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The problem of finding the number of irreduciblemonic polynomials of degree 𝑟 over F
𝑞𝑛
is considered in this paper. By considering

the fact that an irreducible polynomial of degree 𝑟 over F
𝑞𝑛
has a root in a subfield F

𝑞𝑠
of F
𝑞𝑛𝑟

if and only if (𝑛𝑟/𝑠, 𝑟) = 1, we show
that Gauss’s formula for the number of monic irreducible polynomials can be derived by merely considering the lattice of subfields
of F
𝑞𝑛𝑟

. We also use the lattice of subfields of F
𝑞𝑛𝑟

to determine if it is possible to generate a Goppa code using an element lying in a
proper subfield of F

𝑞𝑛𝑟
.

1. Introduction

In this paper we consider the problem of finding the number,
|P𝑟|, of monic irreducible polynomials of degree 𝑟 over the
field F𝑞𝑛 , where 𝑛 is a positive integer and 𝑞 is the power
of a prime number. This problem has been discussed by
several authors including C. F. Gauss who gave the following
beautiful formula:

P𝑟
 =

1

𝑟
∑

𝑑|𝑟

𝜇 (𝑑) 𝑞
𝑛𝑟/𝑑

, (1)

where 𝑑 runs over the set of all positive divisors of 𝑟 including
1 and 𝑟 and 𝜇(𝑘) is the Möbius function; see [1]. Recently,
it has been shown, see [2], that this number can be found
by using only basic facts about finite fields and the Principle
of Inclusion-Exclusion. This work seeks to emphasize the
simplicity of the method given in [2] by using a lattice of
subfields. This is done by first of all proving Gauss’s formula
using the Principle of Inclusion-Exclusion as was done in
[2]. However, we use only one basic fact about where (in
which subfields) the roots of irreducible polynomials of
degree 𝑟 over F𝑞𝑛 can lie. We then show how a lattice of
subfields of the field, F𝑞𝑛𝑟 , can be used to obtain |P𝑟|. We are

particularly interested in the number of roots of irreducible
polynomials of degree 𝑟 over F𝑞𝑛 because the problem of
counting irreducible Goppa codes of length 𝑞𝑛 and of degree
𝑟 depends on this number.

2. Preliminaries

2.1. The Number of Irreducible Polynomials. Our approach to
counting the number of irreducible polynomials of degree
𝑟 over F𝑞𝑛 is to count the number of all roots of such
polynomials. To this end, we make the following definitions.

Definition 1. One defines the set S(𝑛, 𝑟) to be the set of all
elements in F𝑞𝑛𝑟 of degree 𝑟 over F𝑞𝑛 .

Definition 2. One defines the set P𝑟 to be the set of all
irreducible monic polynomials of degree 𝑟 over F𝑞𝑛 .

The following theorem is well known.

Theorem 3. |P𝑟| is given by formula (1).

For the sake of clarity we state the relationship between
P𝑟 andS(𝑛, 𝑟)which immediately leads to the “Gaussian like”
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count of the number of elements in S(𝑛, 𝑟). We put this in the
following corollary.

Corollary 4. S(𝑛, 𝑟) is the union of all the roots of the
polynomials inP𝑟 and

|S (𝑛, 𝑟)| = ∑
𝑑|𝑟

𝜇 (𝑑) 𝑞
𝑛𝑟/𝑑

. (2)

2.2. Where Elements of S(𝑛,𝑟) Lie. We next identify the
subfields of F𝑞𝑛𝑟 where the elements of S(𝑛, 𝑟) lie. To achieve
this we first note that an irreducible polynomial over F𝑞𝑛

may, in some specific cases, be seen as irreducible over an
extension field of F𝑞𝑛 . To be more specific, we state this in the
following theorem.

Theorem 5. An irreducible polynomial over F𝑞𝑛 of degree 𝑟
remains irreducible over F𝑞𝑛𝑡 if and only if (𝑟, 𝑡) = 1; see [3].

Now, in order to apply Theorem 5 to general cases, one
makes the following decompositions of 𝑛 and 𝑟.

Definition 6. One defines 𝑘 to be the largest divisor of 𝑛 that
is relatively prime to 𝑟 and set 𝑙𝑛 = 𝑛/𝑘 and defines 𝑚 to be
the largest divisor of 𝑟 that is relatively prime to 𝑛 and set 𝑙𝑟 =
𝑟/𝑚. Thus 𝑛𝑟 = 𝑘𝑙𝑛𝑙𝑟𝑚 = 𝑘𝑙𝑚, where 𝑙 = 𝑙𝑛𝑙𝑟.

With this notation, the following lemma is a direct result
of Theorem 5.

Lemma 7. S(𝑛, 𝑟) consists of the elements of F𝑞𝑛𝑟 each of which
is a root of an irreducible polynomial of degree 𝑟 over F

𝑞𝑘1𝑙𝑛
,

where 𝑘1 is a divisor of 𝑘. In particular, the elements of S(𝑛, 𝑟)
are precisely those elements that lie in a subfield of F𝑞𝑛𝑟 of the
form F

𝑞𝑘1𝑙𝑛𝑟
, for some 𝑘1, but not in any subfield of the form F𝑞𝑠 ,

where 𝑠 is not divisible by 𝑙𝑛𝑟. See [4].

It is useful, for our purposes, to think of the subfields
identified in Lemma 7 in the following way.

Corollary 8. The subfields of the form F𝑞𝑠 defined in Lemma 7
are the maximal subfields of F𝑞𝑛𝑟 such that (𝑛𝑟/𝑠, 𝑟) ̸= 1 or the
subfields contained in such maximal subfields.

2.3. The Principle of Inclusion-Exclusion. Since we will
be making extensive use of the “Principle of Inclusion-
Exclusion” we state this well known principle in the following
theorem; see [5].

Theorem 9. Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be finite sets. Then

𝐴1 ∪ 𝐴2 ∪ ⋅ ⋅ ⋅ ∪ 𝐴𝑛
 = ∑

1≤𝑖≤𝑛

𝐴 𝑖
 − ∑

1≤𝑖<𝑗≤𝑛


𝐴 𝑖 ∩ 𝐴𝑗



+ ∑

1≤𝑖<𝑗<𝑘≤𝑛


𝐴 𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘



− ⋅ ⋅ ⋅ + (−1)
𝑛+1 𝐴1 ∩ 𝐴2 ∩ ⋅ ⋅ ⋅ ∩ 𝐴𝑛

 .

(3)

2.4. Goppa Codes. This paper is motivated by the unsolved
problem of finding an irreducible polynomial which defines
a “good”Goppa code of degree 𝑟 and length 𝑞𝑛 or equivalently
finding an element of degree 𝑟 which defines such a code. So
it is appropriate for us to define a Goppa code. The following
definition is the classical definition found in much of the
literature on coding theory.

Definition 10. Let 𝑔(𝑧) ∈ F𝑞𝑛[𝑧] be irreducible of degree 𝑟
and let 𝐿 = F𝑞𝑛 = {𝜁𝑖 : 0 ≤ 𝑖 ≤ 𝑞

𝑛
− 1}. Then the

irreducible Goppa code Γ(𝐿, 𝑔) is defined as the set of all
vectors 𝑐 = (𝑐0, 𝑐1, . . . , 𝑐𝑞𝑛−1) with components in F𝑞 which
satisfy the condition

𝑞
𝑛

−1

∑

𝑖=0

𝑐𝑖

𝑧 − 𝜁𝑖

≡ 0 mod 𝑔 (𝑧) . (4)

The polynomial 𝑔(𝑧) is called the Goppa polynomial.
Since 𝑔(𝑧) is irreducible and of degree 𝑟 over F𝑞𝑛 , 𝑔(𝑧)
does not have any root in 𝐿 and the code is called an
irreducible Goppa code of degree 𝑟. In this paper 𝑔(𝑧) is
always irreducible of degree 𝑟 over F𝑞𝑛 .

2.4.1. Irreducible Goppa Codes Defined by a Field Element.
The following characterization of an irreducible Goppa code
is particularly useful for our purposes. It can be shown, see
[6], that if 𝛼 is any root of the Goppa polynomial 𝑔(𝑧) then
Γ(𝐿, 𝑔) is completely described by any root 𝛼 of 𝑔(𝑧) and a
parity check matrixH(𝛼) is given by

H (𝛼) = ( 1

𝛼 − 𝜁0

1

𝛼 − 𝜁1

⋅ ⋅ ⋅
1

𝛼 − 𝜁𝑞𝑛−1

) . (5)

We denote this code by 𝐶(𝛼). Since 𝐶(𝛼) is completely
described by the root 𝛼 of 𝑔(𝑧) the number |S| gives an
upper bound on the number of irreducible Goppa codes.
Furthermore, knowing the various locations (subfields) of the
elements of S will facilitate research into finding the element
which will give the best Goppa code.

3. Proof of Gauss’s Formula

We now give a new proof of Gauss’s Formula when applied to
find the cardinality of the set Swhich has special significance
in the application to Goppa codes. Putting 𝑛 = 1 in our proof
will give the result proved in [2]. There are many similarities
between approach given in [2] and our method. However,
the crux of our argument lies on Corollary 8 which in turn
is based on Theorem 5. We believe that this slightly different
approach brings a little more clarity to the situation.

Proof. Let 𝑟 = 𝑟𝑖1
1
𝑟
𝑖
2

2
⋅ ⋅ ⋅ 𝑟
𝑖
𝑤

𝑤
be the prime factorisation of 𝑟. The

maximal subfields F𝑞𝑠 of F𝑞𝑛𝑟 , as in Corollary 8, are of the form

F
𝑞𝑛𝑟/𝑟1

, F
𝑞𝑛𝑟/𝑟2

, . . . , F
𝑞𝑛𝑟/𝑟𝑤

. (6)

Thus, by Corollary 8, |S(𝑛, 𝑟)| =

|(F
𝑞𝑛𝑟/𝑟1

∪ F
𝑞𝑛𝑟/𝑟2

∪ ⋅ ⋅ ⋅ ∪ F
𝑞𝑛𝑟/𝑟𝑤

)

|, where the complement

is taken in F𝑞𝑛𝑟 . As in [2], we note that F
𝑞𝑛𝑟/𝑟1

∩ F
𝑞𝑛𝑟/𝑟2

= F
𝑞𝑛𝑟/𝑟1𝑟2

,
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Figure 1: Lattice of subfields of F
260
.

F
𝑞𝑛𝑟/𝑟1

∩ F
𝑞𝑛𝑟/𝑟2

∩ F
𝑞𝑛𝑟/𝑟3

= F
𝑞𝑛𝑟/𝑟1𝑟2𝑟3

, and so forth. Using the
Principle of Inclusion-Exclusion, it follows that

|S (𝑛, 𝑟)| = 𝑞
𝑛𝑟
− 𝑞
𝑛𝑟/𝑟
1 − 𝑞
𝑛𝑟/𝑟
2 − ⋅ ⋅ ⋅ − 𝑞

𝑛𝑟/𝑟
𝑤

+ 𝑞
𝑛𝑟/𝑟
1
𝑟
2 + 𝑞
𝑛𝑟/𝑟
1
𝑟
3 + ⋅ ⋅ ⋅ + 𝑞

𝑛𝑟/𝑟
𝑤−1
𝑟
𝑤

...

+ (−1)
𝑤
𝑞
𝑛𝑟/𝑟
1
𝑟
2
⋅⋅⋅𝑟
𝑤 .

(7)

Finally, note that |P𝑟| = |S(𝑛, 𝑟)|/𝑟.

4. |P
𝑟
| Using a Lattice of Subfields of F

𝑞𝑛𝑟

We have noted that in order to construct S(𝑛, 𝑟) a lattice
of subfields of F𝑞𝑛𝑟 together with Corollary 8 offers a good
insight into S(𝑛, 𝑟). We will put the lattice of subfields of F𝑞𝑛𝑟
into their usual hierarchies, where level one is taken by F𝑞𝑛𝑟 ,
and level two contains subfields of F𝑞𝑛𝑟 of the form F

𝑞𝑛𝑟/𝑢𝑖
,

where 𝑛𝑟 = 𝑢𝑖1
1
𝑢
𝑖
2

2
⋅ ⋅ ⋅ 𝑢
𝑖
𝑗

𝑗
is the prime factorization of 𝑛𝑟. Level

three comprises of maximal subfields of the fields in level two
and so on. As this is done, all intersections between subfields
are marked as this is used in getting S(𝑛, 𝑟).

Observe that the elements of F𝑞𝑠 (those not lying in S)
described in Corollary 8 are those which lie in subfields of
type F

𝑞𝑛𝑟/𝑟𝑖
, where 𝑟𝑖 is a prime divisor of 𝑟. We can see the

formula for S(𝑛, 𝑟) taking shape as we have the full splitting
field F𝑞𝑛𝑟 of all the irreducible polynomials of degree 𝑟 over
F𝑞𝑛 , the maximal subfields F

𝑞𝑛𝑟/𝑟𝑖
, and the subfields of F

𝑞𝑛𝑟/𝑟𝑖
.

Formula (7) shows the levels mentioned above. The
subfields that need to be considered in order to find |S(𝑛, 𝑟)|
can be read off from a lattice of subfields of F𝑞𝑛𝑟 in accordance
with Corollary 8, that is, subfields of the form F

𝑞𝑘1𝑙𝑛𝑟
. We

illustrate this method with an example.

Example 11. Let us take 𝑞 = 2, 𝑛 = 10, and 𝑟 = 6. Then, 𝑘 = 5,
𝑙𝑛 = 𝑙𝑟 = 2, 𝑚 = 3, and F𝑞𝑛𝑟 = F260 . Hence the subfields in
level two which do not contain any elements of S (subfields
of the form F

𝑞𝑛𝑟/𝑟𝑖
) are F230 and F220 . While the only proper

subfield which does contain elements of S (subfield of the
form F

𝑞𝑘1𝑙𝑛𝑟
) is F212 , putting 𝑘1 = 1. So in constructing the set

S it is necessary to exclude the two subfields F230 and F220 . In
level three, we will consider the intersection F230 ∩ F220 = F210

as this has been excluded twice.Thus, the number of elements
of degree 6 over F210 is 2

60
− 2
30
− 2
20
+ 2
10. The lattice shown

in Figure 1 illustrates this example.
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Figure 2: Lattice of subfields of F
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.
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Figure 3: Lattice of subfields of F
260
.

Example 12. Let us take 𝑞 = 2, 𝑟 = 30, and 𝑛 = 1. In this
case 𝑘 = 𝑙𝑛 = 1 and 𝑟 = 30. There are no proper subgroups
of the form F

𝑞𝑘1𝑙𝑛𝑟
but rather all maximal subgroups are of the

form F
𝑞𝑛𝑟/𝑟𝑖

and so by Corollary 8 all thesemaximal subgroups
are excluded when constructing the set S. By the Principle of
Inclusion-Exclusion, it follows that |S(1, 30)| = 2

30
− 2
15
−

2
10
− 2
6
+ 2
5
+ 2
3
+ 2
2
− 2. See Figure 2.

5. Applications to Goppa Codes

Weknow that an irreducibleGoppa code,𝐶(𝛼), is defined by a
root 𝛼 of the Goppa polynomial which is of degree 𝑟 over F𝑞𝑛 .
Now to find such an 𝛼 one can search in any of the subfields
of the form F

𝑞𝑘1𝑙𝑛𝑟
. This makes the search easier. We can use a

lattice of subfields of F𝑞𝑛𝑟 not only to facilitate this search but
also to calculate the number of such elements.

Example 13. Let us look again at the example above with 𝑞 =
2, 𝑛 = 10, and 𝑟 = 6. F212 contains elements of S(10, 6). The
number of elements in S(10, 6) ∩ F212 can be easily calculated
from the lattice of subfields. It is 212 − 26 − 24 + 22. See
Figure 3.

6. Conclusion

In this paper we have shown how a lattice of subfields can
be used as an alternative to Gauss’s formula for finding
the number of monic irreducible polynomials of degree 𝑟
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over F𝑞𝑛 . The lattice of subfields approach helps to clear
the mystery surrounding the rather complicated looking
Gaussian formula which involves the Möbius function. We
have also shown how this method can be used to obtain a
Goppa code 𝐶(𝛼), where 𝛼 lies in a lower field. Using the
Principle of Inclusion-Exclusion with the lattice of subfields
it is easy to calculate the number of such elements 𝛼 in any
subfield. The lattice of subfields approach simplifies the task
of finding Goppa codes and sheds light on the processes
involved.
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