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Aileron actuators are pivotal components for aircraft flight control system. Thus, the fault diagnosis of aileron actuators is vital in
the enhancement of the reliability and fault tolerant capability. This paper presents an aileron actuator fault diagnosis approach
combining principal component analysis (PCA), grid search (GS), 10-fold cross validation (CV), and one-versus-one support
vector machine (SVM). This method is referred to as PGC-SVM and utilizes the direct drive valve input, force motor current, and
displacement feedback signal to realize fault detection and location. First, several common faults of aileron actuators, which include
force motor coil break, sensor coil break, cylinder leakage, and amplifier gain reduction, are extracted from the fault quadrantal
diagram; the corresponding fault mechanisms are analyzed. Second, the data feature extraction is performed with dimension
reduction using PCA. Finally, the GS and CV algorithms are employed to train a one-versus-one SVM for fault classification, thus
obtaining the optimalmodel parameters and assuring the generalization of the trained SVM, respectively. To verify the effectiveness
of the proposed approach, four types of faults are introduced into the simulation model established by AMESim and Simulink.The
results demonstrate its desirable diagnostic performance which outperforms that of the traditional SVM by comparison.

1. Introduction

The aileron actuator, which is used to control the aircraft’s
rolling movement, is a pivotal component for the flight con-
trol system of aircraft [1].The faults of aileron actuator, which
include force motor coil break, sensor coil break, actuator
cylinder leakage, and amplifier gain reduction, may cause a
series of consequences fromcontrol systemperformance deg-
radation to irretrievable economic loss and personal casual-
ties. Therefore, it is utmost important to research on the fault
detection of aileron actuators.

Many fault diagnosis approaches have been used and
proposed for classification of system health monitoring data,
such as decision tree induction, Bayesian-based classification,
neural networks, genetic algorithms, and fuzzy set classifiers
[2]. Zhao and Su [3] proposed a novel fault diagnosis
method for power transformer insulation based on a decision
tree. Ozev et al. [4] presented a parametric fault diagnosis
approach for analog/RF circuits based on a Bayesian frame-
work. Zang and Imregun [5] performed structural damage

detection via artificial neural networks. He et al. [6] used
immune genetic algorithm to build amathematical model for
fault diagnosis of a modern power system. Altunok et al. [7]
presented a damage pattern recognition approach based on
fuzzy set theory. However, most of thesemethods are compu-
tationally expensive and their classification accuracy is highly
depending on the sample size. Besides, with these methods,
some faults such as hydraulic pump fault and external leakage
fault can hardly be diagnosed.

Model-based fault detection anddiagnosis (FDD) scheme
is another important way for FDDof aileron actuators. Henry
et al. [8] built an aileron servo-loop model and presented an
𝐻
−

/𝐻
∞

-based solution fitted with the structure of AIRBUS
in-service monitoring systems. Vanek et al. [9] founded a
reliable linear parameter-varying (LPV) model of the aircraft
and performed two inherently different fault detection and
isolation designs for aileron and elevator. Gheorghe et al. [10]
presented a simple model-based approach for fault detection
in both runaway case and jamming case and yielded a more
than good performance under real flight test. Goupil and
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Figure 1: Closed-loop control system of aileron actuator.

Marcos [11] built a generic aircraft model and representative
fault scenarios and threw light upon both traditional and
advanced model-based FDD approaches. Efimov et al. [12]
presented a hybrid observer solution associated with the
in-service A380 decision-making rules to solve oscillatory
failure case in aircraft system.

Support vector machines (SVMs) which were originally
introduced by Vapnik have been successful for solving classi-
fication and function estimation problems. Characterized by
convex optimization problems (typically quadratic program-
ming), SVM models are capable of obtaining global mini-
mum, avoiding the trap of local minimum brought by the
greedy algorithm in other methods. And the ultimate deci-
sion function of SVM is determined by, instead of the whole
sample, a few support vectors so that computational complex-
ity is reduced and the curse of dimensionality is shunned.
Besides, SVM has the advantage of dealing with nonlinear
systems while aileron actuator happens to be a typical non-
linear system. SVM is a classical binary classifier and in order
to solve multiclassification problem, which is common in
fault diagnosis since there are generally more than two failure
modes, many SVM algorithms are proposed to construct
the multiclassification classifiers. The algorithms adopted in
actual application can be divided into two types [13]: (1)
the first type is one-time solution method; (2) combining
many binary SVMsubclassifiers to achievemulticlassification
SVM, the second type includes one-versus-rest, one-versus-
one, DDAGSVM, and binary-tree SVM.The research related
shows that one-versus-one SVM can be more suitable to
actual application because of its comparatively fast training
speed and good classification accuracy [13–16].

This paper adopts multiclassification algorithm of one-
versus-one SVM to design the classifier for the aileron actu-
ator fault diagnosis. In addition, the paper uses grid search
to optimize two important parameters 𝐶 and 𝛾 of one-
versus-one SVM and Principle Component Analysis (PCA)
to reduce dimension. In traditional SVM, the following pro-
cedures are usually used: (1) transform data to the format of
SVMpackage; (2) randomly try a few kernels and parameters;
(3) test the model. Due to the poor parameter selection
and original data complexity, the classification accuracy is
relatively unsatisfactory and the training speed is sometimes
intolerable. However, the biggest problem is that there will
be unclassifiable regions in traditional SVM.The one-versus-
one SVM manages to avoid this problem and, with the help

of PCA and grid search, the data complexity and parameter
selection problems are solved. Hence, compared to the
traditional SVM, the method proposed, through case study,
yields a higher classification accuracy and a faster training
speedwhile external leakage fault can be effectively diagnosed
by the method. Generally, the most important thing to do in
aeronautical engineering is to performan early fault detection
to switch as soon as possible on a redundant actuator. Once
properly trained on ground using historical data, the pro-
posed algorithm can achieve fault classification as fast as 0.1∼
1 s each time.With the development Flight Control Computer
(FCC), its constraints such as low computational load and
restricted symbol library will not be a problem for relatively
complex algorithms in the future. On that basis, high fault
classification accuracy will be a bonus since corresponding
maintenance preparation can be done before the landing of
the aircraft and thus efficiency is improved.

The remainder of the paper is organized as follows. In
Section 2, a joint simulation model of aileron actuator based
on AMESim and Simulink is set up. In Section 3, the faults
of aileron actuator are analyzed and injected into the model.
In Section 4, a detailed description of the proposed method
is presented. In Section 5, the effectiveness of the proposed
approach is demonstrated and the results of experimental
are presented and discussed. Finally, the conclusion of the
research will be given.

2. Setup of Aileron Actuator

The aileron actuator consists of a hydraulic pump, an electro-
hydraulic servo valve, a cylinder, a PID controller, two elec-
tronic amplifiers, and two displacement sensors. The control
loop includes two position feedbacks—direct drive valve
displacement and actuator cylinder displacement, as is shown
in Figure 1. In this figure, the signals used for fault detection
are marked with red ball.

The simulation model of the aileron actuator is estab-
lished with MATLAB Simulink and AMESim [17]. Simulink,
developed by MathWorks, is the visual simulation environ-
ment in MATLAB. Thanks to its convenient graphic model
modules such as linear/nonlinear modules, continuous/dis-
crete modules, and advanced control toolboxes, it is quite
fit for control loop modeling. However, it could not han-
dle hydraulic modeling lacking corresponding modules.
AMESim, developed by Imagine, is a hydraulic/mechanical
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Figure 2: Control part of aileron actuator in Simulink.
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Figure 3: Mechanical part of aileron actuator in AMESim.

system modeling, simulation, and analysis software. With
abundant parameterized hydraulic modules, the hydraulic
part of the aileron actuator can be easily founded. However,
there are relatively few control modules in AMESim. With
the combination of Simulink andAMESim, the advantages of
these two can be fully utilized and thereby a relatively good
model of aileron actuator is promising. The control part of

the aileron actuator established in Simulink environment is
shown in Figure 2; themechanical part of the aileron actuator
is shown in Figure 3. The mechanical part of the aileron
actuator established in AMESim is converted to a Simulink
𝑆-Function, and the 𝑆-Function can be imported to Simulink.
The physical parameters of the key components are described
in Tables 1–9.
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Table 1: Elementary hydraulic properties.

FP04-1: all real parameters Unit Value
Density kg/m3 850
Bulk modulus Bar 17000
Slope of bulk modulus [bar] in function of pressure [bar] (in percentage) Null 0
Absolute viscosity cP 51
Absolute viscosity of air/gas cP 0.02
Saturation pressure (for dissolved air/gas) Bar 0
Air/gas content % 0.1
Temperature degC 40
Temperature 𝑇1 degC 40
Kinematic viscosity at (𝑃atm, 𝑇1) cSt 56.47
Temperature 𝑇2 degC 100
Kinematic viscosity at (𝑃atm, 𝑇2) cSt 9.71
Coefficient for temperature viscosity characteristic Null 200
Polytropic index for air/gas/vapor content Null 1.4
(Advanced user) High saturated vapor pressure Bar −0.5
(Advanced user) Low saturated vapor pressure Bar −0.6
(Advanced user) Absolute viscosity of vapor cP 0.02
(Advanced user) Effective molecular mass of vapor Null 200
(Advanced user) Air/gas density at atmospheric pressure 0 degC kg/m3 1.2

Table 2: Parameters of pressure source.

PS00-1: all real parameters Unit Value
Time at which duty cycle starts s 0
Pressure at start of stage 1 Bar 210
Pressure at end of stage 1 Bar 210
Duration of stage 1 s 1e + 06

One leakage/viscous frictionmodule, which is utilized for
cylinder internal leakage fault injection [18], and two piston
modules constitute the simulation model of the hydraulic
cylinder of the aileron actuator.

In this paper, the aileron actuator works at normal tem-
perature, 40∘C, which is shown, as a part of elementary
hydraulic properties, in Table 1. And the kinematic viscosity
will decrease when temperature increases.

Under normal condition, the pressure of the pump as
shown in Table 2 is 210 bar.

Under normal condition, the pressure drops and the flow
rate at maximum valve opening as shown in Table 3 is 20 bar
and 150 L/min.

Under normal condition, the clearance diameter as
shown in Table 4 is set to 1𝑒−05mm. And it will be increased
in order to inject the internal leakage fault.

The chamber length at zero displacement, the rod diame-
ter, and the piston diameter as shown in Table 5 are 150mm,
30mm, and 90mm.

The gain for signal output as shown inTable 6 is set to be 1.
The mass and displacement module, whose parameters

are shown in Table 7, is adopted to confine the hydraulic
cylinder’s movement scope.

The spring damper, whose parameters are shown in
Table 8, is adopted for simulation of the dampof aerodynamic
loads.

In Table 9, list the parameters of flow control valve.

3. Fault Analysis and Injection

According to statistical maintenance data, main faults of an
aileron actuator include amplifier fault, sensor fault, leakage
fault, external leakage fault, pump fault, and valve fault, which
are listed in Table 10.

Failure mode, effects, and criticality analysis (FMECA) is
a bottom-up, inductive analytical method for fault analysis.
According to the FMECAs of hydraulic system made by Li
et al. [19] and Balaban et al. [20], these faults can be roughly
divided into four quadrants depending on their criticality
and frequency. As shown in Figure 4, the first-quadrant faults
are high-frequency and high-criticality so that normally they
have to be considered in design phase. The second-quadrant
faults, currently dealing with visual inspection, are high-fre-
quency but low-criticality. The third-quadrant faults are low-
frequency and low-criticality and thus are dismissed taking
cost into consideration. The fourth-quadrant faults, which
need constant monitoring, are low-frequency but high-criti-
cality.

To demonstrate the approach presented in this paper, four
faults including electronic faults and mechanical faults were
introduced into the simulation model and listed in Table 11.

The faults listed in Tables 10 and 11 were introduced into
the simulationmodel by changing several specific parameters
of the fault component, and these components were marked
with red box in Figures 2 and 3. The details of fault injection
were listed in Table 12. The parameter of force motor fault
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Table 3: Parameters of servo valve.

SV00-1: all real parameters Unit Value
Ports P to A flow rate at maximum valve opening L/min 150
Ports P to A corresponding pressure drop Bar 20
Ports P to A critical flow number (laminar → turbulent) Null 1000
Ports B to T flow rate at maximum valve opening L/min 150
Ports B to T corresponding pressure drop Bar 20
Ports B to T critical flow number (laminar → turbulent) Null 1000
Ports P to B flow rate at maximum valve opening L/min 150
Ports P to B corresponding pressure drop Bar 20
Ports P to B critical flow number (laminar → turbulent) Null 1000
Ports A to T flow rate at maximum valve opening L/min 150
Ports A to T corresponding pressure drop Bar 20
Ports A to T critical flow number (laminar → turbulent) Null 1000
Working density for pressure drop measurement kg/m3 850
Working kinematic viscosity for pressure drop measurement cSt 60
Valve rated current mA 1
Valve natural frequency Hz 500
Valve damping ratio Null 0.8
Deadband as fraction of spool travel Null 0

Table 4: Parameters of leakage and viscous friction module.

BAF11-1: all real parameters Unit Value
External piston diameter mm 90
Clearance on diameter mm 1e − 05
Length of contact mm 30

Table 5: Parameters of piston modules.

BAP11-1: all real parameters Unit Value
Piston diameter mm 90
Rod diameter mm 30
Chamber length at zero displacement mm 150

Table 6: Parameters of displacement sensor.

DT000-1: all real parameters Unit Value
Offset to be subtracted from displacement M 0
Gain for signal output 1/m 1

Table 7: Parameters of mass and displacement module.

MAS005-1: all real parameters Unit Value
Mass kg 10
Coefficient of viscous friction N/(m/s) 5000
Coefficient of windage N/(m/s)2 0
Coulomb friction force N 1000
Stiction force N 1000
Lower displacement limit m −0.15
Higher displacement limit m 0.15
Inclination (+90 port 1 lowest, −90 port 1 highest) Degree 0

Table 8: Parameters of spring damper.

SD000-1: all real parameters Unit Value
Spring rate N/m 1e + 06
Displacement giving zero spring force m 0
Damper rating N/(m/s) 10000

Table 9: Parameters of flow control valve.

OR0000: all real parameters Unit Value
Characteristic flow rate L/min 1
Corresponding pressure drop bar 1
Equivalent orifice diameter mm 1e − 05
Maximum flow coefficient null 0.7
Critical flow number (laminar → turbulent) Null 1000

is set to 0, indicating force motor coil break; the parameter
of sensor fault is set to 0, indicating sensor coil break; the
parameter of leakage fault is set to 5 instead of the default nor-
mal value 1𝑒 − 5, indicating 5.56% leakage since the diameter
of the valve is 90mm; the parameter of amplifier fault is set
to 15 instead of the default normal value 50, indicating 70%
signal transmitting loss. All the faults were introduced into
the simulation model in advance of stimulation.

4. Methodology

The proposed method in the paper consists of two major
parts, the model training using historical data and the real-
time diagnosis using real-time data. In model training part,
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Table 10: Fault analysis of aileron actuator.

Object Fault mode Fault cause Fault phenomenon

Direct driving
valve

Force motor coil shutoff Force motor coil break Force motor has no power output; the position of
valve element is constantly in the neutral position.

Blockage Oil pollution Null bias increases; frequency response decreases;
system is unstable.

Valve element stuck Oil pollution
Slide valve distortion

The direct driving valve output constant flow; the
system pressure decreases.

Valve leakage
Edge abrasion
Radial valve element
abrasion

Null bias increases; gain of system decreases;
system pressure decreases; flow noise increases.

Null bias out-of-tolerance Inaccurate zero setting Bias exists when DDV is at null position.
Displacement
sensor

Coil break Cable break Sensor has no output.
Constant bias Iron core of sensor loose Displacement bias.

Actuator
cylinder

External leakage Sealing washers fail
Hydraulic leakage

The speed of moving parts decreases; system
pressure decreases.

Internal leakage out-of- tolerance
Cylinder abrasion
Oil in high pressure area
flow into low pressure area

The speed of moving parts decreases; system
pressure decreases; vibration and noise appear.

Electronic
amplifier Gain reduction Internal faults of electronic

amplifier Magnification notably decreases.

Table 11: Fault mode and details.

Number Fault mode Fault type Details Quadrant
1 Force motor fault Mechanical fault Force motor coil break I
2 Sensor fault Electronic fault Sensor coil break I
3 Leakage fault Mechanical fault Actuator cylinder leakage run out of tolerance II
4 Amplifier fault Electronic fault Amplifier gain reduction IV

Fault
frequency

High

Low

Sensor bias

Oil filter block/break

SOV leakage
SOV diode break

Valve element stuck

Amplifier gain reduction

Sensor coil break

Force motor coil break

Minor Major
Fault

criticality

III

III IV

Actuator cylinder
leakage

Hydraulic cylinder
leakage

Figure 4: Aileron actuator fault quadrantal diagram.

three steps are conducted. Firstly, historical data which inc-
lude DDV input, force motor current, DDV displacement,
and actuator cylinder displacement are corrupted by white
noise with signal-noise ratio to be 20 dB in MATLAB. Then,
the corrupted data are truncated into a number of data
segments according to the data period. And the mean, root
mean square (RMS), peak-to-peak value (ppV), and kurtosis

of these data segments are calculated and normalized, respec-
tively. Hence 16-dimensional primitive inputs, shown in
Table 13, are obtained. It is worthmentioning that the dimen-
sions of the primitive inputs are not specially chosen since the
key fault information will be automatically extracted by PCA.
The flow chart of first step is shown in Figure 5. Secondly,
PCA is utilized to conduct dimension reduction and noise
reduction and thus the reduced inputs for the SVMmodel are
got. Thirdly, the reduced inputs are input to the SVM model
for parameter optimization using grid search. Once the opti-
mal parameters for the SVMmodel are searched, the trained
model is prepared for the real-time diagnosis. In Real-time
diagnosis, real-time data are acquired by sensors deployed on
the air craft. The same data preprocess as in model training
part is conducted and the classification result is returned by
the trained SVM model. Fault report would be generated
for the pilot or ground control station if the classification
results meet a certain fault criterion. The flow chart of the
method is shown in Figure 6.

4.1. PCA. Invented by Karl Pearson, PCA adopts orthogonal
mapping to map a set of possibly correlated variables to prin-
cipal components that are linearly uncorrelated. The greatest
variance lies on the first principal component, the second
greatest variance on the second principal component, and so
on.
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Table 12: Fault injection details.

Test number Fault mode Fault component
Changed

parameter for fault
injection (unit)

Parameter
(normal)

Parameter
(fault)

1 Force motor fault Force motor FMC gain 1 0
2 Sensor fault Displacement sensor Signal output (1/m) 1 0

3 Leakage fault Actuator cylinder
Flow control valve
equivalent orifice
diameter (mm)

1𝑒 − 5 5

4 Amplifier fault Electronic amplifier Gain 50 15

Corrupted by white
noise

Signal-noise ratio 20dB

DDV input
or

force motor current
or

DDV displacement
or

actuator displacement

Data segments

Mean
RMS
ppV

Kurtosis

Mean
RMS
ppV

Kurtosis

Mean
RMS
ppV

Kurtosis

Mean
RMS
ppV

Kurtosis

Mean
RMS
ppV

Kurtosis

Normalization

Primitive inputs

Figure 5: Flow chart of data preprocess.

Here is a data matrix, 𝑋, whose 𝑛 rows are 𝑛 different
repetition of the experiment and whose 𝑝 columns are 𝑝

different parameters: 𝑋 = (𝑋
(1)

, . . . , 𝑋
(𝑖)

, . . . , 𝑋
(𝑛)

)
𝑇, 𝑋
(𝑖)

=

(𝑥
1

, . . . , 𝑥
𝑝

)
(𝑖)

. The scores of new vector of principal com-
ponents t

(𝑖)

= (𝑡
1

, . . . , 𝑡
𝑝

)
(𝑖)

, 𝑖 = 1, 2, . . . , 𝑛, where 𝑖 is
ordinal number of the row, are given through a mathematical
transformation defined by 𝑝-dimensional vectors of weights
w
(𝑘)

= (𝑤
1

, . . . , 𝑤
𝑝

)
𝑇

(𝑘)
, 𝑘 = 1, 2, . . . , 𝑝, where 𝑘 is the ordinal

number of the principal component. The equation is shown
as below:

𝑡
𝑘(𝑖)

= X
(𝑖)

⋅ w
(𝑘)

, (1)

where 𝑡
𝑘(𝑖)

is the 𝑘th component of 𝑋
(𝑖)

, and thus the max-
imum possible variance from 𝑋 is inherited by t with each
vector of weight w constrained as a unit vector.

Thefirst component of a data vectorX
(𝑖)

can then be given
as a score 𝑡

1(𝑖)

= X
(𝑖)

⋅ w
(1)

in the transformed coordinates,
where w

(1)

has to satisfy

w
(1)

= argmax
‖w‖=1

{∑

𝑖

(𝑡
1

)
2

(𝑖)

} = argmax
‖w‖=1

{‖Xw‖
2

}

= argmax
‖w‖=1

{w𝑇X𝑇Xw} ,

(2)
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Table 13: Primitive inputs for SVMmodel.

Model input Features Object
Input 1

Mean

Direct drive valve input
Input 2 Force motor current
Input 3 Direct drive valve displacement
Input 4 Actuator cylinder displacement
Input 5

RMS

Direct drive valve input
Input 6 Force motor current
Input 7 Direct drive valve displacement
Input 8 Actuator cylinder displacement
Input 9

ppV

Direct drive valve input
Input 10 Force motor current
Input 11 Direct drive valve displacement
Input 12 Actuator cylinder displacement
Input 13

Kurtosis

Direct drive valve input
Input 14 Force motor current
Input 15 Direct drive valve displacement
Input 16 Actuator cylinder displacement

and the 𝑘th component can be found by subtracting the first
𝑘 − 1 principal components from X:

X̂
𝑘

= X −

𝑘−1

∑

𝑠=1

Xw
(𝑠)

w𝑇
(𝑠)

, (3)

and then finding the weight vector which extracts the maxi-
mum variance from this new data matrix

w
(𝑘)

= argmax
‖w‖=1

{

X̂
𝑘

w

2

} = argmax
‖w‖=1

{w𝑇X̂𝑇
𝑘

X̂𝑇
𝑘

w} , (4)

the 𝑘th component of a data vector X
(𝑖)

can then be given as
a score 𝑡

𝑘(𝑖)

= X
(𝑖)

⋅ w
(𝑘)

in the transformed coordinates.

The full principal component decomposition of X can
therefore be given as

T = XW, (5)

whereW is a 𝑝-by-𝑝matrix whose columns are the eigenvec-
tors of X𝑇X.

4.2. Grid Search and CV. Grid search executes exhaustive
searching through an artificially selected parameter set of cer-
tain learning algorithms. A typical soft-margin SVMclassifier
equipped with an RBF kernel has two parameters that need
to be tuned: a regularization constant 𝐶 and a kernel hyper
parameter 𝛾. The goal of grid search is to identify good pair
(𝐶, 𝛾) so that the classifier can accurately predict unknown
data. Exponentially growing sequences of 𝐶 and 𝛾 (e.g., 𝐶 =

2
−5

, 2
−3

, . . . , 2
15, 𝛾 = 2

−15

, 2
−13

, . . . , 2
3

) are recommended by
Hsu et al. [21].

In contrast with other optimization algorithms such as
genetic algorithm and particle swarm algorithm, the grid
search is straightforward but seems naive. However, there
are two motivations why I prefer the simple grid-search
approach. One is that, psychologically, we may not feel safe
to use methods which avoid doing an exhaustive parameter
search by approximations or heuristics. The other reason is
that the computational time required to find good parameters
by grid search is not muchmore than that by advancedmeth-
ods since there are only two parameters in this case. Further-
more, the grid search can be easily parallelized because each
(𝐶, 𝛾) is independent. Many of advanced methods are itera-
tive processes, for example, walking along a path, which can
be hard to parallelize.

And the performance of the pair is assessed by cross
validation on the training set. The training set is divided into
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V equal-sized subsets in V-fold cross validation. In proper
sequence, each subset is used for test while other V−1 subsets
are used for classifier training. Hence, V prediction results
are obtained and the percentage of data correctly classified
is the final cross validation accuracy. Rodriguez et al. [22]
conducted a sensitivity analysis for cross validation and found
10-fold cross validation is a practical method.

4.3. One-versus-One SVM. One-versus-one SVM is pro-
posed by Knerr et al. [23] that transform the 𝑛-classification
problem into 𝑛(𝑛 − 1)/2 two-classification problem. One-
versus-one SVM adopts the voting method to get, respec-
tively, the number of votes that the sample 𝑥 belongs to each
classification. In the end, 𝑥 belongs to the classification in
which the number of votes is the largest. Hsu and Lin [24]
compared one-versus-one SVM, one-versus-all SVM, and
DAG-SVM and the results showed that one-versus-one SVM
may be more suitable for practical use.

In order to construct the subclassifier for class 𝑖 and 𝑗, take
the sample of class 𝑖 and class 𝑗 from the original sample as the
training sample for two-classification problem; the optimal
problem is shown as follows:

min
𝜔

𝑖𝑗
,𝑏

𝑖𝑗
,𝜉

𝑖𝑗

1

2
(𝜔
𝑖𝑗

)
𝑇

𝜔
𝑖𝑗

+ 𝐶

𝑖

∑

𝑗=1

𝜉
𝑖𝑗

𝑖

(𝜔
𝑖𝑗

)
𝑇

. (6)

Corresponding decisive plane is

(𝜔
𝑖𝑗

)
𝑇

𝜙 (𝑥
𝑡

) + 𝑏
𝑖𝑗

≥ 1 − 𝜉
𝑖𝑗

𝑖

, if 𝑦
𝑡

= 𝑖,

(𝜔
𝑖𝑗

)
𝑇

𝜙 (𝑥
𝑡

) + 𝑏
𝑖𝑗

≤ −1 + 𝜉
𝑖𝑗

𝑖

, if 𝑦
𝑡

= 𝑗, 𝜉
𝑖𝑗

𝑖

≥ 0,

(7)

where 𝜔𝑖𝑗 is the coefficient of the hyperplane between classes
𝑖 and 𝑗, 𝑏𝑖𝑗 is the intercept of the hyperplane between classes 𝑖
and 𝑗,𝜙(𝑥

𝑡

) is themap of the sample𝑥
𝑡

in the high-dimension
space, 𝐶 is error penalty factor which reflects the valued
degree of sample outliers and adjusts the proportion between
the incredible range and empirical risk of SVM network
model, and 𝜉

𝑖𝑗

𝑖

is the fitting error variable.

4.4. Alarm Criterion. With the continuous development of
FCC, the limitation of FCC will be kept pushing. Once the
computational limits were broken and complex algorithm
could also achieve practically fast fault detection, then in
order to reduce false alarm rate to the greatest extent, three-
alarm criterion listed below can be attempted.

Criterion 1 (two consecutive classification results concur). If
two consecutive classification results concur, then the classi-
fication results are validated and the corresponding fault can
be reported.

Criterion 2 (two out of three consecutive classification results
concur). If the first two consecutive classification results dif-
fer and yet two out of three consecutive classification results
concur, then the classification results are validated and the
corresponding fault denoted by the two same classification
results can be reported.

Table 14: Contribution rate of principal component.

Principal
component Eigenvalue Contribution

rate
Cumulative

contribution rate
1 4.0114 83.44% 83.44%
2 0.1995 4.15% 87.59%
3 0.1339 2.79% 90.38%
4 0.1257 2.61% 92.99%
5 0.1048 2.18% 95.17%
6–16 <0.1 <2% >95.17%

Table 15: The cross validation rate and test rate with regard to dif-
ferent dimension of inputs.

Dimension CV rate Test rate
1 76.73% 76.75%
2 82.08% 83.05%
3 89.37% 89.87%
4 96.63% 96.50%
5 98.88% 99.01%

Criterion 3 (none of three consecutive classification results
concur). If three consecutive classification results all differ,
then the diagnosis fails and the diagnosis-fail report will be
submitted.

5. Fault Diagnosis and Result Analysis

In this simulation case, the amplitude of system input is
2mm, the frequency of system input is 0.5Hz, the sampling
rate is 200 S/s, and the sampling time is 20 s. Accordingly, the
features, which include mean, RMS, ppV, and kurtosis, are
extracted every 200 points. The data obtained are considered
as the historical data to train the model. Once trained, the
model can be used to detect faults every 200 points (less
than 1 s depending on the real-time sampling rate) in real-
time diagnosis. The extracted features at different working
conditions are listed in Figure 7, from which it is clear to see
that different working conditions result in different feature
amplitude so that fault classification using these features is
positively tenable.

The results of PCA for the 16-dimensional primitive
inputs are shown in Table 14 and Figure 8, from which it is
clear to see that the first three principal components occupy
up to 100% cumulative contribution rate and that the inputs
dimension may even be reduced to just 1-dimension depend-
ing on the ultimate test rate of the trained model.

As shown in Table 15, using just the first principal compo-
nent to train the model, the trained model’s cross validation
rate is 76.73% and test rate is 76.75%, which implies overre-
duction and information loss. Using first five principal com-
ponents to train the model, the trained model’s cross valida-
tion rate is increased up to 98.88% and test rate to 99.01%,
close to 1, which is more than good so the reduced inputs can
be determined as three-dimensional.
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Figure 7: Features extracted.

Table 16: Comparison between traditional SVM and PGC-SVM.

Method Time cost Classification accuracy
Parameters optimization Training

General SVM days even months 1.5884 s 81.87%
PGC-SVM 8h 20mins 0.8989 s 98.88%

There are two parameters, penalty factor 𝐶 and kernel
parameter 𝛾, to be optimized in one-versus-one SVM using
RBF kernel which is shown below:

𝐾(𝑥, 𝑥


) = exp (𝛾

𝑥 − 𝑥




2

) . (8)

The exponentially growing sequences of parameter pairs
(𝐶, 𝛾) are adopted in grid search and the contour of parameter
pairs is shown in Figure 9. The best pair (𝐶 = 4096, 𝛾 =

1), whose cross validation accuracy was up to 98.87%, was
obtained.

The final results, shown in Table 16, indicated that the
PGC-SVM proposed in the paper outperformed traditional
SVM in both time cost (Pentium(R) Dual-Core CPU T4500
@ 2.30GHz) and classification accuracy.

6. Conclusions

This paper presents an aileron actuator fault diagnosis
approach combining principal component analysis (PCA),
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Figure 8: Result of PCA.

grid search (GS), 10-fold cross validation (CV), and one-
versus-one support vector machine (SVM).The classification
accuracy is good enough for the diagnosis of the main faults
of aileron actuatorswhich include forcemotor coil break, sen-
sor coil break, actuator cylinder leakage, and amplifier gain
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Figure 9: Grid search for model with PCA.

reduction. Compared to the traditional SVM, the PGC-SVM
demands less time for both parameters optimization and
model training. The performance of the proposed algorithm
is fast enough for fault detection to switch as soon as possible
on a redundant actuator. The high classification accuracy of
actuator faults gives the algorithm a bonus that maintenance
efficiency can be promoted since maintenance preparation
can be done before the landing of aircraft. Hence, the
algorithm presented in the paper shows a great potential once
it passed the rigorous test of real FCC.

Obviously, the future work lies in the field validation of
the proposed algorithm. And in practice, the field data are
often severely corrupted by various data noise that may influ-
ence the performance of the algorithm so that noise immu-
nity of the proposed algorithm should also be considered.
Besides, the method still has some room for improvement—
the computational resource consumption can be compressed
further and detection delay can be minimized.
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