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Parameter estimation is an important problem in nonlinear system modeling and control. Through constructing an appropriate
fitness function, parameter estimation of system could be converted to a multidimensional parameter optimization problem. As a
novel swarm intelligence algorithm, chicken swarm optimization (CSO) has attracted much attention owing to its good global
convergence and robustness. In this paper, a method based on improved boundary chicken swarm optimization (IBCSO) is
proposed for parameter estimation of nonlinear systems, demonstrated and tested by Lorenz system and a coupling motor system.
Furthermore, we have analyzed the influence of time series on the estimation accuracy. Computer simulation results show it is
feasible and with desirable performance for parameter estimation of nonlinear systems.

1. Introduction

In the past decade, control and synchronization of non-
linear system in industry have attracted much attention.
Some effective methods for nonlinear system control and
synchronization are proposed and applied in engineering [1–
10]. However, most of these methods are based on hypothesis
that the parameters of system are known. They are generally
inapplicable if system parameters are unknown. However, in
practice, parameters of system are difficult to be known or
measured due to complexity and unobservability of system.
Therefore, parameter estimation is needed in modeling and
control of these nonlinear systems.

Dynamic system identification is an inverse problem
based on the input data and output data measured by
experiment. After a mathematical model is established to
reflect the essential characteristics of the system, parameters
need to be identified. In general, the dynamics of nonlinear

system in industry can be described by corresponding math-
ematical model. However, parameters need to be identified
according to practice data, which is generally difficult. In
the field of parameter estimation for nonlinear system, some
effective methods have been proposed during the past few
years. For instance, Gao and Hu [11] reported parameter
estimation of chaotic system by using discontinuous drive
signals. Blanchard et al. [12] proposed a parameter esti-
mation approach that uses polynomial chaos to propagate
uncertainties, estimating error covariance in the extended
Kalman filter framework. Liu et al. [13] presented a method
for estimating one-dimensional discrete chaotic systembased
on mean value function. In addition, some intelligent opti-
mization algorithms have been proposed for the parameter
identification, such as genetic algorithm (GA) [14], particle
swarm optimization (PSO) [15–18], differential evolution
(DE) [19], ant swarm optimization algorithm (AS) [20], bat
algorithm (BA) [21], cuckoo search optimization algorithm

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2016, Article ID 3795961, 11 pages
http://dx.doi.org/10.1155/2016/3795961



2 Discrete Dynamics in Nature and Society

(CS) [22], and teaching learning based optimization (TLBO)
[23]. However, research on the influence of time series on the
estimation accuracy of multidimensional nonlinear system is
rare.

Recently, a new bioinspired optimization algorithm,
namely, chicken swarm optimization (CSO) [24] is proposed,
and it mimics the hierarchy and behavior of chickens. The
algorithm proved to be very promising and could outperform
existing algorithms such as PSO, DE, and BA [24]. Due to
the excellent global convergence and robustness, CSO has
been widely applied in engineering [25, 26]. Similar to other
bioinspired optimization algorithms, the CSO algorithm can
be further improved to enhance convergence speed and
convergence precision. In this paper, parameter estimation
of nonlinear system is transformed into a multidimensional
parameter optimization problem by constructing an appro-
priate fitness function, and then amethod based on improved
boundary chicken swarm optimization (IBCSO) is proposed
for the multidimensional parameters optimization problem.
However, to our best knowledge, there is still not research
work applying chicken swarm optimization to solve param-
eter estimation problem of nonlinear system in previous
literatures. Furthermore, we have analyzed the influence of
time series on the estimation accuracy. We demonstrated
and tested the proposed method by Lorenz nonlinear system
[16] and coupling motor system [27]. Computer simulation
results show the proposed method is feasible with desirable
performance for parameter estimation of nonlinear systems.

This paper is organized as follows. The problem formu-
lation is briefly addressed in Section 2. In Section 3, we
proposed an improved boundary chicken swarm optimiza-
tion. In Section 4, we analyze the influence of time series
on the estimation accuracy. Computer simulation results are
presented in Section 5. Section 6 is the conclusion.

2. Problem Description

A general nonlinear system can be described by the following
equation:

�̇� = 𝐹 (𝑋,𝑋0, 𝜇0) . (1)

Here, X = (𝑋1, 𝑋2, . . . , 𝑋𝑛)𝑇 ∈ 𝑅𝑛 represents the state vector
of the original system. 𝑋0 is the initial value of the system.
𝜇0 = (𝜇10, 𝜇20, . . . , 𝜇𝑑0)𝑇 are the true value of the parameters
of the system.

Assume that the structure of system (1) is known; thus,
the estimated system can be written as

�̇� = 𝐹 (𝑌, 𝑌0, 𝜇) . (2)

Here, Y = (𝑌1, 𝑌2, . . . , 𝑌𝑛)𝑇 ∈ 𝑅𝑛 represents the state vector of
the estimated system. 𝑌0 is the initial value of the system, and
𝑌0 = 𝑋0. 𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑑)𝑇 are the estimated value of the
system parameters.

X0
Ẋ = F(X,X0, 0)

Ẏ = F(Y, Y0, )

Adjusting 

Algorithm

X1, . . . , Xt

Calculating J

Y1, . . . , Yt

Figure 1: The principle of parameter estimation for a nonlinear
system.

Based on hereinbefore analysis, the parameter estimation
problem can be transformed into the following optimization
problem:

𝐽 = 1
𝐿 ∗ 𝐿∑
𝑡=1

󵄩󵄩󵄩󵄩𝑋𝑡 − 𝑌𝑡󵄩󵄩󵄩󵄩 . (3)

Here, L denotes the time series. 𝑋𝑡 and 𝑌𝑡 coordinates
represent the states of the original system and the estimated
system at time t, respectively.

The parameter estimation of the nonlinear system can be
formulated into multidimensional parameters optimization
problem, where the decision vector is 𝜇 and the optimization
goal is to minimize J. The principle of parameter estimation
for nonlinear system fromanoptimizing perspective is shown
in Figure 1.

It is difficult to estimate parameters of nonlinear sys-
tem due to complexity and unobservability of system, so
it is challenging to approach satisfactory result by using
traditional optimization methods. Therefore, an improved
boundary chicken swarm optimization (IBCSO) is proposed
to develop an effective parameter estimation method for
nonlinear systems in this paper.

3. Improved Boundary Chicken
Swarm Optimization

3.1. Chicken Swarm Optimization. Chicken swarm optimiza-
tion (CSO) is a novel swarm intelligence algorithm, which
simulates the hierarchy and behavior of chickens. In this
algorithm, the chickens were divided into several groups,
each of which consists of one rooster and many hens and
chicks. Assume 𝑁𝑅, 𝑁𝐻, 𝑁𝐶, and 𝑁𝑀 denote the number
of the roosters, the hens, the chicks, and the mother hens,
respectively. The best 𝑁𝑅 chickens would be assumed to be
roosters, while the worst 𝑁𝐶 ones would be regarded as
chicks, and the rest are treated as hens. AllN virtual chickens,
depicted by their positions 𝑥𝑡𝑖,𝑗 (𝑖 ∈ [1,𝑁], 𝑗 ∈ [1, 𝐷]) at time
step t, search for food in a D-dimensional space. 𝑝𝑥𝑖,𝑗 (𝑖 ∈[1,𝑁], 𝑗 ∈ [1, 𝐷]) represent the optimal position of ith now
[24].

Different chickens follow different laws of motions. The
roosters with better fitness values have priority for food access
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Table 1: Estimation results for different time series L.

𝜃1 𝜃2 𝜃3 J

L = 10

Best result 10.000000 28.000000 2.666667 2.595820𝑒 − 14
Worst result 9.999944 27.999901 2.666661 1.832950𝑒 − 10
Average result 9.999991 27.999982 2.666666 2.115565𝑒 − 11

Standard deviation 1.274592𝑒 − 5 2.162007𝑒 − 5 1.324675𝑒 − 6 3.900723𝑒 − 11

L = 100

Best result 10.000000 27.999999 2.666666 2.370576𝑒 − 11
Worst result 9.999854 27.999859 2.666610 7.786259𝑒 − 8
Average result 9.999976 27.999970 2.666656 7.910590𝑒 − 9

Standard deviation 2.783841𝑒 − 5 3.589249𝑒 − 5 1.066062𝑒 − 5 1.362798𝑒 − 8

L = 200

Best result 9.999990 27.999997 2.666666 1.264891𝑒 − 9
Worst result 9.872441 27.934373 2.623538 0.054542
Average result 9.996019 27.998028 2.665363 0.001121

Standard deviation 0.018049 0.009255 0.006086 0.007710

L = 500

Best result 9.997352 27.998694 2.665944 1.850371𝑒 − 05
Worst result 9.138323 27.542075 2.353588 2.743463
Average result 9.712258 27.860182 2.586612 0.378123

Standard deviation 0.220905 0.104500 0.068190 0.587383

than the ones with worse fitness values, and location update
formula is as follows:

𝑥𝑡𝑖,𝑗 = 𝑝𝑥𝑖,𝑗 ∗ (1 + randn (0, 𝜎2)) , (4)

𝜎2 = {{{{{

1, if 𝑓𝑖 ≤ 𝑓𝑘,
exp(𝑓𝑘 − 𝑓𝑖󵄨󵄨󵄨󵄨𝑓𝑖󵄨󵄨󵄨󵄨 + 𝜖) , otherwise. (5)

Here, randn(0, 𝜎2) is a Gaussian distribution with mean 0
and standard deviation 𝜎2. 𝜖 is the smallest constant in the
computer. k is randomly selected from the roosters group, and𝑘 ̸= 𝑖. f is fitness value of corresponding x.

The hen’s location update formula is as follows:

𝑥𝑡𝑖,𝑗 = 𝑝𝑥𝑖,𝑗 + 𝑆1 ∗ rand ∗ (𝑝𝑥𝑟1,𝑗 − 𝑝𝑥𝑖,𝑗) + 𝑆2 ∗ rand

∗ (𝑝𝑥𝑟2,𝑗 − 𝑝𝑥𝑖,𝑗) ,
(6)

𝑆1 = exp( 𝑓𝑖 − 𝑓𝑟1
abs (𝑓𝑖) + 𝜖) , (7)

𝑆2 = exp (𝑓𝑟2 − 𝑓𝑖) . (8)

Here, rand is a uniform random distribution of [0, 1]. r1 is the
ith hen’s group-mate, r2 is randomly chosen from the swarm,
and 𝑟1 ̸= 𝑟2.

The chicks location update formula is as follows:

𝑥𝑡𝑖,𝑗 = 𝑝𝑥𝑖,𝑗 + 𝐹𝐿 ∗ (𝑝𝑥𝑚,𝑗 − 𝑝𝑥𝑖,𝑗) . (9)

Here, m is the ith chick’s mother. FL is a uniform random
distribution of [0, 2].
3.2. Improved Boundary Chicken Swarm Optimization. In
the standard chicken swarm optimization algorithm, when a

if 𝑥𝑡𝑖,𝑗 < 𝐿𝑏𝑗𝑥𝑡𝑖,𝑗 = 𝐿𝑏𝑗;
else if 𝑥𝑡𝑖,𝑗 > 𝑈𝑏𝑗𝑥𝑡𝑖,𝑗 = 𝑈𝑏𝑗;
end if

Algorithm 1: Cross-border processing function.

if 𝑥𝑡𝑖,𝑗 < 𝐿𝑏𝑗 ‖ 𝑥𝑡𝑖,𝑗 > 𝑈𝑏𝑗𝑤 = 0.4 ∗ |𝑝𝑥best,𝑗 − 𝑝𝑥𝑖,𝑗|;
temp = 𝑝𝑥best,𝑗 + 𝑤 ∗ randn(0, 1);
if 𝐿𝑏𝑗 ≤ temp ≤ 𝑈𝑏𝑗𝑥𝑡𝑖,𝑗 = temp;
else𝑥𝑡𝑖,𝑗 = 𝑝𝑥𝑖,𝑗;
end if

end if

Algorithm 2: Improved cross-border processing function.

component goes cross the border, it is then replaced with a
corresponding value of upper and lower boundary, and the
function of cross-border processing is shown in Algorithm 1.
In this paper, in order to improve the convergence speed and
convergence precision of the CSO, we proposed an improved
boundary chicken swarm optimization (IBCSO); when a
component goes cross the border, it is then replaced with
a random component between the similar component of
the individual’s best solution and the global best solution so
far, and the function of improved cross-border processing
is shown in Algorithm 2. Therefore, we get the process of
improved boundary chicken swarm optimization shown in
Algorithm 3.
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Initialize a population of N chickens and define the related parameters;
Evaluate the fitness values for each individual, set current each individual’s
position and fitness value, and set the current global best individual’s position
and fitness value;
for t = 1 toM
if t % G == 1
Rank the chickens’ fitness values and establish a hierarchal order in the swarm;
Divide the swarm into different groups, and determine the relationship
between the chicks and mother hens in a group;

end if
Rank the chickens’ fitness values;
for i = 1 to N
if i == rooster Update its location using equation (4); end if
if i == hen Update its location using equation (6); end if
if i == chick Update its location using equation (9); end if
Improved cross-border processing function;
Evaluate the fitness values for i;
If the new fitness value is better than the current individual’s fitness value,
update the individual’s position and fitness value;
If the new fitness value is better than the current global best individual’s
fitness value, then update the current global best individual’s position
and fitness value;
If a stopping criterion is met, then output the current global best
individual’s position and fitness value;

end for
end for

Algorithm 3: Improved boundary chicken swarm optimization.

Table 2: Statistical results from the IBCSO, CSO, PSO, GA, and TLBO.

Algorithms 𝜃1 𝜃2 𝜃3 J

IBCSO

Best result 10.000000 28.000000 2.666667 1.311671𝑒 − 14
Worst result 9.999950 27.999993 2.666662 9.852850𝑒 − 11
Average result 9.999994 27.999998 2.666666 6.801939𝑒 − 12

Standard deviation 7.903017𝑒 − 6 1.629054𝑒 − 6 7.196902𝑒 − 7 1.588317𝑒 − 11

CSO

Best result 9.999997 27.999997 2.666667 9.164669𝑒 − 11
Worst result 9.999600 27.999761 2.666606 1.395802𝑒 − 8
Average result 9.999875 27.999942 2.666653 2.939848𝑒 − 9

Standard deviation 9.412609𝑒 − 5 5.409299𝑒 − 5 1.249644𝑒 − 5 3.209969𝑒 − 9

PSO

Best result 9.999725 27.999973 2.666661 1.539265𝑒 − 8
Worst result 9 27.913029 2.660311 0.041631
Average result 9.798000 27.984713 2.664953 0.007229

Standard deviation 0.395116 0.026362 0.001990 0.014707

GA

Best result 9.987552 27.999037 2.665611 0.000427
Worst result 9.402872 27.743833 2.591086 0.018260
Average result 9.829154 27.911747 2.642162 0.006100

Standard deviation 0.145217 0.057552 0.018232 0.004753

TLBO

Best result 9.999999 28.000000 2.666666 6.278703𝑒 − 12
Worst result 9.999840 27.999899 2.666642 2.610822𝑒 − 9
Average result 9.999951 27.999976 2.666661 4.760403𝑒 − 10

Standard deviation 4.446187𝑒 − 05 1.892609𝑒 − 5 5.115130𝑒 − 06 5.633741𝑒 − 10
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Figure 2: The evolving process of the average values for different time series L. (a) 𝜃1; (b) 𝜃2; (c) 𝜃3; (d) 𝐽.

4. Estimation Accuracy Analysis for a
Nonlinear System Example

In this section, in order to discuss the influence of the time
series on the estimation accuracy, we consider a Lorenz
system.

�̇� = 𝜃1 ∗ (𝑌 − 𝑋) ,
�̇� = 𝜃2 ∗ 𝑋 − 𝑋 ∗ 𝑍 − 𝑌,
�̇� = 𝑋 ∗ 𝑌 − 𝜃3 ∗ 𝑍.

(10)

Here, X, Y, and Z are the state variables; 𝜃1 = 10, 𝜃2 = 28, and𝜃3 = 8/3 are the original parameters.
We initialize system (10) with a state 𝑥0, which is ran-

domly selected from the evolution process of the Lorenz
system. The searching ranges are set as follows: 9 < 𝜃1 <11, 20 < 𝜃2 < 30, and 2 < 𝜃3 < 3. The population size
and maximum cycle number are set to be N = 60, M =
30. The parameters of the IBCSO are configured as follows:𝑁𝑅 = 0.2𝑁, 𝑁𝐻 = 0.6𝑁, 𝑁𝐶 = 0.2𝑁, 𝑁𝑀 = 0.1𝑁,
G = 10, and 𝐹𝐿 ∈ [0.5, 0.9] [24]. Let time series L be

different values and run the program of improved boundary
chicken swarm optimization algorithm; we use the IBCSO
algorithm to estimate the unknown parameters. To make a
fair comparison, all cases are run 50 times, and the initial
population is set as uniform same value for all the time series
L at the same time run. Table 1 lists the estimation results for
different time series L. The evolving processes of the average
values for different time series L are shown in Figure 2.

Seen from Table 1, the estimation accuracy declines as
L increases. In addition, Figure 2 once again shows that
estimation accuracy declines as time series L increases. The
reason is that the critical sensitivity of the nonlinear system to
initial conditions and parameters results in that the objective
function becomes very complicated as the increment of L.

5. Parameters Estimation Results for
Nonlinear Systems and Discussions

5.1. Lorenz System

5.1.1. Offline Estimation. In this simulation, system (10) is
used to test the performance of the IBCSO compared with
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Figure 3: The evolving process of the average values obtained by IBCSO, CSO, PSO, GA, and TLBO in offline mode. (a) 𝜃1; (b) 𝜃2; (c) 𝜃3; (d)𝐽.

that of CSO, PSO, GA, and TLBO. We initialize the system
with a state 𝑥0, which is randomly selected from the evolution
process of the system. The searching ranges, population size,
maximum cycle number, and time series for IBCSO, CSO,
PSO, GA, and TLBO are all set as follows: 9 < 𝜃1 < 11,20 < 𝜃2 < 30, 2 < 𝜃3 < 3, N = 60, M = 30, and
L = 10. The parameters of the algorithms are configured as
follows. For IBCSO and CSO, 𝑁𝑅 = 0.2𝑁, 𝑁𝐻 = 0.6𝑁,𝑁𝐶 = 0.2𝑁, 𝑁𝑀 = 0.1𝑁, G = 2, and 𝐹𝐿 ∈ [0.5, 0.9] [24]. For
PSO and GA, all the parameters are the same as those used in
literature [16]. For TLBO, all the parameters are the same as
those used in literature [23]. To make a fair comparison, all
algorithms are run 50 times, and the initial population is set
as uniform same value for all the optimization algorithms at
the same time run. Table 2 lists results obtained by IBCSO,
CSO, PSO, GA, and TLBO. The evolving processes of the
average values obtained by IBCSO,CSO, PSO,GA, andTLBO
are shown in Figure 3. Moreover, to compare the iteration
number of the algorithms, 𝐽 ≤ 10−10 is considered as the
stopping criteria. The maximum cycle number is set to 1000,

and other conditions are the same as above. Table 3 lists the
results obtained by IBCSO, CSO, PSO, GA, and TLBO.

5.1.2. Online Estimation. In this simulation, we investigate
the capability of the algorithms in chasing the alternations in
the parameters of the system. In the first part, 𝜃1 = 10, 𝜃2 = 28,
and 𝜃3 = 8/3. In the second part, 𝜃1 moves down to 9.5 from
10, 𝜃2 moves down to 27 from 28, and 𝜃3 moves down to 2.6
from 8/3 in the 31st iteration. The maximum cycle number is
set to 60, and the others conditions in this part are the same as
the conditions indicated in the offline mode. The estimation
of online parameters of the system can be seen in Figure 4.

5.2. Coupling Motor System. In this section, in order to
further prove the performance of the proposed method, we
consider a coupling motor system [27].

�̇� = −𝜃2𝑥 + 𝑦 (𝑧 + 𝜃1) ,
�̇� = −𝜃2𝑦 + 𝑥 (𝑧 − 𝜃1) ,
�̇� = 𝜃3𝑧 − 𝑥𝑦.

(11)
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Figure 4:The evolving process of the average values obtained by IBCSO, CSO, PSO, GA, and TLBO in online mode. (a) 𝜃1; (b) 𝜃2; (c) 𝜃3; (d)𝐽.

Table 3: Iterations required by IBCSO, CSO, PSO, GA, and TLBO.

Algorithms Iterations

IBCSO
Best result 19
Worst result 29
Average result 24

PSO
Best result 183
Worst result 1000
Average result 481

TLBO
Best result 24
Worst result 32
Average result 29

CSO
Best result 27
Worst result 37
Average result 32

GA
Best result 1000
Worst result 1000
Average result 1000
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Figure 5: The evolving process of the average values obtained by IBCSO, CSO, PSO, GA, and TLBO in offline mode. (a) 𝜃1; (b) 𝜃2; (c) 𝜃3; (d)
J.

Here, 𝑥, 𝑦, and 𝑧 are the state variables; 𝜃1 = 3, 𝜃2 = 2, and 𝜃3 =
0.75 are the original parameters.

5.2.1. Offline Estimation. In this simulation, system (11) is
used to test the performance of the IBCSO compared with
that of CSO, PSO, GA, and TLBO. We initialize the system
with a state 𝑥0, which is randomly selected from the evolution
process of the system. The searching ranges, population size,
maximum cycle number, and time series for IBCSO, CSO,
PSO, GA, and TLBO are all set as follows: 2 < 𝜃1 < 4, 1 <𝜃2 < 3, 0 < 𝜃3 < 1, N = 60, M = 30, and L = 10.
The parameters of the algorithms are configured as follows.
For IBCSO and CSO, 𝑁𝑅 = 0.2𝑁, 𝑁𝐻 = 0.6𝑁, 𝑁𝐶 =0.2𝑁, 𝑁𝑀 = 0.1𝑁, G = 2, and 𝐹𝐿 ∈ [0.5, 0.9] [24]. For
PSO and GA, all the parameters are the same as those used
in literature [16]. For TLBO, all the parameters are the same
as those used in literature [23]. To make a fair comparison,
all algorithms are run 50 times, and the initial population is
set as uniform same value for all the optimization algorithms
at the same time run. Table 4 lists the results obtained by

IBCSO, CSO, PSO, GA, and TLBO. The evolving processes
of the average values obtained by IBCSO, CSO, PSO, GA,
and TLBO are shown in Figure 5. Moreover, to compare the
iteration number of the algorithms, 𝐽 ≤ 10−10 is considered
as the stopping criteria. The maximum cycle number is set to
1000, and other conditions are the same as above. Table 5 lists
the results obtained by IBCSO, CSO, PSO, GA, and TLBO.

5.2.2. Online Estimation. In this simulation, we investigate
the capability of the algorithms in chasing the alternations in
the parameters of the system. In the first part, 𝜃1 = 3, 𝜃2 = 2,
and 𝜃3 = 0.75. In the second part, 𝜃1 moves down to 2.5 from
3, 𝜃2 moves down to 2.5 from 2, and 𝜃3 moves down to 0.5
from 0.75 in the 31st iteration.Themaximum cycle number is
set to 60, and the other conditions in this part are the same as
the conditions indicated in the offline mode. The estimation
of online parameters of the system can be seen in Figure 6.

From the above two examples, the results presented
demonstrate that a good optimal performance can be
achieved by the proposed IBCSO algorithm. As shown in
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Figure 6:The evolving process of the average values obtained by IBCSO, CSO, PSO, GA, and TLBO in online mode. (a) 𝜃1; (b) 𝜃2; (c) 𝜃3; (d)𝐽.

Tables 2 and 4, the best, the average, the worst results and
standard deviation obtained by IBCSO are all better than
those obtained by CSO, PSO, GA, and TLBO, respectively. In
addition, Figures 3 and 5 once again show that IBCSO is of
better performance than CSO, PSO, GA, and TLBO in terms
of convergence speed and convergence precision. Moreover,
from Tables 3 and 5, it is confirmed that the IBCSO spends
less iterations to reach a predefined threshold compared with
CSO, PSO, GA, and TLBO. Furthermore, as shown in Figures
4 and 6, tracking the changes of the system parameters by the
IBCSO is well-performed.

6. Conclusion

In this paper, amethod based on improved boundary chicken
swarm optimization (IBCSO) algorithm is proposed to solve
the problem of parameter estimation for nonlinear systems.
Computer simulation based on two nonlinear systems exam-
ples and comparisonswith results obtained byCSO, PSO,GA,

and TLBO demonstrated the effectiveness of the proposed
method. Furthermore, we have analyzed the influence of time
series on the estimation accuracy. According to theoretical
analysis and computer simulation, we achieved the following
conclusions: shorter length of time series will benefit the
estimation accuracy because that longer time series will
make the objective function complicated. Therefore, it is
very important to select a suitable time series to reduce
the estimation bias of aim nonlinear systems. Although
it is demonstrated by two nonlinear systems examples in
this paper, the proposed method can also be used as a
promising tool for numerical optimization problems in
engineering.
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Table 4: Statistical results from the IBCSO, CSO, PSO, GA, and TLBO.

Algorithms 𝜃1 𝜃2 𝜃3 J

IBCSO

Best result 3.000000 2.000000 0.750000 1.515880𝑒 − 14
Worst result 2.999988 1.999984 0.749954 2.955687𝑒 − 11
Average result 2.999996 1.999994 0.749992 3.818720𝑒 − 12

Standard deviation 3.528640𝑒 − 6 4.394600𝑒 − 6 7.615395𝑒 − 7 4.837061𝑒 − 12

CSO

Best result 2.999998 2.000000 0.750000 1.089261𝑒 − 12
Worst result 2.999933 1.999945 0.749913 1.445733𝑒 − 10
Average result 2.999984 1.999982 0.749976 3.833475𝑒 − 11

Standard deviation 1.202585𝑒 − 5 1.400733𝑒 − 5 2.199347𝑒 − 5 3.785071𝑒 − 11

PSO

Best result 2.999971 1.999995 0.749776 1.415251𝑒 − 8
Worst result 2.981136 1.984547 0.500000 0.000812
Average result 2.997187 1.997420 0.628964 0.000389

Standard deviation 0.003126 0.002847 0.124597 0.000407

GA

Best result 2.998662 1.999492 0.746170 1.387276𝑒 − 05
Worst result 2.880957 1.883540 0.590241 0.000495
Average result 2.960151 1.962746 0.696085 0.000188

Standard deviation 0.030768 0.028565 0.038388 0.000136

TLBO

Best result 3.000000 2.000000 0.750000 6.668050𝑒 − 14
Worst result 2.999974 1.999982 0.749947 3.784144𝑒 − 11
Average result 2.999994 1.999995 0.749991 5.022291𝑒 − 12

Standard deviation 4.982352𝑒 − 06 4.686890𝑒 − 6 9.583826𝑒 − 06 6.587053𝑒 − 12

Table 5: Iterations required by IBCSO, CSO, PSO, GA, and TLBO.

Algorithms Iterations

IBCSO
Best result 22
Worst result 29
Average result 26

PSO
Best result 175
Worst result 1000
Average result 450

TLBO
Best result 23
Worst result 31
Average result 27

CSO
Best result 26
Worst result 34
Average result 30

GA
Best result 1000
Worst result 1000
Average result 1000
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