
Research Article
Lorentz Distributed Noncommutative 𝐹(𝑇, 𝑇𝐺)
Wormhole Solutions

M. Sharif and Kanwal Nazir

Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan

Correspondence should be addressed to M. Sharif; msharif.math@pu.edu.pk

Received 27 October 2017; Revised 21 December 2017; Accepted 25 December 2017; Published 7 February 2018

Academic Editor: Elias C. Vagenas

Copyright © 2018 M. Sharif and Kanwal Nazir. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited. The publication of this article was funded by SCOAP3.

The aim of this paper is to study static spherically symmetric noncommutative 𝐹(𝑇, 𝑇𝐺) wormhole solutions along with Lorentzian
distribution. Here, 𝑇 and 𝑇𝐺 are torsion scalar and teleparallel equivalent Gauss-Bonnet term, respectively. We take a particular
redshift function and two 𝐹(𝑇, 𝑇𝐺)models. We analyze the behavior of shape function and also examine null as well as weak energy
conditions graphically. It is concluded that there exist realistic wormhole solutions for both models. We also studied the stability of
these wormhole solutions through equilibrium condition and found them stable.

1. Introduction

It is well-known through different cosmological observations
that our universe undergoes accelerated expansion that opens
up new directions. A plethora of work has been performed
to explain this phenomenon. It is believed that, behind this
expansion, there is a mysterious force dubbed as dark energy
(DE) identified by its negative pressure. Its nature is generally
described by the following two well-known approaches. The
first approach leads to modifying the matter part of general
relativity (GR) action that gives rise to several DE models
including cosmological constant, 𝑘-essence, Chaplygin gas,
and quintessence [1–5].

The second way leads to gravitational modification which
results in modified theories of gravity. Among these theories,
the 𝐹(𝑇) theory [6] is a viable modification which is achieved
by torsional formulation. Various cosmological features of
this theory have been investigated like solar system con-
straints, static wormhole solutions, discussion of Birkhoff ’s
theorem, instability ranges of collapsing stars, and many
more [6–8]. Recently, a well-known modified version of𝐹(𝑇) theory is proposed by involving higher order torsion
correction terms named as 𝐹(𝑇, 𝑇𝐺) theory depending upon𝑇 and𝑇𝐺 [9].This is a completely different theory which does
not correspond to𝐹(𝑇) aswell as any othermodified theory. It
is a novel modified gravity theory having no curvature terms.

The dynamical analysis [10] and cosmological applications
[11] of this theory turn out to be very captivating.

Chattopadhyay et al. [12] studied pilgrim DE model
and reconstructed 𝐹(𝑇, 𝑇𝐺) models by assuming flat FRW
metric. Jawad et al. [13] explored reconstruction scheme in
this theory by considering a particular ghost DE model.
Jawad and Debnath [14] worked on reconstruction scenario
by taking a new pilgrim DE model and evaluated differ-
ent cosmological parameters. Zubair and Jawad discussed
thermodynamics at the apparent horizon [15]. We developed
reconstructed models by assuming different eras of DE and
their combinations with FRW and Bianchi type I universe
models, respectively [16].

The study of wormhole solutions provides fascinating
aspects of cosmology especially in modified theories. Agnese
and Camera [17] discussed static spherically symmetric and
traversable wormhole solutions in Brans-Dicke scalar tensor
theory. Anchordoqui et al. [18] showed the existence of
analytical wormhole solutions and concluded that there
may exist a wormhole sustained by normal matter. Lobo
and Oliveira [19] considered 𝑓(𝑅) theory to examine the
traversable wormhole geometries through different equa-
tions of state. They analyzed that wormhole solution may
exist in this theory and discussed the behavior of energy
conditions. Böhmer et al. [20] examined static traversable
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𝐹(𝑇) wormhole geometry by considering a particular 𝐹(𝑇)
model and constructed physically viable wormhole solutions.
The dynamical wormhole solutions have also been studied
in this theory by assuming anisotropic fluid [21]. Recently,
Sharif and Ikram [22] explored static wormhole solutions and
investigated energy conditions in 𝑓(𝐺) gravity. They found
that these conditions are satisfied only for barotropic fluid in
some particular regions.

General relativity does not explain microscopic physics
(completely described through quantum theory). Classically,
the smooth texture of space-time damages at short distances.
In GR, the space-time geometry is deformed by gravity
while it is quantized through quantum gravity. To over-
come this problem, noncommutative geometry establishes
a remarkable framework that discusses the dynamics of
space-time at short distances. This framework introduces
a scale of minimum length having a good agreement with
Planck length.The consequences of noncommutativity can be
examined in GR by taking the standard form of the Einstein
tensor and altered form of matter tensor.

Noncommutative geometry is considered as the essential
property of space-time geometry which plays an impressive
role in several areas. Rahaman et al. [23] explored wormhole
solutions along with noncommutative geometry and showed
the existence of asymptotically flat solutions for four dimen-
sions. Abreu and Sasaki [24] studied the effects of null energy
condition (NEC) and weak energy condition (WEC) with
noncommutative wormhole. Jamil et al. [25] discussed the
same work in 𝑓(𝑅) theory. Sharif and Rani [26] investigated
wormhole solutions with the effects of electrostatic field and
for galactic halo regions in 𝐹(𝑇) gravity.

Recently, Bhar and Rahaman [27] considered Lorentzian
distributed density function and examined the fact that
wormhole solutions exist in different dimensional space-time
with noncommutative geometry. They found that wormhole
solutions can exist only in four and five dimensions but no
wormhole solution exists for higher than five dimensions.
Jawad and Rani [28] investigated Lorentz distributed non-
commutative wormhole solutions in 𝐹(𝑇) gravity. We have
explored noncommutative geometry in 𝐹(𝑇, 𝑇𝐺) gravity and
found that effective energy-momentum tensor is responsible
for the violation of energy conditions rather than noncom-
mutative geometry [29]. Inspired by all these attempts, we
investigate whether physically acceptable wormholes exist
in 𝐹(𝑇, 𝑇𝐺) gravity along with noncommutative Lorentz
distributed geometry. We study wormhole geometry and
corresponding energy conditions.

The paper is arranged as follows. Section 2 briefly recalls
the basics of 𝐹(𝑇, 𝑇𝐺) theory, the wormhole geometry, and
energy conditions. In Section 3, we investigate physically
acceptable wormhole solutions and energy conditions for
two particular 𝐹(𝑇, 𝑇𝐺) models. In Section 4, we analyze
the stability of these wormhole solutions. The last section
summarizes the results.

2. 𝐹(𝑇,𝑇𝐺) Gravity
This section presents some basic review of 𝐹(𝑇, 𝑇𝐺) gravity.
The idea of such extension is to construct an action involving

higher order torsion terms. In curvature theory other than
simple modification as 𝑓(𝑅) theory, one can propose the
higher order curvature correction terms in order to modify
the action such as GB combination 𝐺 or functions 𝑓(𝐺). In
a similar way, one can start from the teleparallel theory and
construct an action by proposing higher torsion correction
terms.

The most dominant variable in the underlying gravity is
the tetrad field 𝑒𝑎(𝑥𝜆). The simplest one is the trivial tetrad
which can be expressed as 𝑒𝑎 = 𝛿𝜆𝑎𝜕𝜆 and 𝑒𝑏 = 𝛿𝜆𝑏𝜕𝜆, where
the Kronecker delta is denoted by 𝛿𝜆𝑎 .These tetrad fields are of
less interest as they result in zero torsion. On the other hand,
the nontrivial tetrad fields aremore favorable for constructing
teleparallel theory because they give nonzero torsion. They
can be expressed as

ℎ𝑎 = ℎ𝑎𝜆𝜕𝜆,
ℎ𝑏 = ℎ𝑎𝜆𝑑𝑥𝜆.

(1)

The nontrivial tetrad satisfies ℎ𝑎𝜆ℎ𝑏𝜆 = 𝛿𝑎𝑏 and ℎ𝑎𝜆ℎ𝑎𝜇 = 𝛿𝜇
𝜆
.

The tetrad fields can be related to metric tensor through

𝑔𝜆𝜇 = 𝜂𝑎𝑏ℎ𝑎𝜆ℎ𝑏𝜇, (2)

where 𝜂𝑎𝑏 = diag(1, −1, −1, −1) is the Minkowski metric.
Here, Greek indices (𝜆, 𝜇) represent coordinates on manifold
and Latin indices (𝑎, 𝑏) correspond to the coordinates on
tangent space.The other field is described as the connection 1-
forms𝜔𝑎𝑏(𝑥𝜆)which are the source of parallel transportation,
also known as Weitzenböck connection. It has the following
form:

𝜔𝜇
𝜆] = ℎ𝜇𝑎ℎ𝑎𝜆,]. (3)

The structure coefficients 𝐶𝑐𝑎𝑏 appear in commutation
relation of the tetrad as

𝐶𝑐𝑎𝑏 = ℎ−1𝑐 [ℎ𝑎, ℎ𝑏] , (4)

where

𝐶𝑐𝑎𝑏 = ℎ𝜇𝑏ℎ𝜆𝑎 (ℎ𝑐𝜆,𝜇 − ℎ𝑐𝜇,𝜆) . (5)

The torsion as well as curvature tensors has the following
expressions:

𝑇𝑎𝑏𝑐 = −𝐶𝑎𝑏𝑐 − 𝜔𝑎𝑏𝑐 + 𝜔𝑎𝑐𝑏,
𝑅𝑎𝑏𝑐𝑑 = 𝜔𝑒𝑏𝑑𝜔𝑎𝑒𝑐 + 𝜔𝑎𝑏𝑑,𝑐 − 𝐶𝑒𝑐𝑑𝜔𝑎𝑏𝑒 − 𝜔𝑒𝑏𝑐𝜔𝑎𝑒𝑑 − 𝜔𝑎𝑏𝑐,𝑑.

(6)

The contorsion tensor can be described as

𝐾𝑎𝑏𝑐 = −𝐾𝑏𝑎𝑐 = 1
2 (−𝑇𝑎𝑏𝑐 + 𝑇𝑐𝑎𝑏 − 𝑇𝑏𝑐𝑎) . (7)

Both the torsion scalars are written as

𝑇 = 1
4𝑇𝑎𝑏𝑐𝑇𝑎𝑏𝑐 +

1
2𝑇𝑎𝑏𝑐𝑇𝑐𝑏𝑎 − 𝑇𝑎𝑏𝑎𝑇𝑐𝑏𝑐,

𝑇𝐺 = (𝐾𝑒𝑎2𝑏𝐾𝑎3𝑓𝑐𝐾𝑎1 𝑒𝑎𝐾𝑓𝑎4𝑑
+ 2𝐾𝑒𝑎4𝑓𝐾𝑓𝑐𝑑𝐾𝑎1𝑎2𝑎𝐾𝑎3 𝑒𝑏 + 2𝐾𝑒𝑎4 𝑐,𝑑𝐾𝑎3 𝑒𝑏 × 𝐾𝑎1𝑎2𝑎
− 2𝐾𝑎3 𝑒𝑏𝐾𝑒𝑓𝑐𝐾𝑎1𝑎2𝑎𝐾𝑓𝑎4𝑑) 𝛿𝑎𝑏𝑐𝑑𝑎1𝑎2𝑎3𝑎4 .

(8)
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This comprehensive theory has been proposed by Kofinas et
al. [10] whose action is described as

𝑆 = ∫ℎ[𝐹 (𝑇, 𝑇𝐺)𝜅2 +L𝑚]𝑑4𝑥, (9)

where L𝑚 is the matter Lagrangian, 𝜅2 = 1, 𝑔 represents
determinant of the metric coefficients, and ℎ = √−𝑔 =
det(ℎ𝑎𝜆). The field equations obtained by varying the action
about ℎ𝑎𝜆 are given as

𝐶𝑏𝑐𝑑 (𝐻𝑑𝑐𝑎 + 2𝐻[𝑎𝑐]𝑑)
+ (−𝑇𝐺𝐹𝑇𝐺 (𝑇, 𝑇𝐺) + 𝐹 (𝑇, 𝑇𝐺) − 𝑇𝐹𝑇 (𝑇, 𝑇𝐺)) 𝜂𝑎𝑏
+ 2 (𝐻[𝑏𝑎]𝑐 − 𝐻[𝑘𝑐𝑏]𝑎 + 𝐻[𝑎𝑐]𝑏) 𝐶𝑑𝑑𝑐
+ 2 (−𝐻[𝑐𝑏]𝑎 + 𝐻[𝑎𝑐]𝑏 + 𝐻[𝑏𝑎]𝑐)

,𝑐
+ 4𝐻[𝑑𝑏]𝑐

× 𝐶(𝑑𝑐)𝑎 + 𝑇𝑎𝑐𝑑𝐻𝑐𝑑𝑏 −H
𝑎𝑏 = 𝜅2T𝑎𝑏,

(10)

where

𝐻𝑎𝑏𝑐 = (𝜂𝑎𝑐𝐾𝑏𝑑𝑑 − 𝐾𝑏𝑐𝑎) 𝐹𝑇 (𝑇, 𝑇𝐺) + 𝐹𝑇𝐺 (𝑇, 𝑇𝐺)
⋅ [(𝜖𝑎𝑏𝑙𝑓𝐾𝑑𝑞𝑟𝐾𝑙𝑑𝑝 + 2𝐾𝑏𝑐𝑝𝜖𝑎𝑑𝑙𝑓𝐾𝑑𝑞𝑟
+ 𝐾𝑖𝑙𝑝𝜖𝑞𝑑𝑙𝑓𝐾𝑗𝑑𝑟)𝐾𝑞𝑓𝑡𝜖𝑘𝑝𝑟𝑡 + 𝜖𝑎𝑏𝑙𝑑𝐾𝑓𝑑𝑝𝜖𝑐𝑝𝑟𝑡 (𝐾𝑙𝑓𝑟,𝑡
− 1
2𝐶𝑞𝑡𝑟𝐾𝑙𝑓𝑞) + 𝜖𝑐𝑝𝑟𝑡𝐾𝑑𝑓𝑝𝜖𝑎𝑙𝑑𝑓 (𝐾𝑏𝑘𝑟,𝑡

− 1
2𝐶𝑞𝑡𝑟𝐾𝑏𝑙𝑞)] + 𝜖𝑐𝑝𝑟𝑡𝜖𝑎𝑙𝑑𝑓 × [𝐹𝑇𝐺 (𝑇, 𝑇𝐺)

⋅ 𝐾𝑏𝑙[𝑞𝐾𝑑𝑓𝑟]𝐶𝑞𝑝𝑡 + (𝐾𝑏𝑙𝑝𝐹𝑇𝐺 (𝑇, 𝑇𝐺)𝐾𝑑𝑓𝑟),𝑡] ,
H
𝑎𝑏 = 𝐹𝑇 (𝑇, 𝑇𝐺) 𝜖𝑎𝑙𝑐𝑒𝐾𝑙𝑓𝑟𝜖𝑏𝑟𝑡𝑒𝐾𝑓𝑐𝑡.

(11)

Here, T𝑎𝑏 represents the matter energy-momentum tensor.
The functions 𝐹𝑇 and 𝐹𝑇𝐺 are the derivatives of 𝐹with respect
to 𝑇 and 𝑇𝐺, respectively. Notice that, for 𝐹(𝑇, 𝑇𝐺) = −𝑇,
teleparallel equivalent to GR is achieved. Also, for 𝑇𝐺 = 0,
we can obtain 𝐹(𝑇) theory.

Next, we explain thewormhole geometry aswell as energy
conditions in this gravity.

2.1. Wormhole Geometry. Wormhole associates two discon-
nected models of the universe or two distant regions of the
same universe (interuniverse or intrauniverse wormhole).
It has basically a tube, bridge, or tunnel type appearance.
This tunnel provides a shortcut between two distant cosmic
regions. The well-known example of such a structure is
defined by Misner and Wheeler [30] in the form of solutions
of the Einstein field equations named as wormhole solutions.
Einstein and Rosen made another attempt and established
Einstein-Rosen bridge.

The first attempt to introduce the notion of traversable
wormholes is made by Morris and Thorne [31]. The

Lorentzian traversable wormholes are more fascinating in
a way that one may traverse from one to another end
of the wormhole [32]. The traversability is possible in the
presence of exotic matter as it produces repulsion which
keeps open throat of the wormhole. Being the generalization
of Schwarzschild wormhole, these wormholes have no event
horizon and allow two-way travel. The space-time for static
spherically symmetric as well as traversable wormholes is
defined as [31]

𝑑𝑠2 = 𝑒2𝛼(𝑟)𝑑𝑡2 − 𝑑𝑟2
(1 − 𝛽 (𝑟) /𝑟) − 𝑟2𝑑𝜃2

− 𝑟2sin2𝜃𝑑𝜙2,
(12)

where 𝛼(𝑟) is the redshift function and 𝛽(𝑟) represents
the shape function. The gravitational redshift is measured
through the function 𝛼(𝑟) whereas 𝛽(𝑟) controls the worm-
hole shape. The radial coordinate 𝑟, redshift, and shape
functions must satisfy few conditions for the traversable
wormhole. The redshift function needs to satisfy no horizon
condition because it is necessary for traversability. Thus to
avoid horizons, 𝛼(𝑟) must be finite throughout. For this
purpose, we assumed zero redshift function that implies
𝑒2𝛼(𝑟) → 1. There are two properties related to the shape
function to maintain the wormhole geometry. The first
property is positiveness; that is, as 𝑟 → ∞, 𝛽(𝑟) must
be defined as a positive function. The second is flaring-out
condition; that is, ((𝛽(𝑟) − 𝑟𝛽(𝑟))/𝛽2(𝑟)) > 0 and 𝛽(𝑟) = 𝑟th
at 𝑟 = 𝑟th with 𝛽(𝑟th) < 1 (𝑟th is the wormhole throat radius).
The condition of asymptotic flatness (𝛽(𝑟)/𝑟 → 0 as 𝑟 → ∞)
should be fulfilled by the space-time at large distances.

To investigate the wormhole solutions, we assume a
diagonal tetrad [31] as

ℎ𝑎𝜆 = diag(𝑒−𝛼(𝑟), 1
(1 − 𝛽 (𝑟) /𝑟) , 𝑟, 𝑟 sin 𝜃) . (13)

This is the simplest and frequently used tetrad for the Morris
and Thorne static spherically symmetric metric. This also
provides nonzero 𝑇G which is the basic ingredient for this
theory. If we take some other tetrad then it may lead to zero𝑇G. Thus these orthonormal bases are most suitable for this
theory. The torsion scalars turn out to be

𝑇 = 4
𝑟 (1 −

𝛽 (𝑟)
𝑟 ) 𝛼 + 2

𝑟2 (1 −
𝛽 (𝑟)
𝑟 ) , (14)

𝑇𝐺 = 8𝛽 (𝑟) 𝛼 (𝑟)
𝑟4 − 8𝛽 (𝑟) 𝛼2 (𝑟)

𝑟3 (1 − 𝛽 (𝑟)
𝑟 )

+ 12𝛽 (𝑟) 𝛼 (𝑟) 𝛽 (𝑟)
𝑟4 − 8𝛽 (𝑟) 𝛼 (𝑟)

𝑟3
− 12𝛽2 (𝑟) 𝛼 (𝑟)

𝑟5
− 8𝛽 (𝑟) 𝛼 (𝑟)

𝑟3 (1 − 𝛽 (𝑟)
𝑟 ) .

(15)
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In order to satisfy the condition of no horizon for a traversable
wormhole, we have to assume 𝛼(𝑟) = 0. Substituting this
assumption in the above torsion scalars, we obtain 𝑇𝐺 =0 which means that the function 𝐹(𝑇, 𝑇𝐺) reduces to 𝐹(𝑇)
representing 𝐹(𝑇) theory. Hence, we cannot take 𝛼(𝑟) as a
constant function; instead we assume 𝛼(𝑟) as

𝛼 (𝑟) = −𝜓𝑟 , 𝜓 > 0, (16)

which is finite and nonzero for 𝑟 > 0. Also, it satisfies
asymptotic flatness as well as no horizon condition. We
assume that anisotropic matter threads the wormhole for
which the energy-momentum tensor is defined as

T
(𝑚)
𝜆𝜇 = (𝑝𝑡 + 𝜌)𝑉𝜆𝑉𝜇 − 𝑔𝜆𝜇𝑝𝑡 + (𝑝𝑟 − 𝑝𝑡) 𝜂𝜇𝜂𝜆, (17)

where 𝜌, 𝑉𝜆, 𝜂𝜆, 𝑝𝑟, and 𝑝𝑡 represent the energy density,
four-velocity, radial space-like four-vector orthogonal to 𝑉𝜆,
and radial and tangential components of pressure, respec-
tively. We consider energy-momentum tensor as T(𝑚)𝜆𝜇 =
diag(𝜌, −𝑝𝑟, −𝑝𝑡, −𝑝𝑡). Using (12)–(16) in (10), we obtain the
field equations as

𝜌 = 𝐹 (𝑇, 𝑇𝐺) + 2𝛽 (𝑟)
𝑟2 𝐹𝑇 (𝑇, 𝑇𝐺) − 𝑇𝐺𝐹𝑇𝐺 (𝑇, 𝑇𝐺)

− 𝑇𝐹𝑇 (𝑇, 𝑇𝐺) − 4𝐹𝑇𝑟 (1 − 𝛽 (𝑟)
𝑟 )

+ 4𝐹𝑇𝐺 (𝑇, 𝑇𝐺)𝑟3 (5𝛽 (𝑟)
𝑟 − 3𝛽2 (𝑟)

𝑟2 − 2

− 3𝛽 (𝑟) (1 − 𝛽 (𝑟)
𝑟 )) + 8𝐹𝑇𝐺 (𝑇, 𝑇𝐺)𝑟2 (1

− (2 − 𝛽 (𝑟)
𝑟 ) 𝛽 (𝑟)

𝑟 ) ,

(18)

𝑝𝑟 = −𝐹 (𝑇, 𝑇𝐺) + 𝐹𝑇 (𝑇, 𝑇𝐺) (𝑇 − 4𝜓
𝑟3 −

2𝛽 (𝑟)
𝑟3

+ 4𝛽 (𝑟) 𝜓
𝑟4 ) + 𝑇𝐺𝐹𝑇𝐺 (𝑇, 𝑇𝐺) + 48

𝑟4 (1 −
𝛽 (𝑟)
𝑟 )2

⋅ 𝜓𝐹𝑇𝐺 (𝑇, 𝑇𝐺) ,

(19)

𝑝𝑡 = −𝐹 (𝑇, 𝑇𝐺) + 𝑇𝐺𝐹𝑇𝐺 (𝑇, 𝑇𝐺) + 𝑇𝐹𝑇 (𝑇, 𝑇𝐺)
+ (𝛽 (𝑟)

𝑟3 − 2𝜓
𝑟3 −

𝛽 (𝑟)
𝑟2 + 𝛽 (𝑟) 𝜓

𝑟4 + 2𝜓2
𝑟4

+ 𝛽 (𝑟) 𝜓
𝑟3 − 2𝛽 (𝑟) 𝜓2

𝑟5 − 4𝛽 (𝑟) 𝜓
𝑟4 + 4𝜓

𝑟3 )

⋅ 𝐹𝑇 (𝑇, 𝑇𝐺) + 2 (1𝑟 − (1 − 𝛽 (𝑟)
𝑟 )𝜓 + 𝛽 (𝑟) 𝜓

𝑟3 )

⋅ 𝐹𝑇 (𝑇, 𝑇𝐺) + (12𝜓𝛽 (𝑟)
𝑟5 − 12𝜓𝛽2 (𝑟)

𝑟6

+ 16𝛽 (𝑟) 𝜓2
𝑟6 + 12𝜓𝛽 (𝑟)

𝑟4 − 8𝜓2
𝑟5 − 8𝛽2 (𝑟) 𝜓2

𝑟7

+ 12𝛽 (𝑟) 𝜓𝛽 (𝑟)
𝑟5 − 16𝜓

𝑟4 − 16𝛽2 (𝑟) 𝜓
𝑟6

− 32𝛽 (𝑟) 𝜓
𝑟5 )𝐹𝑇𝐺 (𝑇, 𝑇𝐺) + 8𝜓

𝑟3 (1

− 𝛽 (𝑟)
𝑟 (2 + 𝛽 (𝑟)

𝑟 )) × 𝐹𝑇𝐺 (𝑇, 𝑇𝐺) ,
(20)

where prime stands for the derivative with respect to 𝑟.
2.2. Energy Conditions. These conditions are mostly con-
sidered in GR and also in modified theories of gravity. As
these conditions are violated in GR and this guarantees the
presence of realistic wormhole, the origin of these conditions
is the Raychaudhuri equations along with the requirement
of attractive gravity [33]. Consider time-like and null vector
field congruence as 𝑢𝜆 and 𝑘𝜆, respectively; the Raychaudhuri
equations are formulated as follows:

𝑑Θ
𝑑𝜏 − 𝜔𝜆𝜇𝜔𝜆𝜇 + 𝑅𝜆𝜇𝑢𝜆𝑢𝜇 + 1

3Θ2 + 𝜎𝜆𝜇𝜎𝜆𝜇 = 0,
𝑑Θ
𝑑𝜒 − 𝜔𝜆𝜇𝜔𝜆𝜇 + 𝑅𝜆𝜇𝑘𝜆𝑘𝜇 + 1

2Θ2 + 𝜎𝜆𝜇𝜎𝜆𝜇 = 0,
(21)

where the expansion scalar Θ is used to explain expansion
of the volume and shear tensor 𝜎𝜆𝜇 provides the information
about the volume distortion.The vorticity tensor𝜔𝜆𝜇 explains
the rotating curves. The positive parameters 𝜒 and 𝜏 are used
to interpret the congruence in manifold. In the above equa-
tions, we may neglect quadratic terms as we consider small
volume distortion (without rotation). Thus these equations
reduce to Θ = −𝜏𝑅𝜆𝜇𝑢𝜆𝑢𝜇 = −𝜒𝑅𝜆𝜇𝑘𝜆𝑘𝜇. The expressionΘ < 0 ensures the attractiveness of gravity which leads to
𝑅𝜆𝜇𝑢𝜆𝑢𝜇 ≥ 0 and 𝑅𝜆𝜇𝑘𝜆𝑘𝜇 ≥ 0. In modified theories, the
Ricci tensor is replaced by the effective energy-momentum
tensor, that is, T(eff)

𝜆𝜇
𝑢𝜆𝑢𝜇 ≥ 0 and T

(eff)
𝜆𝜇

𝑘𝜆𝑘𝜇 ≥ 0 which
introduce effective pressure and effective energy density in
these conditions.

It is well-known that the violation of NEC is the basic
ingredient to develop a traversable wormhole (due to the
existence of exotic matter). It is noted that, in GR, this type of
matter leads to the nonrealistic wormhole; otherwise normal
matter fulfills NEC. In modified theories, we involve effective
energy density as well as pressure by including effective
energy-momentum tensorTeff

𝜆𝜇 in the corresponding energy
conditions. This effective energy-momentum tensor is given
as

T
(eff)
𝜆𝜇 = T

(𝐻)
𝜆𝜇 +T

(𝑚)
𝜆𝜇 , (22)

where T(𝐻)
𝜆𝜇

are dark source terms related to the underlying
𝐹(𝑇, 𝑇𝐺) theory. The condition (violation of NEC) related
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to T
(eff)
𝜆𝜇

confirms the presence of traversable wormhole by
holding its throat open. Thus, there may be a chance for
normal matter to fulfill these conditions. Hence, there can be
realistic wormhole solutions in this modified scenario.

The four conditions (NEC, WEC, dominant (DEC), and
strong energy condition (SEC)) are described as follows:

(i) NEC: 𝑝(eff)𝑛 + 𝜌(eff) ≥ 0, where 𝑛 = 1, 2, 3.
(ii) WEC: 𝑝(eff)𝑛 + 𝜌(eff) ≥ 0, 𝜌(eff) ≥ 0.
(iii) DEC: 𝑝(eff)𝑛 ± 𝜌(eff) ≥ 0, 𝜌(eff) ≥ 0.
(iv) SEC: 𝑝(eff)𝑛 + 𝜌(eff) ≥ 0, 𝜌(eff) + 3𝑝(eff) ≥ 0.
Solving (18) and (19) for effective energy density and

pressure, we evaluate the radial effective NEC as

𝑝(eff)𝑟 + 𝜌(eff) = 1
𝐹𝑇 (𝑇, 𝑇𝐺) (

−𝛽 (𝑟)
𝑟3 + 𝛽 (𝑟)

𝑟2

+ 2
𝑟 (1 −

𝛽 (𝑟)
𝑟 ) 𝛼) .

(23)

So, 𝑝(eff)𝑟 + 𝜌(eff) < 0 represents the violation of effective NEC
as

(−𝛽 (𝑟)
𝑟3 + 𝛽 (𝑟)

𝑟2 + 2
𝑟 (1 −

𝛽 (𝑟)
𝑟 ) 𝛼) < 0. (24)

If this condition holds then it shows that the traversable
wormhole exists in this gravity.

3. Wormhole Solutions

Noncommutative geometry is the fundamental discretization
of the space-time and it performs effectively in different
areas. It plays an important role in eliminating the divergence
that originates in GR. In noncommutativity, smeared sub-
stances take the place of pointlike structures. Considering
the Lorentzian distribution, the energy density of particle-
like static spherically symmetric object with massM has the
following form [34]:

𝜌NCL = M√𝜃
𝜋2 (𝜃 + 𝑟2)2 , (25)

where 𝜃 is the noncommutative parameter. Comparing (18)
and (25), that is, 𝜌NCL = 𝜌, we obtain

M√𝜃
𝜋2 (𝜃 + 𝑟2)2 = 𝐹 (𝑇, 𝑇𝐺) + 2𝛽 (𝑟) 𝐹𝑇𝑟2 − 𝑇𝐹𝑇 (𝑇, 𝑇𝐺)

− 4𝐹𝑇 (𝑇, 𝑇𝐺)𝑟 (1 − 𝛽 (𝑟)
𝑟 ) − 𝑇𝐺𝐹𝑇𝐺 (𝑇, 𝑇𝐺)

+ 4𝐹𝑇𝐺 (𝑇, 𝑇𝐺)𝑟3 (5𝛽 (𝑟)
𝑟 − 2 − 3𝛽2 (𝑟)

𝑟2

− 3(1 − 𝛽 (𝑟)
𝑟 ) 𝛽 (𝑟)) + 8𝐹𝑇𝐺 (𝑇, 𝑇𝐺)𝑟2 (1

− 𝛽 (𝑟)
𝑟 (2 − 𝛽 (𝑟)

𝑟 )) .
(26)

The above equation contains two unknown functions𝐹(𝑇, 𝑇𝐺) and 𝛽(𝑟). In order to solve this equation, we have
to assume one of them and evaluate the other one. Next, we
consider some specific and viable models from 𝐹(𝑇, 𝑇𝐺) the-
ory and investigate the wormhole solutions under Lorentzian
distributed noncommutative geometry. We also discuss the
corresponding energy conditions.

3.1. First Model. The first model is considered as [15]

𝐹 (𝑇, 𝑇𝐺) = −𝑇 + 𝛾1 (𝑇2 + 𝛾2𝑇𝐺) + 𝛾3 (𝑇2 + 𝛾4𝑇𝐺)2 , (27)

where 𝛾1, 𝛾2, 𝛾3, and 𝛾4 are arbitrary constants. Here, we
take 𝛾2 and 𝛾4 as dimensionless ones whereas 𝛾1 and 𝛾3 have
dimensions of lengths. This model involves second-order 𝑇𝐺
terms and fourth-order contribution from torsion term 𝑇.
Using (14), (15), and (27) in (26), we achieve a complicated
differential equation in terms of 𝛽(𝑟) that cannot be handled
analytically. So, we solve it numerically by choosing the
corresponding parameters as 𝛾1 = 81, 𝛾2 = −0.0091, 𝛾3 = 12,
and 𝛾4 = 32.The values of the remaining parametersM = 15,𝜃 = 0.5, and 𝜓 = 1 are taken from [28]. To plot the graph of𝛽(𝑟), we take the initial values as 𝛽(1) = 0.7, 𝛽(1) = 9.9, and𝛽(1) = 5.5. Figure 1(a) represents the increasing behavior
of shape function 𝛽(𝑟). We discuss the wormhole throat by
plotting 𝛽(𝑟) − 𝑟 in Figure 1(b).

As we know, throat radius is the point where 𝛽(𝑟) − 𝑟
cuts the 𝑟-axis. Here, the throat radius is located at 𝑟th =1.029 which also satisfies the condition 𝛽(𝑟) = 𝑟th up to two
digits; that is, 𝛽(1.029) = 1.028. Figure 1(c) implies that the
space-time does not satisfy the asymptotic flatness condition.
Figure 2(a) represents the validity of condition (24). Thus,
the violation of effective NEC confirms the presence of
traversable wormhole. Also, Figure 2(b) shows the plots of𝜌+𝑝𝑟, Figure 2(c) 𝜌+𝑝𝑡, and Figure 2(d) 𝜌 for normalmatter
that exhibit positive behavior in the interval 1.003 < 𝑟 <1.015. This shows that ordinary matter satisfies the NEC and
physically acceptable wormhole solution is achieved for this
model.

3.2. Second Model. We assume the second model as [10]

𝐹 (𝑇, 𝑇𝐺) = −𝑇 + 𝜂1√𝑇2 + 𝜂2𝑇𝐺, (28)

where 𝜂1 and 𝜂2 are the arbitrary constants. We get a dif-
ferential equation by substituting (14), (15), and (28) in (26).
The numerical technique is used to calculate 𝛽(𝑟) from the
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Figure 1: Plots of 𝛽(𝑟), 𝛽(𝑟) − 𝑟 and 𝛽(𝑟)/𝑟 versus 𝑟 for the first model.

differential equation by assuming same values of 𝜃, M, and𝜓 as above. The model parameters are taken as 𝜂1 = −1.1259
and 𝜂2 = −0.9987. Also, we take the following conditions:𝛽(1.5) = 2.1, 𝛽(1.5) = −133.988, and 𝛽(1.5) = −60000.
We discuss the properties necessary for the development of
wormhole structure. The plot of shape function is shown in
Figure 3(a)which represents increasing behavior for all values
of 𝑟. It can be noted that 𝛽(0.5) = 0.5. In Figure 3(b), we plot𝛽(𝑟) − 𝑟 versus 𝑟 to discuss the location of wormhole throat.
It can be observed that small values of 𝑟 refer to the throat
radius.

Figure 3(c) represents the behavior of 𝛽(𝑟)/𝑟. It can be
seen that as the value of 𝑟 increases, the curve of 𝛽(𝑟)/𝑟
approaches 0. Hence, the space-time satisfies asymptotically
flatness condition of Figure 4(a) which represents the neg-
ative behavior and shows the validity of condition (24).
For physically acceptable wormhole solution, we check the
graphical behavior of NEC and WEC for matter energy
density and pressure. Figure 4 shows that 𝜌 + 𝑝𝑟, 𝜌 + 𝑝𝑡,
and 𝜌 behave positively in the intervals 1.32 ≤ 𝑟 ≤ 1.474,1.28 ≤ 𝑟 ≤ 1.342, and 1.307 ≤ 𝑟 ≤ 1.471, respectively.
The common region of these intervals is 1.28 ≤ 𝑟 ≤ 1.342.
This indicates that NEC and WEC are satisfied in a very
small interval. Thus there can exist a micro or tiny physically

acceptable wormhole for this model. Tiny wormhole means
small radius with narrow throat.

4. Equilibrium Condition

In this section, we investigate equilibrium structure of worm-
hole solutions. For this purpose, we consider generalized
Tolman-Oppenheimer-Volkoff equation in an effective man-
ner as

− 𝑝(eff)𝑟 − (𝑝(eff)𝑟 + 𝜌(eff))(𝛼
2 ) + (𝑝(eff)𝑡 − 𝑝(eff)𝑟 ) (2𝑟)

= 0,
(29)

with themetric 𝑑𝑠2 = diag(𝑒2𝛼(𝑟), −𝑒](𝑟), −𝑟2, −𝑟2sin2𝜃), where
e](𝑟) = (1 − 𝛽(𝑟)/𝑟)−1. The above equation can be written as

− 𝑝(eff)𝑟 − (𝑝(eff)𝑟 + 𝜌(eff))(𝑀(eff)𝑒(𝛼−])/2
𝑟2 )

+ (𝑝(eff)𝑡 − 𝑝(eff)𝑟 ) (2𝑟) = 0,
(30)
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Figure 2: Plots of 𝜌(eff) + 𝑝(eff)𝑟 , 𝜌 + 𝑝𝑟, 𝜌 + 𝑝𝑡, and 𝜌 versus 𝑟 for the first model.

where the effective gravitational mass is described as𝑀(eff) =
(1/2)(𝑟2𝑒(]−𝛼)/2)]. The equilibrium picture describes the
stability of corresponding wormhole solutions with the help
of three forces known as gravitational force 𝐹𝑔𝑓, anisotropic
force 𝐹𝑎𝑓, and hydrostatic force 𝐹ℎ𝑓. The gravitational force
exists because of gravitating mass, anisotropic force occurs in
the presence of anisotropic system, and hydrostatic force is
due to hydrostatic fluid. We can rewrite (30) as

𝐹ℎ𝑓 + 𝐹𝑔𝑓 + 𝐹𝑎𝑓 = 0, (31)

where

𝐹𝑔𝑓 = − (𝑝(eff)𝑟 + 𝜌(eff))(𝑒(𝛼−])/2𝑀(eff)
𝑟2 ) ,

𝐹ℎ𝑓 = −𝑝(eff)𝑟 ,
𝐹𝑎𝑓 = (𝑝(eff)𝑡 − 𝑝(eff)𝑟 ) (2𝑟) .

(32)

Further, we examine the stability of wormhole solutions for
first and secondmodel through equilibrium condition. Using
(18)–(20) and (27) in (31), we obtain a difficult equation for
the first model. By applying numerical technique, we plot the
graphs of the three above defined forces. In Figure 5, it can be

easily analyzed that all the three forces cancel their effects and
balance each other in the interval 4.8 ≤ 𝑟 ≤ 5.Thismeans that
wormhole solution satisfies the equilibrium condition for the
first model. Next, we take the second model and follow the
same procedure by using (28). After simplification, we finally
get a differential equation and solve it numerically. Figure 6
indicates that the gravitational force is zero but anisotropic
and hydrostatic forces completely cancel their effects. Hence,
for this model, the system is balanced which confirms the
stability of the corresponding wormhole solution.

5. Concluding Remarks

In general relativity, the structure of wormhole is based on
the condition that NEC is violated. This violation supports
the fact that there exists a mysterious matter in the universe
famous as exotic matter and distinguished by its negative
energy density. The amount of this amazing matter would
be minimized to obtain a physically viable wormhole. How-
ever, in modified theories, the situation may be completely
different.This paper investigates noncommutative wormhole
solutions with Lorentzian distribution in 𝐹(𝑇, 𝑇𝐺) gravity.
For this purpose, we have assumed a diagonal tetrad and
a particular redshift function. We have examined these
wormhole solutions graphically.
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Figure 3: Plots of 𝛽(𝑟), 𝛽(𝑟) − 𝑟, and 𝛽(𝑟)/𝑟 versus 𝑟 for the second model.

For the first model, all the properties are satisfied which
are necessary for wormhole geometry regarding the shape
function except asymptotic flatness. In this case, WEC and
NEC for normal matter are also satisfied. Hence, this model
provides realistic wormhole solution in a small interval
threaded by normal matter rather than exotic matter. The
violation of effective NEC confirms the traversability of
the wormhole. Furthermore, the second model fulfills all
properties regarding shape function and also satisfies WEC
and NEC for normal matter. There exists a micro wormhole
solution which is supported by normal matter. This model
satisfies traversability condition (24). We have investigated
stability of both models through equilibrium condition. It is
mentioned here that stability is attained for both models.

Bhar and Rahaman [27] examined in GR whether the
wormhole solutions exist in different dimensional non-
commutative space-time with Lorentzian distribution. They
found that wormhole solutions appear only for four and five
dimensions but no solution exists for higher dimensions. It
is interesting to mention here that we have also obtained
wormhole solutions that satisfy all the conditions and are
stable in 𝐹(𝑇, 𝑇𝐺) gravity. Our results show consistency with
the teleparallel equivalent of GR limits. For the first model, if
we substitute 𝛾1 = 𝛾3 = 0, then the behavior of shape function

𝛽(𝑟) and energy conditions in teleparallel theory remains the
same as in this theory. For the second model, 𝜂1 = 0 provides
no result but if we consider 𝜂2 = 0, then 𝛽(𝑟) as well as energy
conditions represent consistent behavior.

In 𝐹(𝑇) gravity [35], the resulting noncommutative
wormhole solutions are supported by normal matter by
assuming diagonal tetrad. In the underlying work, we have
also obtained solutions that are threaded by normal matter.
Kofinas et al. [36] discussed spherically symmetric solutions
in scalar-torsion gravity in which a scalar field is coupled
to torsion with a derivative coupling. They obtained exact
solution which represents a new wormhole-like solution
having interesting physical features. We can conclude that, in𝐹(𝑇, 𝑇𝐺) gravity, noncommutative geometry with Lorentzian
distribution is a more favorable choice to obtain physically
acceptable wormhole solutions rather than noncommutative
geometry [29].
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