0
0 I𝐵

] ,

K2 = [I𝐴 0

0 K2𝐵
] ,

K3 = [K𝐴 0
0 K𝐵

] ,

Z0 = [Z𝐴𝐴0 Z𝐴𝐵0
Z𝑇𝐴𝐵0 Z𝐵𝐵0

] ,

Z1 = [Z𝐴𝐴1 Z𝐴𝐵1
Z𝑇𝐴𝐵1 Z𝐵𝐵1

] ,

Z2 = [Z𝐴𝐴2 Z𝐴𝐵2
Z𝑇𝐴𝐵2 Z𝐵𝐵2

]

Z3 = [Z𝐴𝐴3 Z𝐴𝐵3
Z𝑇𝐴𝐵3 Z𝐵𝐵3

] ,

Z4 = [Z𝐴𝐴4 Z𝐴𝐵4
Z𝐵𝐴4 Z𝐵𝐵4

]

(108)

with the use of the following definitions:

Z𝐴𝐴0 = (R𝑇𝐴Λ𝐴1R𝐴) . ∗ Γ1𝑋,
Z𝐴𝐵0 = (Γ𝑋2 R𝐵) . ∗ (R𝑇𝐴Γ𝑇2𝑌)
Z𝐵𝐵0 = (R𝑇𝐵Λ𝐵1R𝐵) . ∗ Γ1𝑌,
Z𝐴𝐴1 = (R𝑇𝐴Λ𝐴1R𝐴) . ∗ Γ1𝑋
Z𝐴𝐵1 = (Γ𝑋4 R𝐵) . ∗ (R𝑇𝐴Γ𝑇2𝑌) ,
Z𝐵𝐵1 = (R𝑇𝐵Λ𝐴4R𝐵) . ∗ Γ1𝑌
Z𝐴𝐴2 = (R𝑇𝐴Λ𝐴4R𝐴) . ∗ Γ1𝑋,
Z𝐴𝐵2 = (Γ𝑋2 R𝐵) . ∗ (R𝑇𝐴Γ𝑇4𝑌)
Z𝐵𝐵2 = (R𝑇𝐵Λ𝐵1R𝐵) . ∗ Γ1𝑌,
Z𝐴𝐴3 = (R𝑇𝐴Λ𝐴2R𝐴) . ∗ Γ1𝑋
Z𝐴𝐵3 = (Γ𝑋3 R𝐵) . ∗ (R𝑇𝐴Γ𝑇3𝑌) ,
Z𝐵𝐵3 = (R𝑇𝐵Λ𝐵2R𝐵) . ∗ Γ1𝑌
Z𝐴𝐴4 = (R𝑇𝐴Λ𝐴3R𝐴) . ∗ Γ1𝑋,

Z𝐴𝐵4 = (Γ𝑋2 R𝐵) . ∗ (R𝑇𝐴Γ𝑇2𝑌)
Z𝐵𝐵4 = (R𝑇𝐵Λ𝑇𝐵3R𝐵) . ∗ Γ1𝑌,
Z𝐵𝐴4 = (Γ𝑌4R𝐴) . ∗ (R𝑇𝐵Γ𝑇4𝑋)
Γ1𝑋 = ∫

𝑥
vect (E𝐴) vect (E𝐴)𝑇 𝑑𝑥,

Γ2𝑋 = ∫
𝑥
vect (E𝐴)X𝐵 𝑑𝑥

Γ3𝑋 = ∫
𝑥
vect (E𝐴) 𝜕X𝐵𝜕𝑥 𝑑𝑥,

Γ4𝑋 = ∫
𝑥
vect (E𝐴) 𝜕2X𝐵𝜕𝑥2 𝑑𝑥

Γ1𝑌 = ∫
𝑦
vect (E𝐵) vect (E𝐵)𝑇 𝑑𝑦,

Γ2𝑌 = ∫
𝑦
vect (E𝐵)Y𝐴 𝑑𝑦

Γ3𝑌 = ∫
𝑦
vect (E𝐵) 𝜕Y𝐴𝜕𝑦 𝑑𝑦,

Γ4𝑌 = ∫
𝑦
vect (E𝐵) 𝜕2Y𝐴𝜕𝑦2 𝑑𝑦.

(109)

In (109), the symbol vect( ) denotes a vector-form rep-
resentation of the components of a diagonal matrix, and the
symbol (.∗) denotes the elementwise matrix multiplication
defined in MATLAB� [23] as follows:

A. ∗ B = C, (110)

where the components of matrix C are defined by

𝐶𝑖𝑗 = 𝐴 𝑖𝑗 × 𝐵𝑖𝑗 (111)

3. Numerical Results and Discussion

To evaluate the performance of the present spectral element
model, a square plate is considered as a numerical example.
The plate is made of aluminum, and its material properties
are as follows: Young’s modulus E = 69GPa, Poisson’s ratio
] = 0.33, and mass density 𝜌 = 2700 kg/m3. The size of the
square plate is L = 1m, and its thickness is h = 0.001m.
For numerical studies, three types of boundary conditions
are considered: (1) Example 1: a square plate with simple-
simple-simple-simple (S-S-S-S) edge support, as shown in
Figure 6; (2) Example 2: a square plate with free-clamped-
free-clamped (F-C-F-C) edge support, as shown in Figure 7;
and (3) Example 3: a square plate with free-free-free-clamped
(F-F-F-C) edge support, as shown in Figure 8.

An evaluation of the present spectral element model
(denoted by “SEM”) was conducted by comparing the natural
frequencies obtained from the SEM with those obtained
by using exact theory, the standard finite element method
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Figure 6: Square plate with simple-simple-simple-simple (S-S-S-S) edge support, Example 1 (e: active nodes).
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Figure 7: Square plate with free-clamped-free-clamped (F-C-F-C) edge support, Example 2 (e: active nodes; O: fixed nodes).
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Figure 8: Square plate with free-free-free-clamped (F-F-F-C) edge support, Example 3 (e: active nodes; O: fixed nodes).

(FEM), and the commercial finite element analysis package
ANSYS [21]. For the FEM results, a four-node 12-DOF
conforming rectangular finite element model [22] is used.

It is well known that exact solutions are available in
analytical forms only for Levy-type plates. This is why we
considered S-S-S-S square plate (Example 1) as the first
example problem to evaluate the accuracy of the present
spectral element model. The exact natural frequencies of S-
S-S-S square plate are given by [24]

𝜔𝑚𝑛 = 𝜋2 (𝑚2 + 𝑛2)
𝐿2 √𝐷𝜌 (𝑚, 𝑛 = 1, 2, 3, . . .) , (112)

where 𝐿 is the dimension of the square plate and (𝑚, 𝑛)
indicates the mode number.

Table 1 compares the natural frequencies of the S-S-S-
S square plate (Example 1) obtained by exact theory, FEM
[22], and the present SEM. The SEM results obtained by
using a single finite element are found to be identical to the
exact solutions given by (112). The FEM results are found
to converge to the exact solutions or the SEM results as the
number of finite elements is increased tomore than 100×100.
FromTable 1, we can compare the range of natural frequencies
that can be calculatedwith reasonable accuracy by the present
SEM and FEMby comparison with exact solutions.Themesh
size of the FEM when 50 × 50 elements are used (see the 4th
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Table 1: Comparison of the natural frequencies (Hz) of a square plate with simple-simple-simple-simple (S-S-S-S) edge support (Example 1)
obtained by exact theory, FEM [22], and SEM.

Mode Exact
FEM SEM𝑛𝐸 = 10 × 10 50 × 50 100 × 100 1𝑛𝐷 = 283 7403 29803 800(1, 1) 4.857 4.831 4.856 4.856 4.857(1, 2) 12.14 12.04 12.14 12.14 12.14(2, 2) 19.43 19.03 19.41 19.42 19.43(1, 3) 24.28 24.07 24.27 24.28 24.28(2, 3) 31.57 30.72 31.53 31.56 31.57(1, 4) 41.28 40.97 41.26 41.28 41.28(3, 3) 43.71 41.87 43.62 43.70 43.71(5, 5) 121.4 115.7 121.1 121.3 121.4(10, 10) 485.7 N/A 480.4 485.3 485.7(20, 20) 1943 N/A 1879 1922 1949

Note: 𝑛𝐸: total number of finite elements; 𝑛𝐷: total number of degrees of freedom.

Table 2: Comparison of the natural frequencies (Hz) of a square plate with free-clamped-free-clamped (F-C-F-C) edge support obtained by
ANSYS [21], FEM [22], and SEM.

Mode
ANSYS FEM SEM𝑛𝐸 = 100 × 100 10 × 10 50 × 50 100 × 100 1𝑛𝐷 = 39996 297 7497 29997 792

1 5.441 5.454 5.442 5.441 5.441
2 6.449 6.453 6.449 6.448 6.448
3 10.66 10.58 10.65 10.66 10.66
4 15.02 15.09 15.02 15.02 15.02
5 16.45 16.48 16.44 16.44 16.44
6 19.57 19.36 19.56 19.57 19.57
7 21.43 21.19 21.42 21.43 21.43
8 29.50 29.69 29.50 29.50 29.50
9 30.47 29.78 30.44 30.47 30.47
10 31.06 31.20 31.06 31.06 31.06
Note: 𝑛𝐸: total number of finite elements; 𝑛𝐷: total number of degrees of freedom.

column of Table 1) is the same as the inner mesh size of the
SEM when a single element is used (see the last column of
Table 1). Table 1 shows that the natural frequencies by the FEM
are accurate only up to the mode (1, 2), whereas the natural
frequencies by the SEM are accurate up to the higher mode(10, 10). This clearly verifies the high accuracy of the present
SEM when compared with the FEM.

Table 2 compares the natural frequencies of the F-C-F-
C square plate (Example 2) obtained by using ANSYS [21],
the FEM [22], and the present SEM.The ANSYS results were
obtained by using a sufficient number of finite elements (100×100) and are very close to the SEM results obtained by using a
single finite element. The FEM results converged to the SEM
results as the number of finite elements is increased to more
than 100 × 100.

Table 3 compares the natural frequencies of the F-F-F-
C square plate (Example 3) obtained by ANSYS [21], FEM
[22], and the present SEM. Similar to Example 2, the ANSYS

results, which were obtained by using a sufficient number of
finite elements (100 × 100), are also found to be very close
to the SEM results obtained by using a single finite element.
Table 3 also shows that the FEM results converge to the SEM
results as the number of finite elements is increased to more
than 100 × 100. Figure 9 shows the lowest six mode shapes of
the F-F-F-C square plate (Example 3) obtained by the present
SEM.

Figure 10 compares the vibration responses of the S-S-S-
S square plate (Example 1) for the first 0.3 s obtained by the
modal analysis method (denoted as “MAM”), the FEM [22],
and the SEM. An impulse is applied to themiddle of the plate,
and the dynamic responses are predicted at 𝑥 = 0.1m and
0.2m on the 𝑥-axis. The analytical solution by the MAM is
given by [24]

𝑤 (𝑥, 𝑦, 𝑡) = ∞∑
𝑚=1

∞∑
𝑛=1

𝑊𝑚𝑛 (𝑥, 𝑦) 𝜂𝑚𝑛 (𝑡) , (113)
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Table 3: Comparison of the natural frequencies (Hz) of a square platewith free-free-free-clamped (F-F-F-C) edge support obtained byANSYS
[21], FEM [22], and SEM.

Modes
ANSYS FEM SEM𝑛𝐸 = 100 × 100 10 × 10 50 × 50 100 × 100 1𝑛𝐷 = 40400 330 7650 30300 1204

1 0.851 0.851 0.851 0.851 0.851
2 2.059 2.060 2.059 2.059 2.059
3 5.194 5.206 5.194 5.193 5.193
4 6.662 6.655 6.662 6.662 6.663
5 7.527 7.530 7.526 7.526 7.524
6 13.19 13.13 13.18 13.18 13.18
7 15.04 15.09 15.04 15.04 15.04
8 15.67 15.68 15.67 15.66 15.67
9 17.39 17.41 17.39 17.39 17.38
10 22.70 22.47 22.69 22.70 22.70
Note: 𝑛𝐸: total number of finite elements; 𝑛𝐷: total number of degrees of freedom.

0.851
(Hz)

6.663
(Hz)

2.059
(Hz)

7.524
(Hz)

5.193
(Hz)

13.18
(Hz)

Figure 9: Lowest six mode shapes of a square plate with free-free-free-clamped (F-F-F-C) edge support obtained by SEM, Example 3.

where

𝑊𝑚𝑛 (𝑥, 𝑦) = 2𝐿√𝜌 sin 𝑚𝜋𝑥𝐿 sin 𝑛𝜋𝑥𝐿
𝜂𝑚𝑛 (𝑡) = 2𝜔𝑚𝑛𝐿√𝜌 sin 𝑚𝜋2 sin 𝑛𝜋2 sin𝜔𝑚𝑛𝑡,

(114)

where 𝜔𝑚𝑛 are the natural frequencies provided by (112).
Figure 10 shows that the analytical solution by the MAM
is very close to that by the SEM and that the FEM results
approach the result by the SEM as the number of finite
elements is increased to more than 50 × 50.

Figure 11 compares the transient dynamic responses at 𝑥
= 0.1m on the 𝑥-axis obtained by the MAM [24], the FEM
[22], and the present SEM. Similar to Figure 10, the transient

dynamic response by the MAM is very close to the SEM
results, and the FEM results approach the SEM results as the
number of finite elements is increased tomore than 100×100.

The computation times (CPU times) for the SEM and
FEM are compared in Table 4. To measure the CPU times,
we used a standard desktop PC equipped with two sockets of
Intel Xeon E5-2630 v3 processors and 320GB of DDR4 RAM
memory clocked at 2133MHz. Table 4 shows that the CPU
time for the present SEM is much smaller than that required
to obtain the same accuracy level using the FEM.

Based on aforementioned observations, we conclude that
the present spectral element model has the capability to
provide extremely accurate natural frequencies and dynamic
responses very efficiently.
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Figure 10: Comparison of the impulse-induced vibration responses at 𝑥 = 0.1m and 0.2m on the 𝑥-axis of a simply supported square plate
predicted by the present SEM, the modal analysis method (MAM), and the FEM(n), where n is the number of finite elements used in the
analysis.

Time (𝜇s)

−10

0

10

D
isp

la
ce

m
en

t (
m

m
)

20

30

0 500 1000 1500 2000 2500 3000

Zoom in

MAM
FEM(

FEM(
SEM(1)

100 × 100)

10 × 10)

0 100 200 300

Zoom in

Time (𝜇s)

−6

−4

−2

0

2

D
isp

la
ce

m
en

t (
m

m
) 4

6

MAM
FEM(

FEM(
SEM(1)

100 × 100)

10 × 10)

Figure 11: Comparison of the impulse-induced transient dynamic responses at 𝑥 = 0.1m on the 𝑥-axis of a simply supported square plate
obtained by the present SEM, the modal analysis method (MAM), and the FEM(n), where n is the number of finite elements used in the
analysis.

Table 4: Comparison of the computation times (CPU times)
required to obtain the dynamic responses shown in Figure 11.

Methods SEM FEM𝑛𝐸 = 1 10 × 10 100 × 100
CPU time (hr) 1.363 0.002 42.57
Note: 𝑛𝐸: total number of finite elements used in the analysis.

4. Conclusion

We propose a new frequency domain spectral element model
for finite rectangular plate elements with arbitrary boundary
conditions. The new spectral element model is developed
by using the boundary splitting method and the spectral
super element method in combination. The high solution
accuracy and computational efficiency of the proposed new
spectral element model are validated by comparison with
exact theory, the standard FEM, and the ANSYS commercial

finite element analysis package. The conclusions drawn from
our results are as follows:

(1) The proposed new spectral element model can be
applied to any finite rectangular plate element with
arbitrary boundary conditions, whereas the spectral
element model introduced in the authors’ previous
work [5] can be applied only to finite rectangular
plate elements whose four corner nodes are fixed.
Furthermore, the proposed new spectral element
model can be assembled in the 𝑥- and 𝑦-directions
to represent a plate structure, whereas most existing
spectral element models are valid only for plates with
very specific boundary conditions such as Levy-type
plates, infinite or semi-infinite plates, and plates in
which assembly is allowed only in one direction.

(2) Through numerical studies, we show that the pro-
posed spectral element model provides highly accu-
rate solutions by using a relatively small number of
finite elements.
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(3) The proposed spectral element model is found to be
computationally efficient compared to the standard
FEM and ANSYS, because the proposed spectral
element model has nodal DOFs only on four edges
of a rectangular finite element to significantly reduce
the total number ofDOFs used in the spectral element
analysis.

Appendix

A. Constant Matrices Defined in (20)

ThematricesΛ𝐴1,Λ𝐴2,Λ𝐴3, andΛ𝐴4 are 2(𝑁𝑦+1)-by-2(𝑁𝑦+1) symmetric constant matrices defined by

Λ𝐴1 = 𝑙𝑦420Δ𝐴1,
Λ𝐴2 = 130𝑙𝑦Δ𝐴2,
Λ𝐴3 = 130𝑙𝑦Δ𝐴3,
Λ𝐴4 = 1𝑙3𝑦Δ𝐴4,

(A.1)

where

Δ𝐴𝑘 =

[[[[[[[[[[[[[[[[[
[

Δ
(0)
𝐴𝑘
Δ
(2)
𝐴𝑘

0 ⋅ ⋅ ⋅ 0 0 0

Δ
(2)𝑇
𝐴𝑘
Δ
(1)
𝐴𝑘
Δ
(2)
𝐴𝑘

⋅ ⋅ ⋅ 0 0 0

0 Δ(2)𝑇
𝐴𝑘
Δ
(1)
𝐴𝑘

⋅ ⋅ ⋅ 0 0 0
... ... ... d

... ... ...
0 0 0 ⋅ ⋅ ⋅ Δ(1)

𝐴𝑘
Δ
(2)
𝐴𝑘

0

0 0 0 ⋅ ⋅ ⋅ Δ(2)𝑇
𝐴𝑘
Δ
(1)
𝐴𝑘
Δ
(2)
𝐴𝑘

0 0 0 ⋅ ⋅ ⋅ 0 Δ(2)𝑇
𝐴𝑘
Δ
(3)
𝐴𝑘

]]]]]]]]]]]]]]]]]
]

, (A.2)

where 𝑘 = (1, 2, 3, 4) and
Δ
(0)
𝐴1 = [156 22𝑙𝑦

22𝑙𝑦 4𝑙2𝑦 ] ,

Δ
(0)
𝐴2 = [36 3𝑙𝑦

3𝑙𝑦 4𝑙2𝑦] ,

Δ
(0)
𝐴3 = −[36 33𝑙𝑦

3𝑙𝑦 4𝑙2𝑦 ] ,

Δ
(0)
𝐴4 = [12 6𝑙𝑦

6𝑙𝑦 4𝑙2𝑦]

Δ
(1)
𝐴1 = [312 0

0 8𝑙2𝑦] ,

Δ
(1)
𝐴2 = −Δ(1)𝐴3 = [72 0

0 8𝑙2𝑦] ,

Δ
(1)
𝐴4 = [24 0

0 8𝑙2𝑦]

Δ
(2)
𝐴1 = [ 54 −13𝑙𝑦

13𝑙𝑦 −3𝑙2𝑦 ] ,

Δ
(2)
𝐴2 = −Δ(2)𝐴3 = [ 36 3𝑙𝑦

−3𝑙𝑦 −𝑙2𝑦] ,

Δ
(2)
𝐴4 = [−12 6𝑙𝑦

−6𝑙𝑦 2𝑙2𝑦]

Δ
(3)
𝐴1 = [ 156 −22𝑙𝑦

−22𝑙𝑦 4𝑙2𝑦 ] ,

Δ
(3)
𝐴2 = [ 36 −3𝑙𝑦
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Δ
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3𝑙𝑦 −4𝑙2𝑦]

Δ
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(A.3)

B. Constant Matrices Defined in (59)

ThematricesΛ𝐵1,Λ𝐵2,Λ𝐵3, andΛ𝐵4 are 2(𝑁𝑥 −1)-by-2(𝑁𝑥 −1) symmetric matrices defined by

Λ𝐵1 = 𝑙𝑥420Δ𝐵1,
Λ𝐵2 = −Λ𝐵3 = 130𝑙𝑥Δ𝐵2,
Λ𝐵4 = 1𝑙3𝑥Δ𝐵3,

(B.1)

where

Δ𝐵𝑘 =

[[[[[[[[[[[[[
[

Δ
(1)
𝐵𝑘
Δ
(2)
𝐵𝑘

0 ⋅ ⋅ ⋅ 0 0

Δ
(2)𝑇
𝐵𝑘
Δ
(1)
𝐵𝑘
Δ
(2)
𝐵𝑘

⋅ ⋅ ⋅ 0 0

0 Δ(2)𝑇
𝐵𝑘
Δ
(1)
𝐵𝑘

⋅ ⋅ ⋅ 0 0
... ... ... d

... ...
0 0 0 ⋅ ⋅ ⋅ Δ(1)

𝐵𝑘
Δ
(2)
𝐵𝑘

0 0 0 ⋅ ⋅ ⋅ Δ(2)𝑇
𝐵𝑘
Δ
(1)
𝐵𝑘

]]]]]]]]]]]]]
]

, (B.2)
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where k = (1, 2, 3, 4) and

Δ
(1)
𝐵1 = [312 0

0 8𝑙2𝑥] ,

Δ
(1)
𝐵2 = [72 0

0 8𝑙2𝑥] ,

Δ
(1)
𝐵4 = [24 0

0 8𝑙2𝑥]

Δ
(2)
𝐵1 = [ 54 −13𝑙𝑥

13𝑙𝑥 −3𝑙2𝑥 ] ,

Δ
(2)
𝐵2 = [ 36 3𝑙𝑥

−3𝑙𝑥 −𝑙2𝑥] ,

Δ
(2)
𝐵4 = [−12 6𝑙𝑥

−6𝑙𝑥 2𝑙2𝑥] .

(B.3)
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