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Abstract
Background: Parkinson disease (PD) is a common adult-onset neurodegenerative disorder, and 
PD related neuronal injury is associated with oxidative stress and mitochondrial dysfunction. 
Allicin, the main biologically active compound derived from garlic, has been shown to exert 
various anti-oxidative and anti-apoptotic activities in in vitro and in vivo studies. Methods: 
The present study aimed to investigate the potential protective role of allicin in an in vitro PD 
model induced by 6-hydroxydopamine (6-OHDA) in PC12 cells. The protective effects were 
measured by cell viability, decreased lactate dehydrogenase (LDH) release and flow cytometry, 
and the anti-oxidative activity was determined by reactive oxygen species (ROS) generation, 
lipid peroxidation and the endogenous antioxidant enzyme activities. Mitochondrial function 
in PC12 cells was detected by mitochondrial membrane potential (MMP) collapse, cytochrome 
c release, mitochondrial ATP synthesis, and the mitochondrial Ca2+ buffering capacity. To 
investigate the potential mechanism, we also measured the expression of mitochondrial 
biogenesis factors, mitochondrial morphological dynamic changes, as well as detected 
mitochondrial dynamic proteins by western blot. Results: We found that allicin treatment 
significant increased cell viability, and decreased LDH release and apoptotic cell death 
after 6-OHDA exposure. Allicin also inhibited ROS generation, reduced lipid peroxidation 
and preserved the endogenous antioxidant enzyme activities. These protective effects 
were associated with suppressed mitochondrial dysfunction, as evidenced by decreased 
MMP collapse and cytochrome c release, preserved mitochondrial ATP synthesis, and the 
promotion of mitochondrial Ca2+ buffering capacity. In addition, allicin significantly enhanced 
mitochondrial biogenesis and prevented fragmentation of mitochondrial network after 
6-OHDA treatment. The results of western blot analysis showed that the 6-OHDA induced 
decrease in the expression of optic atrophy type 1 (Opa-1), increase in mitochondrial fission 1 
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(Fis-1) and dynamin-related protein 1 (Drp-1) were all partially revised by allicin. Conclusion: 
In summary, our data strongly suggested that allicin treatment can exert protective effects 
against PD related neuronal injury through inhibiting oxidative stress and mitochondrial 
dysfunction with dynamic changes.

Introduction

Parkinson’s disease (PD) is a common adult-onset neurodegenerative disorder that 
affects more than 3% people over the age of 65 [1]. There are an estimated 1 million PD 
patients in the United States and tens of millions PD patients worldwide [2]. It is clinically 
characterized by the tetrad of motor manifestations of tremor, rigidity, slowness of voluntary 
movements, and poor balance. Despite the findings of many promising neuroprotective 
agents for PD based on laboratory studies in the past decades, nearly all of them failed when 
tested in clinical trials.

The characteristic pathogenesis of PD is the loss of dopaminergic neurons in the substantia 
nigra pars compacta (SNc) and the loss of dopamine input to the striatum [3, 4]. Although the 
precise mechanisms underlying neuronal injury in PD are still not fully elucidated, convincing 
evidence from in vitro and in vivo PD models and the analysis of human genetics showed that 
genetic factors, infections, immunological abnormalities, aging, oxidative stress, and toxins 
(endogenous and exogenous) might all be involved in the development of PD [5-7]. Among 
these factors, oxidative stress and impaired mitochondrial function have been considered to 
play important roles in PD development [8]. Many pharmacological compounds targeting 
neuronal oxidative stress and mitochondrial dysfunction have been shown to be candidate 
agents for PD treatment. 

Garlic, also known as Allium sativum, has been used as a general food and a valuable 
folk medicine in oriental for a long time [9]. As a safe and economic option, garlic has 
been proposed as an effective herbal therapeutic, as it is a strong anti-oxidative and anti-
inflammatory agent having beneficial effects on immune system [10, 11]. Allicin (diallyl 
thiosulfinate) is a major component of garlic and a precursor of many secondary products 
formed in aged garlic and crushed garlic preparations. It is produced during the crushing of 
garlic cloves resulting in a chemical interaction between the non-protein amino acid alliin 
and the enzyme allicinase [12]. Allicin became an object of interest due to its potential to 
confer several health beneficial effects, including anti-inflammatory, anti-microbial, anti-
fungal, anti-parasitic, anti-hypertensive and anti-cancer activities. Previous published data 
indicated that allicin protects cells against oxidative stress by inducing the generation of 
antioxidant products, thereby reducing cytotoxic substances and scavenging free radicals 
[13]. Recently, researchers demonstrated that allicin exerts neuroprotective activities against 
traumatic or ischemic neuronal injury through regulating oxidative stress and apoptosis 
related cascades [14-16]. In this study, we aimed to examine the potential protective 
effects of allicin on 6-hydroxydopamine (6-OHDA) induced cytotoxicity in PC12 cells, a well 
characterized in vitro PD model, as well as the related underlying mechanisms with focus on 
oxidative stress and mitochondrial dysfunction.

Materials and Methods

Materials
Allicin (purity > 98%) was purchased from the National Institute for the Control of Pharmaceutical 

and Biological Products (Beijing, China). Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine 
serum were purchased from Gibco (Gaithersburg, MD, USA). The Cell Titer 96 Aqueous One Solution Cell 
Proliferation Assay kits were obtained from Promega (Madison, WI, USA). The LDH release kits were 
purchased from Jiancheng Bioengineering Institute (Nanjing, China). The CXP cell quest software was 
obtained from Beckman-Coulter (Madison, WI, USA). The MDA assay kits were purchased from Cayman 
Chemical Company (Ann Arbor, MI, USA). The bicinchoninic acid (BCA) protein assay kits were obtained 

 Copyright © 2015 S. Karger AG, Basel
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from Pierce (Rockford, IL, USA). The primary Opa-1, Mfn-1, Drp-1 and Fis-1 antibodies were obtained from 
Cell Signaling Technology (Rockford, IL, USA). The fluorescent dye dichlorofluorescein diacetate (DCF-
DA), rhodamine 123 (Rh123), mitochondrial tracker (Mitotracker), 6-OHDA and diamidino-phenyl-indole 
(DAPI) were purchased from Sigma (St. Louis, MO, USA).

Cell culture
PC12 cells were purchased from the Institute of Biochemistry and Cell Biology, SIBS, CAS. The cells 

were grown in DMEM plus 10% foetal bovine serum and 1% antibiotics (penicillin/streptomycin, Sigma) in 
a humidified atmosphere of 95% air and 5% CO2 at 37°C. The medium was changed every 2-3 days. 

Cell viability assay
Cell viability assay was performed by using a 3-(4, 5-dimethylthiazol-2-yl)-5-(3- carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium salt (MTS) that can be reduced to purple-coloured formazans by intact cells 
[17]. After various treatments, cell viability was assessed using the Cell Titer 96 Aqueous One Solution Cell 
Proliferation Assay, in accordance with the manufacturer’s instructions. The absorbance was measured with 
an automatic microplate reader (Safire) at a wavelength of 492 nm. Results are presented as a percentage 
of the control.

Lactate dehydrogenase (LDH) assay
Cytotoxicity was determined by LDH release using a diagnostic kit according following the 

manufacturer's instructions. Briefly, 50 µl of supernatant from each well was collected to assay LDH release. 
The samples were incubated with reduced form of nicotinamide-adenine dinucleotid (NADH) and pyruvate 
for 15 min at 37°C and the reaction was stopped by adding 0.4 M NaOH. The activity of LDH was calculated 
from the absorbance at 440 nm and background absorbance from culture medium that was not used for any 
cell cultures was subtracted from all absorbance measurements. LDH release was defined as ratio of LDH in 
the media to total LDH and normalized to the fold of control.

Flow cytometry
Cultured PC12 cells were harvested 24 h after exposure to 6-OHDA, washed with ice-cold Ca2+ free 

phosphate buffered saline (PBS), and re-suspended in binding buffer. Cell suspension was transferred into a 
tube and double-stained for 15 min with Alexa Fluor 488-conjugated Annexin V (AV) and propidium iodide 
(PI) at room temperature in the dark. After addition of 400 µl binding buffer, the stained cells were analyzed 
by an FC500 flow cytometer with the fluorescence emission at 530nm and >575 nm. The CXP cell quest 
software was used to count the number of cells in B2 (AV+/PI+, the late phase apoptotic cells) and B4 (AV+/
PI-, the early phase apoptotic cells), and analyzed the results.

Measurement of intracellular reactive oxygen species (ROS) production
Intracellular ROS levels were quantified using the H2DCF-DA probe (Sigma). Briefly, PC12 cells were 

incubated with H2DCF-DA (10 μM) for 1 h at 37°C in the dark, and then re-suspended in PBS. Intracellular 
ROS production was detected using the fluorescence intensity of H2DCF-DA in an Olympus BX60 microscope 
and fluorescence was read using an excitation wavelength of 480 nm and an emission wavelength of 530 
nm.

Measurement of oxidative products
The MDA content was measured by a commercial kit (Ann Arbor, MI, USA). Protein carbonyl content 

was assayed as we previously described [18] using a commercial ELISA kit (Cell Biolabs, USA). All standards 
and samples were run in duplicate.

Measurement of anti-oxidant enzyme activity
The enzyme activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), 

and glutathione S-transferase (GST) were measured according to the technical manual of the detection kits 
(Cayman Chemical, USA). Protein concentration was determined by using BCA protein kits. The enzyme 
activities were then normalized to the corresponding protein concentration for each group, and expressed 
as the percentage of control.
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Measurement of mitochondrial membrane potential (MMP)
MMP was measured using the fluorescent dye Rh123 as reported previously [19]. Rh123 was added 

to PC12 cells to achieve a final concentration of 10 μM for 30 min at 37°C after the cells had been treated 
and washed with PBS. The fluorescence was observed by using an Olympus BX60 microscope with the 
appropriate fluorescence filters (excitation wavelength of 480 nm and emission wavelength of 530 nm).

Quantification of cytochrome c release
Cytochrome c release into the cytoplasm was assessed after subcellular fraction preparation. PC12 

cells were washed with ice-cold PBS for three times and lysed with a lysis buffer containing protease 
inhibitors (50 mM Tris–HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.1 % SDS, 0.2 % deoxycholic acid and 
1:100 protease inhibitor cocktail). The cell lysate was centrifuged for 10 min at 750 g at 4°C, and the pellets 
containing the nuclei and unbroken cells were discarded. The supernatant was then centrifuged at 15 000 
g for 15 min. The resulting supernatant was removed and used as the cytosolic fraction. The pellet fraction 
containing mitochondria was further incubated with PBS containing 0.5% Trition X-100 for 10 min at 4°C. 
After centrifugation at 16 000 g for 10 min, the supernatant was collected as mitochondrial fraction. The 
levels of cytochrome c in cytosolic and mitochondrial fractions were measured using the Quantikine M 
Cytochrome C Immunoassay kit obtained from R&D Systems (Minneapolis, MN, USA). Data were expressed 
as ng/mg protein.

Measurement of ATP synthesis 
Isolated mitochondria were utilized to measure ATP synthesis with a luciferase/ luciferin-based 

system as described elsewhere [20]. Thirty μg of mitochondria- enriched pellets were re-suspended in 100 
μl of buffer A (150 mM KCl, 25 mM Tris-HCl, 2 mM potassium phosphate, 0.1 mM MgCl2, pH 7.4) with 0.1 % 
bovine serum albumin (BSA), 1 mM malate, 1 mM glutamate and buffer B (containing 0.8 mM luciferin and 
20 mg/ml luciferase in 0.5 M Tris-acetate pH 7.75). The reaction was initiated by addition of 0.1 mM ADP 
and monitored for 5 min using a microplate reader. 

Measurement of mitochondrial calcium buffering capacity
Mitochondrial calcium buffering capacity was estimated with the Ca2+ sensitive Calcium Green 5N 

fluorescent dye. Incubation medium was composed of 125 mM KCl, 20 mM HEPES (pH 7.2), 2 mM KH2PO4, 
2 mM MgCl2, 5 mM succinate, 1 μM rotenone and 0.2 mM ADP, with 1 μg/mL oligomycin and 1 μM Calcium 
Green 5N. Bolus additions of CaCl2 were made to the 60 μg of mitochondria in suspension in 30 nM 
increments and changes in Calcium Green 5N fluorescence were recorded at an emission of 532 nm.

Determination of mitochondrial DNA (mtDNA) content
Long fragment polymerase chain reaction (PCR) was used to quantify the relative abundance of intact 

mtDNA as previously described [21]. As an internal standard, rat DNA derived from normal rat spinal cord 
tissues was added to the PCR reaction mixture for each sample. The primers used for the amplification of 
14.3 kbp mitochondrial genomes for rat were: forward, 5’-ATATTTTCACTGCTGAGTCCCGTGG-3’; reverse, 
5’-AATTTCGGTTGGGGTGACCTCGGAG-3’. Band densitometry was semi- quantitatively analyzed using Image 
J software.

Real-time RT-PCR
Total RNA was isolated from the spinal cord tissues using Trizol according to the manufacturer’s 

instructions. A 2-3 μg template RNA was used to synthesize the first strand of cDNA using a reverse transcription 
kit purchased from Takara. Real-time PCR of cDNA was performed using the forward and reverse primer 
sequences: PGC-1: forward, 5’-GTGCAGCCAAGACTCTGTATGG-3’; reverse, 5’-GTCCAGGTCATTCACATCAA- 
GTTC-3’; NRF-1: forward, 5’-TTACTCTGCTGTGGCTGATGG-3’; reverse, 5’-CCTCTGATG- CTTGCGTCGTCT-3’; 
TFAM: forward, 5’-GAAAGCACAAATCAAGAGGAG-3’; reverse, 5’- CTGCTTTTCATCATGAGACAG-3’; GAPDH: 
forward, 5’-GGGTCAGAAGGATTCCTATG-3’; reverse, 5’-GGTCTCAAACATGATCTGGG-3’. Data were analyzed 
using a comparative critical threshold (Ct) method where the amount of target normalized to the amount of 
endogenous control and relative to the control samples.
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Immunocytochemistry (ICC)
After being fixed with 4% paraformaldehyde for 15 min at room temperature, PC12 cells were washed 

with NaCl/Pi permeabilized with 0.2% Triton X-100, and incubated with Mitotracker and DAPI for 30 min 
at 4°C. After mounting in fluoromount media (Sigma-Aldrich Co. LLC), the slides were visualized under a 
confocal microscope and the images were recorded. Images were captured with an Olympus FV10i Confocal 
Microscope (Tokyo, Japan). At least six images of each group were taken by an evaluator blinded to the 
experimental conditions.

Western blot analysis
Equivalent amounts of protein was loaded and separated by 10% SDS-PAGE gels, and transferred to 

polyvinylidene difluoride (PVDF) membranes. Membranes were blocked with 5% nonfat milk solution in 
tris-buffered saline with 0.1% Triton X-100 (TBST) for 1 h, and then incubated overnight at 4°C with the 
primary Opa-1 antibody (1:1000), mitofusin 1 (Mfn-1, 1:1000), Drp-1 (1:800), Fis-1 (1:700) or β-actin 
(1:600) antibody dilutions in TBST. After that the membranes were washed and incubated with secondary 
antibody for 1 h at room temperature. Immunoreactivity was detected with Super Signal West Pico 
Chemiluminescent Substrate (Thermo Scientific, Rockford, IL, USA). The Image J analysis software (Scion 
Corporation) was used to quantify the optical density of each band.

Statistical analysis
Statistical analysis was performed using SPSS 16.0, a statistical software package. Statistical evaluation 

of the data was performed by one-way analysis of variance (ANOVA) followed by Bonferroni’s multiple 
comparisons or unpaired t test (two groups). A value of p < 0.05 was considered statistically significant.

Results

Allicin attenuates 6-OHDA-induced cytotoxicity
To test the safety of allicin in our in vitro model, PC12 cells were treated with different 

concentrations of allicin, and the results showed that treatment with allicin less than 0.5 mM 
did not change the cell viability at 24 h in PC12 cells (Fig .1A). Allicin at 1 mM significantly 
decreased the cell viability of PC12 cells from 12 h to 72 h in a time-dependent manner, 
whereas 50 μM allicin had no toxic effects up to 72 h after treatment (Fig. 1B). Thus, allicin 
at 50 μM was used in the following experiments.

To examine the potential protective effects of allicin, PC12 cells were pretreated with 
50 μM allicin for 2 h, and exposed to 100 μM 6-OHDA for additional 24 h. The results showed 
that allicin obviously mitigated the 6-OHDA-induced decrease in cell viability (Fig. 1C) and 
increase in LDH release (Fig. 1D). In addition, we also detected the apoptotic cell death after 
6-OHDA exposure using flow cytometry (Fig. 1E), and the results showed that the number 
of AV+/PI- and AV+/PI+ cells in allicin pretreated group was lower than that in 6-OHDA 
treated group (Fig. 1F), indicating the anti-apoptotic activity of allicin in 6-OHDA induced 
cytotoxicity. 

Allicin reduces 6-OHDA-induced oxidative stress
We then sought to further examine the effect of allicin on oxidative stress, which was 

known to play important roles in 6-OHDA-induced cytotoxicity. As compared with 6-OHDA 
treated group, allicin pretreatment significantly decreased the intracellular ROS production 
at 24 h after injury (Fig. 2A), and an approximate 50% reduction in intracellular ROS 
generation was observed (Fig. 2B). Lipid peroxidation was estimated by determining the 
MDA formation, and the results showed that administration of allicin significantly alleviated 
MDA generation in PC12 cells (Fig. 2C). In addition, we also identified oxidative protein 
damage by the assessment of protein carbonyl. As shown in Fig .2D, protein carbonyl levels 
in PC12 cells subjected to 6-OHDA showed a 3-fold increase when compared with control 
cells, which was significantly alleviated by allicin treatment. To test the effects of allicin 
on the endogenous antioxidant system, the enzymatic activities of SOD, CAT, GST and GPx 
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were measured after 6-OHDA exposure in PC12 cells, and the results showed that 6-OHDA-
induced damage in antioxidant system were partially prevented by allicin (Fig. 2E). 

Allicin inhibits 6-OHDA-induced mitochondrial dysfunction
To determine if allicin has protective effect against mitochondrial dysfunction, the 

changes of MMP levels were measured using the fluorescent dye Rh123, and the results 
showed that 6-OHDA-induced loss of MMP was partially prevented by allicin treatment (Fig. 
3A). The release of cytochrome c into cytoplasm was detected by an immunoassay kit after 
subcellular fraction preparation, and a significant increase in mitochondrial cytochrome c 
levels (Fig. 3B) and decrease in cytoplasmic cytochrome c level (Fig. 3C) were observed in 
allicin-treated PC12 cells. In addition, allicin partly rescued the decrease in mitochondrial 
ATP production in isolated mitochondria from 6-OHDA treated PC12 cells (Fig. 3D). We 
also examined the calcium buffering capacity in isolated mitochondria following allicin and 
6-OHDA treatment. As shown in Fig. 3E, the peaks corresponded to sequential bolus additions 
of 30 nM of Ca2+, and the downward deflections reflected mitochondrial Ca2+ uptake. 6-OHDA 
exposure resulted in a ～60% reduction in Ca2+ buffering capacity in isolated mitochondria, 
whereas allicin pretreatment significantly preserved the Ca2+ buffering capacity compared to 
that in 6-OHDA treated PC12 cells (Fig. 3F).

Allicin preserves mitochondrial biogenesis after 6-OHDA treatment
Inhibition of mitochondrial dysfunction and preservation of mitochondrial ATP 

generation can be results of increased mitochondrial biogenesis, which is defined as the 
growth and division of mitochondria. Therefore, the long fragment PCR was used to quantify 
the total amount of intact mtDNA, a correlate of mitochondrial biogenesis (Fig. 4A). 6-OHDA 

Fig. 1. Allicin attenuates 6-OHDA-induced cytotoxicity. PC12 cells were treated with allicin at different con-
centrations, and the cell viability was detected at 24 h (A). PC12 cells were treated with 50 μM or 1mM alli-
cin, and the cell viability was detected at different time points (B). PC12 cells were treated with 50 μM allicin 
at 30 min before exposure to 100 μM 6-OHDA, and the cell viability (C) and LDH release (D) were measured 
at 24 h. The apoptotic cell death were detected by flow cytometry (E), and the apoptotic rate was calculated 
(F). The results of cell viability were presented as % of control (the O.D. value), and the results of LDH were 
presented as fold of control (the O.D. value). Data are shown as mean ± SEM of five experiments. *p < 0.05 vs. 
Control group. #p < 0.05 vs. 6-OHDA group.
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exposure resulted in a ～30% reduction in mtDNA content, which was obviously attenuated 
by allicin treatment. We also examined mRNA levels of three transcription factors considered 
essential for mitochondrial gene expression in mammals. We found that 6-OHDA exposure 
caused significant decreases in the expression levels of PGC-1, NRF-1 and TFAM. As shown 
in Fig. 4B, the 6-OHDA-induced inhibition of all these transcription factors were partially 
prevented by allicin treatment, indicating the preservation of mitochondrial biogenesis in 
PC12 cells after allicin treatment. 

Effects of allicin on mitochondrial morphological dynamic changes
Mitochondria are depicted as sausage-shaped organelles floating freely in the 

cytoplasm. We further investigated dynamic changes of mitochondrial morphology in PC12 
cells after 6-OHDA and allicin treatment. To confirm the morphological dynamic changes 
in mitochondria, PC12 cells were strained with a fluorescent dye, MitoTracker red. The 
mitochondrial morphology of PC12 cells in the normal state without any treatment primarily 
exhibited tubular networks. After incubation with 6-OHDA, the mitochondria were prevalent 
in shorter and smaller size, indicating mitochondrial fragmentation. As shown in Fig. 5, these 
mitochondrial morphological changes were attenuated by allicin pretreatment. 

Effects of allicin on the expression of mitochondrial dynamic proteins
Mitochondrial morphology is likely to be the result of the interplay between mitochondrial 

division and fusion. Mitochondrial fusion is controlled by Mfn-1 and Opa-1, whereas 
mitochondrial fission is controlled by Drp-1 and Fis-1. To investigate whether mitochondrial 
fission and fusion were affected by 6-OHDA and allicin treatment, the expression of these 
factors were analyzed by western blot (Fig. 6A). We found a significant decrease in Opa-1 
and Mfn-1 after 6-OHDA exposure, and allicin partially prevented the decrease of Opa-1, with 

Fig. 2. Allicin reduces 6-OHDA-induced oxidative stress. PC12 cells were treated with 50 μM allicin at 30 
min before exposure to 100 μM 6-OHDA. The intracellular ROS production was detected by DCF fluorescen-
ce staining (A), and calculated (B). The expression levels of MDA (C), protein carbonyl (D), and the activities 
of endogenous antioxidant enzymes (E) were measured. The results of ROS generation were presented as % 
of control (the DCF intensities), and the results of 2B to 2D were presented as % of control (the O.D. value). 
Data are shown as mean ± SEM of five experiments. *p < 0.05 vs. Control group. #p < 0.05 vs. 6-OHDA group. 
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no effect on Mfn-1. As for fission proteins, both Drp-1 and Fis-1 were increased by 6-OHDA 
exposure, whereas the expression of these two factors in allicin pretreated cells were lower 
than that in 6-OHDA treated cells.

Fig. 3. Allicin inhibits 6-OHDA-induced mitochondrial dysfunction. PC12 cells were treated with 50 μM alli-
cin at 30 min before exposure to 100 μM 6-OHDA. The MMP levels (A), mitochondrial cytochrome c (B) and 
cytosolic cytochrome c (C) were measured. After allicin and 6-OHDA treatment, mitochondria in each group 
were isolated and purified. Levels of ATP synthesis were determined (D). Relative Ca2+ uptake capacity of 
isolated mitochondria were determined (E) and calculated (F). The results of 3A and 3F were presented as 
% of control (the fluorescence intensities). Data are shown as mean ± SEM of five experiments. *p < 0.05 vs. 
Control group. #p < 0.05 vs. 6-OHDA group.

Fig. 4. Allicin preserves mitochondrial biogenesis after 6-OHDA treatment. PC12 cells were treated with 
50 μM allicin at 30 min before exposure to 100 μM 6-OHDA. The relative mitochondrial DNA content was 
quantified by long fragment PCR (A), and the mRNA expression of mitochondrial biogenesis factors was 
measured by real-time RT-PCR (B). Data are shown as mean ± SEM of five experiments. *p < 0.05 vs. Control 
group. #p < 0.05 vs. 6-OHDA group.
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Discussion

Four decades ago, 6-OHDA, also known as oxidopamine, was found to cause degeneration 
of dopaminergic neurons in the SNpc, accompanied by marked postural bias and turning 
asymmetry following systemic administration [22]. The neuronal damage induced by 
6-OHDA is mainly due to its accumulation in the mitochondria, and it has remained the most 
commonly used in vitro PD model to determine the possible neuroprotective compounds and 
investigate the underlying mechanism [23]. The present study evaluated the neuroprotective 
effect of allicin against 6-OHDA induced cytotoxicity in PC12 cells, an in vitro PD related 
neuronal injury model. This beneficial effect is thought to be brought about by the inhibition 
of oxidative stress, as the 6-OHDA induced increase of oxidative products (MDA and protein 
carbonyl) expression and decrease of antioxidant enzymes activity were both attenuated 
after allicin administration. In addition, allicin significantly prevented mitochondrial 

Fig. 5. Effects of allicin on mitochondrial morphological dynamic changes. PC12 cells were treated with 
50 μM allicin at 30 min before exposure to 100 μM 6-OHDA. The mitochondrial morphological dynamic 
changes were detected by Mitotracker staining (red), and DAPI staining (blue) was used to detect the nuclei. 
Scale bars: 10 μm. Data are representative of three similar experiments. 

Fig. 6. Effects of allicin on the expression of mitochondrial dynamic proteins. PC12 cells were treated with 
50 μM allicin at 30 min before exposure to 100 μM 6-OHDA. The expression of mitochondrial dynamic pro-
teins, including Opa-1, Mfn-1, Drp-1 and Fis-1, were detected by western blot (A), and calculated (B). The 
results of western blot analysis were presented as fold of control (the optical densities). Data are shown as 
mean ± SEM of five experiments. *p < 0.05 vs. Control group. #p < 0.05 vs. 6-OHDA group.
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dysfunction after 6-OHDA treatment through regulating mitochondrial biogenesis and 
mitochondrial dynamics. 

  Once inside cells, 6-OHDA undergoes auto-oxidation or metabolic degradation and 
produces hydrogen peroxide, superoxide, and hydroxyl radicals. This process causes lipid 
peroxidation, protein oxidation, and DNA oxidation and finally results in oxidative stress, 
mitochondrial dysfunction, and apoptosis [24]. In the present study, increased oxidative 
stress, as evidenced by ROS overproduction, significant increases in MDA and protein 
carbonyl levels, was found in PC12 cells after 6-OHDA treatment, which was consistent with 
the results of previous reports [25]. Oxidative stress related apoptotic cell death occurs when 
ROS production overwhelms the anti-oxidative ability or the endogenous anti-oxidative 
system was destroyed [26]. Our results showed that 6-OHDA induced apoptosis in PC12 
cells were accompanied by a striking decrease in the activities of SOD, CAT, GST and GPx. 
These endogenous antioxidants constitute the initial anti-oxidative defense systems, which 
will scavenge ROS induced by oxidative stress. Preservation of the endogenous antioxidants 
activity would play a protective role against apoptosis under oxidative stress conditions. 
Allicin is a physiologically active molecule with many potential health benefits. Previous 
studies showed that allicin could effectively reduce intracellular ROS of heart by 50% in 
aortic-banded mice with cardiac hypertrophy, and inhibit ROS generation in cardiac myocytes 
by 60% at 10 μM in an in vitro manner [27]. Allicin helps to fight against oxidative stress 
by directly raising reduced glutathione (GSH) content in the cell and indirectly increasing 
GSH by allicin derivatives, such as S-allylmercaptoglutathione and S-allylmercaptocysteine 
[13, 28]. In consistent with these previous findings, our present data strongly support that 
allicin can protect against PD related neuronal injury by enhancing the antioxidant status via 
lowering the level of ROS and stimulating the production of anti-oxidative enzymes. 

Mitochondria have long attracted the attention of biomedical researchers because of their 
role in human diseases, and pathology, toxicology and genetics suggest that mitochondrial 
dysfunction is an etiological factor in PD [29, 30]. Mitochondria are one of the major sources 
of ROS, and are highly susceptible to oxidative damage because ROS damage mitochondrial 
enzymes directly, cause mtDNA mutation and alter mitochondrial membrane permeability. 
The proteins that are reported to be related to PD, including PTEN-induced putative kinase 
1 (PINK1), DJ-1, α-synuclein, leucine-rich repeat kinase 2 (LRRK2) and parkin, are either 
mitochondrial proteins or are associated with mitochondria [31]. Furthermore, several 
particular mtDNA polymorphisms and haplotypes have been reported to be associated with 
the risk of PD, and mutations in mtDNA or in the nuclear-encoded mtDNA polymerase-G 
(POLG) cause PD-like symptoms [32]. The involvement of mitochondrial dysfunction in the 
process of PD related neuronal death is also supported by epidemiological studies which 
showed the role of several neurotoxins, some of which are proved to be mitochondria 
targeted agents, in the occurrence of PD [33, 34]. In the present study, collapse of MMP, 
release of cytochrome c, decrease of mitochondrial ATP generation, as well as damaged 
mitochondrial Ca2+ buffering capacity were observed after 6-OHDA exposure in PC12 cells, 
which was consistent with previous studies [35]. 

The mitochondrion is a key regulator of the metabolic activity of the cell, and it is 
reckoned that higher mitochondrial copy number (or higher mitochondrial mass) is 
protective for cells [36]. Increased mitochondrial ATP production, the most important 
marker to assess preservation of mitochondrial function, can be the result of increased 
mitochondrial biogenesis. Mitochondrial biogenesis is defined as the growth and division 
of mitochondria, and can be activated by numerous different signals during times of 
cellular stress or in response to environmental stimuli [37]. When the stimuli exceed the 
tolerable threshold, the mitochondrial mass will be damaged and elicit apoptotic cell death 
by inducing a variety of mitochondrial cascades, including changes in electron transport, 
collapse of MMP, altered cellular oxidation-reduction potential, release of caspase family 
proteins, and participation of pro- and anti-apoptotic B-cell non-Hodgkin lymphoma-2 
(Bcl-2) family proteins [38, 39]. The activation of specific transcription factors encoded 
by nuclear genes, such as proliferator-activated receptor gamma coactivator 1 (PGC-1), 
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nuclear respiratory factors 1 (NRF-1) and mitochondrial transcription factor A (TFAM), 
are demonstrated to control biogenesis and division of mitochondria under pathological 
conditions. In the present study, 24 h exposure of 6-OHDA induced a significant decrease in 
mtDNA and these three transcriptional factors, whereas all these changes were attenuated 
by allicin, indicating that preservation of mitochondrial biogenesis might be account for the 
allicin-induced protection against oxidative stress and mitochondrial dysfunction in our in 
vitro model.

One of the most important means that might adapt mitochondrial function to various 
conditions of living cells is dynamic structural changes of the mitochondrial network, 
including continuous remodeling by fusion and fission events [40]. These dynamic processes 
are of particular importance in neuronal cells because of their post-mitotic state and long 
processes with higher energy requirements, and dis-regulation in both fission and fusion 
proteins have been associated with central nervous system diseases [41, 42]. In vertebrates, 
high-molecular weight GTPases, such as Mfn-1, Opa-1, Drp-1 and Fis-1, are key components 
involved in regulating the mitochondrial morphologic dynamics, and these factors have 
been linked to the cellular death program of apoptosis through the caspase associated 
pathway [43]. Inhibition of mitochondrial fragmentation by activation of Mfn-1 or Opa-1 
was shown to antagonize apoptosis progression, whereas the pharmacologic inhibitor of 
Drp-1, mdivi-1, inhibited tBid-dependent cytochrome c release from isolated mitochondria 
[44]. In the present study, individual mitochondria disclosed a fragmented structure and an 
abnormal distribution accumulating around the peri-nuclear area were more prominent in 
6-OHDA treated PC12 cells compared with those cells with allicin treatment. In addition, the 
6-OHDA induced increase in Drp-1 and Fis-1, as well as decrease in Opa-1 were all partially 
prevented by allicin, indicating that allicin induced protection against 6-OHDA induced 
toxicity is mediated by preservation of the balance between mitochondrial fission and fusion. 

There are some limitations to our study. First, undifferentiated PC12 cells were used 
in the present study and 6-OHDA-induced cytotoxicity was performed to mimic PD related 
neuronal injury in vitro. The PC12 cell line, which was derived from a rat pheochromocytoma, 
maintains a differentiated neuroendocrine phenotype and has been widely used as a 
convenient model system for a wide variety of cell biological studies [45]. However, 
without differentiation upon exposure to nerve growth factor (NGF), it is less relevant to 
the study of neuronal communication and neuronal injury mechanisms [46, 47]. Thus, it 
needs to be further investigated that whether the conclusion in the present study can also 
apply to differentiated PC12 cells or primary cultured neurons. In addition, preservation 
of mitochondrial biogenesis and differently regulated mitochondrial dynamics were 
observed in our in vitro model after allicin treatment, which was accompanied by enhanced 
mitochondrial function, but whether allicin-induced regulation of mitochondrial dynamic 
proteins accounts for its protective effects, and the relationship between allicin-induced 
modulation of mitochondrial dynamic proteins and endogenous antioxidant systems are not 
fully determined. Previous studies showed that allicin protects cells against oxidative stress 
by inducing the generation of antioxidant products, thereby reducing cytotoxic substances 
and scavenging various free radicals [13], and the potential underlying mechanisms might 
be associated with several downstream signaling cascades, such as NF-E2-related factor-2 
(Nrf-2) pathway [48-50]. Thus, the modulation of mitochondrial dynamics and its interaction 
with endogenous antioxidant systems, as well as the potential involved signaling cascades, 
need more extensive study in allicin-treated cells. 

Conclusions

In conclusion, the findings from the present study indicate that allicin, an active 
substance of garlic, might be an anti-oxidative agent to protect against PD-related neuronal 
injury by affecting endogenous antioxidant system and mitochondrial function. These novel 
protective effects elicited by allicin were accompanied by the balance of mitochondrial 
fission/fusion and preservation of mitochondrial biogenesis. These data strongly support 
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the hypothesis that allicin might represent an ideal therapeutic candidate for PD as well as 
other neurological diseases where oxidative stress and endogenous antioxidant system play 
a major role.
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