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Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread
applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on
empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The
nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern
kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation
for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an
optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed.
The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The
proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but
is generic for this class of bioprocesses.The presented case study shows that the proposed parameter estimation technique provides
a more accurate simulation of the experimentally observed process behaviour than reported in previous studies.

1. Introduction

As the market demand for monoclonal antibodies is increas-
ing, there is significant interest in developing proper models
for mammalian cell culture processes, due to the fact that
these are commonly used as production platforms for mAbs,
which are the fastest growing segment of the biopharmaceuti-
cal industry [1–6]. For mAb production, various mammalian
cell lines are usually exploited, such as murine myeloma
(NS0), murine hybridomas, Chinese hamster ovary (CHO),
and PER.C6 human cells. The selection of expression system
is determined by its capability to deliver high productivity
with suitable product quality attributes [7]. Medical applica-
tions for mAbs are quite extensive: diagnostic tools, therapies
for various cancers, rheumatoid arthritis, cardiovascular
conditions, and so on [4, 6–9].

Typically, the industrial operation for mammalian cell
culture mAb platforms relies on empirical knowledge [2, 3,
10] and the improvements are achieved by using trial-and-
error experiments and precedent practices. Consequently,

process improvements have generally been time-consuming
and costly, with a high degree of specificity. To assist these
laboratory experiments and, in practical terms, to achieve
high productivity and better quality products, it is of obvious
interest to develop model-based applications and to achieve
accurate dynamical models. However, the specific character-
istics of these processes, such as complexity, nonlinearity, and
absence of cheap and reliable instrumentation, require an
enhanced modelling effort and advanced kinetic parameter
estimation strategies.

In order to surmount the above-mentioned limitations of
trial-and-error process development, the so-called predictive
models for mammalian cell culture processes are quite
attractive [4]. Generically speaking, cell culture modelling
techniques are classified based upon whether a dynamic or
a pseudo-steady-state interpretation of cellular metabolism
is used [2, 4, 11, 12]. Being well-known in control systems,
the pseudo-steady-state approach has a biochemical inter-
pretation in cell culture processes. It is assumed that all
metabolites within the cell culture process are accumulated
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or depleted at a rate considerably faster than the overall cell
growth rate. Consequently, the concentration of each system
metabolite and the rate of each metabolic reaction are all
considered time-invariant [4]. This approach is simple and
the obtained models are linear systems, which can be easily
computed regardless of the model size (complexity). The
information gathered in such pseudo-steady-state models
concerns the metabolic configuration of cell culture. How-
ever, mammalian cells have a complicated internal structure,
with several interconnected biochemical processes and with
phenomena onmultiple time scales.Thus, the pseudo-steady-
state models cannot describe in detail the changes that occur
over a continuous time-horizon (intracellular concentration
profiles, changes in reaction rate due to gene regulation, etc.).
Therefore, the dynamic modelling is more appropriate for
these complex (and dynamical) processes. In this case, a
system of differential equations will describe the bioprocess
model. Inmany cases, the difficulty that arises is related to the
computational problems, especially for large and stiff systems.
No matter what modelling method is chosen, the complexity
together with the nonlinearity of these processes is a limiting
factor in model building.

In this paper, which is an extended work of [13, 14], an
essential problem in dynamic modelling of cell culture sys-
tems is analysed, the so-called parameter estimation. The
model of such bioprocesses can be obtained by using dynamic
classical modelling (based on mass balance) or alternative
approaches such as pseudo-bond-graph method (a version
of bond graph method introduced by Paynter in 1961 and
further developed in [15–26]). However, regardless of the
modelling method, in order to obtain a dynamical model
useful for process development (including the design of
some control strategies), the nonmeasurable parameters of
the mammalian cell culture system must to be estimated.
However, any parameter in a cell culturemodel could [4] have
physical meaning and be measurable by experiment, have
clear physical meaning but be experimentally inaccessible,
or have no clear physical meaning (e.g., be purely mathe-
matical in nature). Typically, optimization-based techniques
are used for the estimation of nonmeasurable parameters
of such biological processes [4, 27, 28]. For example, a
quadratic programming technique was used by Gao et al.
[27], and a simple discretization scheme combined with
a filtered interior point primal-dual line-search algorithm
[29] was proposed by Baughman et al. [4]. Other nonlinear
optimization-based techniques are the genetic algorithms,
orthogonal collocation, and particle swarm optimization,
PSO, which have been applied mostly on chemical processes
(see, e.g., [30, 31]) or in gene regulatory networks modelling
[32, 33]. In order to obtain accurate solutions in the case
of the mAb production process, in this paper, a particle
swarm-based multistep nonlinear optimization algorithm is
proposed [34–36].

Concerning the applications of PSO for identification of
biological systems, some results were reported for the process
of glycerol fermentation by Klebsiella pneumoniae in batch,
fed-batch, and continuous cultures [37–41]. The estimation
approach used in these works is in most cases a parallel
PSO technique, which requires a considerable computational

effort. Another trend is related to an indirect use of PSO
technique for estimation, more precisely for the training of
a neural network, which models the bioprocess [42].

During the last decade, PSO algorithms have gained
much attention and wide applications in different fields due
to their effectiveness in performing difficult optimization
issues, as well as simplicity of implementation and ability
of fast converge to a reasonably good solution. PSO is a
population-based heuristic global optimization technique,
first introduced by Kennedy and Eberhart [43] and referred
to as a swarm-intelligence technique. It is motivated from
the simulation of social behaviour of animals such as bird
flocking, fish schooling, and swarm. In this algorithm, the
population is called a swarm and the trajectory of each parti-
cle in the search space is controlled through the medium of a
term called “velocity,” according to its own flying experience
and swarm experience in the search space.

This paper proposes a multistep PSO version that uses
time-varying acceleration coefficients [35], which is devel-
oped to solve the nonconvex optimization problem, ensuring
fast convergence and very good performance. Finally, the
obtained solution is an optimal set of the kinetic parameter
values.

The proposed nonlinear modelling and estimation
approaches are analyzed in this work by using a particular
model of mammalian cell culture, as a case study, but they are
generic for this class of bioprocesses. A previously published
dynamic model of mammalian cell culture by Gao et al. in
[27] is used as a case study. More precisely, a process of an
Immunoglobulin G-secreting murine hybridoma cultured in
a growth medium supplemented with proline, L-asparagine,
and L-aspartic acid is taken into consideration.

2. Methods

2.1. MAb Synthesis by Mammalian Cell Culture: Process
Description and Modelling Issues. In order to model the
mammalian cell culture processes, first it is necessary to ana-
lyze the reconstruction of metabolic activities. However, the
reconstruction generally includes only a subset of the highly
activemetabolic units found in proliferatingmammalian cells
[4, 34]. After the choice of this key subset, the next step
consists in the modelling of the reactions’ rates in the frame
of reconstruction. This process is a very difficult one, and
the modelling of reactions as single-enzyme processes by
using in vitro kinetic parameters is possible only for simple
and small reconstructions. Often, in vitro kinetic parameters
do not compare well against in vivo observations [4]. The
reconstruction in complex processes will frequently combine
a number of discrete processes into a single lumped process
and will then apply kinetic parameters to the lumped process.
Consequently, some kinetic parameters that appear in the
model may have small or no physical significance and usually
their values are not experimentally measurable [4].

Therefore, if all of the interaction of metabolites and
cell physiology are included in the modelling process, then
the size of the obtained model is very large and it is not
appropriate for model-based optimization and control pur-
poses. The usual solution is to select a priori the elementary
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Table 1: Macroreactions of the mAb production process [4, 27].

Reaction number Macroreaction scheme
1 GLC → 2LAC
2 GLC + 2GLU → 2ALA + 2LAC
3 GLC + 2GLU → 2ASP + 2LAC
4 GLU → PRO
5 ASN → ASP + NH3

6 GLN + ASP → ASN + GLU
7 0.0508GLC + 0.0577GLN + 0.0133ALA + 0.006ASN + 0.0201ASP + 0.0016GLU + 0.081PRO → BM
8 0.0104GLN + 0.011ALA + 0.072ASN + 0.082ASP + 0.0107GLU + 0.0148PRO → MAb
9 GLN → GLU + NH3

reaction schemes and to relate themajor macroscopic species
such as biomass, essential substrates, and products by a set
of so-called macroreactions [27]. Thus, a simplified model
is obtained, which is suitable for optimization and control.
As was mentioned before, the next step in the modelling is
related to the determination of reaction kinetics and the final
model is obtained based on mass balance equations of the
macroscopic species involved in the reactions.

Next, a particular model of mammalian cell culture,
published by Gao et al. [27], will be described and used as
a case study. Gao et al. [27] provided a detailed description of
an Immunoglobulin G- (IgG-) secreting murine hybridoma
(130-8F Sanofi Pasteur) cultured in a D-MEM (Dulbecco’s
Modified Eagle Medium) growth medium supplemented
with proline, L-asparagine, and L-aspartic acid. In this pro-
cess, batch cultures of the organismwere allowed to grow for a
minimum of 7 days. The infrequent measured concentration
data for glucose, lactate, and ammonia, as well as for 20 amino
acids and the monoclonal antibody, were obtained from the
collected samples via proper techniques. By using the mea-
sured data, the average rates of transmembrane fluxes were
calculated for eachmetabolite for both the initial exponential
growth phase and for the postexponential (decline) phase.
Gao et al. [27] used themetabolic flux analysis (MFA) in order
to calculate the unknown intracellular fluxes from measured
extracellular fluxes by applying steady-state mass balance
equations. The obtained metabolic network was constructed
based on some preliminary studies [44–47], and it represents
the significant metabolic pathways in proliferating animal
cells. Gao et al. [27] determined that 16 reactions (a half
of the total number) in the chosen reconstruction did not
function significantly, and consequently these reactions, with
an activity of about 1% of the total, were eliminated. The
remaining subset of 16 reactions of the reduced metabolic
reconstruction was further reduced by using a technique
that combines reactions that share commonmetabolites [48].
Finally, the reduced reaction scheme for this mAb bioprocess
contains a number of only 11 extracellular compounds and it
consists of nine macroreactions, presented in Table 1 [4, 27].

The dynamical model of a generic bioprocess inside a
bioreactor can be obtained by using the mass balance of

the component and it is given by the following set of differ-
ential equations [49]:

𝑑𝜉

𝑑𝑡

= 𝐾 ⋅ 𝜑 (𝜉) + 𝐷 ⋅ 𝜉 + 𝐹 − 𝑄, (1)

where 𝜉 = [𝜉
1

𝜉
2

⋅ ⋅ ⋅ 𝜉
𝑛
]
𝑇 is the 𝑛-dimensional vec-

tor of the instantaneous concentrations (the concentrations
of extracellular metabolites in our particular case), 𝜑 =

[𝜑
1

𝜑
2

⋅ ⋅ ⋅ 𝜑
𝑚
]
𝑇 is the vector of the reaction rates, and

𝐾 is the 𝑛×𝑚 dimensional matrix of stoichiometric (or yield)
coefficients, with 𝐾 = [𝐾

𝑖𝑗
], 𝑖 = 1, 𝑛; 𝑗 = 1,𝑚, where

𝐾
𝑖𝑗
= (±)𝑘

𝑖𝑗
if 𝑗 ∼ 𝑖. The notation 𝑗 ∼ 𝑖 indicates that the sum

is done in accordance with the reactions 𝑗 that involve the
components 𝑖. The sign of the yield coefficients 𝑘

𝑖𝑗
is given by

the type of the component 𝜉
𝑖
: plus (+) when the component is

a reaction product and minus (−) otherwise.𝐷 is the specific
volumetric outflow rate (h−1), usually called dilution rate. In
(1), 𝐹 = [𝐹

1
𝐹
2

⋅ ⋅ ⋅ 𝐹
𝑛
]
𝑇 is the vector of rates of liquid

supply and 𝑄 = [𝑄
1

𝑄
2

⋅ ⋅ ⋅ 𝑄
𝑛
]
𝑇 is the vector of rates

of removal of the components in gaseous form.
Model (1) describes in fact the behaviour of an entire class

of bioprocesses and is referred to as the general dynamical
state-space model of this class [49, 50]. In (1), the term
𝐾 ⋅ 𝜑(𝜉) is in fact the rate of consumption and/or production
of the components in the reactor, that is, the reaction kinetics.
The term −𝐷𝜉 + 𝐹 − 𝑄 represents the exchange with the
environment. The strongly nonlinear character of this model
is given by the reaction kinetics. In many practical situations
the structure and the parameters of the reaction rates are
partially known or even completely unknown.

Typically, in a batch process the reactor is filled with the
reactant mixture: substrates and microorganisms. Then, the
reactions occur inside the reactor for a time period; after
that, the products are removed from the tank. Because the
studied bioprocess takes place inside a batch reactor, model
(1) becomes

𝑑𝜉

𝑑𝑡

= 𝐾 ⋅ 𝜑 (𝜉) ; (2)

that is, the term −𝐷𝜉+𝐹−𝑄 (which represents the exchange
with the environment) is zero in this particular batch mode.
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For the mAb production process, the concentrations of
the 11 extracellular metabolites (given in the reaction scheme
from Table 1) constitute the elements of the state vector from
model (1) and are denoted as follows:
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where GLC = glucose, GLN = glutamine, GLU = glutamate,
ASN = asparagine, ASP = aspartate, LAC = lactate, ALA =
alanine, PRO = proline, MAb = monoclonal antibody, BM =
biomass, NH

3
= ammonia are themetabolites given in Table 1

(and for simplicity, the concentrations of the corresponding
elements in model (1)).

However, in order to complete the model of the mAb
production process, it is necessary to add the evolution of
the viable cell concentrations of the culture, because the
metabolite mass balances depend on the amount of viable
cells. Gao et al. [27] noticed the typical behaviour of the
batch culture, with exponential growth and postexponential
decline, senescence phase (which occurs after the first phase
of evolution, due to the aging of the cells and the accu-
mulation of autoinhibitory metabolites). Therefore, another
two concentrations enter in the complex model of the
bioprocess, the viable cell concentration 𝑋 and the dead cell
concentration𝑋

𝑑
. The dynamics of these concentrations will

be modelled separately, depending of the phase (growth or
decay).

Remark 1. To be exact, for the mAb production process the
exchange with environment is zero except the CO

2
gaseous

flow, but this flow is not measured and CO
2
is not predicted

in the final model, as it is considered in [27].

In the following, the dynamical model (2) of the mAb
production process will be presented, starting with the
reaction scheme given in Table 1. Afterward, the problem
of kinetic rates is addressed, together with the parameter
estimation problem, via PSO-based techniques.

The dynamical model of the form (2) can be particu-
larized for the mAb production process described by the
reaction scheme from Table 1 by using the mass balance
of the components (via classical methods [4, 27] or bond
graph approach [13]) inside the batch reactor. The following
dynamical model is obtained:
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Model (4) can be written in a compact form [13]:
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where the values of stoichiometric coefficients are given in
the reaction schemes from Table 1 and are as follows [4, 27]:
𝑘
1,7

= 0.0508, 𝑘
2,6

= 1, 𝑘
2,7

= 0.0577, 𝑘
2,8

= 0.0104, 𝑘
3,2

= 2,
𝑘
3,3

= 2, 𝑘
3,7

= 0.0016, 𝑘
3,8

= 0.0107, 𝑘
4,7

= 0.006, 𝑘
4,8

=

0.072, 𝑘
5,3

= 2, 𝑘
5,7

= 0.0201, 𝑘
5,8

= 0.082, 𝑘
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𝑘
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= 2, 𝑘
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= 2, 𝑘
7,7

= 0.0133, 𝑘
7,8

= 0.011, 𝑘
8,7

= 0.081,
and 𝑘
8,8

= 0.0148.
The nonlinear dynamical model (5) is obvious from

the general form (2). However, in order to complete the
model of mAb production process, it is necessary to add
the submodels corresponding to the dynamics of viable cell
concentration and dead cell concentration, respectively. Here
it should be noted that Gao et al. [27] have obtained from the
experimental observations that the model describing viable
cell growth changes at 𝑡 = 54 h to reflect the transition from
exponential growth to the decline phase. With this remark,
the dynamical model of the viable and cell concentrations
evolutions is as follows [27]:

𝑑𝑋
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𝑑
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= 𝑘
𝑑
𝑋𝑋
𝑑
,

(6)

where 𝜇 is the specific growth rate of the viable cells, 𝑘
𝑑
is a

kinetic (decay) parameter, and 𝑡exp is the time period of the
exponential growth phase.

The most difficult modelling problem for the system
of differential equations (5), (6) is related to the model of
nonlinear reaction kinetics. Gao et al. [27] suggested that
a generalized form of saturable kinetics (i.e., compound
Monod kinetics) is suitable to describe the rate of each
macroreaction from the reaction scheme given in Table 1.
Rates for each of these macroreactions were expressed in the
next compact form [4, 31]:

𝜑
𝑖
= 𝜑

∗

𝑖
⋅ 𝑋 ⋅ ∏

𝑆𝑗∈𝑆𝑖

𝑆
𝑗

𝐾
𝑆𝑗,𝑖

+ 𝑆
𝑗

, 𝑖 = 1, 9. (7)

In the kinetic rates expression (7), 𝜑
𝑖
is the reaction

rate for reaction 𝑖, 𝜑∗
𝑖
is the maximum reaction rate for

reaction 𝑖, 𝑆
𝑗
is the concentration of substrate 𝑗 within the

set 𝑆
𝑖
of substrates for reaction 𝑖, and 𝐾

𝑆𝑗,𝑖
is a kinetic half-

saturation constant for substrate 𝑗 in reaction 𝑖. The specific
rate expressions for each macroreaction are given in Table 2
[4, 27]. As Baughman et al. [4] noticed, the rate expressions
for macroreactions 7 and 8 do not rigorously conform to
the general format (7). More precisely, it was assumed that
the principal rate-limiting substrate for both biomass and
antibody synthesis is glutamine, and the kinetic contributions
of any other substrates were thus omitted.

In conclusion, the full dynamical model of mAb produc-
tion process is given by (5), where the kinetic rates are of
the form presented in Table 3, together with the dynamical
models (6) of viable and dead cell evolution in the batch
reactor.

Table 2: Kinetics expressions for the macroreactions [4, 27].

Reaction number Kinetic rate

1 𝜑
1
= 𝜑
∗

1
𝑋

𝑆
1

𝐾
𝑆1,1

+ 𝑆
1

2 𝜑
2
= 𝜑
∗

2
𝑋

𝑆
1

𝐾
𝑆1,2

+ 𝑆
1

𝑆
3

𝐾
𝑆3,2

+ 𝑆
3

3 𝜑
3
= 𝜑
∗

3
𝑋

𝑆
1

𝐾
𝑆1,3

+ 𝑆
1

𝑆
3

𝐾
𝑆3,3

+ 𝑆
3

4 𝜑
4
= 𝜑
∗

4
𝑋

𝑆
3

𝐾
𝑆3,4

+ 𝑆
3

5 𝜑
5
= 𝜑
∗

5
𝑋

𝑆
4

𝐾
𝑆4,5

+ 𝑆
4

6 𝜑
6
= 𝜑
∗

6
𝑋

𝑆
2

𝐾
𝑆2,6

+ 𝑆
2

𝑆
5

𝐾
𝑆5,6

+ 𝑆
5

7 𝜑
7
= 𝜑
∗

7
𝑋

𝑆
2

𝐾
𝑆2,7

+ 𝑆
2

8 𝜑
8
= 𝜑
∗

8
𝑋

𝑆
2

𝐾
𝑆2,8

+ 𝑆
2

9 𝜑
9
= 𝜑
∗

9
𝑋

𝑆
2

𝐾
𝑆9
+ 𝑆
2

The state variables within the dynamical model (5)–
(7) are associated with components of the macroreactions
from the reaction scheme given in Table 1. While these
components represent biological variables (concentrations of
some substances or compounds), the kinetic parameters do
not have always clear measurable physical representations.

The problem that remains to be solved now is related
to the estimation of the unknown (inaccessible) kinetic
parameters of the dynamical model (5), (6) of the mam-
malian cell culture. Therefore, it is necessary to estimate the
experimentally inaccessible parameter values for the model
that provide the best approximation to the measured culture
concentrations data.

2.2. PSO-Based Technique Parameter Estimation

2.2.1. Problem Statement and Basic PSO Algorithms. At the
beginning of parameter estimation, the input and output data
are known and the real system parameters are assumed as
unknown. The identification problem is formulated in terms
of an optimization problem in which the error between an
actual physical measured response of the system and the
simulated response of a parameterized model is minimized.
The estimation of the systemparameters is achieved as a result
of minimizing the error function by the PSO algorithm.

Consider that the nonlinear system (2) that describes the
dynamical behaviour of a class of bioprocesses is written as
the following 𝑛-dimensional nonlinear system:

𝑑𝜉

𝑑𝑡

= 𝐾 ⋅ 𝜑 (𝜉) = 𝑓 (𝜉, 𝑡; 𝜃) , (8)

where 𝜉 ∈ R𝑛 is the state vector (i.e., the vector of
concentrations), 𝜃 ∈ R𝑞 is the unknown parameters vector
(i.e., the vector of unknown kinetic parameters), and 𝑓 is a
given nonlinear vector function.
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Table 3: Experimental concentration measurements [4, 27].

Time 0 h 28 h 54 h 76 h 101 h 124 h 147 h
GLC [mM] 3.59 ± 0.04 2.59 ± 0.09 1.88 ± 0.15 1.77 ± 0.05 1.70 ± 0.03 1.67 ± 0.04 1.68 ± 0.05
GLN [mM] 2.85 ± 0.04 1.27 ± 0.30 0.42 ± 0.31 0.11 ± 0.10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
ASN [mM] 0.46 ± 0.00 0.39 ± 0.02 0.35 ± 0.02 0.32 ± 0.03 0.28 ± 0.02 0.25 ± 0.02 0.22 ± 0.02
ASP [mM] 0.27 ± 0.02 0.18 ± 0.02 0.10 ± 0.04 0.07 ± 0.04 0.04 ± 0.04 0.03 ± 0.04 0.03 ± 0.04
LAC [mM] 0.51 ± 0.01 1.33 ± 0.06 1.66 ± 0.19 1.74 ± 0.01 1.71 ± 0.01 1.72 ± 0.01 1.73 ± 0.05
ALA [mM] 0.33 ± 0.03 0.72 ± 0.11 1.15 ± 0.17 1.32 ± 0.12 1.46 ± 0.07 1.48 ± 0.07 1.51 ± 0.08
PRO [mM] 0.30 ± 0.01 0.27 ± 0.02 0.42 ± 0.04 0.53 ± 0.02 0.56 ± 0.02 0.60 ± 0.01 0.60 ± 0.01
MAB [10−4mM] 0.34 ± 0.12 1.02 ± 0.06 1.58 ± 0.16 2.31 ± 0.24 2.66 ± 0.41 3.09 ± 0.60 3.41 ± 0.75
BM [mM] 2.01 ± 0.20 11.61 ± 0.46 16.51 ± 0.85 17.98 ± 0.84 19.41 ± 2.21 18.67 ± 2.49 17.97 ± 1.33
𝑋 [106 cells/mL] 0.09 ± 0.01 0.58 ± 0.02 0.79 ± 0.05 0.72 ± 0.01 0.47 ± 0.06 0.17 ± 0.03 0.06 ± 0.02
𝑋
𝑑
[106 cells/mL] 0.02 ± 0.01 0.05 ± 0.01 0.11 ± 0.01 0.25 ± 0.05 0.58 ± 0.05 0.85 ± 0.12 0.91 ± 0.07

To estimate the unknown parameters in (8), a parameter
identification system is defined as follows:

𝑑
̂
𝜉 (𝑡)

𝑑𝑡

= 𝑓 (
̂
𝜉, 𝑡;

̂
𝜃) ,

(9)

where ̂𝜉 ∈ R𝑛 is the estimated state vector and ̂𝜃 ∈ R𝑞 is the
estimated parameters vector.

Theobjective function defined as themean squared errors
between real and estimated responses for a number 𝑁 of
given samples is considered as fitness of estimated model
parameters [14]:

𝑊 =

1

𝑁 +𝑀

𝑀

∑

𝑗=1

𝑁

∑

𝑘=1

(𝜉

𝑘

𝑗
−
̂
𝜉

𝑘

𝑗
)

2

, (10)

where 𝑀 is the number of measurable states and 𝑁 is the
data length used for parameter identification, whereas 𝜉𝑘

𝑗
and

̂
𝜉
𝑘

𝑗
are the real and estimated values of state 𝑗 at time 𝑘,

respectively.
This objective function is a function difficult to minimize

because there are many local minima and the global mini-
mum has a very narrow domain of attraction. Our goal is
to determine the system parameters, using particle swarm
optimization algorithms in such a way that the value of 𝑊
is minimized, approaching zero as much as possible.

Mathematical description of basic PSO and some impor-
tant variants is presented in the following.

Candidate solutions of a population called particles coex-
ist and evolve simultaneously based on knowledge sharing
with neighbouring particles. Each particle represents a poten-
tial solution to the optimization problem and it has a fitness
value decided by optimal function. Supposing search space
is 𝑀-dimensional, each individual is treated as a particle
in the 𝑀-dimensional search space. The position and rate
of position change for 𝑖th particle can be represented by
𝑀-dimensional vector, 𝑥

𝑖
= (𝑥

𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑀
) and V

𝑖
=

(V
𝑖1
, V
𝑖2
, . . . , V

𝑖𝑀
), respectively. The best position previously

visited by the 𝑖th particle is recorded and represented by
𝑝
𝑖
= (𝑝
𝑖1
, 𝑝
𝑖2
, . . . , 𝑝

𝑖𝑀
), called 𝑝𝑏𝑒𝑠𝑡. The swarm best position

previously visited by all the particles in the population
is represented by 𝑝

𝑔
= (𝑝

𝑔1
, 𝑝
𝑔2
, . . . , 𝑝

𝑔𝑀
), called 𝑔𝑏𝑒𝑠𝑡.

Then particles search their best position, which are guided
by swarm information 𝑝

𝑔
and their own information 𝑝

𝑖
.

Each particle modifies its velocity to find a better solution
(position) by applying its own flying experience (i.e., memory
of the best position found in earlier flights) and the experi-
ence of neighbouring particles (i.e., the best solution found
by the population). Each particle position is evaluated by
using fitness function and updates its position and velocity
according to the following equations:

V𝑘+1
𝑖

= 𝜔 ⋅ V𝑘
𝑖
+ 𝑐
1
𝑟
1
(𝑝𝑏𝑒𝑠𝑡

𝑘

𝑖
− 𝑥

𝑡

𝑖
) + 𝑐
2
𝑟
2
(𝑔𝑏𝑒𝑠𝑡

𝑘

𝑖
− 𝑥

𝑘

𝑖
) ,

𝑥

𝑘+1

𝑖
= 𝑥

𝑘

𝑖
+ V𝑘+1
𝑖

,

(11)

where 𝑘 is iteration number, 𝜔 is inertia weight, 𝑐
1
and 𝑐
2
are

two acceleration coefficients regulating the relative velocity
toward local and global best position, and 𝑟

1
and 𝑟

2
are

two random numbers from the interval [0, 1]. Many effects
have been made over the last decade to determinate the
inertia weight. Various studies have shown that under certain
conditions convergence is guaranteed to a stable equilibrium
point [51]. These conditions include 𝜔 > (𝑐

1
+ 𝑐
2
)/2 − 1 and

0 < 𝜔 < 1. The technique originally proposed was to bound
velocities so that each component of V

𝑖
is kept within the

range [𝑉min, 𝑉max].
Unfortunately, this simple form of PSO suffers from

the premature convergence problem, which is particularly
true in complex problems since the interacted information
among particles in PSO is too simple to encourage a global
search. Many efforts have been made to avoid the premature
convergence. One solution is the use of a constriction factor
to insure convergence of the PSO, introduced in [45]. Thus,
the expression for velocity has been modified as

V𝑘+1
𝑖

= ℎ ⋅ [V𝑘
𝑖
+ 𝑐
1
𝑟
1
(𝑝𝑏𝑒𝑠𝑡

𝑘

𝑖
− 𝑥

𝑡

𝑖
) + 𝑐
2
𝑟
2
(𝑔𝑏𝑒𝑠𝑡

𝑘

𝑖
− 𝑥

𝑘

𝑖
)] ,

𝑥

𝑘+1

𝑖
= 𝑥

𝑘

𝑖
+ V𝑘+1
𝑖

,

(12)

where ℎ represents the constriction factor and is defined as

ℎ =

2

(






2 − 𝛼 − √𝛼

2
− 4𝛼






)

, 𝛼 = 𝑐
1
+ 𝑐
2
> 4. (13)
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In this variant of the PSO algorithm, ℎ controls the mag-
nitude of the particle velocity and can be seen as a dampening
factor. It provides the algorithm with two important features
[52]. First, it usually leads to faster convergence than standard
PSO. Second, the swarm maintains the ability to perform
wide movements in the search space, even if convergence is
already advanced but a new optimum is found. Therefore,
the constriction PSO has the potential to avoid being trapped
in local optima while possessing a fast convergence. It was
shown to have superior performance compared to a standard
PSO [53].

It is shown that a larger inertia weight tends to facilitate
the global exploration and a smaller inertia weight achieves
the local exploration to fine-tune the current search area.The
best performance could be obtained by initially setting 𝜔 to
some relatively high value (e.g., 0.9), which corresponds to
a system where particles perform extensive exploration, and
gradually reducing 𝜔 to a much lower value (e.g., 0.4), where
the system would be more dissipative and exploitative and
would be better at homing into local optima. In [54], a linearly
decreased inertia weight 𝜔 over time is proposed, where 𝜔 is
given by the following equation:

𝜔 = (𝜔
𝑖
− 𝜔
𝑓
) ⋅

(𝑘max − 𝑘)

𝑘max
+ 𝜔
𝑓
, (14)

where 𝜔
𝑖
, 𝜔
𝑓
are starting and final values of inertia weight,

respectively, 𝑘max is the maximum number of the iteration,
and 𝑘 is the current iteration number. It is generally taken that
starting value is 𝜔

𝑖
= 0.9 and final value is 𝜔

𝑓
= 0.4.

On the other hand, in [35] PSOwas introducedwith time-
varying acceleration coefficients. The improvement has the
same motivation and similar techniques as the adaptation
of inertia weight. In this case, the cognitive coefficient 𝑐

1
is

decreased linearly and the social coefficient 𝑐
2
is increased

linearly over time as follows:

𝑐
1
= (𝑐
1𝑓
− 𝑐
1𝑖
) ⋅

(𝑘max − 𝑘)

𝑘max
+ 𝑐
1𝑖
,

𝑐
2
= (𝑐
2𝑓
− 𝑐
2𝑖
) ⋅

(𝑘max − 𝑘)

𝑘max
+ 𝑐
2𝑖
,

(15)

where 𝑐
1𝑖

and 𝑐
2𝑖

are the initial values of the acceleration
coefficients 𝑐

1
and 𝑐
2
and 𝑐
1𝑓

and 𝑐
2𝑓

are the final values of
the acceleration coefficients 𝑐

1
and 𝑐
2
, respectively. Usually,

𝑐
1𝑖
= 2.5; 𝑐

2𝑖
= 0.5; 𝑐

1𝑓
= 0.5; and 𝑐

2𝑓
= 2.5 [14, 35, 36].

The dynamical model of mAb production process given
by the relations (5), (6), associated with the expressions of
the kinetic rates presented in Table 3, contains a number of 23
kinetic parameters (maximum reaction rates and kinetic half-
saturation constants). In order to estimate these unknown
(inaccessible) kinetic parameters of the complex dynamical
model of mammalian cell culture, the measured concentra-
tions are used and a PSO-based algorithm is implemented.
The goal is to obtain a model that approximates as well as
possible the behaviour of the process (expressed by means
of the experimentally obtained data). The model of mAb
production process under investigation is in fact based on

several macroreactions; therefore it results in the fact that the
kinetic parameters do not have always clearmeasurable phys-
ical representations. Thus, an optimization-based estimation
technique is suitable for this set of kinetic parameters.

2.2.2. Implementation of PSO-Based Technique. In the follow-
ing, a multistep PSO-based version that uses time-varying
acceleration coefficients is implemented and an optimal set
of kinetic parameter values of the mAb production process is
obtained.

In order to implement the PSO-based technique, the
model of mAb production process (5), (6) obtained from the
macroreactions schemes is used, translated into the generic
parameter identification system represented in (9).

The experimental concentration values for all the
involved extracellular metabolites are provided in the work
of Gao et al. [27]. The batch cultures of the organism were
allowed to grow for 147 h, with 54 h the exponential growth
phase and 93 h the postexponential (decline) phase. The
infrequent measured concentration data for the metabolites
were obtained from the collected samples via proper
techniques. The set of concentrations measurements are
given in Table 3 [4, 27]. Each data point is the average of
measurements taken from three independent experiments,
with standard deviation [4, 27].

To facilitate the application of the proposed PSO-based
parameter estimation strategy, the time derivatives of the
states from model (5)–(7) must be reconstructed. Because
the measured data are very few (only 7 experimental mea-
surements for each parameter, see Table 3), an interpolation
method is necessary to find intermediate values of the states,
which are actually the biological parameters of the process,
that is, the concentrations ofmetabolites. Such situationswith
a small number of experimental measurements are typical
for many bioprocesses. Ideally speaking, the online mea-
surements (in each sampling moment, at every 6min., e.g.)
for each concentration are necessary. However, these online
measurements are achieved with expensive instrumentation,
or there are no such fast sensors for some concentrations.
Thus, the infrequent offline measurements are preferred.
To facilitate the achievement of an accurate estimation of
model parameters of mAb process, we need the interpolation
of these measured data, which allows us to obtain the
unavailable data between adjacent measurement points (i.e.,
to estimate the unavailable data needed to calculate model
predictions between these measurement points).

Remark 2. From mathematical point of view, a discussion
about the interpolation technique can be done. Many authors
use the linear interpolation, with advantages related to
rapidity and simple implementation [4]. However, the linear
interpolation is not very precise. Another disadvantage is
that the interpolant is not differentiable at the points where
the value of the function is known. Therefore, we propose a
cubic interpolation method that is the simplest method that
offers true continuity between the measured data. A cubic
Hermite spline or cubicHermite interpolator is a splinewhere
each piece is a third-degree polynomial specified in Hermite
form, that is, by its values and first derivatives at the end
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Figure 1: The flowchart of the multistep PSO algorithm.

points of the corresponding domain interval. Cubic Hermite
splines are typically used for interpolation of numeric data
specified at given argument values 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
, to obtain a

smooth continuous function.TheHermite formula is applied
to each interval (𝑡

𝑘
, 𝑡
𝑘+1

) separately. The resulting spline will
be continuous and will have continuous first derivative.

The time derivatives of the states are approximated using
forward differences:

𝑑𝜉 (𝑡
𝑘
)

𝑑𝑡

≈

𝜉 (𝑡
𝑘
) − 𝜉 (𝑡

𝑘
+ 𝑇
𝑠
)

𝑇
𝑠

, (16)

where 𝑇
𝑠
represents the sampling period. In this approxima-

tion, the error is proportional with the sampling interval (a
smaller sampling period will give a smaller approximation
error).

Because a 23-dimensional optimization problem that
must be solved for simultaneously estimation of all unknown
parameters requires great computational resources, a mul-
tistep approach was used. So, the problem was split in
nine simpler problems that are solved sequentially until all
23 parameters are found. These problems are noted with
𝑃1, 𝑃2, . . . , 𝑃9 and the corresponding resulted parameters
are presented in Table 4. A flowchart of the multistep PSO
algorithm is given in Figure 1.

Table 4:The subproblems solved by using the multistep PSO-based
approach.

Subproblem Parameters
P1 𝜑

∗

7
, 𝐾
𝑆2,7

P2 𝜑
∗

8
, 𝐾
𝑆2,8

P3 𝜑
∗

4
, 𝐾
𝑆3,4

P4 𝜑
∗

2
, 𝐾
𝑆1,2
, 𝐾
𝑆3,2

P5 𝜑
∗

6
, 𝐾
𝑆2,6
, 𝐾
𝑆2,9
, 𝜑
∗

9
, 𝐾
𝑆5,6

P6 𝜑
∗

5
, 𝐾
𝑆4,5

P7 𝜑
∗

3
, 𝐾
𝑆1,3
, 𝐾
𝑆3,3

P8 𝜑
∗

1
, 𝐾
𝑆1,1

P9 𝜇, 𝑘
𝑑

For example, the problem 𝑃1 corresponds to the 10th
equation from system (5)-(6) (that represents time evolution
of the biomass) and only two parametersmust be estimated in
this case:𝜑∗

7
and𝐾

𝑆2,7
.ThePSO algorithm is used tominimize

the sumof the square errors betweenmeasured and estimated
data:

𝑊
𝑃1
=

𝑁

∑

𝑘=1

(𝜉
10
(𝑘 ⋅ 𝑇
𝑠
) −

̂
𝜉
10
(𝑘 ⋅ 𝑇
𝑠
))

2
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Table 5:Kinetic parameter estimates obtained via themultistepPSO
approach.

Kinetic parameters Estimated values
𝜑
∗

1
[pmol/(cell h)] 8.443 × 10−4

𝜑
∗

2
[pmol/(cell h)] 2.481 × 106

𝜑
∗

3
[pmol/(cell h)] 3.968 × 105

𝜑
∗

4
[pmol/(cell h)] 1.090 × 102

𝜑
∗

5
[pmol/(cell h)] 7.283

𝜑
∗

6
[pmol/(cell h)] 3.337 × 105

𝜑
∗

7
[pmol/(cell h)] 3.977 × 103

𝜑
∗

8
[pmol/(cell h)] 6.697 × 10−6

𝜑
∗

9
[pmol/(cell h)] 3.261 × 104

𝐾
𝑆1,1

[mM] 8.989 × 105

𝐾
𝑆1,2

[mM] 6.495 × 104

𝐾
𝑆1,3

[mM] 3.723 × 104

𝐾
𝑆3,2

[mM] 7.076 × 102

𝐾
𝑆3,3

[mM] 2.782 × 103

𝐾
𝑆3,4

[mM] 0.019
𝐾
𝑆2,6

[mM] 2.719 × 104

𝐾
𝑆2,7

[mM] 9.324 × 103

𝐾
𝑆2,8

[mM] 0.537
𝐾
𝑆2,9

[mM] 6.683 × 105

𝐾
𝑆4,5

[mM] 1.920 × 103

𝐾
𝑆5,6

[mM] 4.488 × 104

𝜇 0.043
𝑘
𝑑

0.067

s.t. ̂
𝜉
10
((𝑘 + 1) ⋅ 𝑇

𝑠
)

=
̂
𝜉
10
(𝑘 ⋅ 𝑇
𝑠
) + 𝑇
𝑠
⋅

𝜑
∗

7
⋅ 𝜉
2
(𝑘 ⋅ 𝑇
𝑠
) ⋅ 𝜉
12
(𝑘 ⋅ 𝑇
𝑠
)

𝐾
𝑆2,7

+ 𝜉
2
(𝑘 ⋅ 𝑇
𝑠
)

.

(17)

3. Results and Discussion

3.1. Optimal Set of Kinetic Parameters. The optimization
problem formulated in the previous section is nonlinear
and nonconvex with many local minima. The estimated
parameters of one subproblem are then considered known
in the subsequent equations. In order to be clear, the already
estimated parameters are not updated between solutions of
subproblems. For example, in the frame of problem 𝑃1 two
parameters are estimated: 𝜑∗

7
and𝐾

𝑆2,7
. These parameters will

be available in the next problem (𝑃2), and so on. In this study,
all the computations were achieved with a sampling period
𝑇
𝑠
= 6min (0.1 h). As example, for problem 𝑃1 a number of

150 particles randomly initialized were used. The algorithm
stops if the square error is smaller then 10𝑒 − 6 or after 300
iterations. The optimal set of kinetic parameter values of the
mAb production process obtained via this multistep PSO-
based approach is given in Table 5.

The partition of themultidimensional optimization prob-
lem proposed within our PSO algorithm not only ensures the
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Figure 2: Simulation results, profile of the biomass concentration.

decrease of necessary computational resources by compari-
son with Gao et al. [27] and Baughman et al. [4] approaches
but additionally offers a solution for the reported problems
concerning the stiffness of estimated parameter set. More
precisely, as Baughman et al. [4] noticed, there are some
concentrations such as the mAb concentration that are
several orders of magnitude less than other metabolites. This
fact leads to stiffness problems in the optimization procedure,
which are partially solved in [4] by using an alternative
error objective for the mAb concentration. In our approach,
the partition in simpler PSO problems solves uniformly this
issue, using the same error objective for the entire set of
parameters.

Another important problem approached and solved by
using the proposed PSO method is related to the expressions
of reaction kinetics. To simplify the optimization problem,
Gao et al. [27] considered that the values of half-saturation
constants are sufficiently small and consequently the kinetic
rates given in Table 2 can be simplified such that the relation
(7) becomes𝜑

𝑖
= 𝜑
∗

𝑖
⋅𝑋, 𝑖 = 1, 9.This simplification eliminates

the necessity of half-saturation constants estimation, and
only the maximum reaction rates need to be estimated.
However, as was mentioned in [4], half-saturation constants
can be significantly smaller than the corresponding substrate
concentration in processes controlled by a single enzyme
(e.g., glucose transport), but this fact is not necessarily
true for the macroreactions in mAb production processes.
Therefore, Gao et al. assumption is unwarranted and it can
affect the reliability of the model. This is one of the reasons
because the proposed PSO method yield good fitting results
comparedwithGao et al. [27], as it can be seen in Figures 2–5.

Remark 3. There are necessary some comments concerning
the overfitting problems. Overfitting arises when a statistical
model describes noise instead of the underlying relationship;
it usually occurs when a model is very complex, such as
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Figure 3: Simulation results, profiles of substrate concentrations: GLC, GLN, ASN, and ASP.

having many parameters relative to the number of observa-
tions. Even though the approached mAb production model
is quite complex, it is not a statistical model. Also, even if
the number of measured concentration samples is relatively
small by comparisonwith the number of parameters, the PSO
technique is an optimization procedure, which is much less
sensitive to overfitting than the methods that are based on
model training, such as neural network techniques (see Tetko
et al. [55]). The potential for overfitting depends not only on
the number of parameters and measured data but also on the
conformability of the model structure with the data shape.

Some comparisons of the proposed PSO approach with
other PSO applications to bioprocesses can be done. Most of
the reported works were focused on the process of glycerol
fermentation by Klebsiella pneumoniae in batch, fed-batch,
and continuous cultures [37–41]. Shen et al. [37] studied
a mathematical model of Klebsiella pneumoniae in a con-
tinuous culture. An eight-dimensional nonlinear dynamical
systemwas obtained, and a parallel PSO techniquewas imple-
mented in order to identify 19 parameters. The identification
results are compared only with experimental steady-state

values. The reported mean relative errors between the com-
putational values and the experimental data are quite large
(between 8% and 13%). A similar model of bio-dissimilation
of glycerol by K. pneumoniae in a continuous culture was
widely analyzed by Zhai et al. in [38]. Here a parallel PSO
pathways identification algorithmwas constructed to find the
optimal pathway and 21 parameters under various conditions.
The combined estimation of pathways and process parame-
ters leads to a vast identification model, solved on a cluster
server with 16 nodes (each node with 4 Core, 64-bit, 2.5 GHz
processor), in over 130 hours. Comparable PSO approaches
were used in [39, 41] in the case of the same fermentation
process, but in a batch culture. For example, Yuan et al.
[39] used a parallel migration PSO algorithm to estimate
pathways and 12 parameters of the eight-dimensional model.
The identification problem was split into two subproblems
(one for pathways and one for parameters) and solved on
the above cluster in about 18 hours. Another work addressed
the PSO identification in the case of the fermentation of
glycerol byK. pneumoniae in a fed-batch culture [40]. A non-
linear hybrid system was developed (with seven differential
equations plus a switching mechanism and 8 parameters).
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Figure 4: Simulation results, profiles of concentrations: LAC, PRO, ALA, and MAb.

The proposed technique was an asynchronous parallel PSO,
and the reported averaged computational time was about
3.26 h, on the above-mentioned cluster server with 16 nodes.
The reported results in [38–40] are very good, even the
accuracy of the algorithms cannot be fully assessed (statistical
reports were not provided). However, the computational
effort is considerable, given the fact that simultaneous path-
ways and parameters identification was approached.

The particle swarm-based multistep nonlinear optimiza-
tion algorithm proposed in the present work was used for the
estimation of 23 parameters of an eleven-dimensional nonlin-
ear system (the pathways identification was not considered).
By using themultistep approach, the computational effortwas
quite small (about 20min. on a computer with Intel Core
i5, 64-bit, 3.3 GHz processor). The obtained results and the
statistical analysis show a good accuracy of the identification
results.

3.2. Simulation Results. The performance of the proposed
estimation technique was analyzed by using numerical sim-
ulations. All these simulations are achieved by using the
development, programming, and simulation environment

MATLAB (registered trademark of The MathWorks, Inc.,
USA). For comparison, the simulated profiles based on the
kinetic parameters obtained via PSO technique (Table 5) are
represented together with the original system measurements
[27] and with the profiles obtained by Gao et al. [27] and
Baughman et al. [4], respectively. The concentration profiles
based on the results of Gao et al. and on the results of
Baughman et al. [4] approach, respectively, are simulated and
plotted using the kinetic parameter values given in Table 6
[4, 27].

The simulated concentration profiles are presented in Fig-
ures 2–5. First, in Figure 2 the time evolution of the biomass
concentration is depicted. As can be seen, the best matching
with the measured data (the values of measured data plotted
in all figures are taken from Table 3) is given by the PSO
approach. Figure 3 presents the simulated concentration
profiles of glucose, glutamine, asparagine, and aspartate. In all
cases, the PSO proposed technique ensures the best estimates
(in the case of asparagine, the results of Gao et al. [27] are
comparable with those obtained using PSO). In Figure 4,
the concentration profiles of lactate, proline, alanine, and
monoclonal antibody are plotted. The best matching with
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Figure 5: Simulation results, profiles of concentrations: GLU, NH
3
, X, and Xd.

the measured data is obtained with the PSO estimation tech-
nique for lactate, proline, and alanine. In the case of antibody,
the best results were obtained by Baughman et al. [4]. Finally,
Figure 5 shows the concentration evolutions of glutamate,
ammonia, viable, and dead cells, respectively. The glutamate
and ammonia concentrations are not measured; the time
profiles of these variables were obtained from the dynamic
model simulation. The viable cells and dead cells evolution
obtained via PSO estimation match very well the measured
data.

Since in industrial practice themeasured data are affected
by various disturbances, one explored the extent to which
noisy measurements affects the estimated parameter values.
For this reason, aMonte Carlo simulation approachwas used.
First, normal (Gaussian) distributions were constructed for
every measured data set in Table 3, subject to the known
mean and standard deviation of each point.

A set of 150 simulated measurement sets were generated.
Finally, using each randomized data set, a new cubic interpo-
lation of the data was generated for our standard condition
and the parameter estimation problems (𝑃1−𝑃9) were solved
for each case.

Outlying solutions were identified and excluded using a
basic quartile classification method. The quartile values are
chosen in the following manner. First, use the median to
divide the ordered data set into two halves. The median is
not included into the halves. Then, the lower quartile value
is the median of the lower half of the data (𝑞low) and the
upper quartile value is the median of the upper half of the
data (𝑞up). Namely, the lower and upper quartile (𝑞low, 𝑞up)
positions were found for the set of 150 objective values and
the interquartile range 𝑞up − 𝑞low was calculated. Solutions
with objective values lying outside the interval [𝑞low −

1.5(𝑞
𝑢𝑝
− 𝑞low), 𝑞𝑢𝑝 + 1.5(𝑞up − 𝑞low)] were considered to be

outlying cases. Using the remaining solutions, mean values
and associated standard deviations were calculated for each
estimated parameter.

The standard deviations were then converted to per-
centages of their associated mean value. These means and
standard deviations are listed in Table 7.

Certain parameter estimates are much more susceptible
to variability induced through perturbations in measured
data than are others. It can be seen that certain parameters
(𝜇, 𝑘
𝑑
,𝐾
𝑆1,3

) are less sensitive to noisy measurements than are
certain others (𝜑∗

7
, 𝐾
𝑆2,6
, 𝐾
𝑆2,8
, 𝐾
𝑆5,6

).
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Table 6: Kinetic parameter estimates obtained by Gao et al. [27] and by Baughman et al. [4], respectively.

Kinetic parameters Values (Gao et al. [27]) (exponential phase) Values (Gao et al. [27]) (decline phase) Values (Baughman et al. [4])
𝜑
∗

1
[pmol/(cell h)] 0.008 −0.0033 8.85 × 10−4

𝜑
∗

2
[pmol/(cell h)] 0.0191 0.0058 1.12 × 106

𝜑
∗

3
[pmol/(cell h)] 0.0023 −0.0014 1.1 × 105

𝜑
∗

4
[pmol/(cell h)] 0.0081 0.0057 1.97 × 10−2

𝜑
∗

5
[pmol/(cell h)] −0.01 0.0056 4.95

𝜑
∗

6
[pmol/(cell h)] −0.011 0.0029 1.34 × 105

𝜑
∗

7
[pmol/(cell h)] 0.6429 0.0573 1.36 × 103

𝜑
∗

8
[pmol/(cell h)] 0.0046 0.0077 1 × 10−5

𝜑
∗

9
[pmol/(cell h)] 0.0731 0.0113 1.83 × 104

𝐾
𝑆1,1

[mM] 0.01 0.01 1.63 × 105

𝐾
𝑆1,2

[mM] 0.01 0.01 1.08 × 104

𝐾
𝑆1,3

[mM] 0.01 0.01 1.44 × 104

𝐾
𝑆3,2

[mM] 0.001 0.001 9.64 × 102

𝐾
𝑆3,3

[mM] 0.001 0.001 1.04 × 103

𝐾
𝑆3,4

[mM] 0.001 0.001 5.42 × 10−2

𝐾
𝑆2,6

[mM] 0.01 0.01 3.03 × 103

𝐾
𝑆2,7

[mM] 0.01 0.01 6.39 × 103

𝐾
𝑆2,8

[mM] 0.01 0.01 3.73 × 10−1

𝐾
𝑆2,9

[mM] 0.01 0.01 3.23 × 105

𝐾
𝑆4,5

[mM] 0.001 0.001 7.42 × 103

𝐾
𝑆5,6

[mM] 0.001 0.001 4.45 × 103

𝜇 0.0399 0.0399 3.22 × 10−2

𝑘
𝑑

0.06 0.06 4.99 × 10−2

The proposed modelling and parameter estimation
method can be applied to cellular processes described by
the general form (1), and it is not yet applicable to all
classes of bioprocesses. To be more specific, it is hard to be
applied to processes characterized by phenomena such as
propagation reactions, transport processes, latency and short
intercellular phases (in epidemics), and spread (propagation)
of infections, that is, processes with large heterogeneity and
delays. A typical class of such nonlinear delay biosystems
is represented by the dynamics models describing cell-to-
cell spread mechanisms, encountered, for example, in HIV
infections [56, 57].

4. Conclusions

In order to develop accurate models for mammalian cell cul-
ture processes and to overcome some of the specific problems
of mAb production processes such as the nonlinearity, the
absence of instrumentation, and the kinetics uncertainties, a
multistep nonlinear particle swarm optimization-based tech-
nique for the estimation of experimentally unavailable kinetic
parameters was designed and implemented. The proposed
approach was tested by using a particular dynamical model
of mammalian cell culture, as a case study, but is generic for
this class of bioprocesses. We have established the capability

of proposed technique to identify model parameters that
provide an accurate simulation of experimentally observed
mAbproduction process behaviour.Theperformed statistical
analysis demonstrates that the proposed estimation method
is robust against normal distributed noisy measurements.
The simulations showed that the PSO parameter estimation
technique providesmore accurate results than those reported
in previous studies.

The obtained dynamical model of the mAb production
process is accurate and can contribute to the development
of model-based applications, which lead to high productivity
and better quality products. The performed simulations
represent one of the possibilities of model validation. The
results show that the proposed model offers good predictions
not only of the cell culture, for instance predictions of
concentrations of energy sources such as glutamine and
glucose, but also of the main amino acids and products. The
proposed estimation approach can be also applied to other
bioprocesses belonging to the nonlinear class considered in
the present study.
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Table 7:Monte Carlo parametermeans and standard deviation over
complete measurement set.

Kinetic parameters Mean value Standard deviation
𝜑
∗

1
[pmol/(cell h)] 8.127 × 10−4 44

𝜑
∗

2
[pmol/(cell h)] 2.868 × 106 51

𝜑
∗

3
[pmol/(cell h)] 2.441 × 105 63

𝜑
∗

4
[pmol/(cell h)] 1.330 × 102 71

𝜑
∗

5
[pmol/(cell h)] 7.873 23

𝜑
∗

6
[pmol/(cell h)] 3.923 × 105 35

𝜑
∗

7
[pmol/(cell h)] 3.157 × 103 93

𝜑
∗

8
[pmol/(cell h)] 4.067 × 10−6 24

𝜑
∗

9
[pmol/(cell h)] 2.991 × 104 36

𝐾
𝑆1,1

[mM] 8.936 × 105 17
𝐾
𝑆1,2

[mM] 7.030 × 104 29
𝐾
𝑆1,3

[mM] 3.684 × 104 5
𝐾
𝑆3,2

[mM] 7.31 × 102 29
𝐾
𝑆3,3

[mM] 2.565 × 103 14
𝐾
𝑆3,4

[mM] 0.026 13
𝐾
𝑆2,6

[mM] 2.295 × 104 87
𝐾
𝑆2,7

[mM] 9.273 × 103 51
𝐾
𝑆2,8

[mM] 0.649 116
𝐾
𝑆2,9

[mM] 6.224 × 105 39
𝐾
𝑆4,5

[mM] 1.814 × 103 44
𝐾
𝑆5,6

[mM] 4.657 × 104 75
𝜇 0.048 2
𝑘
𝑑

0.070 0.73
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