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Due to the autonomy of individual agents and the use of the concept of distributed planning,
multi-agent systems (MAS) represent a promising approach to achieve fault-tolerant self-
organizing manufacturing systems. In this article, a basic component of a manufacturing-
oriented MAS is presented. The negotiation strategies are formulated in such a way that
they, on the one hand, guarantee considerable flexibility of the basic component itself, and,
on the other hand, enable the construction of more complex systems built up from several
components. On the basis of this single component, it is shown that the dynamics of such sys-
tems without appropriate control mechanisms can be chaotic. Such behaviour is, however,
unwanted in practice and must therefore be stabilized or avoided. In order to develop appro-
priate tools for this task, the dynamic behaviour of the system is investigated using concepts
and methods of synergetics and the theory of nonlinear dynamical systems.
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1 MOTIVATION AND PROBLEM
DEFINITION

In the current economic situation, in which custom-
ized series manufacturing is more and more
important for successful competition, flexible
manufacturing systems are targetted, which can be
adapted to new variants of the product rapidly and
without large expenditure (see, e.g., Warnecke,
1992). The use of multi-agent systems (MAS) is

recommended for this purpose because the auton-
omy of individual system components (intelligent
manufacturing robots) and the use of the concept of
distributed planning guarantee large flexibility and
fault-tolerance of such systems. However, they can
also cause complex dynamic behaviour (periodical,
quasi-periodical, chaotical) of the system (Levi,
1989).

Thus, in order to enable the application of
MAS for manufacturing, the dynamics of these
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systems and the eligible control strategies must be
thoroughly examined. The current focus of our in-
vestigations is, therefore, firstly, modelling of such
systems and, secondly, development of suitable
analysis methods, whereby concepts of synergetics
(Haken, 1983a,b), and the theory of nonlinear
dynamical systems (Wiggins, 1990; Guckenheimer
and Holmes, 1993; Arnol’d et al., 1994) are used.

2 SYNERGETICS

Synergetics is an interdisciplinary science, which
deals with the investigation of a special class of

dynamical systems. These systems are open systems.

which consist of many interacting subsystems. The
systems can be affected from outside by so-called
control parameters. Due to self-organizing pro-
cesses on the microscopic level, these systems show
ordered structures (temporal, spatial or functional)
on the macroscopic level which we call patterns.
The ordered structures are often qualitatively stable
for large ranges of the control parameters. Only at
critical values of the control parameters, the so-
called instabilities, the behaviour of these systems
changes qualitatively and new macroscopic ordered
structures emerge. It is shown in (Haken, 1983a,b),
that in the vicinity of an instability, the macroscopic
ordered structures, even for very complex systems,
can be described by a few degrees of freedom, the
so-called order parameters. If one investigates sys-
tems, for example from the field of physics, then the
underlying microscopic equations of motion and
the associated self-organizing mechanisms are given
by laws of nature. Our intention in this context is to
apply the methods and concepts of synergetics to
our manufacturing-oriented MAS. Thus, in terms
of synergetics, the negotiation strategies of a MAS
represent the microscopic equations of motion and
the resulting interaction patterns, the macroscopic
ordered structures. The negotiation strategies gen-
erally contain certain parameters, which we can
identify as the control parameters of the system. As
expected, our investigations show that the interac-
tion patterns of MAS also change qualitatively at

certain critical values of the control parameters, as
is the case in, for example, physical or chemical
systems. When dealing with MAS we can design the
negotiation strategies and therefore have, in terms of
synergetics, great influence on the microscopic
equations of motion and hence, ultimately, on the
emerging ordered structures on the macroscopic
level. From this point of view, our task then is to
design the negotiation strategies in such a way that
desired patterns of inter-agent interaction emerge.
To illustrate the principle, we shall consider a fault-
tolerant manufacturing-oriented MAS. We identify
the production of a certain product with a macro-
scopic ordered structure of the manufacturing-
oriented MAS. The fault-tolerance requires that
this production can successfully continue even in
case of a breakdown of one or several manufactur-
ing robots. The negotiation strategies have to be
designed in such a way that the agents involved not
only register the breakdown of one or several
robotic units but also initiate, if necessary, a new
planning phase, in order to compensate for the
failure as fully as possible. Obviously, in general,
the total production will decrease thereby. Contrary
to fixed manufacturing systems, a manufacturing-
oriented MAS with such negotiation strategies
implemented is capable of a self-organized adap-
tion to changing situations. The disadvantage of
these flexible negotiation strategies is the fact that
they could cause a chaotic dynamic behaviour of
the MAS. Of course, such behaviour must be
avoided. Thus, the negotiation strategies must be
extended by appropriate control mechanisms. The
theory of nonlinear dynamical systems can con-
tribute to these promising concepts and methods
which, however, must be adapted and extended for
the application in MAS.

3 NEGOTIATIONS

Until now there exists no general concept how
one can design a manufacturing-oriented MAS
that fulfils all the requirements mentioned above.
The underlying idea of the work presented in this
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article is the synthesis of the multi-agent concept
(Fischer, 1994; Levi and Hahndel, 1995), on the one
hand, and the concepts of synergetics, on the other
hand (Haken, 1983a,b). While the multi-agent con-
cept enables the flexibility and the distributed plan-
ning, the synergetics provide methods which allow
the systematic investigation of self-organization
mechanisms in these systems. Our goal is it then
to implement such self-organization mechanisms
into the negotiation strategies of a manufacturing-
oriented MAS, thus enabling a stable, flexible and
efficient mode of operation. Since in a MAS there
exists no central planning unit, all planning deci-
sions (i.e. the decisions on which robotic unit has
to execute which manufacturing operations and
in which order) have to be done by negotiations
among the agents. Thus, a negotiation strategy
determines when and for which functions indi-
vidual agents communicate with each other. The
decisions thus take place according to a given opti-
mization criterion, e.g. the minimization of cost or
execution time. In this article a task is regarded as a
unique entity, which cannot be divided between
several agents. For this reason, modelling of such
type of systems requires the use of the so-called
©-functions (indicator functions, decision func-
tions, step functions; see Section 4.1.2) which are
differentiable only in the sense of distribution
theory. By applying these functions, uniqueness of
the decisions can be guaranteed. In process of the
negotiations the agents adopt different roles. The
agent which sends inquiries to other agents in order
to decide to which of these agents a current task
should be sent, is called a manager because it ini-
tiates a negotiation. The agents to which it sends
these inquiries, will be referred to as robotic units.
Additionally we distinguish between two types of
negotiation strategies:

e Vertical negotiations: The manager negotiates
with each robotic unit which is capable of per-
forming the current task and then comes to the
planning decision itself.

e Horizontal negotiations: A task is sent first
to a specific group of robotic units capable of

performing that task. The robotic units then
come to the planning decision by negotiating
about the task among themselves.

In order to be applicable in practice, a negotia-
tion strategy must contain some aspects from both
types. Since it is to a large extent unknown how one
can examine complex combinations of the negotia-
tion strategies described above, we begin our anal-
ysis with very simple systems and proceed further
in steps:

(1) Investigation of an extremely small system
consisting of three agents (one manager and
two robotic units), which can serve as a basic
component for more complex manufacturing-
oriented MAS. Crucial parameters for the
dynamic behaviour of the system have to be
identified. Thereby the model is designed in
such a way that it can serve as a basic com-
ponent for more complex MAS, in which
both vertical and horizontal negotiations are
implemented.

(2) Investigation of a larger MAS with vertical
negotiation strategy and examination or exten-
sion of the methods developed in the first stage.

(3) Further extension to a model with still more
complex characteristics and abilities (horizon-
tal negotiations, stochastic events, . . .), in order
to achieve negotiation strategies which are more
relevant for practical purposes.

In this article we present our model and the first
results of our investigations. Because this model
serves as a basic component for the construction of
more complex manufacturing-oriented MAS it is
worth mentioning here that further investigations
of this simple model have to be performed in order
to achieve detailed knowledge of the effects occur-
ing in such systems.

4 BASIC MODEL: M1R2-SYSTEM
WITHOUT FEEDBACK

First, we define the system which we intend to
model and which will be analyzed in the following.
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FIGURE 1 Schematic representation of the M1R2-model.

DEerFINITION 1 A4 M1R2-system is a negotiation-
based manufacturing-oriented M AS which consists
of three agents (one manager and two robotic units).
The robotic units can process similar repetitive tasks
which they get from the manager at certain times.
By negotiating with the robotic units, the manager
gets information about their states and decides,
depending on this information, which of the robotic
units has to perform the task (Fig. 1).

4.1 Definition of the Model
4.1.1 State Variables

Our intention is to make quantitative analysis of
the dynamic behaviour of manufacturing-oriented
MAS possible. Therefore, we have to model the sys-
tem in a mathematical way, that is, to formulate
the equations of motion of the states of the robotic
units. In order to do so, we must first clarify what
we denote as a state of a robotic unit. One way,
which we pursue in this article, is it to regard the
contents of the input buffers of the robotic units as
state variables.

DEFINITION 2 The function p; of the input buffer
content of the robotic unit R; (i=1,2) indicates the
amount of work which has to be executed by the
robotic unit. We assume in our model that a task is
represented by a positive rational number C, which
indicates its size. Then, clearly, the value p; at each
time is the difference between the total number of
tasks assigned to the robotic unit R; (i=1,2) and
the number of tasks it has finished up to this time.
The function p; is defined on the finite interval

[0, pX], where p™** denotes the size of the buffers
of the robotic units.

4.1.2 Processing of Assigned Tasks

To define the equations of motion we have, in prin-
ciple, two possibilities, namely, we can use either
a time-discrete or a time-continuous formulation.
Because we have defined simple tasks which cannot
be divided into subtasks, it is natural to formulate
the equations of motion of the M1R2-System in
terms of time-discrete difference equations. If the
robotic units operate with constant productivities
a;, which normally should be the case, then the
buffer contents p;(n) at the discrete time n are
reduced by the values of «; within one time step.
Of course it has to be recognized that the buffer
contents remain positive or at least zero. If we use
the indicator function x[b]: {true, false} — {0, 1}
which is defined by

x[b]={(l)

pi(n+1) = (pi(n) — a)x[pi(n) > i~ (2)

if b is true
o (1)
if b is false

we get

as equation of motion of the buffer content p;(n).
According to this evolution equation, a robotic unit
processes the content of its buffer, i.e. the assigned
tasks, until its buffer is empty.

4.1.3 Assignment of Tasks

The buffer content p;(n) is increased by C if the
robotic unit R; receives a task of a size C at time n.
With u(n) we denote a function which takes the
value 1 if the manager sends a task to the robotic
unit at the time n, and otherwise takes a zero value.
Another function, which takes the value 1 if a task is
assigned to the robotic unit R;and zero otherwise, is
called ;[ ]. Substituting these notations into Eq. (2),
we obtain:

pi(n+1) = (pi(n) — ci)x[ pi(n) > ai] + Cu(n)xi| |
3)
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4.1.4 Simple Manager Function

We call the function p(n) from the last paragraph
the manager function. The simplest form of this
function, which we consider first, describes a situ-
ation when the manager sends the tasks to the
robotic units with a constant frequency w, i.e. the
function u(n) takes the value 1 with a certain period
T =2rw/w. Hence we can define it as

1 fn=1[kT], (keN, T>1
iy = {10 = 1T € )@
0 otherwise

4.1.5 Decision Functions

In order to define the functions x;[], we use the
following time optimization criterion: a task is
assigned to the robotic unit which can complete it
most rapidly. Therefore, we have to compare the
processing times of the robotic units. If a task of size
C is assigned to a robotic unit at time #, it takes the
time (p;(n)+ C)/a;, to process it.* In addition, it
must be guaranteed that the boundary condition
pi(n+ 1) < p/"®* is satisfied when the robotic unit R;
gets the task. Thus, a robotic unit receives a task if:

(1) There occurs no overflow of its buffer (cond. 1)
when receiving the task

(2) It can process the task faster than the other
robotic unit (cond. 2), or the buffer of the other
robotic unit will overflow when receiving the
task (cond. 3).

It is easy to prove that the following functions
fulfil these requirements:

xil] = x [pi(n) + C < p™]
cond.1
X pi(n)+ C < pi(n)+C
[67] Q;

~—

cond.2
x x[pi(n) + C > p™] (5

cond.3

with i,j=1,2 and i #}.

4.2 Dynamic Behaviour of the M1R2-Model
without Feedback

Equations (3)—(5) define the complete M1R2-
model without feedback. It turns out (see Levi
et al., 1998) that this simple model shows an inter-
esting dynamic behaviour (see Fig. 2). Therefore
one has to recognize that the total content of the
buffers 32| p;(n) is increased within one time step
by C/T on average and the robotic units process
S22 | o; task units in the same time. One can show
that the dynamic behaviour of the system depends
qualitatively on the values of C and T. There
are three different regions in the parameter space,
namely

S (©
C 2
M << ; o (7)
2 C
Z a,'(l’l) < 7_, (8)

where we have assumed o > a, without loss of
generality.

Under the prerequisite that the buffers of the
robotic units are large enough, the first two cases
correspond to a periodic behaviour of the system. In
the first case, the period is exactly T (see Fig. 2(a)),
and the system is permanently under-loaded so that
only the faster robotic unit works. In the second
case, the period is a multiple of T (see Fig. 2(b)—(d)),
and both robotic units work. In the third case,
the system shows a quasi-periodic behaviour (see
Fig. 2(e)—(g)). In this case both robotic units work,
but the systems capacity is exceeded, that means
the buffer contents p;(n) reach their maximal
values, which leads to a situation when some tasks
are rejected by both robotic units. Thus, wy =
2w/C Zle «; is the optimal task frequency in the
M 1R2-model without feedback (3).

* Here, it is assumed that the robotic units use a FIFO strategy when processing their buffer contents.
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FIGURE 2 Behaviour of the M1R2-model without feedback.
5 EXTENDED MODEL: M1R2-SYSTEM represents a central planning authority, which
WITH FEEDBACK decides which of the robotic units gets the next task
according to the current situation, but is not able to
The model presented so far possesses a substan- modify the task frequency. However, such a modi-

tial disadvantage. The manager function pu(n)  fication is necessary in order to ensure long-term
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optimization of the manufacturing process. If the
task frequency is set to the optimal value wy at the
beginning, it must be modified externally if the size
C of the tasks or the productivities of the robotic
units «; change, for example due to a breakdown of
a robotic unit. Therefore, it is necessary to extend
the model in such a way that according to the cur-
rent states of the robotic units they are able to
inform the manager that the task frequency should
be modified. The difficulty here is that such
information can be contradictory and it is not clear
until now how to find an optimal strategy which
satisfies these different demands to some extent
simultaneously.

5.1 Definition of the Extended Model

5.1.1 General Representation of a
Feedback Function

In mathematical terms, we want to implement a
feedback loop, so that the task frequency is con-
trolled by the system itself. The definition range of
the frequency w is therefore the interval (0, w™].
The general representation of a class of feedback
strategies is the following:

w(n+1) = f(wo, w(n)) + glpi1(n), p2(n)) ~ (9)

with a control function f(wq, w(n)) and a feedback
function g(p;(n), po(n)). This function takes into
account a priori knowledge about the control
parameters of the system, i.e., the productivities
of the robotic units and the size C of the tasks. In
this paper, the specific version

2
wn+1) =wn) + (Z Aw(pi(n)))

i=1

2
X X [0 <w(n) + ) Aw(pi(n)) < w™

i=1

(10)

is used. The one-dimensional feedback function
Aw(p;(n)) corresponds to the case of the robotic
units Ry, R, not communicating with each other but

only with the manager. The value of this function
is interpreted as the request from one individual
robotic unit, how the frequency w(n) of the tasks
should be modified according to its buffer content.
The decision function guarantees that the manager
always considers these requests if the modification
does not cause a violation of tile definition range
(0, w™] of the frequency.

5.1.2 One-Dimensional Feedback Function

When designing the function Aw(p;(n)), one has to
consider the following two situations:

(€]
pi(n) < o (11)

This means that the buffer of the robotic unit is
empty at the next time step if no new task arrives
within this time. The robotic unit concerned will
thus request an increase of the task frequency

@)

pi(n) + C > p/™™* (12)

This means that the buffer of the robotic unit is full
and the robotic unit cannot receive a new task as
long as this condition holds. In this case it is clear
that the robotic unit concerned will request a
decrease of the task frequency, i.e., Aw(p;(n)) must
be negative. To summarize, we obtain:

Aw(pi(n))|p,~(n)<a,-> 0 (13)

Aw(pi(n))lpi(n)+C>pimax< 0 (14)

In the investigations carried out in this paper, the
feedback function represented in Fig. 3 is used.

Ba(p)

C
| )
A : :

FIGURE 3 Investigated feedback function.
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Of course there exist several possibilities for the
design of such feedback functions and the one
which we have chosen here is more or less arbitrary.
If the condition (11) holds, the current value of the
task frequency has to be increased by the value of
Aw™, whereas if the condition (12) is fulfilled it has
to be decreased by the value Aw™. In the region
between o; and C — p/™* the function is defined in
such a way, that a fine tuning takes place and at the
opt

optimal value p;

dAw(pi(n))
dpi(n)

>

=0 (15)

pi(n)=p;™

holds.
5.1.3 The Resulting Set of Equations

The M1R2-model with feedback is described by the
following set of time discrete difference equations:

pi(n+ 1) = (pi(n) — ci)x[pi(n) > i)

_ o]
=k [t a0
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FIGURE 4 Behaviour of the M1R2-model with feedback. Parameter values: C=1, p;(0)=0, p»(0)=0, p/**
=75, pP =75, a1 = 0.07, ap = 0.05, w(0) = 1074, w™* =2, Aw* = 0.0004, Aw™ = 0.0004.
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2
4 1) = wln) + (z Aw(m(fl)))
i=1

2
X X [0 < w(n)+ Z Aw(pi(n)) < wma"}
=1

(17)

with i=1,2, k€ N and the function x,[] as defined
in Eq. (5).

5.2 Dynamic Behaviour of the
M1R2-Model with Feedback

Itis obvious, that the Eqs. (16) and (17) represent an
open nonlinear time-discrete dynamical system. In
Fig. 4, a typical trajectory of the system is shown.
As one can see the system shows, after a transient
region, chaotic dynamics. In fact, we are not able to
localize any areas in the parameter space where the
system would indicate either a stationary, a periodic
or a quasi-periodic dynamics. Therefore, we expect
that without a suitable modification or extension,
this system can only show a chaotic dynamic behav-
iour, which is caused by the implemented flexible
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order-frequency m(n)
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FIGURE 5 Phase portraits of the order fre?uency w(n) at different productivities of the robotic units. Parameter values: C=1,

Pi(0)=0, pa(0)=0, p™* = 15, pi = 15, pP
0.002, o = 0.05, (b): a; = 0.02, ay = 0.05.

negotiation strategy. One can also see from Fig. 4
that there is a remarkable correlation between the
trajectories p;(n) and w(n), which is to be expected in
accordance with the construction of the system. In
addition, it can be seen that the dynamics of the task
frequency w(n) determine the buffer contents p;(n).
From the point of view of synergetics, the behav-
iour of w(n) is typical for an order parameter in the
vicinity of an instability. We therefore assume that
the flexibility of our MAS causes the system to be
always in the vicinity of an instability.

When looking at the phase portrait Aw(w(n))
(Fig. 4(d)) one can observe that the trajectories
of the system form a confined, complex, object in
the phase space [0, w™] x [-2Aw ™, 2Aw*]; which
means that they could belong to a strange attractor.
The centre of this object corresponds to the optimal
task frequency wy = 27/C Y%, oy of the MIR2-
model without feedback.

In Fig. 5(a) we have chosen the parameters of o; in
such a way that the optimal task frequency is located
in the lefthand side of the phase space. Conversely,
Fig. 5(b) corresponds to the optimal task frequency
being located on the righthand side of the phase
space, but outside the range which is given by the
value of w™*. As one can see, this results in a cor-
responding shift of the attractor-like object.

6 SUMMARY

In this work, two models of a simple manufactur-
ing-oriented MAS were introduced, namely the

=15, pP = 1.5, w(0) = 107*, w™* =2, Aw* = 0.0004, Aw™ = 0.0004, (a): o =
2

MI1R2-model without feedback (3)—(5) and with
feedback (16) and (17).

Depending on the control parameters, i.e., the
productivities ¢; of the two robotic units, the size C
of the tasks, and the task frequency w, the variant
without feedback is either under-loaded, works
optimally or is over-loaded (see Section 4.2 for
details). The M1R2-model without feedback shows
a periodic dynamic behaviour, which corresponds
to a constant productivity and is therefore suitable
for manufacturing-oriented MAS, but it is not flexi-
ble enough to adapt by self-organization to changes
of the size C of the tasks.

Hence, to improve flexibility, we introduced a
feedback mechanism into the model. Although the
negotiation strategy of the model with feedback is
still very simple, it has practical relevance, because a
time optimization criterion is considered as well as
real constraints such as, for example, the finite
buffer sizes.

7 OUTLOOK

One important result of our investigations is that the
mathematical modelling of close-to-reality manu-
facturing-oriented MAS leads to nonlinear evolu-
tion equations with complex couplings of the state
variables in which decision functions are involved
(see Section 4.1.2). These functions cause very
complex problems for analytical treatment of such
systems, therefore further work has to be carried
out in order to discover the basic features and
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characteristics of the interactions among the auto-
nomous agents, because this knowledge is a neces-
sary prior condition for designing -efficient
negotiation strategies in flexible manufacturing-
oriented MAS. As already mentioned, one can
observe a chaotic dynamic behaviour of our simple
MI1R2-model with feedback within large areas in
the parameter space. This has, from our point of
view, mainly two consequences:

(1) It is to be expected that larger and more com-
plex manufacturing-oriented MAS with imple-
mented self-organization principles also show
chaotic dynamics.

(2) To enable the application of MAS in flexible
manufacturing, this chaotic behaviour has to be
controlled or even avoided, in order to achieve a
stable stationary oscillatory dynamic behaviour
which corresponds to a regular and in some
sense optimal mode of operation. Hence, suit-
able and efficient control mechanisms have to
be developed, analysed and implemented in the
negotiation strategies.

In future work we will therefore, at a first step, try
to stabilize or control the chaotic dynamics; to this
end we intend to use the well-known methods of
nonlinear dynamical systems, like those proposed
in (Ott et al., 1990) or (Pyragas, 1992; 1993). These
methods have to be adapted and investigated
thoroughly before implementing them into the
negotiation strategies. Concerning the numerical
analysis it is our intention to use concepts which are
based on the theory of nonlinear dynamical sys-
tems, such as calculation of Lyapunov exponents
(Oseledec, 1968; Wolf et al., 1985) or complexity
analysis using symbolic dynamics (Hao, 1991). As
regards analytical investigations, we plan to make
use of the well-known concepts of synergetics and
their extensions to delayed feedback systems pre-
sented in (Wischert et al., 1994; Schanz, 1997).

- Ata second step we shall focus on more complex
planning situations, which lead to combinatorial
optimization problems. To solve these problems,
we can make use of well-known techniques such as
simulated annealing (van Laarhoven and Aarts,

1987) or the stochastic net method (Fort, 1988), but
also of more recently developed ones, based on the
pattern-formation is pattern-recognition analogy of
synergetics (Starke, 1997; Starke and Schanz, 1998).

Finally, we shall have to enlarge the system and
to introduce stochastic variables in order to simu-
late imprecise planning situations or malfunctions
in the manufacturing-oriented MAS, such as
changes in the production chains or sudden break-
downs of robotic units. At this stage, we shall also
have to apply stochastic analysis in order to calcu-
late corresponding distribution functions.

All these topics contribute to our main goal
which consists in developing generalized rules and
concepts of design of negotiation strategies in
manufacturing-oriented MAS to enable produc-
tion to be self-organized and hence as flexible as
possible.
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